
Chapter  4

STABILITY
FREQUENCY AND STEP RESPONSE

In the previous chapter we enunciated the basic feedback concepts and
described efficient techniques for analysing feedback amplifiers.
Particularly, we defined the open-loop gain, the loop-gain (or return ratio),
and other quantities, all as DC values. However, these quantities are in
general a function of frequency and they should be better referred to as
transfer functions instead of gains. Moreover, the feedback factor could also
be frequency dependent (to this end, the best example is perhaps the well-
known RC-active integrator made up of an op-amp and a feedback network
constituted by a resistor and a capacitor). Thus, all these effects should be
taken into account in the Rosenstark and Choma relationships, (3.8) and
(3.16), which allow us to accurately obtain the closed-loop transfer function.
In addition, for a first-order model, they should also be considered in (3.1).
Similarly, in the Blackman equations, (3.23) and (3.24), we need to use the
appropriate return ratio transfer function to obtain input and output
impedances instead of resistances.

For the sake of simplicity, in this chapter we will assume that the
feedback factor is constant, at least in the frequency range of interest. In
addition, we will assume that the feedback network is designed so as to not
introduce further poles in the loop gain. Such a condition is fortunately often
verified in feedback amplifiers with a purely resistive feedback network.

It should be well known to the reader that an electronic circuit and system
are said to be stable if all bounded excitations yield bounded responses.
Otherwise, if bounded excitations produce an unbounded response the
system is said to be unstable. Passive RLC circuits are by nature stable.
Active networks contain internal energy sources that can combine with the
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input excitation to cause the output to increase indefinitely or sustain
oscillations. Note, however, that in practice the output of an unstable circuit
cannot diverge indefinitely, since a l imit is set by the power supply rails.

It should also be well known that stability is ensured if all the poles of a
given circuit/system lie in the left-half of the s-plane. Thus, we could check
the stability of a feedback amplifier by evaluating the closed-loop transfer
function and determining the locations of its poles. This procedure, however,
does not provide design insides and does not specify the margins by which
stability is achieved. In fact, circuit components are affected by
manufacturing tolerances, temperature and ageing phenomena, etc., which
cause a parameter to deviate from its nominal value. Under this scenario, we
need to introduce safety stability margins, which are the phase margin and
gain margin. Moreover, even stable amplifiers, hence that have a bounded
response, can take too much time to reach a steady state. For this purpose,
the classical feedback circuit analysis technique derived from the well-
known Bode disclosures can be utilised [B45].

In the following paragraphs we wi l l examine the frequency response of
transfer functions characterised by different combinations of poles (and
zeros) that are found usually in real practice. Starting from this, useful
definitions will be given which help designers to derive fundamental
relations to ensure closed-loop stability with adequate margins. The closed-
loop step response in the time domain, for each typology of transfer
function, is also derived.

4.1 ONE-POLE FEEDBACK AMPLIFIERS

Among the feedback properties, the closed-loop bandwidth extension to
the original open-loop amplifier is often included [G85], [SS91]. We wi l l
show that this property applies only to one-pole amplifiers, but is not
effective in multi-pole amplifiers.

Let us consider an open-loop amplifier having the fol lowing transfer
function including a single (negative) pole, whose angular frequency is

Now connect the amplifier in feedback with a pure resistive network,
whose feedback factor is f, as shown in Fig. 4 .1.
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Returning to (3.1a), the closed-loop transfer function results as

where is the DC closed-loop gain and is the closed-loop pole, each
given by

The foregoing approximations hold for large loop gains which are
required for an adequate desensitisation of the closed-loop response with
respect to open-loop parameters. It is seen that increasing from zero shifts
the pole along the negative real axis, as illustrated in Fig. 4.21. Since the pole
is located in the negative s-plane for any value of f, the system is termed
absolutely or unconditionally stable. This denotes an attractive condition
indicating that a one-pole amplifier is stable under al l input signal conditions

1 This plot is called the root locus diagram. Its construction can become tedious for
higher order systems and we do not make use of this tool to examine stability. The
interested reader is referred to [SS91], [G85], or any feedback control text e.g.
[FPE94],
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and for all ranges of component values. Unfortunately, this is not a realistic
case, since real amplifiers have more than one pole.

Returning to (4.3b), we see that the closed-loop pole has been shifted to a
higher frequency by a factor equal to (that is, approximately the DC
loop gain), which is the same amount of reduction experienced by the
closed-loop DC gain with respect to the open-loop gain. Thus, a gain
bandwidth trade-off exists between the open- and closed-loop transfer
functions, indicating that in a one-pole amplifier we can apply feedback to
obtain higher bandwidth where amplifier gain reduction is allowed. This
trade-off is represented by the gain-bandwidth product, which is the
product of the DC open-loop gain, and its –3-dB angular frequency
Note also that the gain-bandwidth product of a single-pole function exactly
equals its unity-gain frequency, (i.e., the frequency at which the module
of the gain becomes unitary, for this reason it is also called the transition
frequency). Moreover, is an invariant amplif ier parameter, since its
value is the same for the open-loop and closed-loop amplifier, as illustrated
in Fig. 4.3, showing the open-loop, closed-loop and loop-gain transfer
functions. Of course, the gain-bandwidth product of A(s) is independent of
the degree of feedback applied and is equal to the maximum bandwidth
achieved with the unitary feedback factor, f = 1 (i.e., with the amplifier in
unity gain feedback configuration). More interestingly, (4.3b) predicts that
the gain-bandwidth product of the loop-gain transfer funct ion w i l l equal the
closed-loop pole. Thus, when studying the stability of a feedback amplifier,
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it is usually convenient to analyse the frequency response of the loop-gain
rather than that of the open-loop transfer function. This is because the loop-
gain transfer function gives information on most of the closed-loop
properties.

The closed-loop characteristics of an amplifier can be also investigated in
the time domain, by evaluating the response, to a unitary input step

u(t). The step response gives important specifications for applications (such
as instrumentation, control, and sample data systems) sensitive to the
amplifier’s transient response.

