
Digital Control of a Class-D Audio Amplifier

by

Jason Quibell

Thesis submitted in fulfilment of the requirements for the degree
Master of Technology: Electrical Engineering in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Prof. R.H. Wilkinson
Co-supervisor: Prof. H. du T. Mouton

Cape Town, South Africa
November 2011

Declaration

I, Jason Quibell, declare that the contents of this thesis represent my own
unaided work, and that the thesis has not previously been submitted for aca-
demic examination towards any qualification. Furthermore, it represents my
own opinions and not necessarily those of the Cape Peninsula University of
Technology.

Signature: .

23 November 2011Date: .

Copyright © 2012 Cape Peninsula University of Technology
All rights reserved.

i

Abstract

Modern technologies have led to extensive digital music reproduction and dis-
tribution. It is fitting then that digital audio be amplified directly from its
source rather than being converted to an analogue waveform before amplifi-
cation. The benefits of using a digital controller for audio processing include
being able to easily reconfigure the system and to add additional functions at
a later stage.

Digital audio is primarily stored as Pulse Code Modulation (PCM) while
Pulse Width Modulation (PWM) is the most popular scheme used to drive
a class-D amplifier. The class-D amplifier is selected in many applications
due to its very high energy efficiency. Conventional PCM to PWM conversion
is inherently nonlinear. Various interpolation schemes are presented in this
research project which help to address the nonlinearity.

Digitally generated PWM has a limited resolution which is constrained
by the system clock. This thesis presents noise shaping techniques which
increase the effective resolution of the PWM process without having to use an
excessively high system clock. Noise shaping allows a low resolution modulator
to be used to reproduce high resolution audio.

ii

Acknowledgements

I would like to express my sincere gratitude to the following people and organ-
isations:

National Research Foundation (NRF)

Cape Peninsula University of Technology (CPUT)

Centre for Instrumentation Research (CIR)

French South African Institute of Technology (F’SATI)

Professor Richardt Wilkinson for his guidance

Professor Toit Mouton for his generosity of knowledge

Mr Robert Neilson for his insightful suggestions

Professor Gerhart de Jager for his years of wisdom

Charl Jooste for his camaraderie

The financial assistance of the National Research Foundation and the Cape
Peninsula University of Technology towards this research is acknowledged.
Opinions expressed in this thesis and the conclusions arrived at, are those of
the author, and are not necessarily to be attributed to the respective mentioned
establishments.

iii

Dedications

To Mom, Dad, Bonnie, Tyrus, Keegan,
Oliver and Gaby for their unwavering support

iv

Contents

Declaration i

Abstract ii

Acknowledgements iii

Dedications iv

Contents v

List of Figures viii

List of Tables xii

Nomenclature xiii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 1
1.3 Objectives of the research . 3
1.4 Structure of the thesis . 4

2 Digital signal processing 6
2.1 DSP applications . 6
2.2 Signal sampling and quantisation 7
2.3 Hardware for signal processing 9
2.4 Conclusion . 12

3 Pulse width modulation 13
3.1 Theory of operation . 14
3.2 Natural and uniform sampling 15
3.3 Harmonic distortion . 16
3.4 Conclusion . 17

4 Interpolation 18
4.1 Introduction . 18

v

CONTENTS vi

4.2 Sample rate conversion . 19
4.3 Finite impulse response interpolation filter 22
4.4 Polyphase interpolation filter . 25
4.5 Cascaded integrator comb filter 29
4.6 Polynomial interpolation . 34
4.7 Conclusion . 39

5 Noise shaping 40
5.1 Introduction . 40
5.2 General noise shaping . 41
5.3 Digital noise shaping loop filter 45
5.4 Ripple compensation . 60
5.5 Ripple compensation verification 62
5.6 Loop filter implementation . 67
5.7 Conclusion . 77

6 VHDL Implementation 78
6.1 Hardware interconnections . 79
6.2 Configuration . 80
6.3 Receive audio data . 84
6.4 Interpolation . 86
6.5 Noise shaping . 88
6.6 Pulse width modulation and feedback 90
6.7 Synchronisation . 91
6.8 Conclusion . 91

7 Test and verification 92
7.1 Initial testing . 92
7.2 System redesign . 93
7.3 Conclusion . 96

8 Results 97
8.1 Hardware setup . 97
8.2 Simulation verification . 98
8.3 Measurements . 100
8.4 Conclusion . 107

9 Conclusion 108
9.1 Overview of project objectives 108
9.2 Objectives achieved . 108
9.3 Problems encountered . 109
9.4 Future research and recommendations 110

List of References 111

CONTENTS vii

Appendices 114

A Noise shaper filter coefficients 115
A.1 Classic noise shaper coefficient design 115

B VHDL source code 117
B.1 Main program source code . 117
B.2 SPI source code . 124
B.3 Receive audio data source code 127
B.4 Interpolation source code . 131
B.5 Noise shaper source code . 139
B.6 Pulse Width Modulation source code 146

C Matlab source code 149
C.1 Interpolation . 149
C.2 Polynomial interpolation . 156
C.3 Noise shaper filter coefficient calculator 158
C.4 Modulation . 161
C.5 Spectral content . 164

D Data sheets 165
D.1 SRC4392 . 165
D.2 Altera Cyclone III (EP3C25) . 171

List of Figures

2.1 Correct sampling which will not result in aliasing adapted from Tan
(2008) . 8

2.2 Incorrect sampling which leads to aliasing adapted from Tan (2008) 9
2.3 Floating point format adapted from Tan (2008) 11
2.4 Q-15 (fixed point) format adapted from Tan (2008) 12

3.1 Archetype pulse width modulator 13
3.2 Uniformly sampled pulse width modulator adapted from Goldberg

& Sandler (1991a) . 14
3.3 UPWM and NPWM producing different PWM waveforms adapted

from Nielsen (1998) and Jacobs (2006) 15

4.1 Upsampler . 19
4.2 Sine wave before and after upsampling 20
4.3 1 kHz sine wave spectrum before and after upsampling 21
4.4 Upsampler with low-pass filter . 22
4.5 FIR filter magnitude and phase response 24
4.6 1 kHz sine wave spectrum before and after being filtered 24
4.7 Direct interpolation filter . 25
4.8 Polyphase filter implementation adapted from Tan (2008) 26
4.9 Commutative model for the polyphase interpolation filter adapted

from Tan (2008) . 26
4.10 Impulse response of the original FIR filter 27
4.11 Impulse response of the first polyphase filter 28
4.12 Impulse response of the second polyphase filter 28
4.13 CIC filter block diagram adapted from Hogenauer (1981) 30
4.14 CIC filter magnitude response . 32
4.15 CIC compensation filter block diagram 32
4.16 CIC compensator filter magnitude response 33
4.17 Magnitude response of a CIC filter cascaded with a CIC compensator 33
4.18 Curve constructed from discrete data points 35
4.19 Unstable curve constructed from 11 data points 38

