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1 PREFACE 

1.1 BASICS 
Read Part I first.  

You can not proceed until you have read and understood the prerequisite Gustafsson’s “Adaptive Filtering 

and Change Detection”. Even if you know adaptive filtering for under-modeled stochastic non-stationary 

systems with weak nonlinearity pretty well, you are still advised to glance through it. I will not repeat 

anything discussed there.  

Quite a bit of problematics can be discussed without taking sub-band limitations, subsampling, and 

aliasing into consideration, even without going into complex domain.  

For as much as possible, the discussion will be leaning towards simplicity, delta-function responses, and 

white Gaussian noise as excitation. 

The names of chapters with pictures include a reference [2xy] to a doc_p2xy.m script which was used to 

generate these pictures.  

1.2 SUMMARY 
● The system to be identified must be properly band-limited and sample-able, aliasing and 

singularity adequately accounted for. Adaptive filtering configuration plays a critical role. Lack of 

such understanding makes the rest meaningless. 

● Scalar step size (not using Gram-Schmidt orthogonalization in any form) algorithms have spectral 

deficiency whenever excitation is colored at source or colored by band-limiting filters 

● The acoustic model of RIR perturbations with exponential decay can and should be properly 

incorporated into adaptive algorithms 

● A new vector step size class of Diagonal Least Square adaptive algorithms to account for 

meaningful RIR perturbation models is introduced 

● The robustness of traditional and new adaptive algorithms to implicit and explicit assumptions is 

discussed, and it’s found that all of the conventional single model algorithms are not robust. 

● A new class of meta-adaptive modifications to the traditional and new algorithms is introduced by 

closing a feedback loop on the RIR perturbation estimations to make the meta-adaptive algorithms 

to be robust to errors in such estimations, resulting in a lower number of models for xxMM 

algorithms. 

2 BAND EDGE EFFECT 

2.1 BASICS 
On one hand, the “band edge effect” is a direct consequence of parallel configuration and has nothing to do 

with subband processing.  

On another hand, the “band edge” effect is a direct consequence of LMS spectral deficiency and also has 

nothing to do with subband processing per se.  
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2.2 PARALLEL CONFIGURATION [201] 
Let’s consider the following 4 configurations: 

● Left: Consecutive 

● Right: Parallel  

● Top: IN and OUT filters are different 

● Bottom: IN filter is the same as OUT filter 

In top/bottom cases, ADF gets the same reference signal regardless of the consecutive/parallel 

configurations. If the old theory holds, both the dispersion matrix of estimation errors and residual error 

spectra shall be identical because the expectation of residual error variance is 𝑣𝑎𝑟(𝑟𝑒𝑠𝑡) = 𝑥𝑡
𝐻𝐷𝑡𝑥𝑡where 

𝑥𝑡 is the excitation vector (after IN filter), and 𝐷𝑡is the dispersion matrix of estimation errors, 𝐷𝑡 =

 𝐸{(ℎ�̂� − ℎ)(ℎ�̂� − ℎ)𝐻} regardless of the actual system response. 

 

The OUT (QMF-ish) and a wider IN filters are chosen as  

fout= fir1(FIRSZ-1,0.60,hann(FIRSZ).^1.3);  
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fin=fir1(FIRSZ-1,0.87,tukeywin(FIRSZ,.25)); 

 

Then, we run LMS for several seconds and the results are, in the time domain: 

 

... and frequency domains: 
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As we can see, the “same” IN and OUT of QMF-ish type filter simply do not work.  
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Well, actually, in any configuration. Yes, it’s hopelessly worse in parallel with LMS.  

2.3 LMS SPECTRAL DEFICIENCY [202] 
Whatever IN filter we chose we can not make it flat edge-to-edge, even if we use per-subband internal 

equalization. Some of the sharp drop will remain. For RLS, the dispersion matrix of estimation errors 𝐷𝑡is 

the inverse of the Fisher matrix, where 𝜎𝑡is (possibly, non-stationary) noise standard deviation; 

𝐷𝑡  =  (𝐷0
−1 + ∑

𝑡

𝑖=1

𝑥𝑖𝑥𝑖
𝐻/ 𝜎𝑖

2 )−1     

And therefore, if the frequency spectrum of𝑥𝑡formed by IN filter, then the spectrum of residual error, with 

power expectation 𝑥𝑡
𝐻𝐷𝑡𝑥𝑡, shall be flat (if no aliasing happens, of course). It’s not so simple for LMS. 

ℎ𝑡+1 = ℎ𝑡 + 𝜇𝑡𝑥𝑡(𝑦𝑡 − 𝑥𝑡
𝐻ℎ𝑡)/(𝑥𝑡

𝐻𝑥𝑡);  

where 𝜇𝑡 is the step size; 

𝛿𝑡 = ℎ𝑡 − ℎ;  

where ℎ is the true value of system response. 

𝛿𝑡+1 = 𝛿𝑡 − 𝜇𝑡𝑥𝑡𝑥𝑡
𝐻𝛿𝑡/(𝑥𝑡

𝐻𝑥𝑡)) + 𝜇𝑡𝑥𝑡𝑛𝑡/(𝑥𝑡
𝐻𝑥𝑡); 

where 𝑛𝑡 is the noise sample. 

𝐺𝑡 = (𝐼 − 𝜇𝑡𝑥𝑡𝑥𝑡
𝐻/(𝑥𝑡

𝐻𝑥𝑡));  

is the “dispersion squeezing” matrix, symmetric. 

𝐷𝑡+1 = 𝐺𝑡𝐷𝑡𝐺𝑡+ 𝜇𝑡
2𝜎𝑡

2𝑥𝑡𝑥𝑡
𝐻/(𝑥𝑡

𝐻𝑥𝑡)2; 

where for negligible noise we can see that 

𝐷𝑡+1 = 𝐺𝑡𝐺𝑡−1𝐺𝑡−2. . . 𝐺2𝐺1𝐷0𝐺1𝐺2...𝐺𝑡−2𝐺𝑡−1𝐺𝑡;  

and  

𝐺1𝐺2...𝐺𝑡−2𝐺𝑡−1𝐺𝑡 ≈ 𝐼 − 𝜇1𝑥1𝑥1
𝐻/(𝑥1

𝐻𝑥1) − 𝜇2𝑥2𝑥2
𝐻/(𝑥2

𝐻𝑥2)−. . . 𝜇𝑡𝑥𝑡𝑥𝑡
𝐻/(𝑥𝑡

𝐻𝑥𝑡)  

or, approximately for small step sizes: 

≈ 𝐼 − 𝜇 (∑

𝑡

𝑖=1

𝑥𝑖𝑥𝑖
𝐻/ 𝜎𝑖

2 )/ 𝑚𝑒𝑎𝑛(𝑥𝐻𝑥)  

where we can see the familiar Fisher matrix again.  

The power spectrum of LMS residual error is inversely proportional to the IN(f)^2 filter. This is the major 

difference between LMS and RLS, and therefore, the filterbanks (and/or per-band equalizer) for an FSAF 

application shall depend on the sub-band algorithm used for adaptation in subbands. RLS, despite being 

optimal, is more forgiving to the non-idealities in the filterbank design, while LMS and other non-matrix 

step-size algorithms require much more consideration, design efforts, and of course longer testing.  
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‘Diff’ case is very different from ‘Same’ [doc_p202.m]: 

 

In LMS, there is practically no feedback on spectral error close to the band edge. Thus, the errors can grow 

unconstrained unless specific regularizations are applied. One of them is to add some noise to IN signal, 

close to the band edge, to enforce spectral zeros. We may allow IN filter to intentionally alias some signal 

into a subband, details to be discussed in Part III. 
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2.4 SUMMARY 
The discussed material, due to some reasons beyond my understanding, is not covered in [most of] 

textbooks:  

• The system to be identified must be properly band-limited and sample-able.  

• Aliasing and singularities are not negligeable and must be adequately accounted for.  

• Adaptive filtering configuration plays a critical role.  

• If you don’t understand it, read a book on statistics instead this one.  

3 COLORED OR TONAL EXCITATION AND SCALAR STEP SIZE ALGORITHMS 

3.1 BASICS 
Generally, LMS convergence speed can be normalized to the LADF multiplied by the relative spectra width. 

For a white noise input, LMS with step size of 1.0 converges exponentially, approximately 5.2dB per LADF.  I 

can not explain why it’s ~5.2, not 4 or 6. 

3.2 SUBSPACE CONVERGENCE [206] 
When using speech as an excitation signal, we can reasonably assume that it is transformed to the white-

ish sub-band excitation for higher frequency sub-bands. However, It’s not the case for a few very first 

subbands. Thus, we shall see what we can expect there. Let’s see a case with -48dB WLMS, AWGN=-80dB, 

LADF=RT60, averaging over 900 runs. 

 

The results of simulations show that the WLMS and LMS spectral deficiency effects are generally additive, 

except for some combinations that we need to be aware of (such as yellow curve below).  
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Generally, the spectral limits on excitation are interchangeable with model’s length reduction i.e., if the 

excitation is always limited to fN/2, adaptive algorithms converge twice faster, as if the model’s length was 

halved, etc. 