Let us consider a closed-loop configuration comprising the single-pole
amplifier with the transfer function shown in (4.1). The step response is
easily found to be

The output steady state value is and is reached exponentially with time
constant

The reader should know that the settling time, is the time interval
required for the output response to settle to some specified percentage of the
final value. For a single-pole amplifier the settling time is then proportional
to Usually, the settling time needed to reach 1% or 0.1% of the final
value is considered. In these two cases, the settling time results and
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4.2 TWO-POLE FEEDBACK AMPLIFIERS

The loop-gain transfer function of real amplifiers includes more than one
single pole. In the absence of suitable compensation, this can cause
instability phenomena even under negative feedback. To demonstrate these
instability problems, and the related importance of a sufficiently large
separation between the two lowest poles of the loop-gain transfer funct ion,
consider now an open-loop amplifier with two real negative poles. As
already mentioned, and as wi l l be further explained in the following
chapters, it is more convenient to analyse the loop gain instead of the
amplifier open-loop gain.

Assume that the amplifier operating within the given feedback network
gives rise to the following two-pole loop-gain function

It should now be observed that for second-order and higher-order transfer
functions, the gain-bandwidth product, does not necessarily
coincide with the unity-gain frequency However, this is stil l a good
approximation if the second pole is greater than This observation is
graphically explained in Fig. 4.4, where two loop-gain functions (with
different pole separation) are plotted.

Note that hereinafter and unless differently indicated, we wi l l denote the
gain-bandwidth product of the loop-gain transfer function with

Using (3.la), the closed-loop transfer function becomes

where and are the parameters called pole frequency and damping

factor, respectively, and are expressed as functions of the loop-gain poles by
[SS91]
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The last identity in (4.6) is an alternative expression of with and
as the closed-loop amplifier poles given by

These poles are either real or complex conjugate pairs, depending on the
value of (or parameter Q equal to sometimes used instead of and
called the pole Q factor). The location of the closed-loop poles, as the DC
loop-gain is increased from zero, is illustrated in Fig. 4.5 showing that a
second-order feedback system is absolutely stable. However, the design of a
second-order system having a specific and well-defined frequency and
transient response requires careful consideration of where the poles are to be
located.
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By normalising the module of the closed-loop transfer function and the
angular frequency to and respectively, we obtain the frequency
responses plotted in Fig. 4.6.

This figure helps to visualise that when is lower than a critical value

an overshoot in the frequency domain arises at a frequency,
with the (peak) amplitude, both given below [MG91]

It is apparent that the relative amplitude of the overshoot depends only on

the damping factor, For it can be shown that the module of the
frequency response is maximally flat (which is often referred to as the
Butterworth condition). Specifically, this condition yields the largest
possible closed-loop 3-dB bandwidth within the constraint of a monotone
decreasing frequency response.
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The expression of the step response of the closed-loop two-pole amplifier
is

If the closed-loop poles are complex conjugate –a condition which arises
when the value of is lower than 1– the step response exhibits an
underdamped behavior (conversely, an overdamped closed-loop response
requires In such cases the step response is better expressed by the
following relationship
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Underdamped amplifiers are not unstable systems, but nonetheless they
are usually unacceptable, because overshoot arises in the time domain which
is responsible for slow settling behaviour.

Normalising the step response to u(t), we can draw the plots in Fig. 4.7,
illustrating the step response of a two-pole feedback amplifier for different

desired value, parameter must be properly set. To this end, relationship
(4.8) implicitly provides the required relation between the two (open-loop)

values of       versus

To maintain peaking in both the frequency and step responses below a

poles for a given value of and In order to avoid excessive
underdamping, open-loop amplifiers must be designed with a dominant pole
and a second pole at a frequency higher than the gain-bandwidth product of
the loop gain Thus, to analyse and design feedback
amplifiers, it is useful to introduce a new parameter called the separation
factor, K, which is the ratio between the second pole and the gain-bandwidth
product of the return ratio T(s)
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The separation factor is strictly related to a parameter of the loop gain
commonly used to measure the degree of stability of a feedback system
namely, the phase margin2, Indeed, the phase margin is defined as 180°

plus the phase of the return ratio evaluated at the transition frequency,
Figure 4.8 illustrates how the phase margin is determined on the Bode plots3

of a second-order transfer function.

For a second-order system with negative poles we have

In a well-designed amplifier is larger than unity and the condition
must also hold. Thus, is about equal to the transition

frequency, and Then (4.14) is reduced to

2 Another parameter, less frequently utilised by electronic designers, is the gain
margin, defined as the difference between the gain 20 log   and 0 dB,

where is the frequency at which the phase equals –180°.
3 We assume that the reader is familiar with the Bode plot technique. For a review of
this method see for instance [SS91], [G85].
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indicating that in a two-pole amplifier K is almost equal to the trigonometric
tangent of the phase margin. In other words, for a target phase margin, we
obtain through (4.16) the value of the separation factor required during the
compensation design step.

From the above it derives that to design and analyse feedback amplifiers
it is more convenient to represent the closed-loop transfer function, as
a function of the gain-bandwidth product, and the separation factor, K
[PP982]. Indeed, the conventional parameters, and (or parameter Q)
traditionally used in feedback systems, have been found very useful in
designing and analysing filters, but are less effective in the context of
feedback amplifiers. This because, unlike  and K, which are parameters
of the loop gain, and are parameters related to the closed-loop amplifier.
But designer effort is mainly (if not exclusively) focused on properly setting
the open-loop amplifier parameters in order to achieve the closed-loop
specifications. In addition, the new representation provides a simple vehicle
for characterising feedback systems. Indeed, the pole frequency and the
damping factor can be expressed as

Upon inserting (4.17) and (4.18) into (4.6), the closed-loop transfer
function becomes

or equivalently



Feedback Amplifiers 89

where the complex frequency is the complex frequency s normalised to

The normalised overshoot frequency and correspondent peak (as
functions of and K) are now determined to be

The magnitude of the frequency response normalised to versus
for different values of K, is plotted in Fig. 4.9. It can be noted that

condition means a maximally flat frequency response.
Moreover, for a given the bandwidth diminishes for decreasing values
of K.

The poles of the closed-loop amplifier can be also expressed as

and the response to an input unitary step (assuming underdamped behaviour)
is
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The step response versus time normalised to for different values of
K, is plotted in Fig. 4.10.

