Страница 4 из 4 Первая ... 234
Показано с 61 по 66 из 66

Тема: Экономичная реализация арифметики ЦОС в аудио

  1. #1 Показать/скрыть первое сообщение.
    Завсегдатай
    Автор темы
    Аватар для dortonyan
    Регистрация
    03.06.2009
    Адрес
    BLR
    Возраст
    39
    Сообщений
    3,942

    По умолчанию Экономичная реализация арифметики ЦОС в аудио

    Просто FIR интерполятор - вещь достаточно банальная, а вот оптимизация ресурсов - задача более интересная.
    Поэтому новая ветка про оптимизацию. Предлагаю пообсуждать решения по оптимизации арифметики на FPGA и MCU для аудио ЦОС.
    Предыдущий проект со ссылками на другие ветки здесь.

    С появлением недорогих FPGA GoWin оптимизация вроде как особо и не нужна. Но в наших (отечественных) реалиях ассортимент и стоимость микросхем могут быть не самые лучшие.
    Ну а кроме того, у меня уже давно были мысли уместить ЦФ в LCMXO2-1200, т.к. это недорогая FPGA со встроенной флешью и в компактном исполнении: QFN-32 5x5mm. Что так же послужило поводом для нового проекта и стало целевой задачей при разработке.
    Несколько лет назад я прикидывал, что туда поместится только что-то совсем простое, вроде SM5842. Однако с опытом работы в верилоге получилось ужать арифметику настолько, что даже в такой скромный чип помещается нормальный полноценный апсемплер с шейпером.

    Кое что из стандартных приемов оптимизации уже описывал в проекте DF1.
    Теперь дополнил подробнее (документ во вложении ниже).
    Изначально мысль ужать ресурсы возникла из того обстоятельства, что в DF2 для первой ступени х2 интерполятора использовались каскады с максимально широкой полосой пропускания (максимально узкой переходной полосой). Сделал я это по аналогии со старыми микросхемами ЦФ, типа SM5847.
    Но потом подумал - а собственно нафига?
    В интегральных ЦФ первая ступень для любой входной частоты семплирования сделана максимально широкополосной чисто из соображений экономии: тупо используется одна и та же логика, просто на разной частоте.
    А на FPGA ситуация обратная: максимальная частота тактирования лимитирована, а добавить несколько наборов коэффициентов для разной входной частоты семплирования - не проблема.
    Частоты выше 20кГц все равно не слышно, поэтому переходную полосу можно сделать более пологой (сделать полосу пропускания для всех входных частот семплирования в районе 20кГц).
    Это не только укорачивает импульсную хар-ку фильтра, сохраняя преимущества Hi-Res контента, но и потенциально упрощает фильтрацию в аналоге: чем шире полоса пропускания, тем шире и ее отражение на частоте семплирования.
    А если так, то кол-во тактов, необходимых для обсчета фильтра резко уменьшается. На столько, что при тактировании частотой 1024Fs можно успеть обсчитать оба канала по очереди, что и стало основным нововведением в проекте DF3E. Т.е. в данном ЦФ блок многоступенчатого FIR апсемплера запускается вдвое чаще, чем в DF2.

    Правда одного сужения полосы первой ступени интерполятора оказалось недостаточно для поочередной обработки каналов.
    Поэтому для DF3E проекта были так же оптимизированы полуполосные каскады интерполяторов (сокращены до минимума). Из-за этого боковые лепестки в полосе задержания получились повыше, чем в DF2 проекте, но только на частотах кратных 705кГц, где они легко дофильтровываются аналоговым ФНЧ.
    Еще немного тактов удалось сэкономить оптимизацией алгоритма умножения центрального отвода полуполосных каскадов. В DF2 это умножение, как и остальные, выполнялось за два такта, а в DF3E - за один.

    Для упрощения модуля приема пакетов SPI обработка выполняется сразу по приему данных одного канала: приняли левый - запустили обработку, приняли правый - запустили обработку.
    Данное обстоятельство накладывает ограничение на входной I2S фрейм, в котором сигнал LRCK обязан иметь скважность 50%. Но я еще не сталкивался со случаями, когда данное условие не выполняется.
    Кроме того, обработка в остальных блоках так же выполнена последовательной, что позволило серьезно сэкономить еще и на шейпере и дополнительных амсемплерах. Кто пользовал DF2 сразу почувствует разницу.

    Что еще стоит отметить - добавлено округление с дизером в маке. Что позволило уменьшить разрядность шины данных до 22 бит, а так же - сделало входной аттенюатор фактически беспотерьным даже при малой разхрядности шины данных, и его теперь можно использовать как качественный цифровой РГ.
    Округление с дизером было и в самом первом проекте DF1, но теперь оно выполнено более аккуратно.
    Дизеры для мака и для округления выходных данных выполнены на LFSR со сдвигом на 16 тактов перед выборкой. Если использовать сдвиг на 2^N тактов, то длина генерации последовательности до повтора получается такая же, как и при сдвиге на один такт (т.к. 2^N всегда некратно максимальной длине последовательности LFSR).
    Так же, в ходе экспериментов с округлением на сигналах малой разрядности выяснил, что амплитуда дизера должна быть не менее +/-1 LSB, иначе получается модуляция шума, хотя на спектре следов квантования не видно.
    Для округления данных на выходе добавлена опция дизера с треугольным распределением. Шум которого на 3дБ ниже, чем с прямоугольным. Однако это имеет значение только для округления без шейпера.
    Наличие даже самого простого шейпера 1-го порядка исключает модуляцию шума и можно использовать самый простой шум с равномерным распределением минимальной амплитуды: +/-0.5LSB.

