
Chapter  7

HARMONIC DISTORTION

Semiconductor devices are inherently nonlinear. For example, Bipolar
transistors in forward active region exhibit an exponential relationship
between the collector current and the base-emitter voltage, while in saturated
MOS transistors the drain current approximately depends on the square of
the gate-source voltage. Therefore, circuits made up with transistors or, more
generally, with real active components exhibit a certain amount of
nonlinearity, and this means that the relationship between their input and the
output variables is not so ideally linear as assumed in the previous chapters.
Usually, active devices used for analog signal processing applications are
operated in a quasi-linear region. Thus the linearity assumption is almost
verified especially when signals with small amplitude are processed.
However, designers are asked to evaluate the limits of the linear
approximation or to characterise the effects of nonlinear distortion in circuits
and systems used as linear blocks [S99]1. To achieve these targets harmonic
distortion analysis is customary employed.

Consider the open loop amplifier in Fig. 7.1 with its DC nonlinear
transfer characteristic When nonlinearities are small, that is the
transcharacteristic is characterised by gradual slope changes, the circuit is
said to operate under low-distortion conditions2. This implies, in other
words, that transistors do not leave the active region, and small-signal
analysis can be used to produce meaningful results. Harmonic distortion in
this case is usually calculated with the series expansion of the nonlinear DC

1 Linear distortion arises in a linear amplifier which has a non constant frequency
response in the frequency domain [S99].

For a rigorous definition of the low-distortion condition see [OS93].2
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transfer characteristic. Let us assume that it is well represented by the first
three power terms

Assuming now the incremental input voltage be a pure sinusoidal tone
the output signal becomes3

where terms are

Due to the amplifier nonlinearity, the ideal sinusoid at the input changes
its shape at the output. Indeed, the output signal is a superposition of a
constant term, represented by the coefficient a sinusoidal waveform with
a frequency equal to that at the input multiplied by the coefficient

Remember that and3
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(fundamental component), and two other sinusoidal waveforms having a
frequency twice and three times greater than that of the input signal,
multiplied by the coefficients and respectively (second and third
harmonic components). To outline the weight of the harmonics, the
harmonic distortion factors are defined as given below [S70]

where the gain compression [MW95], which arises in term and is due to
coefficient have been neglected. It is worth noting that the harmonic
factors increase with the input amplitude.

In order to allow a simple comparison with the closed-loop cases that will
be developed in the following paragraphs, the harmonic distortion factors
can be also referred to the amplitude of the output fundamental component,

Of course, the two above equations can be used to compare the linearity
performance of two different amplifiers but at the same (fundamental) output
signal level.

Alternatively, we can represent the input signal by the

expression and the output signal, through (7.1), becomes

Thus, to

obtain the same distortion factors as in (4) we have to define

and As we will show this representation is useful to

characterise nonlinear systems in the frequency domain.
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7.1 HARMONIC DISTORTION AT LOW FREQUENCY

In this section we shall analyse the influence of feedback on harmonic
distortion for low-frequency input signals. In other words, we consider the
input signal frequency lower than the cut-off frequency of the loop gain,
which can be therefore assumed constant, i.e.

7.1.1 Nonlinear Amplifier with Linear Feedback

The classical theory of feedback amplifiers asserts that negative feedback
reduces harmonic distortion by the loop-gain [GM93], [LS94]. Let us
consider the same amplifier in Fig. 7.1 characterised by the same nonlinear
function given in (7.1), and feed a fraction f of the output signal back to the
input, as shown in Fig. 7.2. This means to close the amplifier in loop with a
linear feedback, f, and obtaining a return ratio equal to It is well
known that the harmonic distortion terms given by (7.7a) and (7.7b) are

reduced by the factors and , respectively. Alternatively, we

obtain a reduction by a factor on the harmonic distortion factors
referred to the output signal magnitude.