Used together, these effects pave the way to extremely high but still measurable performance of FSAF, 

and, alas, some of my licensees indeed put the 100dB/s convergence speed in their product specs, which is 

of debatable merit. To tell the truth, we can attain such high “true” acoustic (not mechanical coupling) 

convergence speed for usual rooms with RT60 of ~0.4sec on real speech only with RLS proper. 

3.3 MEMORY-LESS-NESS [210] 
We also need to remember about LMS/WLMS memory-less-ness, that after converging fast to a subspace 

defined by a certain frequency content, it will have to reconverge, if a new narrow band signal comes, and 

back, etc. Let’s illustrate it on an example of excitation with interleaving frequency content: 
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Then the convergence curves with optimal step-size LMS, which has memory, would be: 

 

With higher noise levels, LMS would forget the previous convergence and the results would be even 

worse. 

For simpler algorithms, like BDLS to be discussed later, which do not keep entire the dispersion matrix, 

the results are significantly worse: 
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RLS does not suffer from this effect: it keeps all necessary information in the 𝐷𝑡matrix. Various Fast RLS 

versions succeed to keep this information in a vector format but their proper initialization is not clear yet 

(I tried but failed, so far). 
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3.4 SUMMARY 
Scalar step size algorithms are a can of worms. 
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4 INCORPORATING ACOUSTICS INTO STATISTICS 

4.1 BASICS 
An acoustic RIR consist of  

● a spike of mechanical coupling between a loudspeaker and a microphone because the speed of 

sound in solids like plastic and wood is 10...20 times higher than in air. It could be huge in 

smartphones, tablets, speakerphones, and laptops and very small in the “installed sound” 

conference rooms. 

● a spike of acoustic coupling via a direct acoustic path between a loudspeaker and a microphone 

● a few spikes of first reflections of varying amplitude, depending on the geometry and cushioning of 

the room, lasting 20…50ms. 

● an exponentially decaying reverberation “echo” tail. This one is characterized by RT60 - the time it 

takes to decrease “average” acoustic (excluding mechanical coupling) IR by 60dB.  

When acoustics are altered by people moving in/out/siting/standing, moving chairs, tables, 
loudspeaker(s) and microphone(s), etc - all of which can and does happen during conferences, the impact 

on RIR is decaying with the same RT60. It’s easy to verify experimentally: 

● turn loudspeaker (and whatever else needed) on,  

● start microphone recording and start playing MLS/chirp/white noise,   

● Exit the room and close the door 

● Wait for a minute 

● Enter the room:  

○ move a chair 20cm away (or something like that)  

○ Exit the room and close the door 

● Wait for a minute,  

● Enter the room again, 

● stop microphone recording and stop MLS/chirp/white noise playing. 

● Analise RIR before and after using any off-line methods. 

So, the simplest model of RIR variations is an RT60*2 exponent (because it’s energy, for least SQUARES 

approach). A bit more realistic model would be an exponent with a flat shelf for the first 20...50ms, 

followed by the same RT60*2 exponent1. Also, it’s important to be acutely aware of proportionally higher 

temporal RIR variability on higher frequencies.  

In real-world applications involving calculation of a RIR, the applicable mathematical apparatus of 

acoustics appears to be an unnecessary over-complication, a bad husband material for much simpler 

mathematical apparatus of statistics. At this point, usually, the entire domain of physics is thrown away, a 

well-lit room is seen as a black box, and RIR is considered as an arbitrary FIR to be identified by statistical 

means, with standard Least Squares or something else.  

However, we’ll see that the “bad husband material” appearances of physics are deceitful.  

 
1 I am not sure that there is a need to include the spikes of direct mechanical and/or acoustical coupling in the model 
of RIR variations because the adaptation to them happens only once. 
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4.2 REGULARISED RECURSIVE LEAST SQUARES (RERLS) 

4.2.1 LS Basics 

𝑥𝑡
𝐻ℎ = 𝑦𝑡, for t=1:T 

𝑋ℎ = 𝑦 

𝑋𝐻𝑋ℎ = 𝑋𝐻𝑦 

✓ Everything would be fine if the XHX matrix were full rank and well conditioned but, as the rule, it is 

not [at all], due to various reasons. Thus, a regularization comes into play: 

ℎ = (𝑋𝐻𝑋 + 𝛾𝐼)−1𝑋𝐻𝑦 

…which is a standard LS. Let’s define the physical sense of the I regularization term and 𝛾.  

We can think of 𝑦𝑡 as microphone current, 𝑥 as voltage on loudspeaker, and h as an array of conductivities 

separated by z-1 delays. So, 𝛾 should be measured in V2. What is the physical reality that 𝛾 corresponds to? 

Do you have a clue? Me neither… and I’d rather avoid writing formulas whose physical meaning I don’t 

understand. 

4.2.2 Tikhonov no more 

✓ We know quite a bit about room acoustic and audio propagation physics, and can formalize the 

applicable physics in many ways.  

✓ Ignoring this physics and using 𝛾𝐼 instead would be … somewhat unproductive.  

✓ … which isn’t uncommon. Quite often, an author publishes a formulation of an idea, with less 

important parts simplified, the idea turns out great and becomes carved in stone as it was 

described initially – together with those simplifications which were not supposed to last. 

Let’s reconstruct an optimal estimate h3 out of h1 and h2, which have dispersion matrices Φ-1 and D0 

correspondingly (and/or information matrices Φ and D0-1), where h2 and D0 corresponds to the RIR’s 

physics. Let’s use a Wiener filter2:    

h3=(Φ+D0-1)-1 Φh1+(Φ+D0-1)-1D0-1h2; 

h3 information matrix D3-1 = Φ+D0-1. 

h3=(Φ+D0-1)-1 Φh1; % h2=0 is a fully valid unbiased choice.   

Φ=XHX/σ2; % for variable and correlated noise see R. Bellman 1961 book. 

h1=(XHX)-1XHy; 

h3 = (XHX + σ2D0-1)-1XHy;   

BTW, there is no need to see this bond through the lens of biased estimation. It’s more like bounding a 

statistical approximation by the laws of physics (because for any v: v’D3v < v’Φ-1v), or like narrowing down 

a general physical model by the collected site-specific statistics (v’D3v < v’D0v). 

✓ Can we construct D0 so that (XHX + σ2D0-1) has overwhelmingly better chances to be a well 

conditioned, robustly invertible, productive solution? Easy. 

 
2 Omitting the boring formal math on arg(min|A{var(Ah1+(I-A)h2)}) 
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The matrices XHX and D0 are not necessary of the same dimension. The meaningful length of RIR, which is 

the size of D0, is limited by  

• room type (RT60 < 700ms: usable for conferencing)  

• by air’s Brownian thermal noise:  

o The noise at +20⁰C is estimated as -118 dB re 1Pa in the frequency range [2500 3500] Hz.  

o The noise spectral density grows by 6dB/octave.  

o A typical loudness of voice at 1m is about 60dB (A-weighted, re 20µPa) 

o The typical voice has about 10…15 dB dynamics and 10…15dB crest factor.  

• … and other second order effects of the system itself. 

• The length(h2 ) = size(D0 ) = 2*RT60 is an adequate estimation for voice-centered applications. 

The meaningful size of the h1 = size(XHX) is limited by  

o Reasonably limited observation times 

o Noise: microphone, in-room, external noise leakage,  

o RIR variability due to the people’s breathing and limbic-brain-controlled movements,  

o Nope, we are not interested in rooms without people inside, 
o Robustness to and acceptability of under-modelling related errors (any statements like 

Φ(t)-1 -> 0 for t->∞ do not have a meaningful physical interpretation, here is Rhodos)  

• The length(h1 ) is usually at or below RT60. XHX should be thought of as augmented to the D0’s size.  

The σ2D0-1 may stay finite even when σ2 -> 0, especially in the case of under-defined or singular systems of 

linear equations. Exploring and exploiting this regularization may bring a new classis of solutions which 

will be demonstrated in Part III. 

4.2.3 RLS Basics 

As usually, LS can be written in the recursive form. 

𝜎𝑛,𝑡
2 % estimation of variation of additive noise on the output, which is usually combined from 

microphone FET preamp (see B&K white papers) and HVAC noises. 

𝜎𝑢,𝑡
2 % estimation of variation of under-modeling error, which depends on RIR amplitude and LADF 

/ RT60 ratio. 

𝜎𝑎,𝑡
2 % estimation of variation of aliasing error, which will be discussed in Part III. 

𝛴𝑡
2 = 𝜎𝑛,𝑡

2 + 𝜎𝑢,𝑡
2 + 𝜎𝑎,𝑡

2; % the total noise on the output 

𝐷𝑡 = 𝐸{(ℎ𝑡 − ℎ)(ℎ𝑡 − ℎ)𝐻}; % dispersion matrix 

𝜈𝑡
2 = 𝑥𝑡

𝐻𝐷𝑡𝑥𝑡; % a priory estimation of residual error, before the noises. This residual error 

variance does not depend on the RIR amplitude - directly.  