To optimise the closed-loop amplifier step response, useful information
for the designer are the time, when the first peak occurs (i.e., the time at
which the first time derivative of becomes zero) and its overshoot, D,
[YA90], that are given by
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Like for the peaking amplitude in the frequency domain, the overshoot
amplitude in the time domain depends only on the value of K. Relationships
(4.23) and (4.24) are useful for optimising design in the time domain.
Equation (4.24) gives the value of K for a specified settling error, and from
(4.23) we determine the gain-bandwidth product needed by the settling time
required. For instance, obtaining a step response to within 1% means K =
2.73. From (4.16) this value corresponds to a phase margin of about 70°.
Then, if 1% settling is to be achieved within a time period not greater than
100 ns, the required gain-bandwidth product is

It should now be pointed out that in real amplifiers the second pole is
generally fixed by design and topology constraints. Subsequently, the
requirement on parameter K (or equivalently on the phase margin) indicates
the gain-bandwidth we must provide to the loop-gain transfer function to
ensure an adequate stability margin. To this end, as shall be discussed in
detail in the next chapter, we have to properly reduce the dominant pole of
the open-loop amplifier. This mandatory operation drastically reduces the
high-frequency capability of the feedback amplifier, which, if operated in
open-loop conditions, is characterised by a high-sensitive gain, but has its
maximum bandwidth potential limited by the frequency of the second pole.
As a consequence, the bandwidth improvement caused by the feedback is
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effectively achieved only in one-pole amplifiers. However, these are
somewhat an abstraction, since real architectures –even single-stage ones–
exhibit multiple poles. Bandwidth extension is, therefore, not such a general
and effective property as commonly reported. Actually, amplifiers with the
highest frequency performance (e.g., RF amplifiers) al l adopt open-loop
topologies.

TWO-POLE FEEDBACK AMPLIFIERS WITH A POLE-ZERO
DOUBLET

The loop gain of real amplifiers can include a pole-zero doublet beside
two significant poles. Usually, a doublet arises from imperfect pole-zero or
feed-forward compensation due to process tolerances [KM74], [BAR80],
[PP95], or is caused by the frequency limitation of current mirrors when they
are used to provide a differential-to-single conversion [GPP99].

The degradation in the settling performance of a one-pole amplifier with
a pole-zero doublet was first discussed in [KMG74]. The effect of the
doublet in a class AB one-pole amplifier was then analysed for both the
settling and slewing time periods in [S91], [SY94]. However, extending the
results in [KMG74] to two-pole amplifiers is not as straightforward as
sometimes reported [GM74], [LS94], [EH95].

A simpler representation of a two-pole amplifier with a pole-zero doublet
was proposed in [PP992]. The approach is based on the consideration that, in
practice, the pole and the zero forming the doublet are often very close. In
addition, they are usually located at a frequency around or greater than
Thus, such a doublet leaves the loop-gain unity-gain frequency almost
unchanged, but can considerably alter the phase margin. We now
demonstrate that a two-pole amplifier with such a pole-zero doublet can be
modeled by an equivalent pure two-pole amplifier with a modified second
pole.

Consider an amplifier whose loop-gain transfer function includes two
poles and a pole-zero doublet as given below

Without loss generality, assume to be the lowest frequency pole
(remember that a dominant-pole behavior is mandatory to achieve stability).
Phase margin evaluation of (4.25) gives

4.3
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From the considerations regarding the location of and made above,
the transition frequency, can be assumed to be equal to the gain-
bandwidth product, (which formally represents the unity-gain
frequency of a one-pole amplifier) so that (4.26) can be rewritten as

Nevertheless, if we want to accurately evaluate the deviation of from
we can use the following results.

By using parameter K defined in (4.14), and the trigonometric identity

from relationship (4.27) we get

where parameter is the spacing of the doublet normalised to its pole and
is the doublet average frequency (evaluated as the geometric mean

Normalising the doublet frequency, to

between and respectively, defined by
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relationship (4.29) can be written

By inspection of (4.33) we note that the second term in square brackets
represents the change caused by the doublet in the tangent of the phase
margin. Of course, if pole perfectly matches zero and (4.33)
simplifies to (4.16). Moreover if is greater (lower) than is negative
(positive), and the effect of the doublet is to decrease (increase) the phase
margin compared to the same two-pole system without the doublet.

From the above it derives that we can model the two-pole amplifier with
a pole-zero doublet by using an equivalent pure two-pole amplifier having
the same gain-bandwidth product (i.e., gain and dominant pole) and a second
pole, which guarantees the same phase margin given by (4.33). Hence,
(4.25) is approximated by

where

The second term within square brackets in (4.35) gives the deviation of
the equivalent second pole with respect to the actual second pole, which
depends on both and It can be easily shown that the deviation is at a
maximum when for a fixed value of (and K), that is when the
average doublet frequency is equal to the gain-bandwidth product. In
contrast, with and K given, the influence of the doublet is highest in
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correspondence to the value of which nullifies the denominator of (4.35),
that is

For instance, assuming K = 2 and
In [PP992] the model was validated for values of in a range from –1 to

0.5, meaning a doublet with its pole and zero spaced by a factor of two.
The time-domain closed-loop step response can be also approximately

represented through that of a pure two-pole amplifier. To evaluate the effect
of a pole-zero doublet, we calculate the relative deviation of and D in a
two-pole amplifier given by (4.23) and (4.24)

For those cases in which is small, such as when a doublet arises from
process tolerances in a pole-zero compensation [BAR80], [PP95],
relationships (4.37) and (4.38) can be approximated to

The approximate relationships show that the relative variations of and
D are linearly related to the spacing of the doublet. It can be seen that for
phase margins greater than 50° (i.e. K > 1.2) the variation in D is much
greater than that of Besides, when the zero is lower than the pole, the
doublet has the effect of reducing overshoot (both in the frequency and in the
time domain).
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As discussed in section 4.3, the second pole is often already defined and
the compensation task requires setting the dominant pole or, better, the gain-
bandwidth product, Relationship (4.29) can be written as

hence, the required implies having to solve the following third-order
equation

As particular cases, first consider the one where the pole-zero doublet is
derived from differential-to-single conversion. In this event doublet spacing,

is exactly equal to –1. By developing (4.42) in Taylor series around the
point truncated to the second term, we get

which is sufficiently simple to be solved with pencil-and-paper.
In contrast, when the second pole can be moved to guarantee stability,

such as in the design strategy for cascode amplifiers proposed in [MN89],
from (4.41) noting that

we have to set according to
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THREE-POLE FEEDBACK AMPLIFIERS WITH REAL
POLES

Some amplifier architectures have three separate poles [P99], one of
which must be dominant to allow stability. Consider then the third-order
loop-gain transfer function given below

The phase margin of the loop gain is equal to (approximating with

Since

and

relationship (4.47) can be rewritten as

Thus, assuming the non-dominant poles to be definitely set, the required
gain-bandwidth for a given phase margin can be achieved from (4.50). In
particular, we get

4.4
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It is worth noting that the frequency compensation of a three-pole
amplifier can be performed following the same procedure as for an
equivalent two-pole amplifier with a loop gain given by

The time constant of the equivalent second pole equals the sum of the
second and third pole time constants of the three-pole amplifier. In other
words, the equivalent pole is

and the frequency and time-domain behaviour of the closed loop amplifier
can be approximated with those developed in section 4.2.