Following the approach described in [PM91], a more accurate result of
the harmonic distortion factors of a closed-loop amplif ier can be obtained.
Indeed, for the feedback amplifier in Fig. 7.2 we have
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hence relationship (7.1) can be rewritten as

The output signal can be expressed as a new power series with the source
signal as independent variable

where coefficients and can be obtained by interpreting the power
series as a Taylor’s series

Taking the derivatives of (7.10) and considering that when we
obtain

that through relationships (7.7) and (7.8) lead to
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in which subscript “fl” stands for linear  feedback.
By inspection of (7.17) we see that for ampl i f ie r s where coefficient is

negligible, the third harmonic is still determined by Moreover, the third
harmonic distortion can be minimised if

and for (7.17) and (7.18) s implify to

7.1.2  Nonlinear Amplifier with Nonlinear Feedback

When also the feedback network is made up of active components (for
instance, when MOS transistors working in triode region are employed as
feedback elements instead of pure linear resistances, [IF94]), the feedback
network cannot be considered ideally linear as previously done. Evaluation
of the distortion of a feedback amplifier where both the amplifier and the
feedback network introduce substantial nonlinearities was carried out in
[PP981], and is developed in the following.

First, consider the nonlinear behaviour of the feedback path according to

The input signal, can be written as
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hence, after substituting (7.1) into (7.20), and again substituting the resulting
equation into (7.21), we get

We can invert a nonlinear function, represented by a power series
up to the third-order term

into

by using the conversion formulas [KO91], [WM95] reported below

Therefore, is given by

and combining (7.28) with (7.1), taking only the first three power terms, we
get
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In conclusion, being the second and third harmonic distortion
factors are

A more compact form of the second and third harmonic distortion
coefficients can be obtained considering that the return ratio, is usually
much greater than one. Hence, after normalising the amplifier terms to
the amplifier gain and the feedback terms to the feedback linear
term, (by defining and we get

By inspection of (7.32) and (7.33), it is apparent that feedback does not
reduce the nonlinearity of the feedback network. Thus, we cannot obtain an
amplifier having a nonlinearity lower than that of the feedback network, and
even small nonlinearity terms of the feedback networks cannot be neglected,
but they must be taken into account.



Feedback Amplifiers 181

In order to evaluate the different weight between the nonlinearity of the
amplifier and that of the feedback network, it is useful to write the two
coefficients when the amplifier is linear (i.e., with and

As expected, comparison of (7.34) and (7.35) with (7.16) and (7.17),
which refer to the case of nonlinear amplifier with linear feedback, shows
that the feedback path is more critical than the forward path. Indeed,
assuming the nonlinearity for both the amplifier and the feedback network to
be equal, which means and for the same output magnitude,

relationship (7.16) is lower than (7.34) by a factor and relationship

(7.17) is lower than (7.35) by about Moreover, it is worth noting that for
negative feedback, distortion due to the feedback network has an opposite
sign to that due to the amplifier.

A more compact and clear representation of the harmonic distortion in a
nonlinear amplifier with nonlinear feedback is

In conclusion, the second and third harmonic distortion terms can be
compactly represented by relationships (7.36) which are only a simple
function of the second and third harmonic distortion of the whole feedback
network evaluated in two particular cases:

a nonlinear amplifier with linearised feedback network
a linearised amplifier with nonlinear feedback network.

This consideration can be particularly interesting from a design point of
view, since other than allowing us to get more insight into the circuit
behaviour and its final performance, permits to evaluate all the harmonic
distortion factors through separate calculation (or simulation) of the two
couples of terms and [PP981].
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7.2 HARMONIC DISTORTION IN THE FREQUENCY DOMAIN

In the previous paragraphs, both the amplifier and the feedback network
were assumed to be frequency independent. This hypothesis is clearly a
rough approximation. Transistors have parasitic capacitances which cause
the gain and even the nonlinear amplifier coefficients to vary with
frequency. Yet, high-gain feedback circuits must be frequency compensated
to ensure closed-loop stability, while the feedback network can include
reactive (usually capacitive) components. Therefore, the previous
expressions can be used with reasonable accuracy only under the hypothesis
of low-frequency input signals.

In general, evaluation of harmonic distortion of a dynamic system
requires complex calculation involving Volterra series or even Wiener series
[BR71], [MSE72], [NP73], [WG99]. Nevertheless, under the assumption of
low-distortion conditions –which means in practice, that the amplifier output
is not saturated and transistors do not leave their active region of operation–
we can use the usual small-signal analysis to produce accurate results. Let us
start our discussion by considering amplifiers in open-loop configuration.