𝜇𝑡 = 𝜈𝑡
2/(𝜈𝑡

2+ 𝛴𝑡
2);  % Wiener optimal step size 

𝑧𝑡 = 𝐷𝑡𝑥𝑡; % projection vector 

ℎ𝑡+1 = ℎ𝑡 + 𝜇𝑡𝑧𝑡(𝑦𝑡 − 𝑥𝑡
𝐻ℎ𝑡)/𝑥𝑡

𝐻𝑧𝑡; % adaptation step 

𝐷𝑡+1 = 𝐷𝑡 −  𝜇𝑡𝑧𝑡𝑧𝑡
𝐻/𝑥𝑡

𝐻𝑧𝑡; % Dispersion matrix correction due to adaptation,  

which can be rewritten as  
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𝐷𝑡+1 = 𝐷𝑡(𝐼 − 𝜇𝑡𝑥𝑡𝑧𝑡
𝐻/𝑥𝑡

𝐻𝑧𝑡);  

A posteriori residual error estimate is related to the a priori residual error estimate via usual information 

summation principle: 

𝑥𝑡
𝐻𝐷𝑡+1𝑥𝑡 = 𝑥𝑡

𝐻𝐷𝑡𝑥𝑡 −
𝑥𝑡

𝐻𝐷𝑡𝑥𝑡𝑥𝑡
𝐻𝐷𝑡𝑥𝑡

𝛴𝑡
2+𝑥𝑡

𝐻𝐷𝑡𝑥𝑡
 = 𝑥𝑡

𝐻𝐷𝑡𝑥𝑡(1 −
𝑥𝑡

𝐻𝐷𝑡𝑥𝑡

𝛴𝑡
2+𝑥𝑡

𝐻𝐷𝑡𝑥𝑡
) = 𝑥𝑡

𝐻𝐷𝑡𝑥𝑡
𝛴𝑡

2

𝛴𝑡
2+𝑥𝑡

𝐻𝐷𝑡𝑥𝑡
 

… = (
1

𝛴𝑡
2 + 

1

𝑥𝑡
𝐻𝐷𝑡𝑥𝑡

)-1 

The expression 
𝑥𝑡

𝐻𝐷𝑡𝑥𝑡

𝛴𝑡
2+𝑥𝑡

𝐻𝐷𝑡𝑥𝑡
(=

𝑥𝑡
𝐻𝑧𝑡

𝛴𝑡
2+𝑥𝑡

𝐻𝑧𝑡
 𝑓𝑜𝑟 𝑅𝐿𝑆) will be referred as the optimal / Wiener scalar step-size 

for all and any adaptive algorithm. 

The step-size control in RLS is not adaptive but of program control type. After the assumptions on the 

noise variance 𝜎𝑛
2and initial dispersion matrix D0 are done, 𝐷𝑡 calculations ignore observations of the 

system’s output 𝑦𝑡 completely. 𝐷𝑡 calculations depend ONLY on the excitation. 

4.2.4 RLS Initialization 

Consider the case where 𝐷0 is a scaled unity matrix which has the radius larger or equal to λmax - the 

largest eigenvalue of true 𝐷 , (which we may know from physicists sitting next door) so that for any 

vector v, v’Dv <= v’D0v.  

• If the excitation is a step function, zeros for t<=0, and constant unity amplitude for t>0, then  𝑥𝑡, 

t=1:LADF form an orthogonal basis. Then the process of convergence consists of consecutive 

replacing λmax with Σ2, so that tr(Dt)< λmax(LADF-t)+t𝛴 2; and the a-priory residual error estimate 

follows the same rule. 

• If the excitation 𝑥𝑡, t=1:LADF is a realization of Gaussian white noise, which is statistically delta-

correlated and statistically of the same uniform amplitude, then, on average, the convergence 

follows the same rule if 𝛴𝑡
2 ≪ 𝜎x2 (more precisely, if non-orthogonal (to previous 𝑥1:𝑡−1) part of 𝑥𝑡 

has sufficiently good SNR) 

Consider cases where 𝐷0 is not a scaled unity matrix, and the things become much more interesting.  

✓ RLS, in a form of oversimplified Kalman filter, already has everything “in” to incorporate the 

theory of acoustics in the algorithm, assuming RT60 is known with sufficient precision already 

✓ RLS [re]initialization time[s] is[are] the perfect moment[s] for the acoustics incursion. 

✓ Let’s define 𝑑0 = 10−6𝜏/𝑅𝑇60; where 𝜏 = [0 1 2 . . . 𝐿𝐴𝐷𝐹 − 1]/𝐹𝑆;  
✓ 𝐷𝑜 = 𝑑𝑖𝑎𝑔(𝑑0)/𝑠𝑢𝑚(𝑑0);  % plus scaling when needed because the microphone signal after ADC 

shall be about or less than the speaker signal before DAC.  

✓ Whenever RIR change is suspected, 𝑑𝑖𝑎𝑔(𝐷𝑡+1) = 𝑑𝑖𝑎𝑔 (𝐷𝑡+1) +  𝜌𝑑0;  where 𝜌 somehow reflects 

the RIR change magnitude. 

Of course, multiple model adaptation is required because we can not distinguish between RIR change (of 

unknown amplitudes) and double talk easily, etc.  

4.2.5 ReRLS time-domain kernel: exponential vs standard flat RLS [203] 

Let’s use  

• the simplest traditional, consecutive approach,  

• a long auto-generated exponentially weighted RIR with RT60 slightly lower than LADF,  

• WGN excitation, 
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• -40dB AWGN,  

…and compare two RLS filters which differ only by initial dispersion matrices: 

1. D0=eye(LADF)/LADF; (flat), and  

 
2. D0=diag(d0); d0=10.^(- t*60/(RT60*10)); t=(1:LADF); and RT60 is assumed known well enough. 
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We can see the pyramidal shape of estimation errors for this weighted initialization. Note also that the 

estimation errors of the BLUE = flat, standard RLS at the end of RIR first go up, quite significantly (in full 

agreement with theory), and do not improve for quite a time. 

Moreover, the speed of convergence does not depend on LADF (degree of over-modelling) but on RT60.

 

Here, on the example of [sqrt of] dispersion matrices, we can see a close fit to the observed data, clean 

pyramidal shape of error’s dispersion,
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and a monotonic shelf for flat D0 initialization. 

 

The close-up observation of the diag(Dt) allows us to see that, in full accordance with the Least Square 

approach, the efforts are directed to the most affected areas, in a square proportion of the relative 

‘damage’. And, it looks like RLS is moving a shelf down, right? 
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The slope of D0 is squared relative to the RT60 curve because the dispersion matrices are energy. The 

speed of convergence is not affected by the degree of over-modeling, only by RT60 of the room. For typical 

living and conference rooms with RT60 of 0.4s, properly initialised RLS’ convergence speed is above 100 

dB/sec. 

✓ We’ll refer to such properly initialized RLS as regularised RLS, or ReRLS, to follow Prof. Lennart 

Ljung established terminology3.  

✓ RLS is a perfect bride for physics, with ReRLS as their child. 

4.2.6 ReRLS vs. RLS for Under-Modeling [204] 

The effect of under-modeling shows the principal difference between exponential (ReRLS) and flat (RLS) 

initialization. 

ReRLS is converging to the asymptote defined by under-modeling degree, relative to RT60 in a smooth 

uniform way, with exactly the same initial convergence speed. The flat has a shelf-like convergence 

property. The asymptote is the same and the step down happens as soon as the Φt matrix becomes full 

rank. AWGN = -80dB, RT60 = 0.8*LADFmax, LADF=(0.2:0.2:1)*LADFmax, time normalized to LADFmax. 

The spikes at the time when Φt becomes full-rank are due to the unintentional lack of under-modeling 

control in a standard RLS.  

  

 
3 In this version, graphs may still erroneously display “WRLS” or “RLS” in both cases  
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It is important to notice the merging of convergence curves into one curve, which conveys that for a 

physically meaningful RIRs, sum(λ)/λmax = tr(D0)/λmax < LIR for any LADF, where LIR is a property of RIR, a 

finite number, a kind of true, eigen size of RIR.   

4.2.7 ReRLS Under-Modeling control [204] 

We can account for under-modelling only in the ReRLS exponential case (not the flat one). The 

convergence curves start to look less troublesome:  
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The control of under-modeling noise is done by calculated as the RT60-exponentially weighted sum of 

inputs beyond (1:LADF), given that the weighting curve 𝑑0 is meaningful. 

𝜎𝑢𝑚
2(𝑡 + 1) = 𝑎𝜎𝑢𝑚

2(𝑡) + 𝑏|𝑥𝑒𝑛𝑑(𝑡)|2; where  

𝜎𝑢𝑚
2 is additive noise, not accounted in the standard RLS 

𝑎 =
𝑑0(𝐿𝐴𝐷𝐹)

𝑑0(𝐿𝐴𝐷𝐹 − 1)
; 

𝑏 = 𝑑0(𝐿𝐴𝐷𝐹);  

𝑇𝐹 =  𝑏𝑧−1/(1 − 𝑎𝑧−1)  

The {a,b} are the coefficients of IIR filter to calculate exponential FIR response. 

𝑥𝑒𝑛𝑑(𝑡)is the last value of IN to be shifted out at this iteration. 

In practice, the under-modelling error shall also cover the effects of other deviations from ideal FIR linear 

models such as weak nonlinearities, etc.  

TBD: ReRLS robustness to the (b,a) estimation errors. 

The explicit under-modelling control is unnecessary when adaptive filter is long i.e., LADF > RT60, for typical 

audio SNR.  

