THAT Corporation

Department ____Engineering

Analog Secrets Your
Subject Mother Never Told You

Les Tyler, Gary Hebert, Name Ros Bortoni, Bob Moses

Address 123rd AES Convention
New York, October 2007

THAT Corporation

Departme	ntEngineering
Chapter _	New ICs
Name	Bob Moses
Address _	123 rd AES Convention New York, October 2007

- · THAT 2162 Dual VCA
 - Pre-trimmed
 - Current-in, current-out
 - VCAs are completely independent
 - QSOP-16 package
 - \$2.98 (1,000's) -- \$1.49 per channel
 - Samples available now
 - Production quantities this quarter (4Q07)

New ICs

- THAT 1280-Series

 Dual Balanced Line Receiver
 - Three gain versions
 - THAT 1280: OdB (pin compatible w/ TI INA2134)
 - THAT 1283: ±3dB
 - · THAT 1286: ±6dB (pin compatible w/ TI INA2137)
 - SO-14 package
 - \$1.98 (1,000's) -- \$0.99/channel
 - Samples available now
 - Production quantities this quarter (4Q07)

THAT Corporation

Department Engineering

Chapter Mic Preamps

Name Rosalfonso "Ros" Bortoni

123rd AES Convention
New York, October 2007

RG

- · One chip solution
 - Wide gain range
 - High bandwidth
 - Low noise
 - Low power
 - Two gain options
 - -1510: G = 1 + 10k/Rg (OdB min)
 - + 1512: 6 = 0.5 + 5k/Rg (-6dB min)
 - Accepts +24dBu @ +/- 15V rails

THAT 1510

OUTPUT

Continuously Adjustable Gain Mic Preamp

- Uses potentiometer
 (R3) to control gain
- 60dB+ gain
 range
- Output dc
 offset changes **
 with gain
- Will thump if \$\frac{1}{2}\$
 changed quickly

THAT1510

OUTPUT

© THAT Corporation

Switched Gain Mic Preamp

- · Uses switches to control gain
- 60dB+ gain
 range
- Output dc
 offset still
 changes with
 gain

SW1

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007 © THAT Corporation

THAT 1510

->>>OUTPUT

->>>OUTPUT

Mic Preamps - Choosing the Cap

- · First, choose minimum Rg based on max gain
- · Second, choose highest allowed LF cutoff
- Then: $Cg = 1 / (2\pi fRg)$
- For max gain = +60dB & LF cutoff = 5Hz
 - + For 1510: Rg = 10Ω , $Cg \approx 3300\mu$ F
 - + For 1512: $Rg = 5\Omega$, $Cg \approx 6800 \mu F$
- For max gain = +40dB & LF cutoff = 5Hz
 - + For 1510: $Rg = 100\Omega$, $Cg \cong 330\mu F$
 - For 1512: $Rg = 50\Omega$, $Cg \approx 680\mu F$
- · Etc.

Mic Preamp with Output Servo

- Reduces steady-state output offset
- · Doesn't fix transient offset
 - Likely to click
 - Adds PCB area
 - Increases cost

Mic Preamp with Input Servo

- · Reduces steady-state output offset
- · Reduces transient offset, too
- Requires high- \$\frac{1}{2} \\
 performance \\
 opamp

 - Low input bias current

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007 © THAT Corporation

THAT 1510

OUTPUT

Recommended Circuit for Digital Control

- · Use C-MOS switches to change Rg
- Splitting Rg to minimize charge injection (pops)

· 1512 lowers charge injection pop by 6dB

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Unbalanced Capacitance at Rg1, Rg2

- · Lowers CMRR @ HF
- Caused by
 - PCB stray capacitances
 - Different loading on Rg1 vs Rg2
- Effect is surprisingly large

THAT1510

OUTPUT

THAT Corporation

Department _____Engineering

Chapter VCA/RMS & Log Math

Name _____ Les Tyler

123rd AES Convention
Address New York, October 2007

THAT VCAs, RMS, & Log Math

- (Very) basic Voltage Controlled
 Amplifiers (VCAs)
- · (Very) basic RMS Detectors
- · (Very) basic Analog Engines®
- · Cool "log math" simplifies designs using the above