    Схему отработки переполнения наоборот упростил: убрал дополнительный аттенюатор перед шейпером.
    Теперь аттенюация отдана на откуп пользователю проекта, который должен сам решать - на сколько ослабить сигнал в случае вывода данных малой разрядности с шейпингом.

    Ну и отдельно стоит упомянуть про такую вещь, как асинхронное тактирование ядра в DF3E. Для этого выделен отдельный порт "CCLK".
    Типовая тактовая частота для данного проекта 1024Fs.
    Однако, в случае отсутствия тактовых генераторов на такую частоту, можно применить например 512Fs генераторы, а ядро фильтра (а так же ядро DSD дециматора) затактировать любой произвольной частотой, не обязательно кратной 1024Fs (например от встроенного в FPGA генератора).
    Это не только позволяет сохранить производительность при низкой частоте тактовых генераторов, но и при необходимости - поднять тактовую частоту и увеличить длину фильтров.
    Подняв частоту вдвое получим производительность DF2 (если конечно позволит быстродействие выбранной плисины).

    В архиве проект DF3E с исходниками, как обычно в альфа версии, т.к. протестировать весь накрученный функционал слишком трудоемко.
    В файле с примерами приведено два проекта:
    1. Вывода на параллельный ЦАП с возможность приема DSD битстрима.
    2. Вывод данных с соневского модулятора дифференциальными битстримами на PCM179x в моно-включении в режиме DSD.

    Помимо исходников в архиве есть графики частотных хар-к в разных режимах (включая хар-ки DSD дециматоров), диаграммы управляющих сигналов и данных, а так же доработанная утилита (и ее исходник) для преобразования коэф-тов, сгенерированным в матлабе.
    Модули вывода SAI_OUTPUT взяты с проекта DF2 с чисто косметическими доработками, поэтому его описание не делал.
    Вложения Вложения
    Последний раз редактировалось dortonyan; 26.02.2025 в 23:38.

  2. #61
    Завсегдатай Аватар для Turbo_man
    Регистрация
    06.04.2010
    Адрес
    Moscow
    Сообщений
    5,722

    По умолчанию Re: Экономичная реализация арифметики ЦОС в аудио

    Как я понял, использовать отдельно df3_core стало сложнее, т.к. шина данных там стала 22 бит и каналы идут последовательно по одной шине.

    ---------- Сообщение добавлено 22:36 ---------- Предыдущее сообщение было 22:32 ----------

    Тогда мне надо бы как-то отрезать выходной формирователь sai_output. И получить две выходных параллельных шины по 12...24 бит.

  3. #62
    Завсегдатай Аватар для Михаил45
    Регистрация
    09.03.2007
    Адрес
    Санкт-Петербург
    Возраст
    63
    Сообщений
    2,121

    По умолчанию Re: Экономичная реализация арифметики ЦОС в аудио

    Володя, так в ядре ДФ3 есть параллельный выход.

  4. #63
    Завсегдатай
    Автор темы
    Аватар для dortonyan
    Регистрация
    03.06.2009
    Адрес
    BLR
    Возраст
    39
    Сообщений
    3,942

    По умолчанию Re: Экономичная реализация арифметики ЦОС в аудио

    Цитата Сообщение от Turbo_man Посмотреть сообщение
    Как я понял, использовать отдельно df3_core стало сложнее, т.к. шина данных там стала 22 бит и каналы идут последовательно по одной шине.
    22 бита - это разрядность данных в шине. Разрядность шины физическая - 23 бита (один бит добавляется на переполнение).
    А разрядность на входе еще на 1 бит больше, т.е. 24 бита.
    Т.е. входная разрядность на 2 бита больше разрядности шины данных.
    На выходе разрядность всегда 24 бита, как и было в DF2.
    В общем-то в DF3E разрядности шины можно задавать и больше, как в DF2, просто нет смысла, т.к. в маке округление с дизером.
    Единственное усложнение, что данные передаются последовательно и в паре с синхросигналом. Но это только на входе. На выходе все так же как и в DF2 (точнее в DF3 есть еще и последовательный вывод "oQSD/oCHSD", но он опциональный, можно не использовать).

  5. #64
    Завсегдатай Аватар для Михаил45
    Регистрация
    09.03.2007
    Адрес
    Санкт-Петербург
    Возраст
    63
    Сообщений
    2,121

    По умолчанию Re: Экономичная реализация арифметики ЦОС в аудио

    Цитата Сообщение от Turbo_man Посмотреть сообщение

    Тогда мне надо бы как-то отрезать выходной формирователь sai_output.
    Владимир, еще учти, что этот модуль в принципе не поддерживает , не рассчитан на работу с цапами от ВВ типf рсм56, 1702 и так далее.
    Последний раз редактировалось Михаил45; 16.06.2025 в 15:44.

  6. #65
    Завсегдатай
    Автор темы
    Аватар для dortonyan
    Регистрация
    03.06.2009
    Адрес
    BLR
    Возраст
    39
    Сообщений
    3,942

    По умолчанию Re: Экономичная реализация арифметики ЦОС в аудио

    Михаил45, почему не поддерживает? И почему именно BB?
    Или имеется ввиду самый старый из проекта DF1?

  7. #66
    Завсегдатай Аватар для Михаил45
    Регистрация
    09.03.2007
    Адрес
    Санкт-Петербург
    Возраст
    63
    Сообщений
    2,121

    По умолчанию Re: Экономичная реализация арифметики ЦОС в аудио

    Алексей, именно из ДФ1 где конвейер. Я выше приводил тайминг для работы рсм1702. В sai_output ДФ1 такого не получить.

Страница 4 из 4 Первая ... 234

Социальные закладки

Социальные закладки

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения
  •