Исходные материалы для производства лаков и компаундов

В данной статье рассмотрены физико-химические свойства исходных материалов, применяемых в производстве электроизоляционных лаков, эмалей и компаундов, таких как растительные масла, битумы, природные смолы.

Растительные масла

Растительные масла по способности их к высыханию согласно принятой классификации подразделяются на пять групп.

1. Масла типа тунгового

Будучи нанесены на поверхность, высыхают быстро с образованием твердой, неплавкой и нерастворимой в органических растворителях пленки, стойкой к действию воды. Представители этой группы — тунговое и ойтисиковое масла.

2. Масла типа льняного

Высыхают быстро с образованием твердой эластичной пленки, которая потом не размягчается, не плавится и почти нерастворима в растворителях. Представители этой группы – льняное, перилловое и конопляное масла.

3. Масла типа макового

Высыхают значительно медленнее вышеназванных. Их пленки способны размягчаться и плавиться при нагревании и растворимы в растворителях. Представителями этой группы являются маковое, подсолнечное, кукурузное, соевое, рыжиковое и другие масла.

4. Масла типа оливкового

Высыхают лишь в присутствии катализатора и то не полностью. Представителями этой группы являются хлопковое, оливковое и рапсовое масла. Пленки этих масел могут быть получены после их химической переработки.

5. Касторовое масло.

Это масло относится к группе невысыхающих. Оно приобретает способность к высыханию только после специальной химической обработки.

По химическому составу растительные масла представляют собой полные эфиры глицерина и жирных кислот, то есть триглицериды жирных кислот. Состав растительных масел отражен в табл. 1.

Жирные кислоты, входящие в состав масла, могут быть предельными (насыщенными) и непредельными (нена-

Таблица 1

Глицериды жирных кислот	95-98%			
Свободные жирные кислоты	1,5-2,0%			
Белковые вещества	до 0,5%			
Влага	1,5-2%			
Неомыляемые вещества	0,5-1%			

сыщенными). Предельным кислотам, имеющим общую формулу $C_nH_{2n}O_2$, свойственны стойкость и трудная окисляемость. Представителями этой группы кислот являются стеариновая и пальмитиновая кислоты, имеющие температуры плавления 70,5 и 62-63°C соответственно.

Непредельные кислоты, благодаря наличию в них двойных связей, весьма способны к реакциям окисления и присоединения. В зависимости от числа двойных связей, непредельные кислоты имеют общие формулы

$$C_nH_{2n-2}O_2$$
 $C_nH_{2n-4}O_2$ $C_nH_{2n-6}O_2$.

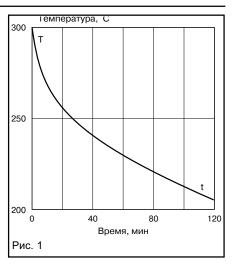
Представителями непредельных кислот являются олеиновая кислота $(C_{18}H_{34}O_2)$, имеющая одну двойную связь с температурой застывания -14° С; линолевая $(C_{18}H_{32}O_2)$, имеющая две двойные связи, жидкая при нормальной температуре, с температурой застывания -20° С; линоленовая $(C_{18}H_{30}O_2)$ имеющая три двойные связи, жидкая при нормальной температуре и ее изомер — элеостеариновая кислота $(C_{18}H_{30}O_2)$, твердая при нормальной температуре; рицинолевая оксикислота $(C_{18}H_{34}O_3)$, жидкая при нормальной температуре (температура застывания 4-5°C).

Химическое строение жирных кислот

 CH_3 (CH_2) $_7$ CH = OH (CH_2) $_7$ COOH — олеиновая кислота ($C_{18}H_{34}O_2$).

 ${\rm CH_3(CH_2)_4CH=CH-CH_2-CH=CH} \ ({\rm CH_2)_7COOH} \ --$ линолевая кислота $({\rm C_{18}H_{32}O_2}).$

 ${\rm CH_3CH_2-CH=CH-CH_2-CH=CH-CH_2-CH=CH_2-CH-DH-CH_2)_7COOH-DHODE}$ новая кислота (${\rm C_{18}H_{32}O_2}$).