5.1 Shaped and unshaped noise adapted from Craven (1993) 41

viii

LIST OF FIGURES ix

5.2 Noise shaper configuration adapted from Goldberg & Sandler (1991a) 42
5.3 Noise shaping filter when calculated for different orders adapted

from Hawksford (1989a) and Jacobs (2006) 43
5.4 Magnitude response of a fifth order filter using calculated coefficients 44
5.5 Noise shaper Simulink model . 45
5.6 Cascade compensation adapted from Wescott (2006) 46
5.7 Feedforward compensation adapted from Wescott (2006) 46
5.8 Feedback compensation adapted from Wescott (2006) 47
5.9 Open loop bode plot for a first order filter 48
5.10 Open loop bode plot of a third order filter 49
5.11 Open loop bode plot of a fifth order filter 50
5.12 NTF bode plot of a third order filter 51
5.13 NTF bode plot of a fifth order filter 51
5.14 Simulink model for a pulse width modulator 53
5.15 Spectral content of a 7-bit PWM waveform 54
5.16 Zoomed view of the audio band of Figure 5.15 54
5.17 Simulink model for a pulse width modulator and loop filter 55
5.18 Spectral content of a 7-bit PWM waveform with a first order filter . 56
5.19 Zoomed view of the audio band of Figure 5.18 56
5.20 Spectral content of a 7-bit PWM waveform with a third order loop

filter . 57
5.21 Spectral content of a 7-bit PWM waveform with a fifth order loop

filter . 57
5.22 Zoomed view of the audio band of Figure 5.20 58
5.23 Zoomed view of the audio band of Figure 5.21 58
5.24 Implementation of ripple compensation adapted from Mouton &

Putzeys (2009) . 62
5.25 Ripple compensation waveforms adapted from Mouton & Putzeys

(2009) . 63
5.26 Simulink model for a pulse width modulator and loop filter includ-

ing ripple compensation . 64
5.27 Spectral content of a 7-bit PWM waveform with a third order loop

filter and ripple compensation . 65
5.28 Zoomed view of the audio band of Figure 5.27 65
5.29 Spectral content of a 7-bit PWM waveform with a fifth order loop

filter and ripple compensation . 66
5.30 Zoomed view of the audio band of Figure 5.29 66
5.31 Delayed output integrator . 67
5.32 Non-delayed output integrator . 68
5.33 Cascade of integrators with feedback summation adapted from Schreier

& Temes (2005) . 68
5.34 Resonator for a loop filter adapted from Norsworthy et al. (1997) . 69
5.35 Cascaded resonator with feedback summation adapted from Schreier

& Temes (2005) . 70

LIST OF FIGURES x

5.36 Cascaded integrators with feedforward summation adapted from
Schreier & Temes (2005) . 71

5.37 Cascaded resonator with feedforward summation adapted from Nor-
sworthy et al. (1997) . 72

5.38 Fifth order CRFF filter adapted from Norsworthy et al. (1997) . . . 73
5.39 Third order loop filter Simulink implementation 75
5.40 Fifth order loop filter Simulink implementation 76

6.1 Block diagram of a complete audio system 79
6.2 Firmware block diagram . 80
6.3 PLL clock distribution . 81
6.4 Configuration via SPI . 83
6.5 SPI state diagram . 84
6.6 Right-justified data format . 85
6.7 Audio buffer state diagram . 86
6.8 Polynomial coefficients state diagram 87
6.9 Polynomial calculation state diagram 88
6.10 Timing diagram for the sample rate conversion 89

7.1 Simulink model for a pulse width modulator and loop filter includ-
ing ripple compensation and PWM averaging 95

8.1 FPGA based audio amplifier board 97
8.2 Hardware test instrument set up 98
8.3 Comparisson between Simulink and Quartus simulations for the

filter input . 99
8.4 Comparisson between Simulink and Quartus simulations for the

filter output . 99
8.5 PWM waveform switching at 384 kHz with a 50% duty cycle . . . 100
8.6 PWM waveform switching at 384 kHz modulated with a 20 kHz

sine wave . 101
8.7 Logic analyser result of a PWM waveform switching at 384 kHz

which has been modulated with a 20 kHz sine wave 101
8.8 Audio analyser test set up . 102
8.9 Spectral content of the PWM signal when a 1 kHz sine wave is used

as the audio input, viewing the audio band 103
8.10 Spectral content of the PWM signal when a 1 kHz sine wave is used

as the audio input, viewing a bandwidth of 88 kHz 103
8.11 Spectral content of the PWM signal when a 10 kHz sine wave is

used as the audio input, viewing the audio band 104
8.12 Spectral content of the PWM signal when a 10 kHz sine wave is

used as the audio input, viewing a bandwidth of 88 kHz 104
8.13 Spectral content of the PWM signal when a 20 kHz sine wave is

used as the audio input, viewing the audio band 105

LIST OF FIGURES xi

8.14 Spectral content of the PWM signal when a 20 kHz sine wave is
used as the audio input, viewing a bandwidth of 88 kHz 105

8.15 Spectral content of the PWM signal when a two-tone input at 17
kHz and 18 kHz is used as the audio input, viewing the audio band 106

List of Tables

1.1 Required system clock rates for specific PWM resolutions switching
at 384 kHz . 3

2.1 A 3 bit 2’s complement number representation 11

4.1 Comparison of FIR and IIR filters 23
4.2 FIR filter specifications . 23
4.3 Result of the direct interpolation process 25
4.4 2nd order polynomial divided differences 36
4.5 2nd order polynomial using Neville’s algorithm 38

6.1 PLL clock generation . 81
6.2 Required FPGA system resources 91

xii

Nomenclature

Abbreviations

ADC Analogue-to-Digital Converter
AES/EBU Audio Engineering Society/European Broadcasting Union
CD Compact Disk
CIC Cascaded Integrator Comb
CIFB Cascade of Integrators with distributed Feedback
CIFF Cascade of Integrators with Feedforward summation
CRFB Cascade of Resonators with distributed Feedback
CRFF Cascade of Resonators with Feedforward summation
DAC Digital-to-Analogue Converter
DAT Digital Audio Tape
DC Direct Current (0 Hz)
DSP Digital Signal Processing
DVD Digital Versatile Disc
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
IIR Infinite Impulse Response
IM Intermodulation
LSB Least Significant Bit
LC Inductor-Capacitor
MAE Minimum Aliasing Error
MIF Memory Initialisation File
MSB Most Significant Bit
NPWM Natural Pulse Width Modulation
NTF Noise Transfer Function
OSR Over Sampling Ratio
PCM Pulse Code Modulation
PLL Phase Lock Loop
PMA Pulse Modulation Amplifier
PWM Pulse Width Modulation
ROM Read Only Memory

xiii

NOMENCLATURE xiv

RMS Root Mean Square
SNR Signal to Noise Ratio
S/PDIF Sony/Philips Digital Interconnect Format
SPI Serial Peripheral Interface
SQNR Signal-to-Quantisation Noise Ratio
THD+N Total Harmonic Distortion plus Noise
UPWM Uniform Pulse Width Modulation
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

Chapter 1

Introduction

1.1 Background

The prevalence of digital audio in our modern world suggests the need for an
efficient and exceptional way in which it can be amplified. All audio amplifiers
are in some way or another analogue devices, as the final result will always be
that of an analogue waveform (Groenenberg et al., 2006). Amplifying audio
from a digital source therefore requires digital-to-analogue conversion.