4.2.8 ReRLS frequency domain kernel [216] 

The same approach can be used for the incorporating of physically meaningful frequency response (which 

shall be ensured to be band-limited i.e., decaying to zero when f -> fN) into D0. 
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We can start with a diagonal, unity matrix, and see it as a frequency response of the RIR. Then we set the 

diagonal elements to the values of power spectrum of DFT(RIR) at the frequency bins (0:2*fN/LADF: end), 

not forgetting to reflect the values for the folded part of the spectrum [0…fN] ->flipud(.)->[fN…fs];  

To transfer this frequency domain initialization into time domain, we form an IDFT matrix Fidft = Fdft’/LADF, 

and D0= Fidft’*D0f* Fidft;  

Again, the ratio of the square footage under the curve of power spectrum to the total envelope’s footage is 

the 1/gain. The rest is the same.   

4.2.9 JTF4-ReRLS: Joint Time Frequency kernel [217] 

The key word here is not “Time” or “Frequency” but “Joint” because we can “rotate” our understanding of 

the RIR physics from any basis onto time basis.  

✓ To apply both time and frequency domain regularization, we need to convert frequency-domain 

description of the system into time-domain, [physically meaningful] minimal phase.  

✓ We are supposed to understand that the off-diagonal elements of Dt describe the frequency 

response of the transformation of the input 𝑥𝑡  into Kalman gain 𝑧𝑡 .  

If we do, the rest is a series of simple steps:  

1. Approximate the a-priory knowledge of the frequency response of RIR with a transfer function 

b(z-1)/a(z-1), order not essential.  

2. Find the impulse response of IR=impz(b,a,LADF);  

3. Form the filtering matrix Frir as a simple equivalent of filter(b,a,x) operation when the IR is moving 

along stationary x, instead of usual visualization of input x moving along stationary filter.  

IR(1:LADF) 
0 IR(1:LADF-1) 
0 0 IR(1:LADF-2) 

… 
0 0 0 0 … IR(1) IR(2) 
0 0 0 0 … 0 IR(1) 

4. Form Trir as a diagonal matrix, with exponentially decaying γt (0<γ<1) envelope of RIR (not 

squared yet!). 

5. Finally: D0=Frir’*Trir’*σv2*I*Trir*Frir;  

Think of it as: to form a RIR=h,   

• generate a random vector v=randn(Lrir,1);  

• condition it: Trir *v 

• filter(b,a): h= Frir*Trir*v;  

To form the corresponding D0=E{h*h’}, we would have to square the initial random sequence v. We don’t 

know it and thus replace these squares, v.^2 with their mathematical expectations σv
2 as our best guess.  

✓ The off-diagonal elements [usually] decay faster than on-diagonal, and the very top become 

smoothed out due to application of filtering (otherwise, it’s a step function with infinitely wide 

spectrum).  

 
4 The naming is temporary and will likely change in future. Prof. Lennart Ljung is de facto authority in giving names 
in this domain, and it seems he prefers 2-letter abbreviations. 
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✓ Slower decay of off-diagonal elements (time / column index wise) corresponds to faster decay in 

frequency domain, and vice versa.  

For the purpose of FSAF, we need to consider subband specific filters like QMF. An acceptable simple 

approximation would be [b,a]=butter(2,0.55). The result: 

 

Now, each row of D0 forms an FIR filter, and for the most rows the corresponding filters have identical 

magnitude frequency response and row-proportional group delay:  
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Convergence wise, the outcome, for LADF = RT60, σnse =-60dB re σx: 

   

For adaptive control systems with long -20 (or -40--, after 0dB) dB/decade slopes the effect shall be much 

more pronounced. Moreover, for long adaptive filters (LADF > 1.5*RT60), the effect of JTF initialization is the 

largest and it remains for a very long time (for standard flat RLS, each 3dB of MSE improvement beyond 
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SNR require doubling of observation time), being the meaningful gain of a biased estimator over unbiased: 

 

The internal mechanics become obvious after looking into the details of convergence. In the beginning:
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The frequency-depending effect is essentially the same as described in 3.2 “Subspace convergence [206]” 

because D0 and Φ-1 are interchengeable.  

…and at the long run:
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It would take literally forever (if ever, accounting for the unaccounted tail) till flat RLS catches up to the 

proper JTF-ReRLS. 

4.2.10 ReRLS and eigen spectrum 

Now it’s a good time to guess that this entire exercise was about applying our understanding of the 

concept of eigen-spectrum and eigen space to a real-world problem. Obviously, the eigen spectrum of the 

resulting D0 is a multiplication of power spectrums of Trir and Frir. It’s a little less obvious that the  

✓ ReRLS (and RLS) initial convergence closely follows the distribution of the eigenvalues of the D0. 

1. For stationary white noise excitation, and known level AWGN, the average process of initial 

convergence is fully defined by the eigen-spectrum of D0. For any t>0, the kth eigen value: λt(k)<= 

λ0(k); and for any vector v, v’Dtv <= v’D0v. That’s how statistics become bound by physics. 

2. For stationary white noise excitation, the average set of eigen vectors of Dt is the same as for D0 

because the “averaged” Fisher matrix of white noise excitation is a unity matrix. 

3. For stationary white noise excitation, ReRLS squeezes the Dt ellipsoid (Dt+1= Dt-µ*zt*zt’), applying 

the force to the currently maximal radius (almost, zt=Dt*xt), squeezing λt+1(1:t) down to the λ0(t+1) 

(actually, slightly below it).  

a. On the first iteration, consider D0 in the basis of eigen vectors as a diagonal matrix with 

sorted down eigen values λ0(1) >= λ0(2) >= …. >= λ0(N).  

b. assuming xt as gaussian white noise, and σnse<< σx, we can approximate, in “average”: λ1(1) 

<= λ0(1) – λ0(1)2*x1(1)2 /(σnse
2+ σx

2*(λ0(1) + λ0(2) + …+ λ0(N))); if λ0(1) << sum(λ0(1:N)).  

c. assuming σx2=1; λ1(1) <= λ0(1) – λ0(1)2 / (λ0(1) + λ0(2) + … + σnse2); 

d. λ1(1) <= λ0(1) – λ0(1)2/(λ0(1) + λ0(2)); 
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e. λ1(1) <= (λ0(1)-1 + λ0(2)-1)-1; 

f. λ1(1) <= λ0(2);  

g. As far as the norm of the Gramm-Schmidt prediction error is >> σnse, next iterations follow 

the same mechanics.  

h. finally: sup{λt(1:t)} = λ0(t); - which is the upper limit of ReRLS performance. Actual ReRLS is 

faster, actually. The assumptions become broken for t >= LADF. The applicability is also 

limited by the term “average” which is, alas, non-observable and non-falsifiable.  

4. When the basis is rotated to the eigen-space, it does not matter if diagonal elements are sorted or 

unsorted. The effect depends of the ratio of square footage under power spectrum (or 

sum(λ0(1:LADF))) to the enclosing Sxx,max*fN (or λ0,max*LADF). The effect does not depend on the choice 

of basis vectors. However, the up-down sorting is easier to comprehend. 

 

5. The wider is the spread of D0 eigen-values, the faster is convergence, which is limited by the 

physical nature of audio waves propagation itself.  

Here is the illustration of flat RLS and exponentially initialized ReRLS convergence, for model size / RT60 

ratios of ½ , 1, and 2, and SNR of 60dB.  

✓ The convergence curve decays ~10% slower than the distribution of the eigenvalues of the D0.  

I have no idea why the 10% (nor 5% nor 20%) of slowing down approximation “works” so well. 

 

4.2.11 Summary  

By now, we have seen how physics and statistics complement each other, that their marriage is made in 

heaven, united we stand and live happily ever after. 
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The Tikhonov regularization is equivalent to implicitly assuming that the variance of solution is uniformly 

distributed. That is rarely the case; thus, a more appropriate regularization shall be the scaled inverse of 

the variance εD0-1, in either full of diagonal form. It shall also be noted that ReLS is the solution to the 

optimal biased estimation problem (instead of [scalar] scaling of the solution vector). 

It turns out that since at least 2010, there has been an independent effort in the same direction, and it is 

catching up fast. It was a great pleasure to find out that I am not the only one, and that “All roads lead to 

Rome”. The overview of this alternative approach could be found in the Ljung et al (2019) “A shift in 

paradigm for system identification”. The alternative approach is much more general but also so much 

more complicated that the achievements of the researchers, in my personal opinion, are a true wonder, a 

monument of incredible intellectual curiosity, hard work and persistence in face of devastating 

destructiveness of publish or perish, good enough, etc.  

In my personal opinion, the key to this new paradigm is in the acknowledging of the physics’ importance, 

in detailed understanding the meaning of dispersion matrices and eigenvalues, in understanding how to 

formalise the underlying physics into solvable mathematical expressions, overall, in understanding over 

formal knowing5. Audio RIR identification within adaptive filtering is just one of many examples of 

physically stipulated exponentially decaying IRs.   

Since the version 1.3, I have started to change my naming conventions (like “properly initialised RLS”, 

“exponential”, “WRLS”) to conform to the Prof. Lennart Ljung’s (“ReLS”, “kernel”). It may take few versions 

to complete the transition. 