THREE-POLE FEEDBACK AMPLIFIERS WITH A PAIR OF
COMPLEX AND CONJUGATE POLES

Another common situation for a three-pole amplifier is when a dominant
pole occurs in conjunction with a pair of complex conjugate poles. We use
the symbolism introduced in section 4.3 to express such a loop-gain transfer
function

4.5
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This representation can be particularly useful when the complex poles derive
from two indented feedback loops (such as in three-stage amplifiers with
nested-Miller4 compensation). In this case, term is the gain-bandwidth
product of the inner loop-gain and is the ratio between the second pole

and the gain-bandwidth product in this inner loop. The phase margin of the
whole amplifier is given by

hence from (4.55) we get

and we can determine the gain-bandwidth required for a fixed phase margin
when the higher poles are fixed

Like the case of three separate poles, now we can define an equivalent
second pole and, if the quantity within the square roots is close to one, which
means

the equivalent second pole is approximated by The frequency and
time domain behaviour of the closed loop amplifier are hence equal to those
of the closed loop amplifier whose open loop transfer function is

4 See Sec. 5.5 of this book.
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4.6 TWO-POLE FEEDBACK AMPLIFIERS WITH A ZERO

Often the loop gain of a feedback amplifier has a zero which can heavily
affect the transfer function of the closed-loop amplifier. Indeed, if the loop
gain is

the closed-loop transfer function exhibits the same zero and is given by

where in the denominator is still given by (4.7) and the damping factor is
modified with respect to (4.8) according to

The phase margin of the feedback amplifier, under the assumption of a
dominant-pole behaviour whose pole and zero is higher than the transition
frequency, is given by

which shows that a negative zero helps stability, but a positive zero can
drastically reduce the phase margin. Therefore, during compensation
particular care must be taken to avoid or minimise the effect of positive
zeros.

Although it is seldom used, the step response of a feedback amplifier with
the closed-loop transfer function in (4.61) is
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where and are the poles given in (4.9). For an underdamped amplifier
(4.64) can be expressed more profitably as
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FREQUENCY COMPENSATION TECHNIQUES

In the previous chapter we demonstrated the necessity, in a feedback
network, to achieve an open loop dominant-pole frequency response whose a
phase margin is greater than 45° (or K > 1). Indeed, this condition not only
ensures closed-loop stability but also avoids unacceptably underdamped
closed-loop responses. Unfortunately, many amplifiers, and particularly
broadbanded amplifiers, earmarked for use as open-loop cells are not
characterised by dominant-pole frequency responses. The loop-gain
frequency response of these amplifiers must be therefore properly optimised
in accordance with standard design practices known as frequency
compensation techniques [SS91], [GM93], [LS94]. These methods imply the
inclusion of compensation RC networks in the uncompensated circuit to
introduce additional poles or to modify the original loop-gain poles so as to
provide a given phase margin.

Referring to Fig. 4.8, it is easily understood that the simplest way to
achieve stability is to reduce the loop gain. If the frequency of the poles
remain unchanged, the unity-gain frequency is decreased by the same
amount as the loop gain reduction and consequently the ratio between the
second pole and the gain-bandwidth product is increased. The loop gain can
be reduced via the feedback factor f or by decreasing the amplifier open-loop
gain. However, neither are practical design choices because changing the
loop gain may conflict with closed-loop performance such as gain, accuracy,
etc. Moreover, it is worthwhile noting that compensation must be ensured for
all the possible feedback configurations. If the feedback factor is not
specified, compensation should be performed in the worst-case condition,
that corresponds to the unitary feedback (i.e., with the highest loop gain and
gain-bandwidth product, f = 1 and

Chapter 5



In the following three paragraphs we will study the engineering methods
and related tradeoffs underlying the key issue of the frequency compensation
for a two-pole open loop transfer function. Of course, the discussion is easily
extended to multi-pole functions with two dominant poles. The last two
paragraphs deal with the frequency compensation of three-stage amplifiers.

5.1 DOMINANT-POLE COMPENSATION

Let us consider the two-pole amplifier in Fig. 5.1 whose open-loop
transfer function is

The two poles are determined by the parasitic capacitances associated with
node A and B. Assuming these poles are widely separated with the
tangent of the phase margin becomes
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where
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Conversely, if we would have

To guarantee a phase margin greater than 45°, must be greater than
unity. Hence, from (5.5a) and (5.5b), we must ensure that the ratio between
the two time constants is in the order of the DC gain. For example, assuming
the two equivalent resistances to be equal and a typical gain of 30 one of the
capacitances should be more than 30 times the other, to guarantee stability
within proper margins.

At this point, the most intuitive way to provide stability is to add a
capacitance in parallel to (or thus setting the dominant pole at the
input or the output. If we adopt this strategy, the choice of where to insert the
compensation capacitor depends on convenience in terms of lower added
capacitance. This simple compensation approach is called dominant-pole
compensation, which is rarely used, except in single-stage (cascode)
amplifiers, because it requires large compensation capacitors and leads to
feedback amplifiers with very low bandwidth. To show the reduction in
bandwidth, without loss of generality consider the amplifier as being in
unitary feedback and set the dominant pole at the input by adding the
compensation capacitor to Thus (5.5b) turns out to be

and the dominant pole after compensation, which defines the open-loop
bandwidth

must be lower than the second pole (which remains unchanged to
reduced by the DC gain times the tangent of the phase margin (always higher
than 1)
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To conclude, the bandwidth of the dominant-pole compensated amplifier is
defined by the second pole and the DC open-loop gain. As we shall see in
the next paragraph this condition does not hold for the Miller compensation
strategy.

5.2 MILLER (POLE-SPLITTING) COMPENSATION

The well-known Miller effect can be efficiently exploited to perform
frequency compensation that for this reason is called Mil ler compensation or
pole splitting compensation. To understand its properties and design issues
consider the small-signal model in Fig. 5.2, which but for the presence of the
interstage capacitance coupling the first and second stage, is equal to the
one in Fig. 5.1.