Most amplifier classes are very inefficient. The class-D amplifier however
has a theoretical operating efficiency of 100% (Self, 2006). This class has the
added advantage of switching between a fully on and fully off state, providing
a straightforward means to drive it from digital circuitry. Being able to utilise
these benefits offered by a class-D configuration when handling digital audio
is therefore an important task.

1.2 Problem statement

The efficiency of a typical analogue amplifier is characteristically less than
40% (Self, 2006). The class-D amplifier is therefore a good substitute for
a traditional amplifier when digital audio needs to be amplified due to its
switching characteristic and good power efficiency. The class-D amplifier is not
a digital system, yet can be better thought of as a Pulse Modulation Amplifier
(PMA), where a stream of pulses are increased in amplitude (Nielsen, 1998).
The audio signal is modulated onto a carrier at a low power level which is
then amplified by the power stage of the class-D amplifier. Its amplified pulse

1

CHAPTER 1. INTRODUCTION 2

is subsequently reconstructed by a low-pass filter which then results in an
analogue audio waveform.

Pulse Width Modulation (PWM) is a very popular method for modulating
the audio signal (Koeslag, 2008). The digital audio would typically be in a
Pulse Code Modulation (PCM) format and would need to be converted to
PWM. Analogue implementations of PWM are just as successful as digital
ones, although using a digital controller for the signal processing allows many
additional features to be added to the system’s firmware, without adjusting
the hardware configuration.

The process of PCM to PWM conversion is inherently nonlinear as well
as resulting in low resolution audio due to system clock requirements of the
PWM process (Goldberg & Sandler, 1991b).

Compact Disk (CD) audio is encoded with 16-bits at 44.1 kHz while Digital
Versatile Disk (DVD) audio is capable of audio encoded with 24-bits at a sam-
pling rate of 192 kHz. These figures quintessentially define what is described
as high resolution audio. The problem is how to obtain high resolution PWM
which could reproduce such audio data. Very large system clock speeds are
required to generate a PWM signal which has 216 distinct pulse widths per
a pulse period. Needless to say, 224 distinct pulses are even more difficult to
achieve. Shown in Table 1.1 is a list of system clock rates needed to achieve a
desired bit resolution of PWM with a switching rate of 384 kHz. The reason
that 384 kHz was chosen as the switching frequency is due to it being a multiple
of 48 kHz which is a sample rate used by many professional audio systems, such
as Digital Audio Tape (DAT). The value of the switching frequency is selected
as being multiple integer times higher than the audio sampling rate so that the
switching fundamental and its harmonics would not intrude on the audio band.

CHAPTER 1. INTRODUCTION 3

Table 1.1: Required system clock rates for specific PWM resolutions switching at
384 kHz

PWM bit resolution System clock (GHz)
7 0.049152
8 0.098304
10 0.393216
12 1.572864
16 25.165824
18 100.663296
20 402.653184
24 6442.450944

1.3 Objectives of the research

The primary objective of this research is to convert PCM to PWMwhile achiev-
ing outstanding audio performance. The various mechanisms which cause the
audio signal to deteriorate during the conversion process need to be addressed.

The following research questions became significant:

• Can methods be introduced into the PCM to PWM conversion process
which will allow for a high resolution audio output?

• Will these methods effectively linearise the conversion and allow for a
realisable system clock?

• Can these methods be implemented in a real-time system on embedded
hardware?

Increasing the sampling rate has been shown to improve the linearity (Gold-
berg & Sandler, 1991a). Sample rate conversion will still not make it possible
to achieve high resolution audio, due to the excessively high clock rates required
by the pulse width modulator. Clock rates above 200 MHz are considered to
be excessively high for this project.

In order to address the problem of a very fast system clock speed, a tech-
nique called noise shaping can be employed. It is a process by which the noise
floor in the audio band is reduced while still using a low resolution modulator.
This would enable a slower clock speed to be used while still obtaining a high
resolution audio output.

CHAPTER 1. INTRODUCTION 4

This thesis will discuss:

• Increasing the linearity of the PCM to PWM conversion process through
the use of sample rate conversion,

• reducing the system clock requirements needed to duplicate a high reso-
lution audio signal through the use of noise shaping,

• minimising the system resources required for implementation,

• simulating the various methods presented,

• developing these methods into a control algorithm with VHDL based
firmware and

• evaluating the developed firmware on a tangible system.

This thesis will not discuss:

• Design or construction of a class-D power stage and

• analysis of the imperfections introduced by a class-D power stage.

1.4 Structure of the thesis

This thesis is divided into three parts. Firstly an overview of digital signal
processing and pulse width modulation is presented. The primary focus of this
research is then exhibited with chapters on interpolation and noise shaping.
The final part of the thesis is the implementation of the firmware and the
results obtained.

Chapter 2 introduces digital signal processing and its use in the modern
world. Basic signal theory is highlighted to show the importance of sampling in
a digital system and the effect it has on performance. The topic of digital signal
processing hardware is broached and popular manufacturers are mentioned.

Chapter 3 concerns pulse width modulation and explains its operation. The
difference between generating a pulse width modulated signal in the digital and
analogue domains is explained. The harmonic distortion of both methods is
presented.

CHAPTER 1. INTRODUCTION 5

Chapter 4 describes the process of interpolation which is used for sample
rate conversion. This forms a significant part of the research. Interpolation
helps to linearise the PCM to PWM process. It also increases the bandwidth,
which is important for when noise shaping is utilised. Various methods are
presented with their advantages and disadvantages discussed.

Chapter 5 introduces noise shaping which is the key to obtaining a high
resolution audio output while using a low resolution modulator. Two distinct
methods are introduced with an emphasis placed on the second, which is the
use of a digital loop filter. Through the use of simulations, this technique is
shown to significantly reduce the noise floor in the audio band.

Chapter 6 takes the methodology presented in the previous chapters and
describes the formulation of the firmware for an embedded system. The various
sections are divided into subsystem blocks.

Chapter 7 discusses problems which were discovered when moving from a
simulated system to a physical implementation, and how it led to a redesign
of certain subsystems.

Chapter 8 presents the results of the project. Comparisons between Matlab®

and VHDL simulations are made. The test set up of the embedded real-time
system is shown and its results are discussed.

Chapter 9 concludes the thesis by giving an outline of what was discussed
and achieved. The possibilities for future research are also mentioned.

Chapter 2

Digital signal processing

This chapter introduces elementary digital signal processing (DSP) theory and
presents an overview of its applications. Examples are used to illustrate its
usefulness in modern electronic engineering.

2.1 DSP applications

The application of DSP systems in contemporary life has become invaluable.
Without the ability to manipulate and transfer data in a precise and func-
tional manner, many modern marvels would cease to exist. Tan (2008:pg. 11)
mentioned just a few of the many applications which are possible with DSP
systems, they include:

• Voice recognition,

• speech synthesis systems,

• image and video editing systems,

• digital electrocardiography analysers,

• digital cameras,

• digital recording,

• cellular telephones and

• wireless networks.

