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One of the more troubling aspects of analog circuit design is amplifiers that oscillate when they 
are not supposed to. Engineers commonly respond to spurious oscillations with empirical efforts 
to defeat the instability, by throwing small-value resistors, ferrite beads, and bypass capacitors at 
the problem (whether in a hardware prototype or circuit simulation), hoping it will go away. 
Perhaps these kludged circuits stop oscillating, but then the performance has been degraded. Or 
perhaps occasional production units oscillate. What is a circuit designer to do? 
 
The answer, of course, is to understand why the circuit oscillates. There is always a rational, 
underlying cause for annoyingly unwanted sinusoids, and finding it can lead not only to a stable 
circuit, but also a performance-optimized circuit. Not only can the oscillation be modeled and its 
compensation designed, the margin of stability can also be estimated so that you can know how 
far from oscillation the circuit design is. 
 
In Part 1 we examine causes and solutions for discrete BJT (bipolar junction transistor) amplifier 
circuit oscillation. The principles carry over to FETs fairly directly. We will look at two cases: in 
the first parasitic resonance is the cause; in the second the little-known effect of high-frequency 
impedance gyration explains why capacitively-loaded emitter followers often oscillate. 
 
 
Parasitic Resonance 
 
One of the more annoying (or intriguing, once you become curious instead of frustrated) aspects 
of circuit design are elements in the design you do not know about. These parasitics arise as 
integral to components, always imperfect realizations of ideal circuit elements. Sometimes these 
parasitic elements occur in subtle places, such as board traces, ideally perfect conductors. 
 
Before looking at a BJT amplifier stage let's first review resonant circuits. There are two resonant 
modes: serial (a) and parallel (b), shown below. 

The circuits and their corresponding asymptotic impedance plots are shown. 



Define the intersection of the L and C plots as the resonant point, and the resonant frequency is: 
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and the characteristic impedance of the resonance is: 
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Zn is the reactance of each resonating element at the resonant point. Exact plots require that a 
vertical asymptote at fn be approached on each side by a curve tending to ±∞. For a series 
resonance, Zs = 0, which is at −∞ on a log-log reactance plot. For a parallel resonance, Zp → ∞, 
which is at +∞ on a reactance plot. 
 

A characteristic feature of resonance is a ±2 change of slope on the plot: +2 for a series and −2 for 
a parallel resonance. In the case of LC circuits, this is a change from ±1 to ! 1. However, changes 
from ±2 to zero or zero to ±2 can also cause resonance and provide the potential for oscillation if 
not sufficiently damped. 
 

The amount of damping of an RLC resonance is characterized by the damping ratio, ζ. For 
parallel resonances, this is: 
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And for series resonances, it is:  
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For critical damping, ζ = 1. Then Rp = Zn/2 and Rs = 2⋅Zn. In both cases, critical damping is 
achieved by a resistance equal to the combined circuit reactance of the L and C at resonance. 
 
An estimate can therefore be made on the reactance plot as to how well a resonance is damped. 
For a parallel resonance the parallel resistance must be below the LC resonant Zn to be well-
damped; for series resonance, it must be above Zn. 
 
Spurious resonance in a BJT circuit can exist when an inductance and capacitance inadvertently 
interact with BJT gain. A common example of how this arises is shown by the following circuit. 



The oscillating common-emitter amplifier stage is typically designed for speedy performance, 
and consequently is driven by a low-impedance source, with small values of RB and also RL. In 
this case, the designer did not adequately bypass the collector supply, VCC. The top of RL is 
connected to a board trace that eventually connects back to a bypass capacitor connected to 
ground, completing the output loop (and in this case, also the input loop) of the circuit. The long 
trace introduces the parasitic inductance shown in the circuit diagram as Lc. 
 
So far the extra collector inductance has the advantage of peaking the circuit, increasing its speed 
(bandwidth) somewhat. That's not bad; a free inductive-peaking bandwidth extension from a 
parasitic element. The approximation for trace or wire inductance we used at Tektronix years ago 
was 10 nH/cm. It is hard to analytically derive this number, for it depends on many factors, but it 
is useful as a roughly approximate "rule of thumb." 
 
