
The component values are calculated as:

1.25z ER R≈ [1]

2
E

z
Z

LC
R

=
[2]

with:
2

MAX
R

Z

VP
R

=
[3]			

The resistor value is approximate and may need to be 
adjusted for more extreme voice coil impedances. The 
resistor should be power rated as shown to handle the 
current to the loudspeaker. The flatness of the compensated 
impedance magnitude above resonance is typically limited 
when using this simplified compensation network. 

More complex and accurate compensation networks 
are possible [5]. An improved compensation network 
can be realized by using the analogous circuit “dual” 
of the L2/R2 model, assuming the values for the driver 
impedance model are known. Recall that a circuit “dual” 
replaces series impedances with shunt impedances and vice 
versa. Capacitors become inductors and inductors become 
capacitors. Resistors remain resistors. Applying these 
principles to the network of Figure 2 results in the network 
shown in Figure 4.

The component values for this improved compensation 
network are calculated as:
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Editor’s Note: “Improved Zobel Network” was originally 
published in CJS Lab Notes, Vol. 12, Issue 4 by CJS Labs. That 
issue and back issues are available at www.cjs-labs.com.

assive crossover filter networks for multi-way 
loudspeakers generally require a resistive termination 

for optimum performance. The driver itself generally 
presents a reactive load. Recall that the inductive rise with 
frequency above resonance of the loudspeaker electrical 
impedance is semi-inductive due to eddy current losses [1], 
see Figure 1.

The L2/R2 impedance model [2], [3], depicted in Figure 2 
represents the electrical impedance as seen by the amplifier 
output. The typical Zobel network [4], used to make the 
driver impedance appear closer to an ideal resistive load 
above resonance is a simple series resistor and capacitor 
shunted across the driver terminals (see Figure 3). 
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Figure 1: Typical loudspeaker electrical impedance with a semi-
inductive rise above resonance

Figure 2:  L2/R2 loudspeaker electrical impedance model

Figure 3: Typical Zobel 
impedance compensation 
network

Figure 4: Improved Zobel compensation network realized as the 
circuit “dual” of the L2/R2 impedance model
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This represents a dramatic 
improvement to the basic two-
component Zobel network and 
compensates for the non-ideal semi-
inductive behavior of the loudspeaker 
driver across the entire frequency 
band. The component values are easily 
found if the L2/R2 impedance model 
values are known. Again, the resistor 
values should be power rated to 
handle the current to the loudspeaker 
as per Equation 3. Additional circuitry 
is required to compensate for the 
motional impedance at resonance. 
The cost, however, is increased size, 
complexity, and component count. VC
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