6

CHAPTER 2. DIGITAL SIGNAL PROCESSING 7

DSP provides engineers and scientists with many powerful tools which can
be used to visualise and analyse their designs. Applications of DSP are in-
creasing in many areas where analogue electronics are being replaced by a
more effective digital counterpart.

2.2 Signal sampling and quantisation

It is not possible to digitise all points along a continuous time signal as it
contains an infinite number of points. Digital processing hardware could not
possibly store an infinite amount of data. Sampling solves this problem by
taking samples at discrete time intervals.

The process of transforming an analogue signal into a digital sequence is
known as analogue-to-digital conversion. While digital-to-analogue conversion
is the reverse process. The end result of this research project is to essentially
develop a high powered Digital-to-Analogue Converter (DAC).

2.2.1 Nyquist-Shannon sampling theorem

For a DSP system using uniform sampling , an analogue signal can be per-
fectly recovered as long as the sampling rate is at least greater than twice the
bandwidth of the analogue signal to be sampled (Shannon, 1949). The Nyquist
frequency is referred to as fmax, and the minimum sampling frequency fs, is
called the Nyquist rate.

For a given sampling interval T , which is the time between two sample
points, the sampling rate is given by

fs =
1

T
samples per second (Hz). (2.2.1)

In order to satisfy the criteria of the sampling theorem

fs − fmax > fmax. (2.2.2)

Solving equation (2.2.2) gives

fs > 2fmax. (2.2.3)

As an example, sampling an audio signal which possesses frequencies up
to 20 kHz, fs would need to be at least 40 kHz (Tan, 2008). If the Nyquist
criteria have been adhered to, then the sampled signal could be reconstructed
to its original band limited continuous time form (Stranneby & Walker, 2004).

CHAPTER 2. DIGITAL SIGNAL PROCESSING 8

2.2.2 Aliasing

When sampling a signal which contains frequencies higher than fmax, aliasing
occurs. The samples will represent information incorrectly from what is actu-
ally present in the original. Once aliasing occurs, it is impossible to reconstruct
the original data from the sampled data (Proakis & Manolakis, 1996:pg. 27).

Figure 2.1: Correct sampling which will not result in aliasing adapted from Tan
(2008)

Figure 2.1 illustrates correct sampling, while Figure 2.2 does not. The
frequency of the sine wave in Figure 2.2 is greater than the Nyquist frequency.
This results in aliasing, where the frequency of the sampled signal differs from
that of the continuous signal. Aliasing corrupts the data and the original signal
cannot be reconstructed from the samples.

In practice, the analogue signal may contain high-frequency noise. In order
to satisfy the sampling theorem, a low-pass anti-aliasing filter is applied to limit
the input analogue signal, so that all the frequency components are less than
fmax (Tan, 2008) .

2.2.3 Quantisation

A quantiser is a nonlinear system that transforms a continuous input signal
x(t) into a discrete sequence x[n] for which each value assumes a finite number

CHAPTER 2. DIGITAL SIGNAL PROCESSING 9

Figure 2.2: Incorrect sampling which leads to aliasing adapted from Tan (2008)

of possible values (Hayes, 1999). This operation is represented by

x[n] = Q[x(t)]. (2.2.4)

Assigning a numerical value to a signal which is analogue and naturally has
an infinite number of values, introduces error. The error being the difference
between the rounded sample value and the actual value. With rounding, the
quantiser error is

e[n] = Q[x(t)]− x(t). (2.2.5)

With each additional bit added to the quantiser, the error decreases. Ac-
cording to Hayes (1999), the Signal-to-Quantisation Noise Ratio (SQNR) in-
creases by approximately 6 dB for each bit added. The resulting SQNR yielded
from the available bits follows from the equation

SQNR ≈ 6 dB × bit length. (2.2.6)

2.3 Hardware for signal processing

Many devices are currently available. The leading manufacturers of DSP chips
include Analog Devices®, Motorola® and Texas Instruments®. Their prod-
ucts are dedicated to signal processing.

CHAPTER 2. DIGITAL SIGNAL PROCESSING 10

An alternative to using a DSP chip is to use a Field Programmable Gate
Array (FPGA) device. Their versatility has recently led to them being used
for many different applications, including signal processing. The primary man-
ufacturers used today are Actel®, Altera® and Xilinx®.

The execution speed of most DSP algorithms is limited almost completely
by the number of multiplications and additions required. Yet the computa-
tional performance must be known and have a predictable execution time. For
an application where processing is continuous, or real-time, there is no definite
start or end. All processing needs to be completed in an allotted time-frame.
An example would be a DSP system for a hearing aid. The designer would need
to make sure that if the digital signal processor is receiving 20 kilo-samples per
second, it will be able to maintain that throughput of information constantly.

2.3.1 Fixed point and floating point formats

The arithmetic performed on digital hardware can be divided up into two
separate categories, fixed point and floating point. They refer to the format
used to store and manipulate data within the device. In particular, the formats
are used to represent a negative number using binary (Antoniou, 2006:pg. 620).

Fixed point processors represent the data using integer arithmetic. Floating
point on the other hand, represents a number using a mantissa and an exponent
in addition to the integer format.

Tan (2008:pg. 420) states that since the fixed point digital signal processor
operates using an integer format, overflow of data may occur. This leads
to much more time spent on coding an error free fixed point based system.
Floating point processors offer a much wider dynamic range of data, leading to
overflows occurring much less frequently. However, the floating point processor
contains more hardware to manipulate the arithmetic, hence is more expensive
and slower than a fixed point processor in terms of instruction cycles.

The general format in which a floating point number is given by x = M ·2E,
where M is the mantissa, or fractional part and E is the exponent. The
exponent and mantissa are both signed numbers. Using a word length of
16 bits, a representation is shown in Figure 2.3. 12 bits are assigned to the
mantissa and 4 bits to the exponent, where the normalised range is between −1

and 1. The larger the number of bits assigned to the mantissa, the smaller the

CHAPTER 2. DIGITAL SIGNAL PROCESSING 11

interval between values in the normalised range. The larger that the exponent
is, the larger the dynamic range becomes.

Figure 2.3: Floating point format adapted from Tan (2008)

It is possible to represent negative values using a fixed point processor using
the aforementioned 2’s complement concept. The most significant bit (MSB)
of the word is used to represent the sign of the integer. Considering a 3 bit
2’s complement, all the decimal numbers that can be represented are shown
in Table 2.1.

Table 2.1: A 3 bit 2’s complement number representation

Decimal number 2’s complement
3 011
2 010
1 001
0 000
-1 111
-2 110
-3 101
-4 100

A 16 bit unsigned integer can take on any integer value between 0 and
65535. When 2’s complement is employed, the range of integers for a 16 bit
word is from −32768 to 32767.

It is also possible to have a fractional binary 2’s complement system. Tan
(2008) states that the Q-format number representation is the most commonly
used fractional implementation in fixed point DSP. Illustrated in Figure 2.4 is
a Q-15 representation, Q-15 means that the data is in a signed magnitude form
where there are 15 bits for magnitude and one bit for the sign. The number
is normalised to the fractional range of −1 to 1. The range is divided into 216

CHAPTER 2. DIGITAL SIGNAL PROCESSING 12

intervals. The most negative number is −1, while the most positive number is
1− 2−15.