4.3 RELAXED KACZMARZ A.K.A. [N]LMS 

4.3.1 Basics 

The infamous algorithm was proposed in 1937 by Stefan Kaczmarz, a co-worker of Stefan Banach at KUL, 

for solving systems of linear equations. It is also known as “Raw Projection Algorithm”. LMS, contrary to 

the misleading name “Least Mean Squares” has little or nothing to do with the Least Squares approach. 

LMS has an implicit assumption that the envelope of system response variance is uniform along the time 

axis (or any other axis), and thus her efforts are distributed uniformly, freely and promiscuously. Sure, 

there are compatible problem domains but acoustic is not one of them; it would not be a happy marriage. 

Whenever the Fisher matrix is relatively well-conditioned, and the fidelity, sorry, speed of convergence, at 

any cost, is not required, like in CT, Kaczmarz’s algorithm is well suited to the task. We shall understand 

the physical meaning of both explicit and implicit assumptions, clearly distinguish use cases, and have 

appropriate expectations. 

 
5 Around 2010, Signal Processing Magazine (SPM) published an article that you could greatly improve convergence 
of LMS by windowing the projection vector with a 7*gausswin(), if you knew that the IR was concentrated 
somewhere in the middle.  Normalization remained unchanged. I wrote to the SPM. They replied that they didn’t 
understand what I was talking about. I wrote to the author that all eigenvalues of (I-µ*x*win.*x’/(x’*x)) must be <=1 
for any x. He answered that I was talking nonsense because he tested his algorithm on randn(10000000,1) input, it 
worked, and that’s it. That was (and still is, alas) the pathetic state of adaptive filtering in the signal processing 
community. I hope that unless understanding of what you are doing becomes a mandatory prerequisite to using 
ReLS, ReLS will remain an esoteric discipline. We saw the disastrous consequences of wide availability of advanced 
statistical packages, a dirty stream of “p < 0.05” pseudo-scientific publications full of complete rubbish, sick 
pandemic mortality predictions, etc. 
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4.3.2 Optimal Step Size (OSS LMS) 

The optimal step size Kaczmarz was proposed in 1981 by Oleg Kulchitsky (or Kulczycky, if more 

appropriate Polish orthography is used) in the “A Kaczmarz - type algorithm for identification of linear 

objects in the presence of noise”, 24 pages, LPI, VINITI No. 4170-81 Dep. 20.08.81.  

𝜈𝑡
2 = 𝑥𝑡

𝐻𝐷𝑡𝑥𝑡; % estimation of residual error variance before the noises  

𝜇𝑡 = 𝜈𝑡
2/(𝜈𝑡

2+ 𝛴𝑡
2);  % the same Wiener step size to minimize 𝑡𝑟𝑎𝑐𝑒(𝐷𝑡+1); 

ℎ𝑡+1 = ℎ𝑡 + 𝜇𝑡𝑥𝑡(𝑦𝑡 − 𝑥𝑡
𝐻ℎ𝑡)/𝑥𝑡

𝐻𝑥𝑡; % adaptation step 

𝐺 = 𝐼 − 𝜇𝑡𝑥𝑡𝑥𝑡
𝐻/𝑥𝑡

𝐻𝑥𝑡;  % intermediate subspace compression matrix 

𝐷𝑡+1 = 𝐺𝐷𝑡𝐺 + 𝜇𝑡
2𝛴𝑡

2𝑥𝑡𝑥𝑡
𝐻/𝑥𝑡

𝐻𝑥𝑡; % Dispersion matrix correction due to adaptation 

While carrying out matrix operations in hard real-time is of somewhat excessive complexity, the value of 

OSS-LMS lies in being the reference for developing scalar step-size suboptimal algorithms.  

4.3.3 Weighted LMS [205] 

The LMS’ disagreement with acoustics was noticed by many. The weighted variants of LMS blossomed, as 

WLMS. Let’s see how and when it helps. Of course, WLMS completely misses the fact that the distribution 

of RIR estimation errors changes with time. 

𝑑0 = 10−𝑇/𝜏; where 𝑇 = [0 1 2 . . . 𝐿𝐴𝐷𝐹 − 1]/𝐹𝑆;and 𝜏is the time when the weight drops by 20dB.  

𝑊 = 𝑑𝑖𝑎𝑔(𝑑0); % vector to diagonal, time-invariant matrix 

𝑧𝑡 = 𝑊𝑥𝑡; % projection vector 

𝜈𝑡
2 = 𝑥𝑡

𝐻𝑧𝑡; % estimation of residual error before the noises  

𝜇 < 1 ; % relaxed step size 

ℎ𝑡+1 = ℎ𝑡 + 𝜇 𝑧𝑡(𝑦𝑡 − 𝑥𝑡
𝐻ℎ𝑡)/𝑥𝑡

𝐻𝑧𝑡; % adaptation step 

It should have been obvious that a W-modified OSS-[W]LMS had to be used for working out a suboptimal 

step size tuning.  

Let’s consider the case of a long adaptive filter, with LADF = RT60. Such long filter can, potentially, achieve 

residual error level of ~ -60dB (due to unavoidable under-modelling of infinite RIR). AWGN is -80dB.  

The weighing profiles are purely exponential, with varying slope, from -120 dB at the end (as for ReRLS at 

the t=0) to flat.  
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The results are expectedly somewhat similar to the illustrations of LMS spectral deficiency, for obvious 

reasons. Fast initial convergence is traded off with [very] slow, if any, late fidelity, sorry, convergence. 

 

For WLMS with ReRLS-like weighting, the speed of convergence:  

• For the very first 2-3 dB, is about the same as for reference ReRLS.  

• For the following 3-10dB, it drops to about 15...20 dB/RT60 
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• Then it drops well below flat LMS’s convergence speed 

• Then it stops before achieving even 30dB, alas 

• Note that flat LMS convergence speed is ~5.0...5.2 dB/LADF. 

• Note that ReRLS convergence speed is about 45...55dB/RT60 (for same 60dB SNR).  

 

The -20...-40dB WLMS appears quite reasonable, the robustness to RIR RT60 variations is ok but the limits 

of convergence in the beginning of RIR are poor.:
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relative to the flat, unweighted LMS is opposite, with poor initial speed of convergence, etc:

 

4.3.4 Multiple Model WLMS 

Obviously, ideas of gear-switching, or running multiple models in parallel, jump to mind immediately 

when we see convergence curves of WLMS with different weighting. The discussion of MM approaches can 

be found in Gustafsson, Part IV, Chapters 10 and 11.  There is nothing of essence that I can add to his text. 

4.3.5 Variable Length LMS 

Variants of variable length LMS have been used for system identification with uneven distribution of 

response envelope. Initially, adaptation happens only in regions where the disturbances are the worst 

(the same least square (p=2) approach, in essence, where norm p -> inf). Then, little by little, the regions 

of adaptations spread and, at the end, the entire adaptive filter is used. The control of such algorithms is a 

bit non-trivial. 

4.3.6 Summary 

Hmm… sorry, [N]LMS has been the favorite of publications on the adaptive filtering. Too many bragged of 

solving hard problems with so simple means. Too many knew a way too little about what can of worms 

LMS really is. Too many simply did not test enough of corner cases before making claims of supposedly 

scientific value. I don’t think I’d ever want to read any article containing [N]LMS in its name. 

4.4 DIAGONAL LEAST SQUARES (DLS) 

4.4.1 Basics 

If LMS is so bad, are we constrained to MIPS and memory hangry ReRLS for any acoustics-related 

problem? Actually, no. 

We can utilize the knowledge of time-domain acoustical properties of the RIR by simplifying the ReRLS to 

a “vector” step size adaptive algorithm, referred here as Diagonal Least Squares, or DLS.  
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DLS retains only the main diagonal between iterations, it stays “straight”, remembers very little of her past 

encounters with previous excitations, and does not collect nor keeps her baggage indefinitely. The average 

DLS fidelity, sorry, convergence is described by the upper limit for time-domain kernel-based ReRLS 

performance.  

DLS is best suited for DSP implementations, which are memory constrained, or when external RAM 

exchange bandwidth limits applicability of proper FSAF ReRLS. The more perspective husbands are out 

there, sorry, the more of the narrower subbands we have, the better DLS performs.  

DLS is the first choice for high-frequency husbands, sorry, subbands where excitation’s whiteness is 

expected. DLS should not be expected to behave ReRLS-like for either tonal, loud or highly colored 

excitation. 

4.4.2 Naive DLS [207] 

𝑑0 = 10−𝜏 𝑅𝑇60/3; where 𝜏 = [0 1 2 . . . LADF − 1]/fs; % It does not have to be a simple exponent, it 

may contain a diagonal from JTF-ReRLS, etc. 