Necessary for oscillation is the other parasitic element, the parasitic capacitance of the collector-
base junction, shown as Cbc although largely found within the BJT. Because Cbc provides a 
feedback path to the base, the series resonance formed by Lc and Cbc might also be amplified, 
forming an oscillator. This resonance can be damped with sufficient series resistance. In the more 
common oscillating (unbypassed-collector) emitter-follower, RL is near zero. Damping requires 
that RB be made large enough, according to the above damping equation, to eliminate oscillation. 
If an increase in RB diminishes circuit performance, then RL can be added instead. Oscillation-
damping explains some of those low-value base resistors in amplifier designs -- usually from  
10 Ω to 100 Ω in value. 
 
If the collector is bypassed to ground with a capacitor that "shorts" Lc, all the better. Beware 
though that the capacitor must be a "high-frequency" kind, one which has low series inductance 
itself. Its inductance will parallel that of Lc and reduce Zn. This is desirable because with a lower 
Zn, it takes less series resistance to damp the resonance. Any unbypassed RL will also contribute 
to the damping. 
 
The series inductance of small ceramic capacitors of typical bypass value from 10 nF to 200 nF is 
almost entirely in their leads. Chip capacitors are best for high-frequency bypassing if they can be 
soldered directly across ground and supply nodes. Running traces from chip capacitors defeats 
the purpose in having no leads. 
 
In addition, as Lc is decreased fn increases. At some higher frequency the BJT runs out of gain and 
though the resonance is undamped, its frequency is too high to be amplified enough for 
oscillation to occur. If the fT (= ½⋅π⋅τT) is increased (that is, a faster BJT is used), then Cbc is 
typically decreased, raising Zn and the range of fn for which the faster BJT can sustain oscillation. 
A slower BJT might be less likely to oscillate. 
 
 
High-Frequency Resonance 
 
Before those of you who are not "speed freaks" are turned away by the esoteric notion of "high-
frequency" (HF) design considerations, the expression is relative to the bandwidth of the 
amplifying device, and can be as low as 10 Hz, or less, for op amps. One of the great wonders of 
the electronics industry is that there is a very basic circuit phenomenon which shows up all over 
the place yet you will be hard-put to find it in any circuits textbook, no less an engineering-school 
curriculum. (It is covered in my analog circuit design book at length http://www.innovatia.com.) 
The concept is one of the best-kept secrets of the industry. I was blessed to learn of it early at 
Tektronix, for it is revealing of much that is otherwise mysterious in circuit behavior. What is 
strange is that it has propagated negligibly from a few places like Tek. Judging from the kind of 



articles being published from HP engineers in the 1970s about emitter-follower oscillation, it was 
not understood too well either at that bastion of circuits knowledge. Nathan Sokol also published 
some articles in the EE trade journals back then nipping around the edges of the problem. And 
some IEEE papers recognized the effect but did not offer a simple, general, theory of it (see 
References). It really ought to be a part of undergraduate active-circuits courses. It is that basic. 
 
Here's the essence of what is being missed: active devices can usually be characterized as having 
a gain that is flat out to some bandwidth, such as fβ for a BJT or fbw for an amplifier. Above this 
break frequency they exhibit single-pole (-20 dB/decade) roll-off in their gain. Then, at some 
higher frequency, such as fT for a BJT or GBW for an amplifier, the gain becomes flat again at a 
value of one. Between fbw and fT (to use these symbols generally for all such devices), is the high-
frequency (HF) region of active-device operation. In this region device impedances are 
transformed, or gyrated, to become other kinds of circuit elements. For instance, the resistance in 
the base of a transistor in the HF region is gyrated to appear as an inductance at the emitter. This 
inductance can (and often does) resonate with emitter capacitance if the resonant frequency is 
within the HF region. 
 
This HF resonance effect explains why negative voltage regulator ICs will oscillate if not 
capacitively loaded sufficiently at their outputs, and why emitter-followers (and source-followers 
and feedback amplifiers) can oscillate when capacitively loaded. 
 
To develop the concept for BJTs, we start by distinguishing between the low−frequency 
(quasistatic) β and a frequency-dependent β by denoting low-frequency β ≡ βo. 
 
For BJTs, current-gain bandwidth is denoted by fβ and the unity-current-gain frequency by fT. 
They are related by: 

ββ ff oT ⋅=  
 
For a BJT with fT = 300 MHz and βo = 100, high-frequency behavior occurs between fβ = fT/βo 
and fT, or in the HF range, from 3 MHz to 300 MHz. For power BJTs, fβ can be as low as several 
hundred kilohertz. The open-loop bandwidth of many op-amps is less than 10 Hz when the unity-
gain frequency is 1 MHz. This range of rather low frequencies is the op-amp HF region. 
 