Figure 2.4: Q-15 (fixed point) format adapted from Tan (2008)

2.4 Conclusion

This chapter introduced three elementary signal theory concepts which were
sampling, aliasing and quantisation. These ideas are important to note when
digital signal processing is to be employed. The audio information presented to
the system will be in the digital domain and therefore digital signal processing
becomes pertinent in order to achieve the goals set forth in the first chapter.

Hardware devices which could be used for signal processing were introduced
as well as fixed point and floating point number systems.

Chapter 3

Pulse width modulation

This chapter describes the concept of Pulse Width Modulation (PWM), pre-
senting a variety of schemes available. Their performance is determined by
detailing the harmonic distortion present in the audio band.

Any modulation scheme used for a class-D amplifier aims to create a train
of pulses, which when averaged, contains the original reference data (Holmes
& Lipo, 2003). One of the problems which face designers is that the pulses also
contain unwanted harmonics which should be minimised as much as possible.

PWM is a convenient choice when driving a class-D amplifier, due to the
switching characteristics of both.

Figure 3.1: Archetype pulse width modulator

13

CHAPTER 3. PULSE WIDTH MODULATION 14

3.1 Theory of operation

The PWM signal is generated when two waveforms are compared against each
other. The one being a low-frequency reference waveform, audio information
in this case, and the other a high-frequency carrier waveform. Figure 3.1 is
a diagram of this process. The carrier frequency is usually chosen as being
at least ten times the highest frequency in the band of interest (Bresch &
Padgett, 1999) .

fsw ≥ 10× fmax (3.1.1)

When the amplitude of the reference is larger than that of the carrier, the
output of the comparator is designated a high value, and a low value when
the carrier is larger. The carrier can be either a trailing, leading or a dou-
ble edged waveform. The resulting PWM waveform differs depending on the
carrier used and whether natural sampling, shown in Figure 3.1, or uniform
sampling, shown in Figure 3.2, is involved.

Figure 3.2: Uniformly sampled pulse width modulator adapted from Goldberg &
Sandler (1991a)

CHAPTER 3. PULSE WIDTH MODULATION 15

3.2 Natural and uniform sampling

Natural sampling differs from uniform sampling in that it continuously samples
the reference and carrier waveforms. Uniform sampling is employed in discrete
time systems and is illustrated in Figure 3.2. The difference which results when
using either of these two methods is shown in Figure 3.3. The natural reference
is an exaggerated version of what it would be in reality, yet it illustrates that
the difference between a continuous and sampled signal can cause an error in
the resulting PWM waveform. The error in the time difference between the
PWM waveforms results in distortion.

Figure 3.3: UPWM and NPWM producing different PWM waveforms adapted
from Nielsen (1998) and Jacobs (2006)

CHAPTER 3. PULSE WIDTH MODULATION 16

3.3 Harmonic distortion

The spectral contents of a PWM signal with a single frequency sinusoidal input
have been determined using a two dimensional Fourier series. The contents
of a unity-amplitude trailing edge NPWM for modulation by M cosωvt into
sinusoidal parts yields (Bresch & Padgett, 1999):

F (t) = k +
M

2
cosωvt+

∞∑
m=1

sinmωct

mπ

−
∞∑
m=1

J0(mπM)

mπ
sin(mωct− 2mπk)

−
∞∑
m=1

n=±∞∑
n=±1

Jn(mπM)

mπ
sin(mωct+ nωvt− 2mπk − nπ

2
),

(3.3.1)

where ωc is the angular fundamental frequency of the PWM carrier, ωv the
angular input signal frequency, k the mean amplitude of the unmodulated
carrier and Jn denotes a Bessel function of the first kind. M is the modulation
index.

The spectral content includes the input frequency, the sums and differences
of the input signal and the carrier and its multiples. There are modulation
products of the carrier and input signal which move towards the input sig-
nal frequency with decreasing amplitudes. These are referred to as sideband
harmonics of the carrier.

The spectral content of a trailing edge UPWM signal yields a rather differ-
ent result. For the same unity amplitude stimulus as used in Equation 3.3.1
the uniformly sampled PWM spectral content is

F (t) = k −
∞∑
n=1

Jn

(
nπMωv

ωc

)
nπωv

ωc

sin

(
mωvt−

2nπkωv
ωc

− nπ

2

)
+
∞∑
m=1

1− J0(mπM)

mπ
sinmωct

−
∞∑
m=1

n=±∞∑
n=±1

Jn

[
(mωc + nωv)

]
πM
ωc

(mωc + nωv)
π
ωc

sin

(
(mωc + nωv)

(
t− 2πk

ωc

)
− nπ

2

)
.

(3.3.2)

CHAPTER 3. PULSE WIDTH MODULATION 17

The first sum in Equation 3.3.2 shows that the spectral content includes
harmonics of the modulating frequency. The amplitudes of the harmonics
increase with an increase of modulation index. It also contains sums and
differences of the carrier and modulating signal frequency and multiples of the
carrier.

3.4 Conclusion

What is understood is that natural pulse width modulation would be preferred
over uniform pulse width modulation. This is due to the harmonic content
which is present in the baseband of the uniformly sampled PWM. There is
however no way to implement NPWM with a digital controller.

The first solution to this problem is to oversample the audio waveform.
When more samples are available for a time period the resulting UPWM will
be a closer match to NPWM. Unfortunately the audio data has already been
sampled at a rate which is much lower than that which would affect linearity.
The only solution is to reconstruct a representation of an analogue version of
the waveform and extract new data from it. This is accomplished through the
use of interpolation, which is presented in Chapter 4. The usefulness of DSP
when used with an audio amplifier becomes more apparent.

Chapter 4

Interpolation

4.1 Introduction

The word interpolation has its origins in the Latin word interpolare. Which
is a combination of inter, meaning between and polare which means to polish
(Meijering, 2002). It is the process of smoothing between the data samples.

Constructing a continuous function becomes a problem when using discrete
data which does not contain all of the original information. With so much
of the world’s data being stored, processed and analysed digitally this is a
recurring concern. The easiest and most widely used method for solving this
problem is through the use of interpolation. New data is constructed which
agrees with the unknown original function (Meijering, 2002).

When a data set is available, interpolation is the method of finding missing
data within the confines of the available data. Extrapolation is used when the
value of a function outside of the given range is required (Goyal, 2007).

The primary reason for using interpolation in this project is to increase the
sample rate of the system. Increasing the sample rate expands the system’s
frequency bandwidth which then makes it possible to employ certain noise
shaping techniques which will be explained in Chapter 5.

This chapter introduces sample rate conversion and its value within the
scope of this project. Interpolation is presented as a method of generating
new data samples from pre-existing information, which makes sample rate
conversion possible. Simulated examples are given to explain the interpolation
process.

18

CHAPTER 4. INTERPOLATION 19

4.2 Sample rate conversion

Increasing or decreasing the sample rate of a digital system is often required in
DSP applications. Crochiere & Rabiner (1981) and Tan (2008:pg. 557) gave
such examples as antenna systems, communications, radar systems, audio and
speech processing as being multi-rate digital systems.