7.2.1 Open-loop Amplifiers

To render the analysis sufficiently general, we will refer to two-stage
amplifiers, that adequately model real amplifiers (the obtained results could
then be extended also to multi-stage topologies, as well). Besides, we
simplify analysis by separating the effect of nonlinearities of the first and
second stage. These two cases are illustrated in Fig. 7.3a and 7.3b. Of
course, in real amplifiers both the two phenomena coexist as nonlinearity
can contemporarily come from the input and the output sections.
Nevertheless, this simplification is instructive and even representative of
actual cases. Indeed, the first scheme (Fig. 7.3a) exemplifies a conventional
op-amp or a CMOS OTA with a nonlinear output stage. In this event the
output section operates in large-signal conditions and its nonlinear behaviour
is hence exacerbated. The second scheme (Fig. 7.3b) seems uncommon.
Later, we will demonstrate that this case models the high-frequency
distortion in single-stage amplifiers. Besides, it can exemplify amplifiers
operated under large common-mode input signals, responsible for the
generation of nonlinearities in the input stage.
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Evaluation of harmonic distortion factors for the amplifier schematised in
Fig. 7.3a is straightforward. We can use (7.7) and (7.8) after noting that the
input signal of the nonlinear block is now Hence, the distortion
factors are

Harmonic distortion referred to the amplitude of the output signal
fundamental component are formally identical to the last equations in (7.7)
and (7.8) except that now these expressions must be evaluated at the
frequency of the input signal (fundamental). Note that this also holds for
i.e., also the output signal must be calculated at the fundamental frequency.
Consequently, when we have to evaluate the frequency behaviour of
and it is easier to refer to their formulations in terms of the input signal

The above equations give the magnitude of and as this is the
most common information required by designers. However, in their general
form these equations can be used to obtain also information on phase
distortion. In the following we will consider only the magnitude of distortion
factors.
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The second basic case considered is that of a nonlinear amplifier followed
by a linear stage, as shown in Fig. 7.3b. Assuming, as usual, that the
incremental input voltage is a pure sinusoidal tone, the
intermediate output is

where coefficients are again given by (7.3)-(7.6) in which have
to be used instead of constant values Then, the output signal is

In the above equations the phase contribution of to the components
and that of to has been neglected. Finally, from (7.7) and (7.8) we
get

Comparing the above expressions with (7.7) we see that the harmonic
distortion factors are now multiplied by the ratio of the transfer function
magnitudes evaluated at the frequency of the considered harmonics and at
the fundamental frequency.

As a particular case, assume that coefficients are constant, and that the
transfer function has a single pole (the pole of the amplifier and also
of the loop gain)

Accordingly, (7.41) and (7.42) become
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The above equations show reduction of the second and third harmonic
distortion factors with respect to their low-frequency values. Indeed, at
frequencies respectively equal to and the asymptotic diagrams of

and start to linearly decrease. Then, the distortion factors

become constant at the cut-off frequency. This behaviour is qualitatively
shown in Fig. 7.4.

7.2.2 Closed-loop Amplifiers

Consider now the same feedback amplifier in Fig. 7.2, but where the
transfer functions of blocks and f are now frequency dependent.
Specifically, let block be characterised by the frequency-dependent
nonlinear coefficients and and denote as the
transfer function of linear feedback block f, as schematised in Fig. 7.5.
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To derive the distortion factors of the system in Fig. 7.5, we wi l l now
develop an intuitive method which requires s imple algebraic manipulations.
The approach leads to expressions of distortion factors that are a direct
extension of those in (7.16) (7.17) found at low frequency.

As usual, we assume a sinusoidal input tone and that it is

possible to write the output signal as a power series of the source signal

The problem is to find the expression of the closed-loop nonlinear
coefficients

The first coefficient which is responsible for the linear

behaviour, can be simply found. It is equal to the forward-path transfer
function divided by 1 plus the loop-gain transfer function,

Equation (7.47) implies computation of and at the frequency of
the input tone (i.e., the fundamental frequency).

