Thus
$$Z_{\text{inCL}} = -Z_{\text{in}} \left[1 + \beta A_{\text{OL}} \frac{Z_{\text{L}}}{Z_{\text{o}} + Z_{\text{L}}} \right]$$
 (2.7)

Series voltage feedback increases input impedance to an extent determined by the loop gain βA_{OI} .

2.2.5 Effect on inverting amplifier

The effects of finite open-loop gain, finite input impedance and non-zero output impedance will be considered for the inverting amplifier. To analyse the effects, each parameter will have to be considered separately. First we must find a few general relationships for a non-inverting amplifier in terms of the non-infinite open-loop gain, $A_{\rm OL}$.

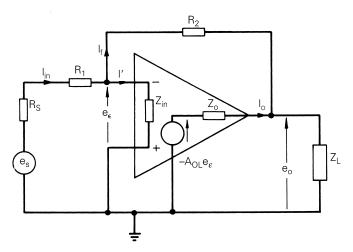


Figure 2.5 Shunt voltage feedback

In Figure 2.5, the externally applied input signal voltage $e_{\rm s}$ and the output voltage $e_{\rm o}$ are effectively applied in parallel to the op-amp's differential input. The signal $e_{\rm e}$, which drives the differential input, is a superposition of the effects of $e_{\rm s}$ and $e_{\rm o}$.

$$e_{\varepsilon} = e_{s} \frac{R_{2}}{R_{1} + R_{2} + R_{s}} + e_{o} \frac{R_{1} + R_{s}}{R_{1} + R_{2} + R_{s}}$$
(2.8)

It is assumed that $Z_{in} >> R_1 + R_s$ and that $Z_o << R_2$.

The feedback fraction
$$\beta = \frac{R_1 + R_s}{R_1 + R_2 + R_s}$$

Let us now examine the effect of non-zero output impedance. The output voltage may be written as

$$e_0 = -A_{OL}e_{\varepsilon} - I_0Z_0$$

Substitution for e_{ε} and rearrangement gives

$$e_{\rm o} = -\frac{R_2}{R_1 + R_2 + R_{\rm s}} \frac{A_{\rm OL}}{1 + \beta A_{\rm OL}} e_{\rm s} - i_{\rm o} \frac{Z_{\rm o}}{1 + \beta A_{\rm OL}}$$

The closed-loop signal gain of the circuit is thus

$$e_{\rm o} = -\frac{R_2}{R_1 + R_2 + R_{\rm s}} \frac{A_{\rm OL}}{1 + \beta A_{\rm OL}} = -\frac{R_2}{R_1 + R_{\rm s}} \left[\frac{1}{1 + \frac{1}{\beta A_{\rm OL}}} \right]$$
 (2.9)

For large values of $\beta A_{\rm OL}$, the term

$$\left[\frac{1}{1 + \frac{1}{\beta A_{\rm OL}}}\right]$$

is very close to unity and the closed-loop gain is

$$\frac{R_2}{R_1 + R_s}$$

The closed-loop output impedance is

$$Z_{\text{oCL}} = \frac{Z_{\text{o}}}{1 + \beta A_{\text{OI}}} \tag{2.10}$$

The closed-loop output impedance of an op-amp in many circuits is a tiny fraction of the open-loop impedance, typically less than 1 m Ω at low frequencies.

Compare equations 2.9 and 2.10 with equations 2.5 and 2.6. Again, notice the importance of the loop gain $\beta A_{\rm OL}$. If the loop gain is sufficiently large the closed-loop performance is determined by the value of the components used to fix the feedback fraction β . If $R_1 \ll R_s$ and the loop gain is large, the closed-loop signal gain approximates to $A_{\rm CL} = -R_2/R_1$.

Now let us consider the input impedance. In Figure 2.5

$$I_{\rm in} = I' + I_{\rm f}$$

Now $I' = e_{\varepsilon}/Z_{in}$ and $I_f = (e_{\varepsilon} - e_{o})/R_2$.

So
$$I_{\rm in} = \frac{e_{\varepsilon}}{Z_{\rm in}} + \frac{e_{\varepsilon} - e_{\rm o}}{R_2}$$

If $Z_L > Z_o$, $e_o \cong -A_{OL}e_e$, i.e. assume that there is no voltage drop across the internal output impedance.

By substitution,
$$I_{\rm in} = e_{\varepsilon} \left[\frac{1}{Z_{\rm in}} + \frac{1 + A_{\rm OL}}{R_2} \right]$$

In terms of input impedance, we have $Z_{\rm in}$ and additional shunt impedance $R_2/(1+A_{\rm OL})$. Thus the effect of the shunt feedback is to reduce the effective differential input impedance of the op-amp. And if $A_{\rm OL}$ is very large, the input impedance is very small (typically $< 1~\Omega$). The overall input impedance of the inverting op-amp circuit then effectively equals the value of the resistor R_1 .