𝑑𝑜 = 𝑑𝑖𝑎𝑔(𝑑0/𝑠𝑢𝑚(𝑑0)); % if needed (it may not) to normalize to 0dB IN->OUT gain, on average 

𝑧𝑡 = 𝑑𝑡 . 𝑥𝑡; % projection vector, d.*x 

𝛴𝑡
2 = 𝜎𝑛,𝑡

2 + 𝜎𝑢,𝑡
2 + 𝜎𝑎,𝑡

2; % the total noise on the output 

𝜈𝑡
2 = 𝑥𝑡

𝐻𝑧𝑡; % estimation of residual error before the noise added  

𝜇𝑡 = 𝜈𝑡
2/(𝜈𝑡

2+ 𝛴𝑡
2);  % Wiener optimal step size 

ℎ𝑡+1 = ℎ𝑡 + 𝜇𝑡𝑧𝑡(𝑦𝑡 − 𝑥𝑡
𝐻ℎ𝑡)/𝑥𝑡

𝐻𝑧𝑡; % adaptation step 

𝑑𝑡+1 = 𝑑𝑡 −  𝜇𝑡𝑧𝑡. 𝑐𝑜𝑛𝑗(𝑧𝑡) /𝑥𝑡
𝐻𝑧𝑡; % d=d-mu*(z.*z)/v2; or, in a clearer form  

𝑑𝑡+1 = 𝑑𝑡 . (1𝑣  −  𝜇𝑡𝑥𝑡 . 𝑑𝑡 . 𝑐𝑜𝑛𝑗(𝑥𝑡) /𝑥𝑡
𝐻(𝑑𝑡. 𝑥𝑡)); % d=d-mu*(z.*z)/v2; 

𝑑𝑡+1 = max (𝑑𝑡+1, 𝑑𝑚𝑖𝑛); 

Depending on the processor and instruction set used, a straightforward implementation of NDLS shall 

take about 2x MIPS relative to LMS.  

It’s easy to notice that NDLS resides between OSS LMS, WLMS, and ReRLS and in a certain sense performs 

WLMS gear-switching in a form of adjusting the effective adaptive filter length automatically. NDLS 

converges progressively slower than ReRLS: same speed in the very beginning, but to the -30dB threshold, 

about 5x slower than ReRLS - but 2.5x faster than the best of (W)LMS. 
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However, the main virtue of DLS lies in a completely different domain: DLS is capable of predicting the 

variance of residual error, and hence is capable of adjusting step-size automatically (and control post-

filtering to suppress residual echo while passing low-level double talk) - what only [Re]RLS and OSS-LMS 

could have done, on the expense of huge MIPS and memory. This prediction is imperfect but it’s much 

better than nothing. 

The minimal value of 𝑑𝑡+1 vector shall be limited by a carefully chosen 𝑑𝑚𝑖𝑛, which reflects under-

modelling effect (a level related to RT60 and LADF, flat along time axis), and variability of the room due to 

real people present there, who breathe, nod, gesture etc (an exponential curve falling with RT60). 
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and here the estimated dispersion matrix (diag vector): 
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...which is the core of adaptive filtering because everything else can be derived from it. 

4.4.3 Shelf DLS [208] 

Shelf DLS (SDLS) models the estimation of dispersion matrix (of estimation errors) 𝐸{(ℎ𝑡 − ℎ)(ℎ𝑡 −

ℎ)𝐻} as a shelf moving [up or] down depending on the estimation of variance of residual error. The idea 

becomes clear if you look at the detailed picture for NDLS. 
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Suppose we have an initial estimation of [subband] RIR standard deviation:  

𝑑0 = 10−𝜏 𝑅𝑇60/3; where 𝜏 = [0 1 2 . . . 𝐿𝐴𝐷𝐹 − 1]/𝐹𝑆; but it does not have to be a simple exponent, 

it can contain a better description of the RIR. 

𝑑𝑜 = 𝑑𝑖𝑎𝑔(𝑑0/𝑠𝑢𝑚(𝑑0)); % if needed to normalize to 0dB IN-0>OUT gain 

𝑠0 = 𝑚𝑎𝑥(𝑑𝑜);set shelf at the max value. 

𝑑𝑡 = 𝑚𝑖𝑛(𝑑𝑜, 𝑠𝑡); % where scalar 𝑠𝑡defines a shelf moving down with convergence, and the tail of 

𝑑𝑡below the shelf threshold is unaffected until the algorithm converges deep enough.  

Then the same calculations applied: 

𝑧𝑡 = 𝑑𝑡 . 𝑥𝑡; % projection vector, d.*x 

𝛴𝑡
2 = 𝜎𝑛,𝑡

2 + 𝜎𝑢,𝑡
2 + 𝜎𝑎,𝑡

2; % the total noise on the output 

𝜈𝑡
2 = 𝑥𝑡

𝐻𝑧𝑡; % estimation of residual error before the noise added  

𝜇𝑡 = 𝜈𝑡
2/(𝜈𝑡

2+ 𝛴𝑡
2);  % Wiener optimal step size 

ℎ𝑡+1 = ℎ𝑡 + 𝜇𝑡𝑧𝑡(𝑦𝑡 − 𝑥𝑡
𝐻ℎ𝑡)/𝑥𝑡

𝐻𝑧𝑡; % adaptation step 

𝑢𝑡 = 𝑚𝑎𝑥(𝑠ℎ𝑒𝑙𝑓 𝑤𝑖𝑑𝑡ℎ(𝑠𝑡 , 𝑑𝑜), 𝑢𝑚𝑖𝑛);in samples.  

We do no specify how to find the shelf width and update it, it depends on 𝑑𝑜and unessential. Obviously, 

the convergence is inversely proportional to the shelf width, which usually grows linearly in db() domain. 

𝑠𝑡+1 = 𝑠𝑡 . (1𝑣  −  𝜇𝑡/𝑢𝑡); 

Computational complexity of SDLS is practically the same as for LMS because a flat shelf and an exponent 

can be realized with IIR filters. 

4.4.4 Block DLS [209, 210] 

Another quite obvious simplification is to represent RIR standard deviation as a blocked, piece-wise 

constant function.  

• For block size c=1, BDLS becomes NDLS,  

• for block size c= LADF, BDLS becomes flat LMS.  

• For moderate c (like 8 or 16), computational complexity and memory of BDLS is comparable to the 

LMS.  

In practice, the block size c would be most probably defined by SIMD vector size (like 4 for SSE, 8 for AVX, 

16 for AVX2, etc).  

First, sample-defined 𝑑𝑜shall be transformed into 𝑏𝑜of dimension (LADF/c), which is trivial. Of course, we 

assume that all blocks are of equal length, and LADF is divisible by c. 

𝜈𝑡
2 = 𝑥𝑡

𝐻𝑧𝑡; % estimation of residual error before the noise added  

𝜂𝑡 = 1/(𝜈𝑡
2+ 𝛴𝑡

2);  % normalizer of the Wiener optimal step size 

for k=1:LADF/c 

  𝑋𝑡(𝑘) = 𝑥𝑡(𝑐𝑘 − 𝑐 + 1: 𝑐𝑘); % corresponding block of excitation 
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  𝑆𝑡(𝑘) = 𝑋𝑡(𝑘)𝐻𝑋𝑡(𝑘)/𝑐; 𝑆𝑡 = [𝑆𝑡(1) 𝑆𝑡(2). . . 𝑆𝑡(𝑏𝑙𝑘𝑠)]; 

𝑏𝑡+1(𝑘) = 𝑏𝑡(𝑘)(1 − 𝜂𝑡𝑏𝑡(𝑘)𝑆𝑡(𝑘) ); 

end 

You don't need very many blocks to achieve reasonable performance: 

 

Now, let’s look at how other variants of the DLS algorithm behave. 
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The SDLS and NDLS are practically indistinguishable, BDLS is slightly slower.  

Of course, none of the algorithms is capable of dealing with a sudden RIR change adequately. 
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4.4.5 Relaxation 

The expression for computation of 𝑑𝑡+1 can (or should) be relaxed, especially if the excitation is 

autocorrelated: 

𝑑𝑡+1 = 𝑑𝑡 . (1𝑣  −  𝜇𝑡𝑥𝑡. 𝑑𝑡 . 𝑐𝑜𝑛𝑗(𝑥𝑡) /𝑥𝑡
𝐻(𝑑𝑡. 𝑥𝑡)); 

For that, we may modify  

𝑑𝑡+1 = 𝑑𝑡 . (1𝑣  − 𝜇0𝜇𝑡𝑥𝑡. 𝑑𝑡 . 𝑐𝑜𝑛𝑗(𝑥𝑡) /𝑥𝑡
𝐻(𝑑𝑡. 𝑥𝑡)); 

Where an empirical relaxation parameter 0 <  𝜇0 < 1 should be somewhat inversely proportional to the 

(average? Current? TBD) degree of excitation autocorrelation. The same consideration applies to all DLS 

variations.  

4.4.6 Flat DLS 

In the base we have BDLS with only one block, we get an approach to control the step size for LMS: 

𝜈𝑡
2 = 𝑏𝑡𝑥𝑡

𝐻𝑥𝑡 

𝜂𝑡 =
1

𝜈𝑡
2 +  𝛴𝑡

2 

𝑏𝑡+1 = 𝑏𝑡(1 − 𝜂𝑡  𝜈𝑡
2 ) =  𝑏𝑡(1 − 𝜇0

𝜈𝑡
2

𝜈𝑡
2 + 𝛴𝑡

2); 

Where 𝑏0 is chosen as the estimate of cumulative initial MSE (trace(D0)). 

4.4.7 Relation to FTF and step response 

Suppose that the input to [Re]RLS is a step function, with clean zeros before t=1. Then we should be able 

to find a solution of the first LADF equations, very easily: 

[1 0 0 0 … 0] *h(1) =y1 
[1 1 0 0 … 0] *h(2) =y2 
[1 1 1 0 … 0] *h(3) =y3 

… 
[1 1 1 1 … 0] *h(N-1) =yN-1 
[1 1 1 1 … 1] *h(N) =yN 

…due to the lower-triangle shape of the matrix.  