 
Derivation of BJT High-Frequency Model  
 
We now use a simplified hybrid-π BJT model, shown below without Cµ or other refinements. 

 
This model is valid for both the low-frequency (LF) and HF regions. The idea of the HF model is 
that as the BJT input frequency increases above 1/rπCπ, a decreasing proportion of base current, 
Ib, flows through rπ as the reactance of Cπ decreases. 



As the base impedance: 
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decreases with frequency, Vbe also decreases, resulting in decreased collector current. 
Consequently, β also decreases with frequency. The break frequency of β is ωβ = 1/τβ , where: 
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The frequency-dependent form of β is Ic(s)/Ib(s). Using the current-divider formula: 
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where: 

Toτβτ β =  
 
The Bode plot of β(s) + 1 is shown below. 

In the LF region the transistor model does not require reactive elements. In the HF region, β rolls 
off with frequency, and above fT the device has essentially lost its gain (though power gain under 
the right circuit conditions takes place up to the unity-power-gain frequency, fMAX). Other 
significant factors not accounted for in this model (such as base transit time) cause its error to 
increase as fT is approached. The model predicts less phase shift in β than actually occurs due to 
other transistor delays yet it is accurate enough to be quite useful. 
 
A simplified model, valid only for the HF region, can be derived by letting βo → ∞. Then: 
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These expressions for β can now be used in circuit analysis. 



Impedance Transformations in the High-Frequency Region 
 
The β transform, as applied to non-reactive BJT circuits, can be generalized using β(s) in reactive 
circuits. The impedance at the base node due to impedance ZE at the emitter node is then: 
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and, from the emitter, the impedance in the base circuit, ZB, appears at the emitter as: 
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The corresponding circuit is shown above, from which we can derive Zb and verify the above 
equation for it. 
 
Applying KCL to the emitter node: 
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(Vbe = Vi − Vo.) Solving for Zb gives: 
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Well above fβ, Zπ becomes negligible, and: 
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Because τβ = βo⋅τT, Zb can be rewritten as a continued fraction making the topology explicit in 
equation form: 
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The corresponding circuit topology is shown below. 
 

Here βo⋅ZE is the LF contribution to Zb, ZE/sτT is the HF contribution, and the series ZE is common 
to both. Below fβ, ZE/sτT approaches an open circuit so that Zb is consistent with the LF model. In 
the HF region, ZE/sτT dominates Zb. Dividing ZE by s gyrates the impedance of ZE by −90° so that: 
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For the three cases of ZE, the transformed impedances are shown below: R in (a), C in (b), and L 
in (c). Because this analysis is linear, combinations of the three elements in ZE can be individually 
transformed and combined to produce the transformed ZE. 

 
Example: Shunt RC-Loaded Emitter-Follower 
 
A common-collector (CC) BJT amplifier has a shunt RC load where RE = 470 Ω and CE = 10 pF. 
The BJT has a βo = 150 and fT = 300 MHz at IE = 10 mA (typical of a 2N3904). What is Zb? 
 
The combination of gyrated circuits from (a) and (b) above are shown combined below. 



For element values, calculate τT = ½⋅π⋅fT = 531 ps and αo = 0.993 ≅ 1. Then τT/RE = 1.13 pF and 
−τT/CE = −53.1 Ω. Furthermore, βo⋅RE = 70.5 kΩ and −αo⋅CE ≅ −10 pF. An HF equivalent circuit 
omits βo⋅RE. Whether Zπ is negligible depends on the other elements in the circuit. If base 
reactance creates a resonance with the emitter impedance near fβ, then Zπ is probably significant. 
For this circuit, re ≅ 2.6 Ω and Cπ = τT/re = 204 pF. 
 
One method of compensating this circuit is to add a series RC circuit from the base to ground that 
has positive values corresponding to those of the –R, –C branch. These branches cancel, leaving 
no –R to form an oscillator. 
 
 
Impedance Gyration Viewed From the Emitter 
 
A similar circuit derivation for Ze results in 
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Again approximating Zπ ≅ 0, we obtain the continued fraction: 
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The topology is the dual of the one above. Below fβ, sτTZB approaches a short circuit and becomes 
the LF model. The HF contribution of sτTZB gyrates Ze by +90° so that: 
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The expressions for Zb and Ze are valid from dc to fT. A simpler model, applicable only in the HF 
region, is derived by using βhf. To derive the simplified HF models, assume: 
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The HF models are based on removal of the break frequency of β(s) + 1 at fβ so that β(s) rolls off 
from infinity at the origin. The expression for β + 1 becomes: 
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This expression has a pole at the origin which breaks at fT. The HF model is consequently not 
valid in the LF region. 



