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Figure 1: A feedback amplifier

the stated “laws” (square for FETs, three-halves for triodes, exponential for
BJTs); that complementary pairs are perfectly symmetrical; that the tubes
used in push-pull are identical; and that transformers are perfect. Though
none of these is true, the results may yet be useful.

Our analysis is stateless; that is, we assume no frequency-dependent el-
ements. Real amplifiers have such elements, but we can see the essential
behavior without considering them.

The core of this paper is the numerically-derived spectra that we obtain
for a variety of amplifiers, each being considered both with and without
feedback. We begin, however, with a formal derivation of analytic estimates
for the lowest order spectral lines, which we can use to check the validity of
the numerical work; and a bit of circuit analysis. The reader may wish to
skip this preliminary analysis and proceed to the discussion of the spectra
that begins on page 10 under “Our spectra,” touching down at figure 2 on
the way.

Feedback in a nonlinear system

In figure 1 the amplifier is modeled by a function f that is in general non-
linear. The feedback path is assumed to be a linear path that multiplies by
a constant b. Thus, the equation relating the output y to the input x is

y = f(x − by). (1)

If f were linear, say f(e) = Ae we could solve for y to get the familiar Black’s
formula,

y =
Ax

1 + Ab
. (2)
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If A is very large then y ≈ x/b, allowing us to reliably make amplifiers with
gain 1/b using amplifiers with large, but uncontrolled gain. However, the
distortion we are interested in is due to the nonlinearity of f .

Assume that f may be expressed as a power series

y = A1e + A2e
2 + A3e

3 + · · · (3)

with no offset term, so if e = 0 then y = 0. To account for the feedback we
can substitute (x − by) for e to obtain

y = A1(x − by) + A2(x − by)2 + A3(x − by)3 + · · · . (4)

In general, we can solve for y, producing a power series that represents the
entire transfer function of the feedback amplifier. This series

y = a1x + a2x
2 + a3x

3 + · · · (5)

can be obtained by taking derivatives of equation (4):

a1 =
dy

dx
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x=0

=
A1

1 + A1b
(6)

a2 =
1

2

d2y

dx2

∣

∣

∣

∣

x=0

=
A2

(1 + A1b)2
(7)

a3 =
1

6

d3y

dx3

∣

∣

∣

∣

x=0

=
(A3A1 − 2A2

2)b

(1 + A1b)5
(8)

· · ·
We see that a1 is the gain we would expect if the amplifier were linear, and the
higher-order terms are the distortion. If we make the input a sinusoid x(t) =
C cos ωt, expand powers using the multiple angle formulas,3 and collect like
terms, we get a Fourier series showing the harmonic components. Considering
only the first three terms of equation (5) we get:

y =

(

Ca1 +
3

4
C3a3

)

cos ωt +
1

2
C2a2 cos 2ωt +

1

4
C3a3 cos 3ωt. (9)

Thus, for small signals (C small) the relative size of the second harmonic and
third harmonic distortion terms are:

HD2 ≈ 1

2
C

a2

a1

=
1

2

A2

A1(1 + A1b)
(10)

HD3 ≈ 1

4
C2

a3

a1

=
1

4

(A3A1 − 2A2
2)b

A1(1 + A1b)4
(11)

3For example, (cos α)2 = 1

2
+ 1

2
cos 2α and (cosα)3 = 3

4
cosα + 1

4
cos 3α.
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