Blackmer® VCAs Offer "Deci-Linear" Control

- Linear control voltage causes Exponential gain (direct dB control)
- Typically -100~+40dB
- · ~ ±6mV per dB gain
- Positive- & negativesense control ports
- · Current in & out
- Singles: 2180/1-series
 - \$0-8 & SIP-8
- Dual: 2162
 - QSOP-16

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007 © THAT Corporation

THAT Level Detectors Are "Deci-Linear"

THAT2252

- Logarithmic output Voltage (direct dB) reading
- · Good linearity over >60dB
- · Current in, voltage out
- · RMS-responding
- Time response mimics ear's time-weighting
 - Less sensitive to phase shifts than peak or average.
- Single: 2252
 - SO-packages

SIP-8

- See Analog Engines®

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Analog Engines®: VCAs + RMS Detector

- · Compressor/limiter on a single chip
- Versatile 4320/4301
 - Includes several opamps and other useful stuff
- Basic 4305/4315
 - Just VCA and RMS detector
- 4301/4305
 - High voltage (±15V)
- 4315/4320
 - Low voltage, low power (+5V, 1.6mA)

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007 © THAT Corporation

Analog Engines® Are Deci-Linear, Too

- · VCAs offer Deci-Linear control law
 - Direct dB control of gain
- · Detectors offer Deci-Linear output law
 - Direct dB reading of RMS level
- Makes designing complex dynamics processors easy
 - Compressors/Limiters
 - Expanders/Gates
- Feedforward possible
 - + VCA control law matches RM5-detector output law
- Deci-Linear characteristic makes
 "log-math" useful for side chain design
- · Easily produces repeatable, predictable results

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Linear Math Approach

- VCA gain law: $A_V = e^{\frac{2}{2}V_T}$
- Detector output law: $V_{OUT} = 2V_T \ln(V_{inrms})$
- · "Linear" math leads to exponentials & logs
- Combining these two theoretically predicts gain trajectory
- But, do you really want to deal with this math?

"Log Math" Approach

- · Express signal levels as their dB levels
- · Express all gains in dB
- VCA gain law: $A_{db} = -166.7E_c$
- Detector output law: $V_{OUT} = 0.006 \, dB_{RMS}$
- · "Log" math reduces the exponentials and logs to simple, linear relationships
- Much easier to deal with!

Feedforward Processors - Log Math

 We can combine the previous two equations, and get:

$$dB_{OUT} = dB_{IN} + [-166.7 \bullet (G \bullet 0.006 dB_{IN})] = (1 - G) dB_{IN}$$

THAT Corporation

Compression
 (Expansion) ratio is:

$$\frac{dB_{IN}}{dB_{OUT}} = \frac{1}{(1-G)}$$

- Sign of gain determines compress or expand
- Lots of variations possible
 - Infinite compression
 - Negative compression

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Feedback Processors - Log Math

IN

 The VCA control voltage depends on the detector's level reading and G:

$$\mathbf{E}_{C} = \mathbf{G} \bullet 0.006 \, \mathbf{dB}_{OUT}$$

 But, the output signal depends on the input and the VCA gain:

$$dB_{OUT} = dB_{IN} + [166.7 \bullet (G \bullet 0.006dB_{OUT})] = dB_{IN} - GdB_{OUT}$$

Combining and rearranging, we can solve for the Compression
 (or Expansion) ratio:

$$\frac{dB_{IN}}{dB_{OUT}} = 1 + G$$

Sign of gain G determines compress vs. expand

VCA

Fewer variations are possible due to stability considerations

DETECTOR

- Infinite compression is unstable!