Does RLS do the same? The answer is assured “YES”. Suppose that RLS is initialised to a scaled unity 

matrix, and σnse->0. 

On the first step: z1=x1; h1(1)=y1; D1(1,1)=0;  

On the second step: z2(1)=0; z2(2)=x2(2)=1; h2(2)=y2-y1; D2(2,2)=0; 

On kth step, zk(1:k-1)=0; zk(k)=xk(k)=1; hk(k)=yk-yk-1-…y1; Dk(k,k)=0; 

The Kalman gain is a delta-function with “1” travelling along time axis. The dispersion matrix stays 

diagonal, with zeroing going on along time axis.  

Thus, the NDLS shall operate more or less the same as ReRLS if the input is a sharp transition from silence 

to activity. The exact shape of activity waveform is unimportant, and σnse can be any and time-variant. 

Speech waveforms have lots of such sharp transitions, especially in high-frequency subbands.  
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Note that the assumption of zero input before t=1 was the base of deriving FTF-class algorithms. 

4.4.8 Summary 

DLS is a straight-forward, direct, more than obvious descendant of ReRLS for the cases of more or less 

white noise excitation, which are not exactly uncommon, especially for subband adaptive filtering, which 

has been around since 1988. Why DLS is published so late? No idea. 

4.5 AFFINE PROJECTIONS (APA) 
In essence, APA could be useful for low-frequency bands and can be combined with the DLS approach.  

The order of APA shall be equal to the number of harmonics of fundamental frequency in the sub-bands’ 

passband and regularization must be heavy-handed to exclude close to band-edge harmonics. The matrix 

inversion does not need to be done on each sample. 

The squeezing matrix (𝐼 − 𝜇𝑡𝑥𝑡 𝐷𝑡𝑥𝑡
𝐻/𝑥𝑡

𝐻𝐷𝑡𝑥𝑡)where 𝐷𝑡 is P- diagonal matrix which is alike a mini-

Fisher matrix and forms a “final-RLS-like” filter. This filter amplifies the weaker harmonics in square 

proportion, which isn’t of un-debatable merit. A square-root APA, which dynamically equalizes the level of 

individual harmonics, would be more appropriate. 

4.6 SUMMARY 
The domain of Adaptive Filtering is still very far from completed and thoroughly understood.  

There are many more ReLS-based approaches to formalizing the audio-related problems. For example: 

typically, we form excitation vectors as xt = [in(t); xt-1(1:LADF-1)]. It does not have to be that way. An 

alternative RIR representation may be based on xt = [in(t); λ*xt-1(1:LADF-1)] where λ=10^(-6/RT60) < 1. 

Then, h will have uniform distribution along time axis, and the initial diag(D0) will be also flat. This 

approach solves quite a few critical problems with fixed-point implementations of adaptive filtering. Etc. 

BTW, the Fast Kalman / FTF algorithms which are supposed to lower the RLS complexity into O(N) 

instead of O(N2) are unnecessary complications because FSAF (see the next part) lowers RLS complexity 

into O(N2/M2). 

5 ROBUSTNESS OF ADAPTIVE ALGORITHMS 

5.1 BASICS 
Intuitively, a non-robust adaptive algorithm is an oxymoron. But… I wish it were so simple. Often, the 

degree of an algorithm’s sensitivity to deviations from explicit and implicit assumptions is not obvious. 

Adaptive control learned a while ago that “There is no algorithm worse than the optimal”. Fast RLS is a 

good example of assumption taken too far. Generally, Gram-Schmidt orthogonalization is a non-robust 

algorithm because the residuals have very little in common with the theory even for mildly nonlinear 

systems, etc.  

Here, we concentrate on volatility to the accuracy of the following estimates:  

● noise level 

● RT-60 

● RIR variability 
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In FSAF, we need to be acutely aware of pollutants inserted by both [amplifier and loudspeaker] 

intermodulation products and inter-band aliasing, which shall be discussed in more detail in the following 

chapter. TBD. 

5.2 NOISE 
Acoustic noise level is a lesser problem (putting aside the discussion of what is noise and what is not). 

Most often, we can observe it at the beginning of conversation, and measure directly. HVAC turning on and 

off during the conversation, babble noise, traffic noise are all problems, however, solvable in reality 

thanks to the research efforts spent on noise reduction.  

5.3 RT60 
RT60 can be estimated by using a fully blown JTF-ReLS in a few very narrow subbands, as a 

hyperparameter of arg(min|RT60{var(residual_err(JTF-RELS(…)))}).  

However, the room reverberation level (or it’s variations) isn’t easy to guess.  

5.4 REVERBERATION LEVEL AND ITS VARIATIONS [209, 212] 
Some researchers assumed that estimations from above would work satisfactory i.e., if you start with 

estimated  𝑒𝑠𝑡{𝐷0} > 𝐷𝑜  𝑖𝑓 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥, 𝑥𝐻𝑒𝑠𝑡{𝐷0}𝑥 > 𝑥𝐻𝐷0𝑥 then  𝑒𝑠𝑡{𝐷𝑡} > 𝐷𝑡 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 > 0. In other 

words, we can err on a safe side. However, that assumption relied on a good knowledge of constant level 

noise, which is not true, and therefore there is no safe side to err. 

For a known constant level noise of -60dB re input, NDLS, depending on the ratio 𝑒𝑠𝑡{𝐷0}/𝐷𝑜 : 
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The case of  𝑒𝑠𝑡{𝐷0} = 𝐷𝑜 is still the best… but not by much, so you could have concluded that erring on a 

“safe” side is legit. However, that’s not the whole story: if the noise level jumps up (even we know by how 

much): 
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The algorithm should have dropped the step size, 𝜇𝑡 = 𝜈𝑡
2/(𝜈𝑡

2+ 𝛴𝑡
2); but due to overestimation of 𝜈𝑡

2it 

did not do that properly.  

The effect of overestimation (even for constant noise level)𝑒𝑠𝑡{𝐷0} ≫ 𝐷𝑜 is much more pronounced if 

excitation is pulsed, as in normal speech, even if you use optimal step-size control. 
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Summarising: the step size control algorithms, [pre] determined by excitation and initial estimations of 

noise and RIR variability, are not robust.  

In other words, by using an adaptive approach, we can estimate IR permutations well enough… only if we 

have a good idea of their magnitude6. 

The existence of one magical algorithm which would work [well in all scenarios] is very questionable. 

5.5 “HOME GROWN” STEP CONTROL  
There is no such a thing as robustness of adaptive filtering to inadequate step-control.  

A proper step-size control during activity transitions is quite tricky, and divergence / switch to half-

duplex happens readily. As everyone learned from lockdowns’ enforced teleconferencing, it’s “headset-

only” because commercially available AECs are poor half-duplex [in reality].  

If the step control is not properly based on the well understood science of stochastic adaptive control and 

system identification… let us draw the curtain of charity over various improvisations on the topic. 

The consequences of bad step control are even worse, pretty much fatal, for ARC/AFC.  

5.6 SUMMARY 
The real-life applications of adaptive filtering need to run unattended for indefinite time, limited only by 

UPS capacity. Converging is only half-a-work. Knowing how well an algorithm has converged is of the 

same importance, and is the key to the algorithm’s robustness. However, any predetermined procedure of 

step size [program] control, which is not affected by the observed system output, is not robust.   

 
6 Which is essentially the same conclusion as in Ljung et al (2019) “Π=θ0θ0T (19) Not surprisingly the best 
regularization depends on the unknown system”.  
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6 META ADAPTIVE APPROACH 

6.1 BASICS 
To overcome the deficiencies of predetermined program control, we may add another feedback loop on 

the top of the existing solution, and MM. For capable adaptive algorithms:  

● we can derive the estimation of residual error variance, 𝜈𝑡
2 = 𝑥𝑡

𝐻𝐷𝑡𝑥𝑡,  or in other ways  

● we can observe the residual error variance.  

● if estimation and observation are close, or below noise or within under-modelling error, do 

nothing.  

● If estimation and observation are above noise and slowly diverging, we shall adjust something in 

the algorithm to make the match better… slowly, not to break the underlying adaptive loop.  

● That something should be, IMHO, the algorithm’s internal representations of the 𝐸{(ℎ𝑡 − ℎ)(ℎ𝑡 −

ℎ)𝐻} dispersion matrix.   

● if the observed residual error variance jumps up well above estimation, we have either double talk 

or RIR variations. We can not distinguish between them readily but we may run two (or more) 

models in parallel: 

○ (a) a conservative model shall freeze the adaptation 

○ (b) a speculative model, on a rising front of excitation, add an exponent to the diagonal of 

𝐷𝑡 decaying with 2*RT60 and of the level corresponding to the observation.  

○ control (a) and (b) models as described in Gustaffson’s book. 

Let’s call adaptive algorithms with an explicit feedback loop on residual error variance “meta-adaptive”7.  

Alternatively, we can apply finely spaced (IMM, AFMM, etc) multiple model approach which is also 

capable of selecting the algorithm/model with the best dispersion matrix, but it would likely need many 

more models, and thus require higher MIPS and memory. 