Downsampling or decimation are terms used when referring to the reduc-
tion of the sample rate. While upsampling refers to the increase. The focus of
this project is to achieve a higher sampling rate, therefore downsampling will
be overlooked. If a fractional sample rate change is required, then a combina-
tion of both is necessary.

Crochiere & Rabiner (1981) showed that increasing the sample rate (Ts)
by an integer factor of L, would result in a new sampling period of T ′s, which
is

T ′s
Ts

=
1

L
. (4.2.1)

This would result in a new sample rate being expressed as f ′s = Lfs.

Figure 4.1: Upsampler

Upsampling by a factor L can be achieved by adding L − 1 new sample
values between each pair of samples. L−1 number of zeros are placed between
the data samples which allows for the data to be sampled at a higher rate, as
there are now more samples available. Figure 4.1 is a basic block diagram of
the process of increasing the sample rate. The input signal x(n) is padded
with zeros and then becomes

w(m) =

x(m/L), m = 0,±L,±2L, · · ·

0, otherwise
(4.2.2)

CHAPTER 4. INTERPOLATION 20

The output of the sample rate converter w(n) is described in the z-domain
by Crochiere & Rabiner (1981) as being

W (z) =
∞∑

m=−∞

w(m)z−m

=
∞∑

m=−∞

x(m)z−mL

=X(zL).

(4.2.3)

The upper portion, (a), of Figure 4.2 shows a sine wave which was sampled
at 48 kHz. The upsampled version where zeros have been place between sub-
sequent samples is shown in the lower portion, (b), of Figure 4.2. By placing
three zero valued samples between each original sample, the sample rate is
effectively quadrupled.

Figure 4.2: Sine wave before and after upsampling

CHAPTER 4. INTERPOLATION 21

This may seem as though it is the ideal method for achieving any sample
rate required. The problem however is evident when viewing the spectral
content of the newly upsampled waveform. Figure 4.3 shows the frequency
components of Figure 4.2. Aliasing becomes apparent due to the spectral
replicas which were originally centred at the sampling frequency, fs, and its
multiples (Tan, 2008). Due to upsampling, the replicas now sit within the
newly increased bandwidth.

Figure 4.3: 1 kHz sine wave spectrum before and after upsampling

Crochiere & Rabiner (1981) further showed that in order to recover the
baseband signal and terminate the unwanted replicas it becomes necessary to
filter the signal w(m) with a low-pass filter. Placing the filter in series with
the upsampler as shown in Figure 4.4 is necessary. The filter needs to be as

CHAPTER 4. INTERPOLATION 22

close as it can be to the ideal characteristic of

H(ejω
′
) =

G, |ω′| ≤
2πfsT ′s

2
= π

L

0, otherwise
(4.2.4)

Figure 4.4: Upsampler with low-pass filter

In order for the amplitudes of x(n) and y(m) to match, the gain of the
filter G needs to be L in the audio band (Crochiere & Rabiner, 1981). The
low-pass filter should have a stop frequency edge of fs/2 (Tan, 2008).

4.3 Finite impulse response interpolation filter

Finite Impulse Response (FIR) as well as Infinite Impulse Response (IIR)
filters are the two main categories of filters used for most DSP applications.
FIR filters use convolution while IIR filters utilise recursion in their operation.
Filters which use convolution outperform those that use recursion, yet they
execute at a much slower rate (Antoniou, 2006).

The differences between FIR and IIR filters which were highlighted by
Chitode (2009) are detailed in Table 4.1. The FIR filter has an important
advantage over the IIR filter, that being a linear phase response in the passband
(Jacobs, 2006). It is due to this characteristic that it was the filter type chosen.

Certain specifications need to be determined when filtering an upsampled
signal. The passband and stopband need to be chosen so that they agree with
the limits of the audio band. The ripple of the filter needs to be specified for
how flat the frequency response is in the audio band. Other important consid-
erations are that of the final sampling frequency and the aliasing attenuation.
The filter specifications chosen are shown in Table 4.2. The original sampling
frequency was 48 kHz which was then upsampled to 192 kHz.

Matlab® was used to design the filter. When the design specifications were
placed into Matlab® ’s Filter Design and Analysis Tool, a filter length of 334

CHAPTER 4. INTERPOLATION 23

Table 4.1: Comparison of FIR and IIR filters

Parameter FIR IIR
Recursive/Non-
recursive

Do not use feedback Use feedback hence they
are recursive

Phase Linear phase response Nonlinear phase response
Stability Inherently stable Need to be designed for sta-

bility
Number of multiplica-
tions

More Less

Complexity of imple-
mentation

Less More

Required memory More Less
Order of filter for sim-
ilar specifications

High Low

Design procedure Less complicated Complicated
Applications Used where linear

phase is essential
Used where sharp cutoff
characteristics with mini-
mum coefficients are re-
quired

Table 4.2: FIR filter specifications

Passband 20 kHz
Stopband 24 kHz

Passband ripple 0.001 dB
Stopband attenuation 144 dB

Filter sampling frequency 192 kHz

points was generated. The magnitude response of the FIR filter is shown in
Figure 4.5. It can be clearly seen that the images above 24 kHz have been
attenuated.

Viewing the phase response of the FIR shown in Figure 4.5 confirms the
linear nature which it should have. Note that the phase response is only linear
in the passband. The upsampled waveform shown in Figure 4.2 was then
applied to the filter. The resulting spectral contents are shown in Figure 4.6.

CHAPTER 4. INTERPOLATION 24

0 10 20 30 40 50 60 70 80 90
160

140

120

100

80

60

40

20

0

Frequency (kHz)

M
ag

ni
tu

de
 (d

B)

Magnitude (dB) and Phase Responses

7649.0301

6684.463

5719.8959

4755.3289

3790.7618

2826.1947

1861.6277

897.0606

67.5065

Ph
as

e
(d

eg
re

es
)

Filter #1: Magnitude
Filter #1: Phase

Figure 4.5: FIR filter magnitude and phase response

Figure 4.6: 1 kHz sine wave spectrum before and after being filtered

CHAPTER 4. INTERPOLATION 25

4.4 Polyphase interpolation filter

Due to the characteristics of the interpolation process, the polyphase filter
structure can be used to efficiently implement the interpolation filter. It uses
fewer multiplications and additions to complete the same task as that of a
regular FIR described in Section 4.3 (Tan, 2008).

Figure 4.7: Direct interpolation filter

It is an all pass filter with different phase shifts, hence the name polyphase
filter. Figure 4.7 shows an interpolation process where L = 2. Assuming that
the FIR filter has four filter coefficients, shown as

H(z) = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3. (4.4.1)

The output of the filter would then be

y(m) = h(0)w(m) + h(1)w(m− 1) + h(2)w(m− 2) + h(3)w(m− 3). (4.4.2)

Tan (2008) showed that with the configuration in Figure 4.7 that eight
multiplications and six additions would be required. Table 4.3 shows the results
of the direct interpolation of Figure 4.7, where w(m) is the upsampled signal
and y(m) is the interpolated output.