To evaluate the higher-order coefficients we have to follow a simple, but
not trivial reasoning. Concentrate our attention to derive the second
harmonic component at the output. It is produced by the nonlinear block
when a signal at the fundamental frequency is presented to its input. Now
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observe that the second harmonics is proportional to If the circuit is

perfectly linear (i.e., would be equal to

Therefore, the nonlinear block produces a second harmonic

component with amplitude equal to This

component can be viewed as a spurious signal injected at the output of the
nonlinear block, as depicted in Fig. 7.6. It is subsequently processed by the
feedback loop and appears at the output terminal decreased by the loop gain
but evaluated at the frequency of the harmonic considered, i.e.,

From the above discussion it follows that the nonlinear term is
equal to

The nonlinear coefficient can be evaluated by following a

similar procedure. Neglecting the contribute due to we get
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Taking into account also the effect of an expression similar to
(7.15) can be deduced. At this purpose, we consider the schematisation
depicted in Fig. 7.7 which leads to

Substituting (7.47), (7.48) and (7.49b) into (7) and (8) we get
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Of course, the above equations adhere with (7.16), (7.17) and (7.19a)
found in the case of frequency-independent loop gain, or that is the same, for
low-frequency input signals, in the present case, distortion of a feedback
network in terms of the output fundamental is reduced of a quantity s t i l l
equal to the return ratio but evaluated at the considered harmonic.

It is useful to extend these results to a more general model in which we
put the nonlinear block between two linear blocks in the forward path, as
shown in Fig. 7.8a. This system includes as particular cases the closed-loop
version of both occurrences, depicted in Fig. 7.3a and 7.3b, in which
distortion appears after or before a linear stage.

To obtain distortion factors of the system in Fig. 7.8, we can follow the
same procedure described above. Let us first evaluate the nonlinear
coefficients that relate to The first-order coefficient is

where
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To obtain the second-order coefficient it is convenient to refer to Fig. 7.9,
which illustrates the second-order component injected at the output of the
nonlinear block

A similar procedure can be applied to the third-order coefficient, yielding

Then, the harmonic distortion factors are expressed by
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7.3 HARMONIC DISTORTION AND COMPENSATION

In this paragraph we will study the effect of the different types of
frequency compensation on harmonic distortion. To this end, we will first
apply the above results to two-stage amplifiers and then a typical single-
stage amplifier will be considered. Dominant-pole and Miller techniques for
a two-stage amplifier are treated in sections 7.3.1 and 7.3.2, respectively.
Under the assumption that the second stage is the principal responsible for
nonlinear behaviour, we will demonstrate the better linearity performance of
Miller-compensated amplifiers. Linearity performance of a single-stage
architecture with dominant-pole compensation will be treated in section
7.3.3.

Linear and, unless specified, frequency-independent feedback is thorough
considered for simplicity.

7.3.1 Two-stage Amplifier with Dominant-Pole Compensation

The analysis carried out in the previous paragraph can be now directly
applied to two-stage amplifiers compensated with the dominant-pole
technique.

We can use the same model in Fig. 7.8, and assume and
to be a single-pole transfer function given by (7.43) and here reported again

This means that the nonlinearity is caused by the second stage. Assume also
for simplicity the nonlinear coefficients being independent of frequency.

From (7.50) and (7.51), being and we get

immediately
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Second- and third-order harmonic distortion factors start to linearly
increase (from their low-frequency values) at a frequency equal to

and respectively. Moreover, they become constant at frequencies

equal to and respectively. At they begin to

decrease.

A final observation concerns the distortion caused by the first amplifier
stage. Nonlinear contributions of the input stage are reduced by the loop gain
at low frequencies, and by the compensation capacitor at high frequencies
(compensation tends to shunt the output of the first stage). Therefore,
assuming the output stage as a principal source of nonlinearity is very well
justified both for low and high frequencies. We will show in the following
that this assumption is inadequate for Miller-compensated amplifiers.
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7.3.2 Two-stage Amplifier with Miller Compensation

Another important case study is the evaluation of distortion for a two-
stage Miller-compensated amplifier. Let us first analyse the open-loop
amplifier in Fig. 7.10a, in which the second stage is nonlinear. In the figure,
R and are the output resistance and the output voltage of the first stage,
whose transconductance is The second stage, instead, is modeled by a
voltage-controlled voltage source, to preserve simplicity. To this end,
we can also model the first stage with its Thévenin equivalent. The open-
loop output voltage is then expressed by

The return ratio and the asymptotic gain of the amplifier in Fig. 7.10 are

Given the Miller effect, we can consider the pole as being placed at the
output of the first stage. Thus to analyse the circuit, we can use an equivalent
block diagram similar to the one in Fig. 7.8 and depicted in Fig. 7.11 in
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which the nonlinear amplifier is characterised by the same nonlinear
coefficients in (7.60).