Neglecting for the moment capacitor depicted in dashed lines, the
subject open-loop transfer function is

where the DC gain is still given by (5.2) whose the coefficients are
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Thus, assuming the poles are widely separated their approximate expressions
become:

Capacitor provides a path for feedback and for feedforward. The
feedforward leakage produces a real zero in the right-half plane (RHP) given
by

The effect of this zero is neglected here for simplicity (the zero may be
either at a very-high frequency or be compensated with one of the methods
described in the next paragraph).

In (5.13) and (5.14), term accounts for the Miller effect
[MG87]. In practical cases it is the dominant term because capacitance is

multiplied by a factor as high as a stage gain, In such cases the
expressions of the two poles (5.13) and (5.14) simplify to
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From equations (5.15) to (5.17) the pole spli t t ing due to Mi l l e r effect
becomes apparent. In fact, an increase in the internal feedback capacitance,

shifts the dominant pole and the second pole to a lower and higher

frequency, respectively (and also decreases the RHP zero). For this purpose,
to improve the separation of the two poles it is very efficient to multiply

Thus, pole-splitting compensation entails connecting a capacitor between
two phase inverting nodes of the open-loop amplifier. With reference to the
equivalent circuit in Fig. 5.2, the electrical impact of this additional element
is the replacement of the internal interstage capacitance, by the
capacitance sum,

Letting (5.16) and (5.17) can be further simplified to

where capacitance is usually significantly larger than and has also been
assumed to be greater than either or Note that the value of the
compensated second pole given by (5.19) encounters an intuitive
justification. In fact, at the frequency at which it occurs (i.e. after the
transition frequency or equivalently the gain-bandwidth product),

output of the voltage-controlled current-source are shorted, and are in
parallel and the equivalent resistance seen at their terminals is approximately

In contrast, the expression of the zero (5.15) becomes

Although  can exert a significant influence on the high-frequency response
of the compensated amplifier, the following discussion presumes tacitly that

Hence, the gain-bandwidth product and the phase margin are

capacitance can be considered as short-circuited. Hence, the input and the
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and the required compensation capacitance must be set according to

For a fixed phase margin is proportional to the ratio between the
transconductance of the first and second stage. Moreover, it is proportional
to the total (input-output) capacitance. Note also that for a given DC gain
and phase margin, the gain-bandwidth product is set by the frequency of
second pole. Consequently, to compare the Miller and dominant-pole
compensations we can compare only the second poles, and it is apparent that
the second pole resulting from the Miller compensation is much higher (due
to pole-splitting) than that of a dominant-pole compensated amplifier. In
addition, Miller magnification allows us to use lower capacitance values.

For these reasons the Miller compensation technique is extensively used
to design IC amplifiers. Compensation capacitor can be fabricated as a
part of the amplifier (in this case the amplifier is said to be internally
compensated) or can be externally applied to pins reserved for this purpose
on the (uncompensated) opamp package.

By comparing (5.20) and (5.21), we find that we can neglect the right-
half plane zero when the transconductance gain of the second stage is much
higher than that of the first stage. This condition is seldom satisfied in
CMOS transconductance amplifiers and especially when low-power
dissipation is required, so that a specific strategy to compensate the zero
must be applied.

5.3 COMPENSATION OF THE MILLER RHP ZERO

In the previous paragraph we showed that the pole-splitting technique is a
convenient vehicle for achieving the desired pole separation in an open-loop
phase-inverting amplifier. Unfortunately, (5.20) indicates that the larger the

,the lower the RHP zero. In bipolar technologies the transconductance
is invariably large enough to ensure that the frequency of the zero is

greater than the compensated unity-gain frequency, thereby rendering the
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impact of on the compensated frequency response inconsequential. But
for MOS and CMOS technologies, the transconductance is small, and as a
result, the effects of the RHP zero evidenced in the forward transfer function
of a phase inverting amplifier may not be negligible. When the transmission
zero is significant, its primary effect is to incur excess phase lag (phase lag
in addition to that produced by the two open-loop poles), while prohibiting a
uniform 20 dB-per-decade frequency response roll-off rate at high
frequencies. The stability problems caused by the resultant deterioration in
phase margin justifies the implementation of compensation techniques that
neutralise the effects of the RHP zero.

Various compensation schemes have been proposed for two-stage MOS
opamps. They are based on the concept of breaking the forward path through
the compensation capacitor by using active or passive components. The first
of these was applied in a NMOS opamp [TG76] and then in a CMOS opamp
[SHG78]. It breaks the forward path by introducing a voltage buffer in the
compensation branch. Next, a compensation technique was proposed which
uses a nu l l ing resistor in series with the compensation capacitor [A83].
Another solution works like the former but uses a current buffer to break the
forward path [A83]. Final ly, both current and voltage buffers can be adopted
to compensate the right half-plane zero [MT90].

5.3.1 Nulling Resistor

The most widely used compensation technique is the one based on the
nu l l i ng resistor. It entails the incorporation of a resistor, in series with

the Miller compensation capacitor as shown in Fig. 5.3.

The popularity of th i s scheme stems from the fact that it can be
implemented monoli thical ly with a MOS transistor biased in its triode
regime (which approximates a linear resistor). Moreover, its highpass nature
does not reduce the low-frequency dynamic range of the imcompensated
configuration. By using this compensation branch in the equivalent circuit in
Fig. 5.2, and neglecting capacitance (usually much lower than ), the
zero is now at frequency
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and is moved to infinite frequency by setting equal to Thus, the
RHP zero originally ignored in the process of arriving at the pole-splitting
results has effectively been eliminated.

If is greater than a left-hand zero is created because becomes
positive. Ideally, this zero can be exploited to offset or even cancel the
effects of the second compensated pole, thereby leading to an open-loop
amplifier with an increased gain-bandwidth product as first proposed in
[BAR80].

By imposing the condition

a new second pole arises which is given by as can be found by
directly analysing the equivalent circuit. This pole does not depend on the
load capacitance. However, this optimised approach has a quite worse

than the other optimised compensation strategies for equal power
consumption and area of the amplifier including the compensation network
(i.e., global transconductance in the amplifier) as demonstrated in [PP95]
and [PP97].