 ${\rm CH_3(CH_2)_3-CH}={\rm CH-CH}={\rm CH-CH}={\rm CH(CH_2)_7COOH}$ — элеостеариновая кислота (${\rm C_{18}H_{30}O_2}$).

 ${\rm CH_3(CH_2)_5-CH}$ (OH)CH2CH = ${\rm CH(CH_2)_7COOH-p}$ рицинолевая кислота (${\rm C_{18}H_{34}O_3}$).

 ${\rm CH_{3^-}\,(CH_2)_{14}^-COOH--}$ пальмитиновая кислота ${\rm C_{16}H_{32}O_2}.$

 ${
m CH_{3}-(CH_{2})_{16}-COOH-c}$ стеариновая кислота С $_{18}{
m H_{36}O_{2}}.$

Высыхающие растительные масла содержат наибольшее количество глицеридов линоленовой и линолевой кислот. Наличие двойных связей в жирных кислотах обуславливает процесс присоединения кислорода (окисления) по ме-

сту двойных связей. Масла, у которых содержание этих кислот больше, имеют склонность к более быстрому высыханию.

Процесс высыхания растительного масла заключается в том, что масло, будучи нанесено тонким слоем на поверхность, сначала поглощает кислород воздуха (окисляется), а затем наступает процесс его сополимеризации, отвердевания пленки и образования твердого сополимера — линоксина.

Максимальное увеличение массы пленки льняного масла наступает после семи суток высыхания. Далее процесс улетучивания продуктов окисления начинает преобладать над процессом присоединения кислорода, и масса пленки уменьшается. На высыхание пленки оказывают существенное влияние различные факторы: свет, температура, обмен воздуха и его влажность.

Способность масла высыхать характеризуется его йодным числом, которое показывает, какое количество йода (в процентах) способно присоединить к себе масло, обработанное раствором йода. Это определение основано на том, что йод присоединяется по месту двойных связей у ненасыщенных кислот масла (линолевой, линоленовой и других кислот). Чем больше этих связей, тем выше йодное число и тем выше качество масла как пленкообразователя.

Растительные масла при длительном хранении способны частично разлагаться на глицерин и свободные жирные кислоты, которые в дальнейшем под влиянием кислорода воздуха, света и других факторов разлагаются на низкомолекулярные кислоты и альдегиды.

Количество свободных жирных кислот характеризуется кислотным числом. Количество всех жирных кислот, свободных и связанных с глицерином, характеризуется числом омыления. Жирные кислоты и глицерин могут быть выделены в свободном виде из масла путем обработки масла щелочью (каустической содой) и последующим разложением полученного мыла кислотой автоклавным методом.

Таблица 2

Масло	Плотность при	Коэффициент	Температура	Йодное число,	Состав (содержание кислот), %						ГОСТ, ОСТ или ТУ
	20 °C	преломления при	застывания,°С	%							
		20 °C			Олеино-	Линоле-	Линоле-	Элеостеа-	Рицино-	Насыщенные	
					вая	вая	новая	риновая	левая	кислоты	
Тунговое	0,925-0,940	1,516-1,524		150-176	окт. 15	_	_	74-86	_	5	ТУ-18 ТУ МХП-2
			от –17 до –21								435-50
Льняное	0,928-0,936	1,478-1,485	от –16 до –27	не ниже 170	окт. 13	27-30	42-45		_	7,5-8	ГОСТ 5791-66
Перилловое	0,930-0,937	1,479-1,481	очень низкая	185-203	4	53	23			12	_
Лалеманцовое	0,934-0,937	1,480-1,483	от –34 до –35	190-197	окт. 16	27-40	42-53			07.авг	_
Конопляное	0,922-0,932	1,4517	-27,5	не ниже 150	дек.14	50-63	16-23			04.сен	FOCT 8989-59
Подсолнечное	0,916-0,927	1,474-1,476	от –17 до –19	119-144	39	46	_			9	ΓΟCT 1129-55
Сафпоровое	0,916-0,927	_	-	126-151	24	57	_			18-19	ОСТ НКПП 313
Рыжиковое	0,920-0,927	1,4687-1,4688	от –7 до –18	133-155	27	44	20			6	FOCT 10113-62
Хлопковое	0,917-0,930	1,4707-1,4719	−3 до −4	101-116	30-35	42-45	_			24	ΓΟCT 1128-55
Соевое	0,921-0,931	1,472-1,475	_	120-140	32-35	51-57	02.мар			июл. 15	ΓΟCT 7825-55
Касторовое	0,947-0,968	1,477-1,478	–10 до –18	82-88	03.сен	02.мар	_	_	_	03.авг	FOCT 6757-53