By comparing the general model in Fig. 7,8 with that in Fig. 7.11 we can
utilise (7.52)-(7.54) to obtain the expression of the nonlinear closed-loop

coefficients, where and

In addition, the closed-loop gain results

which, despite the different sign (inessential in evaluating distortion), equals
the transfer function obtained by a direct inspection of the circuit in Fig.
7.10. Then, from relationship (7.52)-(7.54) we get the equivalent nonlinear
coefficients and which relate to in Fig. 7.11
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The closed-loop Miller-compensated amplifier can then be modeled as
depicted in Fig. 7.12, where the amplifier studied above is closed in a loop
with feedback block f. Note that to further simplify the scheme, Fig. 6.12b
includes the new nonlinear block with its nonlinear coefficients

and defined above. Moreover, for conformity
with the notation used in the previous section, we define the gain of the first
block, h, as equal to

Gain h in Fig. 7.12b is equal to and coefficients are defined in

(7.65-(7.67).

From relationships (7.50)-(7.51a), and given that we get the
second and third harmonic distortion factors
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where in (7.69) we have only considered the dominant terms.
To better compare the above results with those obtained in the case of

dominant pole compensation we must express (7.68)-(7.69) in terms of
that is now equal to and equal to
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Starting from their low-frequency values, second- and third-order harmonic
distortion factors linearly increase at a frequency equal to and

respectively. Compared to dominant-pole compensation, we

see that the frequency band where distortion factors remain equal to their
low-frequency values is greater in the Miller-compensated amplifier by a
factor equal to

Equations (7.70) and (7.71) also predict that and become
constant at frequencies equal to and respectively. At

they begin to decrease. This behaviour was already found appropriate
in two-stage amplifiers compensated with a dominant pole. In contrast, when
using Miller compensation it is unrealistic. Indeed, the local feedback
operated by the Miller capacitor causes coefficients to decrease with
frequency. At high frequencies, distortion of the first stage becomes
dominant and a nonlinear model of the first stage should then be included to
accurately predict harmonic distortion.

The use of nonlinear models for both the first and second stage
considerably complicates distortion evaluation. However, since the two
distortion mechanisms are dominant over different frequency ranges
(distortion due to the input stage is effective at high frequencies, whilst
distortion due to the output stage is dominant at low frequencies) we can
separately study the two cases with our distortion models4. We shall not use
this approach now, because it can be shown that fairly good approximation
for distortion factors valid up to the gain-bandwidth product is found simply

4 An example of how to treat distortion coming from two cascaded stages is
described in the next section, 7.3.2.
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by eliminating the poles in (7.70) and (7.71) respectively at
and at

As a result, and for a two-stage amplifier compensated with
Miller technique are expressed by

To qualitatively illustrate the improvement in linearity of Mil ler
compensation over dominant-pole compensation, Figure 7.13 shows the

achieved in both cases. A similar plot can be drawn for
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7.3.3 Single-stage Amplifiers

The last case we shall study is that of the single-stage amplifiers. These
architectures are frequently employed in IC applications (for instance in
switched-capacitor circuits) for their high-frequency performance. Indeed, a
single-stage amplifier exhibits only an (output) high-resistance node.
Moreover, this output node often exploits cascoding, allowing a voltage gain
similar to that of two-stage amplifiers to be achieved. Of course, these
amplifiers are used in closed-loop configurations and, due to the internal
structure, output dominant-pole compensation is invariably utilised.

The small-signal model of a (open-loop) single-stage amplifier is
illustrated in Fig. 7.13, in which C is the output compensation capacitor.

