
AN920/D

Test	Conditions	Results
Line Regulation	V _{in} = 4.5 to 12 V, I _{out} = 5.0 mA	Δ = 2.3 V or ± 0.61%
Load Regulation	V _{in} = 5.0 V, I _{out} = 1.0 to 6.0 mA	Δ = 1.4 V or \pm 0.37%
Output Ripple	V _{in} = 5.0 V, I _{out} = 5.0 mA	250 mV _{p-p}
Short Circuit Current	V_{in} = 5.0 V, R_L = 0.1 Ω	113 mA
Efficiency	V _{in} = 5.0 V, I _{out} = 5.0 mA	68%

This circuit was designed to power the ON Semiconductor Solid Ceramic Displays from a V_{in} of 4.5 to 12 V. The design calculations are based on a step—up converter with an input of 4.5 V and a 24 V output rated at 45 mA. The 24 V level is the maximum step—up allowed by the oscillator ratio of $t_{on}/(t_{on}+t_{off})$. The 45 mA current level was chosen so that the transformer primary power level is about 10% greater than that required by the load. The maximum V_{in} of 12 V is determined by the sum of the flyback and leakage inductance voltages present at the collector of the output switch during turn—off must not exceed 40 V.

Figure 27. High-Voltage, Low Power Step-Up for Solid Ceramic Display