5.3.2 Voltage Buffer

Figure 5.4 shows the compensation branch with a voltage buffer. It
eliminates feedforward through the compensation capacitance
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Unfortunately, unl ike the passive compensation strategy discussed above,
the buffer utilised attenuates the achievable output swing of the amplifier.
The adoption of an ideal voltage buffer (i.e., with inf ini tely large input
impedance, zero output impedance, and unitary gain) gives the same
dominant pole as in (5.18) and the same second pole as in (5.19) without
depending on capacitance But by eliminating capacitive feedforward, the
troublesome RHP zero incurred by the internal interstage capacitance, is
not decreased by the compensation element In other words, the effective
feedback capacitance is while the feedforward capacitance is

The foregoing discussion presumes an ideal voltage buffer. Practical
buffers have small, but not zero, output impedance and large, but not
infinite, input impedance (see Fig. 5.5).

The resistive component of the buffer output impedance, establishes a
left-half plane zero with capacitance As for the case with the nulling
resistor, this zero can be exploited to increase the amplif ier gain-bandwidth
[PP95]. Following this last compensation strategy and with some
approximations, the poles and zeros become [PP95]
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Now the right-half plane zero, is placed at a very high frequency and can
be neglected. Moreover, as proposed in [AH87] and developed in [PP95], a
pole-zero compensation can be performed to increase the gain bandwidth
product. In particular, we can properly design the voltage buffer to ensure
the output resistance is equal to

which sets The new second pole is now the old third pole in (5.28)
which by using (5.31) becomes

The phase margin is given by

which yields the required compensation capacitance

After substituting the value found in the gain bandwidth product we get
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The resulting has a higher value than that given by (5.21), and is
inversely dependent on the geometric media of and

5.3.3 Current Buffer

Consider now the ideal compensation branch using the current buffer
depicted in Fig. 5.6. This solution is very efficient both for the gain-
bandwidth [C93], [RK95] and PSRR performance [A83], [RC84], [SS90],
[SGG91]. Moreover, it does not have the drawback exhibited by the voltage
buffer of reducing the amplifier output swing.

With an ideal current buffer, the second pole is given by

and the phase margin is by

By solving for the compensation capacitance we found
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Generally the output capacitance, is much higher than the inner

have to guarantee that the input resistance of the current buffer, is equal to
or lower than half Moreover, the condition

represents an optimum to maximise the gain-bandwidth product. Under
condition (5.40) the required compensation capacitor is

where

Usually, relationship (5.41) can be further approximated

capacitance, and relationship (5.38) can be further simplified to

Hence, for a given phase margin, the required compensation capacitance is
slightly lower than the value required by the optimised compensation with
voltage buffer in (5.34), while the resulting gain bandwidth product is
slightly higher.

However, compensation with a real current buffer (and specifically, with
finite input resistance) is not as straightforward as the other compensation
approaches. As shown in reference [PP97], to achieve compensation we
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and the gain bandwidth product results as

For practical phase margin values, the gain bandwidth product in (5.44) is
even higher than that obtained with a ideal current buffer. It is also higher
than the one obtained using a real voltage buffer. However, compensation
with a real current buffer is a less efficient strategy because, as demonstrated
in [PP97], it needs more area and/or power for equal gain bandwidth product
than compensation based on a real voltage buffer.

5.4 NESTED MILLER COMPENSATION

The compensation of multistage amplifiers (i.e., with a number of gain
stages higher than two) requires iteration of the simple Mil ler compensation
described previously [C78], [C821], [C96], [HL85], [EH95]. Typically,
three- and even four-stage amplifiers are found in CMOS implementations
including an output power stage for driving heavy off-chip loads [C822],
[OA90], [PD90], [TGC90], [CN91], [PNC93]. Moreover, given the decrease
in supply voltages, cascoding is not a suitable technique for IC applications
demanding both high gain and swing. Hence, cascading three or more
simple stages is the only viable option. Consequently, multistage amplifiers
and their frequency compensation issues have become increasingly
important in modern microelectronics [FH91], [EH92], [NG93], [PPS99],
[GPP00]. In the following we will discuss in detail compensation of three-
stage amplifiers, which are the most common architectures, but the results
obtained can also be adapted (although often not very directly) to
architectures with a higher number of stages.

5.4.1 General Features

Among the possible ways of exploiting Miller compensation in
multistage amplifiers, the so-called nested Miller (NM) compensation is one
of the most widely used. It can be utilised when only the final gain stage is
voltage-inverting.
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The small-signal equivalent circuit of a three-stage amplifier including
nested Miller compensation is depicted in Fig. 5.7. Parameters and are
the i-th stage transconductance and output resistance, respectively.
Capacitors represent the equivalent capacitance at the output of each

Hence, the gain-bandwidth product, of the amplifier is equal to

stage, are the compensation capacitors, and is the equivalent load
capacitor.

In the following we neglect the effects of the parasitic capacitances since
they are generally one order of magnitude lower than the compensation
capacitances. Neglecting second-order terms, the open-loop transfer function
of the circuit in Fig. 5.7 is expressed by

where is the DC open-loop gain equal to

and is the frequency of the dominant pole
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Equation (5.45), in addition to a dominant pole, also includes two other
higher poles and two zeros. Moreover, since the coefficients of the s and
terms in the numerator are both negative, a RHP zero is created, which is
located at a lower frequency than the other LHP zero. In analogy to the
discussion of the previous paragraph, using voltage followers or current
followers can nominally eliminate both zeros. Another solution is the
multipath Miller approach proposed in [YES97] that, according to Fig. 5.8,
provides a zero cancellation due to the effect described in [EH95]. In brief,
the forward path contribution is ideally nullified by setting equal to

When using any of these techniques, or in the case of a very large
such as in power amplifiers (whose output stage is biased with large
quiescent currents and is realised with large devices), relationship (5.45)
simplifies to
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Equation (5.49) allows an interesting interpretation of the compensation
process. We will show that assuming a dominant-pole frequency response,
the second and third stage can be considered as closed in a unity-gain
feedback configuration by capacitor acting as a short circuit for
frequencies above

Consider now the open-loop gain of the second and third stage alone
(which we also refer to as the inner amplifier), its DC gain, the
dominant  pole due to the Miller effect on and the second pole at
the output terminal. They are given by

If now we assume in unity-gain feedback connection, the resulting
closed-loop transfer function is characterised by exactly the same second-
order polynomial as in the denominator of (5.49). This consideration justifies
the representation utilised in equation (4.54) and allows, in turn, the
straightforward compensation technique discussed below.