In general, there are two sources of harmonic distortion in such
amplifiers. The first is due to the nonlinear V-I conversion accomplished by
the input transconductance stage. The second is due to the nonlinear I-V
characteristic exhibited by the output devices.

Let us first analyse the effect on linearity of the nonlinear output
resistance. Observe that this case does not fall into the category of any of
those already studied because both pole and distortion are generated at the
same circuit node (i.e., the output) by the same nonlinear element. Hence a
specific analysis must be performed.

For easy calculation express the input signal as Moreover, it
is better to characterise the nonlinear resistance in terms of (nonlinear)
conductance

where and are nonlinear coefficients normalised to the linear part of
the output conductance 1/R. These cause harmonic distortion components to
appear in the output voltage, according to
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in which only the first three terms are taken. Then, the current through the
capacitor is

From the KCL at the output node

using (7.74) and the current through the nonlinear resistor found by
substituting (7.73) in (7.72), and equating all the harmonic components with
the same frequency, we can derive the expression of coefficients

and Thus, considering only the dominant terms we get

Normalising the second and third coefficient to and given that
we get
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Hence, the feedback circuit can then be schematised by the block diagram in
Fig. 7.14, where the blocks inside the shadowed area represent the linear and
nonlinear contributes of the RC output node, with the nonlinear coefficients
given by

To evaluate the closed-loop harmonic distortion factors we can employ
the results found at the end of section 7.2.2. After applying (7.55) and (7.56)
we get the following equations in which and
(expressions in terms of only are reported for compactness).
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Distortion due to the nonlinear output conductance is effective at low
frequencies. Indeed, so long as the loop gain is high, signal (the error
signal) is small, and distortion is mainly due to nonlinearities arising in the
output resistance R which is operated under large-signal conditions. For
increasing frequencies the compensation capacitor shunts the output
impedance to ground thereby reducing the weight of nonlinearities due to the
output resistance. Moreover, signal increases (due to the reduction in the
loop gain) and the nonlinear effects of the input transconductance become
more pronounced. Thus at high frequencies the ampl i f ier is more adequately
modeled by the block diagram in Fig. 7.15, which includes normalised
nonlinear coefficients of the input transconductance and and
assumes the output resistance to be linear.
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This scheme is equivalent to the one analysed in Fig. 7.8 by properly
updating the block transfer functions. Hence, uti l ising (7.55) and (7.56) we
get

Both the above distortion factors increase for frequencies higher than the
amplifier pole. As a consequence, their effects can be significant at high
frequencies.

To qualitatively compare the effects on output distortion due to the output
resistance and the input transconductance, let us consider the plots in Fig.
7.16. They illustrate the typical behaviour of second harmonic distortion

factors due to the nonlinear output resistance, and due to the input

transconductance, The frequency determining which contribution is
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dominant is located between and and is close to if

approaches

Similar plots can also be deduced for the third harmonic distortion
factors.

As a final analysis step, we consider the two distortion mechanisms together
in the same block scheme as depicted in Fig. 7.17

The exact resolution of this system is difficult, but can fortunately be
avoided by considering that the two distortion mechanisms are dominant
over different frequency ranges, as previously stated. Consequently,
expressions of complete distortion factors and which provide
asymptotic approximation can be found by combining (7.83) with (7.85) and
(7.84) with (7.86)
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The above relationships have simply been obtained by algebraically

adding, before taking their modules, with and with

7.4 AN ALTERNATIVE FREQUENCY ANALYSIS

In this paragraph we describe a simple analytical procedure to calculate
the closed-loop harmonic distortion factors in the frequency domain, already
found in section 7.2.2 through an euristic demonstration, and used in this
chapter. Refer again to Fig. 7.5 and express the source signal as

Due to the nonlinear block in the direct path the output signal will include
harmonic components. Assume it is given by

where coefficients and have to be determined.
The error signal, is the difference of the source signal and the output

signal times the value of the feedback factor evaluated at the appropriate
frequency
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then it is processed by the nonlinear block whose output is

After substituting (7.90) in (7.92) and equating the terms with the same
frequency component in the exponential factor, we get

Solving the above system for and yields the same
results as in (7.47), (7.48) and (7.49a).