Emitter-Follower Reactance Plot Stability Analysis  
 
CC stages are commonly used to drive capacitive loads such as transmission lines. The high 
current gain of the CC configuration allows it to supply high transient currents required to quickly 
charge the capacitive load. When capacitive loading is combined with base resistance, an HF 
resonance can occur. 
 
The figure below shows a CC amplifier with its HF equivalent circuit at the emitter node. 

 

The resulting reactance plot for the HF circuit is shown below. 

Ordinarily we would combine the parallel Rs and Cs before plotting. Here, sections a and b of the 
HF circuit are plotted separately because the elements within them are interdependent. Section a 
of Ze is resistive up to fT and is capacitive with value CB above fT. Section b is inductive up to fT, 
above which it is resistive with value RB. On the reactance chart RB and CB have been chosen so 
that RBCB = τβ; they intersect at fβ. CE is much greater than CB, and it intersects the plot for 
section b at resonant point r. This is a parallel resonance; a resistance less than the impedance at 
r, or Zn, is required to damp it. The plot of the impedance from section a is resistive and less than 
Zn at fn; it damps the resonance. Since this resistance decreases as CB increases, then increasing 
base capacitance tends to stabilize a capacitively-loaded emitter-follower. 
 
From the reactance plot we can see what effect changes in the values of circuit elements have. For 
section a, increasing CB causes the resistive segment of the a plot to move downward and thus 



provides more damping at r. At the same time the diagonal line representing CB moves to the left. 
The break frequency does not move but remains constant at fT, so curve a moves downward as CB 
increases. Similarly, an increase in RB increases the inductance below fT in curve b while break 
frequency fT remains fixed. That is, RBτT always intersects RB at fT. Increasing RB moves curve b 
upward. 
 
From the reactance-plot, we observe that a decrease in CE or an increase in RB or CB tends to 
stabilize the circuit because Zn increases relative to the damping resistance. CE has a range in 
which instability can occur. As CE increases its plot moves to the left, and r moves with it and 
downward until it intersects curve a at fβ. Then 1/sCE = τT/CB at fβ, and r is eliminated because 
impedance gyration does not occur below fβ. This is also true above fT. If CE decreases until it 
crosses RB at fT, r vanishes. In addition, transistor gain above fT may be insufficient to sustain 
oscillation anyway. Since the reactance plots are asymptotic approximations, HF effects extend 
somewhat above and below the HF region. 
 
This analysis assumes that CB << CE and τT/CB << RB. More generally, as CB increases two effects 
occur: its β-gyrated resistance, τT/CB, decreases (increasing damping), and CB also adds to CE, 
decreasing Zn. Adequate damping can occur only when CE dominates. If CE becomes negligible 
relative to CB, then the resonance cannot be damped better than ζ = 0.5. For maximum circuit 
speed a minimum CB is desirable to minimize the base input time constant. 
 
 
Closure 
 
While parasitic-resonance oscillations follow from basic resonance theory applied to active-
device gain paths, oscillations caused by HF resonance effects are more complicated, and require 
development of HF gyration theory. The introduction presented here is a start but there is more to 
it (in the Dynamic Response volume of Analog Circuit Design at http://www.innovatia.com). An 
equivalent analysis to that given here can be carried out at the base instead of the emitter, with the 
same results. Various methods of compensating HF resonance effects have been devised, and 
many of them can be found in the vertical amplifiers of Tektronix' oscilloscopes. Acquisition of 
some Tek instruction manuals for 1970s-vintage 'scopes will provide industry examples of 
applied HF theory. 
 
This theory also provides a basis for understanding why feedback-amplifier output impedance 
increases above the open-loop bandwidth and flattens out again at the GBW. Feedback amplifier 
outputs are characteristically inductive in their HF region, and for the same basic reason that base 
resistance appears inductive at the emitter of BJTs in the HF region. 
 
In Part 2, we will move on to reactive loading that causes amplifiers to oscillate because of 
feedback instability, and we also apply HF theory again in analyzing the amplifier of a 
commercial pulse generator. 
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