Table 4.3: Result of the direct interpolation process

n x (n) m w(m) y(m)
n = 0 x (0) m = 0 w(0) = x (0) y(0) = h(0)x (0)

m = 1 w(1) = 0 y(1) = h(1)x (0)
n = 1 x (1) m = 2 w(2) = x (0) y(0) = h(0)x (1)+h(2)x (0)

m = 3 w(3) = 0 y(0) = h(1)x (1)+h(3)x (0)
n = 2 x (2) m = 4 w(4) = x (0) y(0) = h(0)x (2)+h(2)x (1)

m = 5 w(5) = 0 y(5) = h(1)x (2)+h(3)x (1)
...

CHAPTER 4. INTERPOLATION 26

The same results shown in Table 4.3 can be calculated using a polyphase
structure. The benefit would be that only four multiplications and four ad-
ditions are required. The polyphase structure for this example is shown in
Figure 4.8.

Figure 4.8: Polyphase filter implementation adapted from Tan (2008)

The original FIR filter is split up into L polyphase filters. This characteris-
tic eliminates the need to add zeros between samples (Jacobs, 2006). Once the
original filter has been designed containing N coefficients, Tan (2008:pg. 584)
showed that the coefficients for the sub filters can be determined according to

ρk(n) = h(k + nL) for k = 0, 1, ..., L− 1 and n = 0, 1, ...,
N

L
− 1. (4.4.3)

The computational cost can be reduced by a factor of L when compared
against the direct interpolation method shown previously. Figure 4.9 shows
the commutative model for the polyphase filter. The sample rate increase and
delays are replaced by a commutator which alternates between the different
branches at a rate of Lfs.

Figure 4.9: Commutative model for the polyphase interpolation filter adapted from
Tan (2008)

This is where the efficiency of the polyphase filter becomes apparent. The
filtering is performed at the original sampling rate of fs which is much lower

CHAPTER 4. INTERPOLATION 27

than Lfs (Jacobs, 2006). Direct FIR interpolation requires the sample rate of
the filtering to be at the higher sample rate of Lfs.

The impulse response of the original FIR filter is shown in Figure 4.10 while
the impulse responses of the two polyphase filters is shown in Figure 4.11 and
Figure 4.12.

Figure 4.10: Impulse response of the original FIR filter

CHAPTER 4. INTERPOLATION 28

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (ms)

Impulse Response

Am
pl

itu
de

Figure 4.11: Impulse response of the first polyphase filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (ms)

Impulse Response

Am
pl

itu
de

Figure 4.12: Impulse response of the second polyphase filter

CHAPTER 4. INTERPOLATION 29

4.5 Cascaded integrator comb filter

Hogenauer (1981) developed the Cascaded Integrator Comb (CIC) filter for
multi-rate processing. It is a digital linear phase FIR filter specifically aimed at
decimation and interpolation as it has a low-pass characteristic. The primary
benefits of using this filter type are:

• No multipliers are required,

• no filter coefficients need to be stored in memory,

• the structure is very consistent and made up of only two building blocks,

• no complicated timing is required and

• the same filter can be used for many different sample rate change ratios
with minimal adjustments required.

There are however limiting factors when using this filter type, they include:

• Register word lengths can become large for large sample rate changes.
The register word length increases exponentially for each additional stage
added to the filter.

• The filter’s characteristics and frequency response is limited due to being
influenced by only three parameters, the sample rate change ratio, L, the
differential delay, M , and the number of integrator-comb pairs, N .

The advantages and disadvantages make this filter ideal for systems requir-
ing large rate changes while utilising minimal resources.

The filter consists of integrator-comb pairs which produce a consistent FIR.
When interpolation is required, the integrators operate at the new desired
sample rate, while the comb section operates at the slower original sample rate.
This is another benefit of the filter as half the processing is conducted using
a slower clock. The number of integrator-comb pairs is chosen in accordance
with the requirements for image attenuation.

The interpolating CIC filter structure is shown in Figure 4.13.

CHAPTER 4. INTERPOLATION 30

Figure 4.13: CIC filter block diagram adapted from Hogenauer (1981)

The transfer function for each integrator which operates at a sampling rate
of Lfs, where L is the oversampling ratio, is

HI(z) =
1

1− z−1
. (4.5.1)

The comb section operates at the original sampling rate of fs. The differ-
ential delay, M , is a design parameter used to control the frequency response
of the filter. The transfer function for each comb section is

HC(z) = 1− z−LM . (4.5.2)

The rate change occurs by placing L − 1 zero value samples between the
original data samples coming out of the comb section. Combining Equations
4.5.1 and 4.5.2 yields a transfer function for the CIC filter of

H(z) = HN
I (z)HN

C (z) =
(1− z−LM)N

(1− z−1)N
=

[LM−1∑
k=0

z−k
]N
. (4.5.3)

When designing a CIC interpolator, attention needs to be paid to the
bit growth of the filter sections. The introduction of a small error into the
integrator stages, resulting from rounding, would cause the error difference
to increase until the filter becomes unstable. Therefore the maximum word
length for each stage needs to be known and accommodated for. Both Frerking
(1994) and Hogenauer (1981) mentioned the importance of not truncating the
word lengths within the integrator stages.

CHAPTER 4. INTERPOLATION 31

The maximum word length increase up to the jth stage can be shown to be

Gj =

2j j = 1, 2, · · · , N
22N−j(LM)j−N

L
j = N + 1, · · · , 2N

(4.5.4)

The minimum word length required, based on the growth Gj, where Bin is
the input word length, is

Wj = Bin + log2Gj. (4.5.5)

Truncation can only be employed after the last integrator stage. This be-
comes the only error introduced. The number of LSBs which can be discarded,
where Bout is the output word length, is

BT = W2N −Bout. (4.5.6)

Matlab® provides a filter design tool to help with creating a CIC filter.
Even though the basic building blocks will always remain the same, the amount
of stages required is easily determined when using the filter design tool. As
an example, the following characteristics can be specified and designed in
Matlab®:

• Differential delay = 1,

• interpolation ratio = 16,

• pass band frequency = 22 kHz,

• desired sampling rate = 3.072 MHz and

• the aliasing attenuation = 60 dB.

The resulting filter has four sections with a magnitude response shown
in Figure 4.14. This filter will upsample a 192 kHz waveform to 3.072 MHz
using only a minimal amount of resources. It is evident from Figure 4.14 that
truncation of the output is necessary as the gain of the filter is very large.

CHAPTER 4. INTERPOLATION 32

0 0.5 1 1.5

20

0

20

40

60

80

100

Frequency (MHz)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

Figure 4.14: CIC filter magnitude response

4.5.1 CIC compensation filter

An unfortunate characteristic of the CIC filter is its non-flat frequency re-
sponse. There is a way to obtain the benefits gained from using a CIC filter
while still maintaining a good frequency response. Cascading a conventional
FIR filter in conjunction with the CIC filter allows for the frequency response
to be modified to compensate for imperfections. Figure 4.15 shows the config-
uration which would achieve this.

Figure 4.15: CIC compensation filter block diagram

Matlab® can again be used to design the compensation filter as it has
specific functionality for this purpose. By entering the number of stages which
the CIC filter requires, the filter design tool will generate an FIR filter to help
counteract the habitual CIC shape. Figure 4.16 shows the magnitude response
of such a filter.