Тунговое масло

Тунговое, или древесное, масло содержится в плодах тунгового дерева, произрастающего в СНГ, Китае и Японии. В СНГ тунговое дерево разводят на Кавказе. Это масло, в зависимости от способа прессования (холодного или горячего), получается от светло-желтого до темнокоричневого цвета, ядовито и отличается неприятным запахом. Наличие элеотеариновой кислоты в тунговом масле придает ему отпичительные от других высыхающих масел свойства.

Элеостеариновая кислота ($C_{18}H_{30}O_2$) представляет собой твердую кристаллическую массу с температурой плавления 48°С. Она является изомером линоленовой кислоты и имеет три сопряженные двойные связи, благодаря чему тунговое масло обладает способностью к быстрому высыханию по всей толщине пленки.

При нагревании тунговое масло склонно к загустеванию (желатинированию). При высыхании оно дает морщинистую пленку, однако если масло предварительно термически обработать, свойство сморщиваться исчезает. Термическая обработка тунгового масла обычно происходит при 200°С, при более высоких температурах происходит желатинирование массы.

Пленка термически обработанного масла быстро высыхает, обладает твердостью, эластичностью, высокими электроизоляционными свойствами, а также высокой влаго- и маслостойкостью.

Ойтисиковое масло

Близким по свойствам к тунговому маслу является масло ойтисика, которое добывается из семян розового дерева, произрастающего в Бразилии. По химическому составу оно содержит 73% ненасыщенных кислот с сопряженными двойными связями, 16% других ненасыщенных кислот и 11% насыщенных. Пленка масла ойтисика после высыхания дает моршины, которые могут быть устранены путем термической обработки (полимеризации).

Масло ойтисика применяется взамен тунгового в некоторых электроизоляционных лаках.

Льняное масло

Льняное масло добывается способом прессования из семян льна, произрас-

тающего в СНГ и других странах. Присутствие в нем большого количества ненасыщенных кислот (линолевой и линоленовой) придает ему способность к быстрому высыханию и образованию прочной, эластичной пленки, обладающей высокими электроизоляционными свойствами и влагостойкостью.

Присутствие белковых веществ сильно снижает качество льняного масла, а также качество получаемых из него лаковых пленок. Особенно снижаются электроизоляционные свойства, увеличивается влаго- и водопоглощаемость, удлиняется время высыхания лаковой пленки и т. п. Поэтому белковые вещества необходимо удалять из масла перед его употреблением.

Касторовое масло

Касторовое масло добывается из семян клещевины путем прессования или экстрагирования растворителями. Основой в составе касторового масла является рицинолевая кислота $(C_{18}H_{34}O_3)$, представляющая собой ненасыщенную оксикислоту, наличие которой обусловливает характерные свойства касторового масла. Касторовое масло принадлежит к группе невысыхающих растительных масел. Оно приобретает свойство высыхающих растительных масел только после особой обработки (дегидратации). В отличие от других масел оно имеет высокую плотность и вязкость.

В производстве электроизоляционных лаков и компа-

ундов касторовое масло большей частью находит применение в качестве пластификатора.

Прочие растительные масла

Другие растительные масла, такие, как подсолнечное и хлопковое, в производстве электроизоляционных лаков применяются частично, как заменители. В некоторых лаках часть высыхающих масел заменяется полувысыхающими.

Основные характеристики растительных масел приведены в табл. 2.

Александр Воробьев, alex@hit.mldnet.com