For a well designed (i.e., with appropriate stability margins) inner
amplifier, the second pole must be located well beyond the unity-gain
frequency which, under the dominant-pole behaviour assumption, is
approximately equal to and given by

In order to avoid overshoot in the module of the inner amplifier
frequency response, a proper ratio, between and has to be set as
described in paragraph 4.5. A fairly optimum value of is 2 (i.e. an inner
phase margin of about 64°) which is the minimum value guaranteeing
monotonic behaviour in the frequency response module. This leads to the
expression of capacitor
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In other words, we have an external feedback loop through and an
inner one through The stability of the inner loop must first be
established so that we can proceed to the external one. Any design attempt
not providing a proper phase margin for the inner loop would inevitably
require an extremely high value of or even not achieve stability at all.

Now we return to the frequency response of the whole open-loop
amplifier, which can be rewritten as in (4.54) and is here reported for clarity

Evaluation of the phase margin yields (see (4.55))

Solving (5.56) for and combining with (5.48) and (5.53) gives the
expression of capacitance as a function of the required phase margin

Equations (5.54) and (5.57), are very similar to those in [EH95], where a
third-order Butterworth frequency response in unity-gain configuration is
assumed. However, (5.57) is more general because allows to set
compensation capacitor for the desired phase margin.

5.4.2 RHP Cancellation with Nulling Resistors

Now we extend the considerations on the n u l l i n g resistor network
reported in 5.3.1, to the three-stage nested-Miller compensated amplifier.
Figure 5.9 illustrates the RC compensation network which includes two
nulling resistors and to be used in the amplifier of Fig. 5.2.
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With the introduction of these two resistors the open-loop gain given in
(5.45) changes to

Observe that only modifies the denominator because changes the
zero of the inner amplifier. It is also clear that the numerator of (5.58) is
greatly different from that of (5.45) and now depends on and By
inspection of (5.58), it is possible to nullify the term and to make the s
term positive by choosing

In this manner, the residual LHP zero can be exploited to increase the phase
margin. However, we shall not further develop this approach because better
ones have been elaborated.
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A simpler technique based on a single nulling resistor and illustrated in
Fig. 5.10 was proposed in [LM99]. When applied to the amplifier in Fig. 5.7,
it gives the following loop-gain expression

In this case the term in the numerator can be simply set equal to zero
by choosing

and the loop-gain only has a negative zero which can be used to increase the
phase margin.

Now equation (5.54) cannot be used, but the same procedure can still be
adopted to achieve simple new equations for and for a given value
of phase margin. After having substituted (5.61) in (5.60) and assuming

we can set and evaluate the phase margin
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where z is the zero and comparing (5.55) with (5.60) and
using (5.62), is Solving (5.63) for and combining with

and (5.61) gives the value of capacitance

where

By considering that is lower than for the phase margin of interest
the above equation can be approximated as

which is more suitable for pencil and paper design, and provides the same
results as (5.57) for Compared to (5.57), relationship (5.66) gives
lower values of for the same phase margin.

It is interesting to note that we assumed no constraint for
transconductances except otherwise in (5.62) would be
negative. This allows the power consumption to be optimised since low
quiescent currents can be used and, perhaps more importantly, we are free to
choose the input and output transconductances and Unfortunately,
like for classic NM compensation, this method still requires large
compensation capacitors for heavy capacitive loads. For instance, if

and for a target phase margin of 70°, the required compensation
capacitor equals

An alternative and efficient compensation technique is based on the
compensation network shown in Fig. 5.11 [PP02]. The previous single-
resistor compensation network is here modified by adding another resistor,

in series with capacitor Although this change may appear of
marginal significance, it turns out to be very attractive because it allows
pole-zero compensation to be achieved by using reduced compensation
capacitor values. This in turn leads to an improvement in terms of gain-
bandwidth product, slew-rate and settling time.
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The transfer function of the amplifier in Fig. 5.7, using the compensation
network in Fig. 5.11 becomes

The above shows that the zeros can both be made negative and their
values adjusted to exactly cancel the two higher poles. Hence, by setting

and equating the coefficients of the second-order polynomials we get

The transfer function of the amplifier in (5.67) now has a single pole.
This means that a suitable value of can be chosen to maximise the gain-
bandwidth product, allowing it to reach the same order of magnitude as an
optimised two-stage Miller-compensated amplifier. Again must be
higher than so that the compensation elements will be positive.
Moreover, it is worth noting that relations (5.68)-(5.70) are independent of

and, ideally, the compensation capacitors are also independent of the
load capacitor.
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Of all the possible solutions that reduce (5.67) to a single-pole function,
the one chosen also has the property of providing an inherent pole-zero
cancellation for the (open-loop) transfer function of the amplifier containing
only the second and third stage. Indeed, by denoting their second pole and
(negative) zero as and respectively, these are given by

whose expressions perfectly match if equations (5.68)-(5.70) are used.
However, note that the inner amplifier, which is closed in the feedback loop
by capacitor is now comprised between the input of the second stage
and the common node of and Therefore, according to our design
methodology, we firstly have to check the stability of this feedback loop.
The open-loop transfer function of the inner amplifier is

where is given by (5.50). From (5.73) and using (5.68) and (5.70) we
derive the expressions of the unity-gain frequency and those of the second
pole and zeros of the inner amplifier
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indicating that the second pole and the first zero remain very close provided
that In this case, the second (RHP) zero tends to and must
be higher than the unity-gain frequency given in (5.74). to ensure stability.
Setting the inner phase margin greater than 64° yields The above
relation establishes a lower limit for the ratio between and Under
this condition, any value of ideally ensures the stability of the
inner amplifier. A minimum usable value for exists in reality.
Compensation capacitors must be greater than the parasitic capacitances at
the high-impedance nodes to be valid for development. Besides, and usually
more importantly, slew-rate considerations posit the fundamental limit for
the minimum value of [PP02], [PPP01].

5.5 REVERSED NESTED MILLER COMPENSATION

When the amplifier is made up of three gain stages and the inner stage is
the only inverting one, reversed nested Miller compensation (RNMC)
becomes the most suitable technique [EH95].