6.2 META-BDLS [213] 

6.2.1 Conservative model 

For each sample t, we can write a linear equation for ideal 𝑏𝑡 in noise-less case:  

𝜈𝑡
2 = 𝑏𝑡𝑆𝑡  =  |𝑦𝑡  −  𝑥𝑡

𝐻ℎ𝑡|2 ; 

With noise and non-idealities, there is an error 

𝜀 =  |𝑒𝑡|2  −  (𝜈𝑡
2  +  𝛴𝑡

2); 

and we can adapt our model𝑏𝑡- but slowly and if and only if this error does not indicate a radical RIR 

change. The basis (delta functions) is not physically meaningful. It can be improved by weighting the 

projection vector with 𝑏0, or by rotating the basis so that the first ort is decaying exponent corresponding 

to the abrupt RIR change, or by other tricks. 

𝑍𝑡 = 𝑏0. 𝑆𝑡; 

𝑏′𝑡 = 𝑚𝑎𝑥(𝛿, 𝑏𝑡  + 𝜁𝑡𝑍𝑡 𝜀/𝑆𝑡
𝐻𝑍𝑡); where 

 
7 Could there be meta-meta-meta-adaptive algorithms? In certain conditions… may be 
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0 < 𝛿 ≈ 𝑤0(𝑒𝑛𝑑)/𝐿𝐴𝐷𝐹,  

𝜁𝑡- meta step size, can be chosen as a fraction of regular step size 𝜇𝑡.  

Another approach could be to control relaxation parameter 𝜇0 so that expected and observed variance of 

residual error agree.  

The complexity of a particular approach chosen shall be determined by the researcher’s understanding of 

applicable corner cases, ability to debug, and capacity to exhaustively test it. 

6.2.2 Speculative model 

Whenever RIR changes and |𝑒𝑡|2  ≫  (𝜈𝑡
2  + 𝛴𝑡

2) in a sustained way, we need to add a scaled copy of 

𝑏0,𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑏0𝑚𝑎𝑥(𝜀, 0)/𝑏0
𝐻𝑆𝑡.  

𝑏𝑡′ =  𝑏𝑡  + 𝑏0𝑚𝑎𝑥(𝜀, 0)/𝑏0
𝐻𝑆𝑡 ;  

The error 𝜀 ≫ 𝜎2can be thresholded, and /or passed through a procedure similar to decision-directed 

noise reduction to avoid acting on single outliers, and/or scaled down to reduce a potential for 

overreaction. Let’s find scaling 𝛾 using Weighted LS (Weighted ReLS: TBD) 

𝑏0
𝐻𝑆𝑡 𝛾 =  |𝑒𝑡|2 −  (𝜈𝑡

2  + 𝛴𝑡
2); Let’s use N+1 of past equations and note: 

𝐴𝑡 =  𝑏0
𝐻𝑆𝑡;  𝐴 = [𝐴𝑡𝐴𝑡−1 ⋯ 𝐴𝑡−𝑁]𝑇 

𝐵𝑡 =  |𝑒𝑡|2 −  (𝜈𝑡
2  +  𝛴𝑡

2);  𝐵 = [𝐵𝑡𝐵𝑡−1 ⋯ 𝐵𝑡−𝑁]𝑇 

𝐶𝑡 =  𝜈𝑡
2  + 𝛴𝑡

2;  𝐶 = 𝑑𝑖𝑎𝑔{[𝐶𝑡𝐶𝑡−1 ⋯ 𝐶𝑡−𝑁]𝑇} 

𝛾𝑡 =
𝐴𝑇𝐶−1𝐵

𝐴𝑇𝐶−1𝐴
;  
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Here we simulate a change in RIR at 3.0 and return back at 15.0 seconds, at the level of -20dB relative to 

the main RIR. Noise is at -50dB relative to input. 

You can see that meta-BDLS adapts to the RIR changes as fast as possible, at 15 “seconds” it adapts as fast 

as at t=0.  

6.2.3 Combining models 

 𝐽𝑡+1 = 𝑑𝑏(𝑒𝑠𝑙𝑜𝑤,𝑡) − 𝑑𝑏(𝑒𝑓𝑎𝑠𝑡,𝑡) + 𝐽𝑡; 

 𝑖𝑓 −𝑡ℎ𝑟 <  𝐽𝑡+1  <  𝑡ℎ𝑟, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

 𝑒𝑙𝑠𝑒𝑖𝑓 𝐽𝑡+1  >  𝑡ℎ𝑟, ℎ𝑠𝑙𝑜𝑤,𝑡 = ℎ𝑓𝑎𝑠𝑡,𝑡;  𝑏𝑠𝑙𝑜𝑤,𝑡 = 𝑏𝑓𝑎𝑠𝑡,𝑡;  𝐽𝑡+1 =  0; 

 𝑒𝑙𝑠𝑒𝑖𝑓 𝐽𝑡+1  <  −𝑡ℎ𝑟, ℎ𝑓𝑎𝑠𝑡,𝑡 = ℎ𝑠𝑙𝑜𝑤,𝑡; 𝑏𝑓𝑎𝑠𝑡,𝑡 = 𝑏𝑠𝑙𝑜𝑤,𝑡; 𝐽𝑡+1 =  0; 

 𝑒𝑜𝑢𝑡,𝑡 = 𝑚𝑖𝑛(𝑒𝑠𝑙𝑜𝑤,𝑡, 𝑒𝑓𝑎𝑠𝑡,𝑡); 

6.3 META-SDLS 
This algorithm is the simplest and is controlled by a single scalar, shelf level. When a RIR variation occurs, 

we need to add an exponent to the 𝑑𝑡… which we can not do within the SDLS approach. However, meta-

SDLS can be used as a conservative model. 

The performance of the SDLS depends on excitation spectra, so meta-SDLS can be corrected for that. The 

shelf level does not necessarily mean spectra-invariant MSE but can go up or down depending on how 

“novel” the current spectrum is. The step size for adapting the shelf position is the design choice. 

 

You can see that SDLS adapts to the RIR change as fast as it adapts on this level of MSE, it does not start 

“anew”. 
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6.4 META-RERLS = REKALMAN-MM 
No changes to the conservative model. You could potentially scale the dispersion matrix up or down … but 

it’s unclear how to test that exhaustively. 

Speculative model adds 𝑑𝑖𝑎𝑔(𝑑0,𝑠𝑐𝑎𝑙𝑒𝑑 ) to the dispersion matrix in the manner similar to the Kalman 

filter. In subbands, you can add a matrix because you know the shape of the IN filter. 

 

Quite close to as good as it gets – but so far on relatively low RIR variations only.  

6.5 SUMMARY 
More TBD.  

Sorry, it will take time because it’s so awkward to translate thinking by images into a narrative. 

7 ROBUSTNESS OF META ADAPTIVE ALGORITHMS 

7.1 META-BDLS EXAMPLE [215] 
The robustness of meta-adaptive algorithms to errors in estimation of RIR and its variations can be 

demonstrated on meta-BDLS with the same pulsed input.  
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We can see that it’s safe to err on the underestimate side. The algorithm will correct it, and correct it fast, 

using the knowledge of acoustics’ basics and “known” RT60.  

I am not aware of ways to perform the correction of RIR variability overestimation quickly.  
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Let’s also demonstrate how BDLS adapts to the varying level of RIR variations, as in 7.1.2: 
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We also can demonstrate meta-BDLS robustness to non-white excitation, as in Chapter 3 (repeating): 

 

But the residual is completely different (because adding a feedback loop is a good thing): 
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2022/09/16    Fast Subband Adaptive Filtering: PART II - Adaptation         57 

7.2 META-RERLS EXAMPLE [215] 

 

The “beard” of extra corrections afterwards is strongly related to the insufficient level of primary 

correction, when RIR changes very radically. It’s a complex situation with stability of nested feedback 

loops in a strongly non-stationary (due to ReRLS) and non-linear system. It’s not clear yet how to deal 

with it. 
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7.3 ON DETECTION OF RIR VARIATIONS [214] 
The meta-adaptive approach relies on detection of RIR variations, and for that you need to distinguish 

between normal and abnormal differences between observed residual and it’s estimate. Normal difference 

is Gaussian, with relatively common single outliers but very rare 2 or 3 consecutive outliers.  

Here, I use instant filtering using noise-reduction (NR) approach by Patrick J.  Wolfe and Simon J. Godsill 

“Efficient alternatives to the Ephraim-Malah Suppression rule for audio signal enhancement”, Feb 2003. 

This instant NR approach is not the best for detecting small variations:  
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Actually, you need to accumulate the differences between observed residual and it’s estimate over a 

longer time to exclude excessive false positives. Then you need to let adaptive filter converge, and only 

then apply correction again.  

The instant NR principles can be demonstrated with input of a pulse of varying amplitude, starting at t=10, 

and ending at t=40: 
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You can see that the averaging filter 𝜏 depends on the pulse amplitude. The very first sample will be 

passed if and only if it’s very strong, so a single noisy outlier will be almost always suppressed. But if such 

outliers are repeated, they will be passed through. The transfer ratio is funny on the falling edge, on 

transition between activity and silence. The very first “silence” is amplified, but then the ratio drops to 

zero. 

 

Alternatively, you can see it in 2D, with transition point intentionally biased about +4dB: 
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There is no need to look for any speech-processing-specific meaning in that simple NR.  