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

OUT

Adding Thresholds

- Change G based on detector's output level
 - Half-wave rectifier
 - + OA2/D1/D2
- Vary dc offset (R7)
 before rectifier
 - Changes the "active region" where detector's output passes to the VCA control port
 - Corresponds to a dB threshold

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Controlling Ratio and Static Gain

- Vary control path gain
 (R8)
 - Changes G (in the active region)
 - Controls compression/ expansion ratio
- Vary dc offset (R12)
 after clamp circuit
 - Changes static gain

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007 © THAT Corporation

See THAT's app notes for more detail

- · AN101a: details about "Log math" involved
- · AN100a: side-chain circuit details
 - Compressor application
- · Many others for more circuit ideas

THAT Corporation

Department ____Engineering

Subject Balanced Outputs

Name ___ Gary Hebert

123rd AES Convention
Address New York, October 2007

Balanced Floating Output Drivers

- Imitate some aspects of output transformers
- High common-mode output impedance (several $k\Omega$)
- · Low differential output impedance
- Feedback minimizes common-mode output current (Iout+ = -Iout-)
- Output appears across two output terminals
 - Whether or not one is grounded

Clipping Behavior

- Traditional designs can lose control over output current if clipped when one output is grounded
 - CM feedback is lost
 - Output current in grounded leg increases to current limit
 - Can lead to distorted crosstalk
- Outsmarts® CM feedback loop maintains control
 - No current limiting
 - Less sensitive PCB layouts

THAT Corporation

OutSmarts Demo Board - Block Diagram

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Clipping Into Single-ended Loads

THAT 1606/1646 Behavior

Note: $f_{IN} = 1 \text{ kHz}$, $Z_{LOAD(+)} = 10 \text{ k}\Omega$, $Z_{LOAD(-)} = 0 \Omega$

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007 © THAT Corporation

Clipping Into Single-ended Loads

SSM2142 Misbehavior

Grounded Output Current (20 mA/DIV)

Note:
$$f_{IN} = 1$$
 kHz, $Z_{LOAD(+)} = 10$ k Ω , $Z_{LOAD(-)} = 0$ Ω

THAT Corporation

Clipping Into Single-ended Loads

DRV134/135 Misbehavior

Note: $f_{IN} = 1$ kHz, $Z_{LOAD(+)} = 10$ k Ω , $Z_{LOAD(-)} = 0$ Ω

THAT Corporation

CMRR Depends on Impedance Ratios

- Wheatstone Bridge
 - Models Balanced
 Driver/Receiver
- CMRR is high if ratios
 match
- CMRR degrades if
 Rcmo1/Rcmo2 #
 Rcmo1/Rcmo2
- CMRR is unaffected by differential signal level

Signal Balance

- Signal Balance measures match of + and - output levels
 - Using a perfectly balanced load
- Signal Balance affects only headroom
- Might affect crosstalk in multipair cables
- Does not affect CMRR

Discrete Balanced Floating Output Driver

- R1, R11 deliberately increased (nominal 11ka)
 - Ensures stability
 - Lowers CM output impedance

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Discrete Balanced Floating Output Driver

- R8 is typically trimmed for best signal balance
 - Compensates for resistor mismatches (e.g., R1/R11)
 - But this is not the best solution

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Signal Balance vs. Pot Rotation

- SBR = 20log((Vo+ + Vo-)/Vin)
- · Load is 18 kΩ per output
- · Null occurs at about 11.5% pot rotation

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

CMRR vs. Pot Rotation

- · Same 18 kp loads (perfectly matched)
- · CMRR null occurs at about 80% pot rotation
- · CMRR after trim is 10 dB worse than no trim at all

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

Signal Balance vs. Pot Rotation - 10 M Ω Zin

However, Signal Balance is unchanged with
 10 MegΩ loads

THAT Corporation

Analog Secrets Your Mother Never Told You 123rd AES Convention, New York, October 6, 2007

THAT Output Driver ICs

- Trimming is complex let us do it for you
- · 1646/06 include all required trims & adjustments

THAT Corporation

THAT Corporation

Department _____Engineering

Chapter Wrap Up

Name Bob Moses

123rd AES Convention
Address New York, October 2007

Conclusions

- · Secret #1: new ICs from THAT!
- + Secret #2: Mic Preamps need dc stability
 - Use capacitor in series with Rg
 - Output servo is of limited benefit
 - Input servo can work well, but is expensive
- Secret #3: For digital control, put analog switches inside split pairs of Rg
- Secret #4: Match stray loading on Rg pins
- Secret #5: Log math is easy and fun!
- Secret #6: Cross-coupled balanced outputs misbehave in some real world conditions
- Secret #7: OutSmarts® delivers optimal performance under tortuous conditions

THAT Corporation