5.5.1 General Features

Figure 5.12 shows a three-stage amplifier small-signal circuit including
reversed nested Miller compensation performed by   capacitors and
As usual, parameters and are the i-th stage transconductance and
output resistance, respectively. Capacitors represent the equivalent
capacitance at the output of each stage, while is the equivalent load
capacitor. Since capacitor has no connection with the load capacitor (but
only with parasitic capacitor inner loop stability is virtually achieved for
all practical values, and wi l l not be examined. For the same reason, this
technique has an inherent bandwidth advantage over other multistage
compensation approaches based on the Miller effect.
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Neglecting second-order terms, the open-loop gain of the circuit in Fig.
5.12 is given by

where is the DC open-loop gain equal to and is the
dominant pole due to compensation capacitor Therefore, the dominant
pole and the gain-bandwidth product are equal to those of the nested Miller
compensation in (5.47) and (5.48), respectively. Moreover, again as for the
NMC, we have two other higher poles (usually complex and conjugates) and
two zeros, the lower one on the right-half plane and the other on the left-half
plane.

Unlike in the NMC, large values of do not facilitate the task of
compensation. If is much higher than except when considering
parasitic capacitances, a pole-zero cancellation occurs which modifies (5.78)
into a single pole transfer function. But the pole and the zero involved in this
compensation are positive, a condition which is critical for stability.
Therefore, we must provide viable compensation procedures also for large
values of

First observe that both zeros can be eliminated by using two voltage or
current buffers in series with compensation capacitors to break the forward
paths, as illustrated in Fig. 5.13 and 5.14, respectively.
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In these two cases (5.78) respectively becomes

It is worth noting that the above expressions have exactly two poles thanks
to the action of the ideal buffers. Both second poles are also negative. The
second pole in (5.79) can be simply interpreted by analysing the circuit in
Fig. 5.15, where the inner amplifier, through the capacitive network, acts
as a multiplier by a factor equal in module to The  same
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considerations hold for the second pole of (5.80). The only difference is that
and are now in parallel.

The specified phase margin for the two cases respectively is given by

Since is set by the required unity-gain bandwidth, and assuming
and to be already set, (5.81) and (5.82) give the needed value of

Although it has been demonstrated here that ideal buffers provide a
conceptually simple vehicle for the cancellation of the zeros, we will not
stress these approaches any further because of the second-order effects of
real buffers. In fact, the two approaches, as described above, prove to be
inefficient especially in a low-voltage low-power context. Actually, the use
of real voltage buffers unacceptably limits the output swing, while real
current buffers –matching the requirement of very low input resistance– are
expensive in terms of area and power consumption. Fortunately, we wi l l
show in 5.5.3 and 5.5.4 that both approaches can be simply modified so as to
become suitable for practical applications.

For the sake of completeness, we shall first deal with the nulling resistor
technique, which unfortunately is rather difficult to accomplish in a RNMC.
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5.5.2 RHP Cancellation with Nulling Resistors

Figure 5.16 shows the compensation network including two nulling
resistors, as customarily employed.

By using this network in the circuit in Fig. 5.7, the numerator of the open-
loop gain in (5.78) becomes

in which, as usual, only dominant terms are considered.
It can be shown that (5.83) provides real and negative zeros only with

complex matching between and (by setting one of the two
resistances equal to zero, it also is easy to verify that the RHP zero cannot be
eliminated as the coefficient is always negative).

A more effective solution is that shown in Fig. 5.17, which uses only one
resistor and leads to the following expression of N(s)
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Setting (5.84) becomes

yielding only one negative zero. Of course, the denominator of the open-loop
gain is s t i l l the same as in (5.78). In this case, it is convenient to have

As we shall show, this choice allows a pole-zero cancellation to be
achieved. Indeed, assuming that also

meaning that the determinant of the second order factor of (5.78) is positive,
it follows that all poles are real and thus (5.78) becomes

For a given phase margin we get

Now, by substituting (5.88) in (5.86), condition (5.86) is satisfied if
Since a phase margin of about 60° is generally required,

it follows that the transconductance of both the second and third stage must
be at least seven times greater than the transconductance of the first stage.
Since transconductances are usually set by other kinds of specifications, the
application of this technique is implicit ly l imited.

5.5.3 RHP Cancellation with One Real Voltage Buffer

To achieve RHP cancellation, we can efficiently make use of only one
voltage buffer in the inner loop, as shown in Figure 5.18.
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By adopting this compensation network the output swing turns out to be
completely preserved. In addition, we shall exploit the finite output
resistance of the voltage follower to perform some simplifications as
described below. Denoting this output resistance as the loop-gain transfer
function is modified to

Relationship (5.89) includes one dominant LHP zero and a RHP zero that
is now shifted to a very high frequency (since it is multiplied by the stage
gain Moreover, there are two non-dominant poles which are real and
negative under the condition (in practice usually met) These
two poles are well approximated by the terms inside the square brackets in
the second expression of (5.89). We can use the output resistance of the
voltage follower to obtain some forms of simplification, and among the
possible alternatives, we can set the value of this resistance equal to the
transconductance of the last stage
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Substituting (5.90) in (5.89) the non-dominant poles and the two zeros result
as

It is apparent that and are at a very high frequency
and their contribution to the phase margin can be neglected. Moreover

assures a monotonic behaviour for the loop gain module. The phase
margin is then given by

from which we get

where parameter is equal to
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Equation (5.96) can be simplified by observing that for the auspicious

If we consider the finite input resistance of the current follower, the
loop gain wi l l include another pole and two zeros, as shown below

in which the two zeros have a negative real part. Besides, they are real if

condition parameter is lower than 1/3 and for practical phase
margin values around 60°-70° we have

indicating that the zero can also be neglected when evaluating the phase
margin. In conclusion, (5.96) can be approximated by (5.82).

5.5.4 RHP Cancellation with One Real Current Buffer

As can be deduced by returning to Fig. 5.14, the overall feedback current
is given by the sum of the currents flowing into the two compensation
capacitors. Thus, we need to use only one current buffer in the loop to break
the forward path, as shown in Fig. 5.19, simplifying design and reducing
power and area consumption. Since the overall feedback current is still the
same, the loop-gain transfer function is again given by equation (5.80) and
(5.82) still holds.
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that gives a higher limit for the current follower input resistance. If this
condition is met, the expressions of the two zeros become

Choosing the highest value of defined by equality in (5.100), it can be
shown that is four times greater than Moreover, we have that if

which is a condition easily met in practice. Thus

the second zero and the third pole in (5.99) are allocated well above the
second pole, and do not appreciably modify the phase margin.

Finally, if we have that This means that the first zero
does not modify but must be considered when evaluating the phase
margin which is

and is reduced to (5.82) if
Thanks to the action of the negative zero, the approach adopting a current

buffer is preferable to the one using a voltage buffer.