When both filters are cascaded, as shown in Figure 4.15, the magnitude
response becomes that shown in Figure 4.17. The cutoff is now much sharper.

CHAPTER 4. INTERPOLATION 33

0 10 20 30 40 50 60 70 80 90
70

60

50

40

30

20

10

0

Frequency (kHz)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

Figure 4.16: CIC compensator filter magnitude response

0 0.5 1 1.5
40

20

0

20

40

60

80

100

Frequency (MHz)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

Figure 4.17: Magnitude response of a CIC filter cascaded with a CIC compensator

Depending on the FIR filter used, a better response could be achieved. If
resources are vital, which would be the reason for not using a FIR filter in
the first place, a half-band FIR filter could be employed. Half-band filters
have every second coefficient reduced to zero, making them computationally
inexpensive (Lutovac et al., 2001). The performance of a normal FIR filter is
achieved while only paying the computational price of half the multiplications.

CHAPTER 4. INTERPOLATION 34

Lutovac et al. (2001) further mentioned that a limiting factor when using
the half-band filter is that the frequency symmetry condition must be met,
which is

fstopband =
1

2
− fpassband. (4.5.7)

This means that the design boundaries are constrained. The transition
region is centred at a quarter of the sampling rate.

4.6 Polynomial interpolation

This method of interpolation involves constructing a curve through a specific
set of data points. Trefethen (2000), Cohen et al. (2001), Stetter (2004),
Kiusalaas (2005), Goyal (2007), Lyons (2007) and Butt (2008) have presented
polynomial interpolation using many different methods.

Constructing a polynomial of degree n−1 which will pass through n distinct
data points is always possible (Kiusalaas, 2005). The concept is that the
polynomial would follow the natural path that a continuous signal would follow
through the data points.

If constructed correctly, any new data point could be found along the poly-
nomial, thereby generating as much new data as is required. This idea is
illustrated in Figure 4.18 where a fifth order polynomial is constructed passing
through six data points. The methods for approximating the polynomial and
generating new data from it vary. The Lagrange method as well as Neville’s
formula and Newton’s interpolation formula are presented in the following
sections.

4.6.1 Lagrange interpolation

Given the data points x0, x1...xn where f(x0), f(x1)...f(xn) are their corre-
sponding magnitudes, the point located at x can be found through an uncom-
plicated calculation. Goyal (2007) derived Lagrange’s interpolation formula to

CHAPTER 4. INTERPOLATION 35

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
4

2

0

2

4

6

8

Samples

M
ag

ni
tu

de

Curve fitted to data points

Figure 4.18: Curve constructed from discrete data points

be

f(x) =
(x− x1)(x− x2)...(x− xn)

(x0 − x1)(x0 − x2)...(x0 − xn)
f(x0)

+
(x− x0)(x− x2)...(x− xn)

(x1 − x0)(x1 − x2)
f(x1)

+ ...+
(x− x0)(x− x1)...(x− xn−1)

(xn − x0)(xn − x1)...(xn − xn−1)
f(xn).

(4.6.1)

Lyons (2007) showed that the Lagrange formula could also be represented
as

f(x) =
n∑
i=0

f(xi)
n∏

j=0,j 6=i

x− xj
xi − xj

. (4.6.2)

Lagrange’s method is simple in theory, yet it is not an efficient algorithm.
For each new data point required, a substantial amount of calculation is re-
quired. When implemented on embedded hardware the amount of multipliers
and time required would be unacceptable. This method is accurate and would
be a good choice if only one new data sample was needed.

CHAPTER 4. INTERPOLATION 36

4.6.2 Newton’s interpolation formula

This method of interpolation gains efficiency by calculating the polynomial
coefficients and new data values in two separate calculation steps. This means
that once the coefficients have been calculated, there can be any number of
new data points generated without recalculating the coefficients.

In order to calculate the coefficients for the polynomial, a divided differ-
ences method can be employed. Determining the values of a divided differences
table can be completed by using the formula

∆nfi =fi+n − nfi+n−1 +
n(n− 1)

2!
fi+n−2 −

n(n− 1)(n− 2)

3!
fi+n−3

+ ...+ (−1)nfi.

(4.6.3)

Creating a divided differences table helps to calculate and collate the co-
efficients. Table 4.4 shows how to set out a divided differences table when
calculating a 2nd order polynomial.

Table 4.4: 2nd order polynomial divided differences

x f(x) ∆f(x) ∆2f(x)

x0 y0

y1−y0
x1−x0

x1 y1
∆f0−∆f1
x2−x0

y2−y1
x2−x1

x2 y2

From Table 4.4 the coefficients are taken as the top value of each row, except
the first row which contains the data position. Therefore the coefficients for a
2nd order polynomial would become

a0 = y0

a1 = y1−y0
x1−x0

a3 = ∆f0−∆f1
x2−x0

CHAPTER 4. INTERPOLATION 37

Once the coefficients have been calculated then any new data point can be
generated. When n-data points are used, an n−1 order polynomial is possible.
The equation used to determine a desired value at point x is

f(x) =a0 + (x− x0)a1 + (x− x0)(x− x1)a2

+ ...+ (x− x0)(x− x1)...(x− xn−1)an.
(4.6.4)

This equation may appear to be just as computationally expensive as the
Lagrange method, yet it is possible to pre-calculate most of the equation offline
and store it in a lookup table. If the same amount of new data values at the
same points need to be generated each time the coefficients are updated then
Equation 4.6.4 can be simplified to

f(x) = a0 + v1a1 + v2a2 + ...+ vnan. (4.6.5)

Equation 4.6.5 drastically reduces the amount of multipliers required for
each iteration. The values of v1...vn would be the information stored in a
lookup table.

4.6.3 Neville’s formula

Neville’s formula is based on a similar principle to Newton’s interpolation for-
mula (Kiusalaas, 2005). It forms a triangular shaped set of results, appearing
similar to that of a divided differences table. The formula is recursive and each
iteration fits a polynomial of a degree higher than the previous iteration. The
number of iterations relates to the order of the polynomial required.

If Pk[xj, xj+1, ..., xj+k] represents a polynomial of degree k that passes
through k+ 1 data points. Then the general recursive formula as presented by
Kiusalaas (2005) is

Pk[xi, xi+1, ..., xi+k]

=
(x− xi+k)Pk−1[xi, xi+1, ..., xi+k−1] + (xi − x)Pk−1[xi+1, xi+2, ..., xi+k]

xi − xi+k
.

(4.6.6)

When searching for the value of x, the calculations can be conducted using
a table as shown in Table 4.5.

CHAPTER 4. INTERPOLATION 38

Table 4.5: 2nd order polynomial using Neville’s algorithm

k=0 k=1 k=2
x0 P0[x0] = y0

P1[x0, x1]
x1 P0[x1] = y1 P2[x0, x1, x2]

P1[x1, x2]
x2 P0[x2] = y2

This process results in generating P2[x0, x1, x2], which is the desired value
at point x.

4.6.4 Polynomial interpolation limitations

It is best to carry out the polynomial calculation using the least amount of
data points possible. There do however need to be enough points used in order
to achieve an accurate representation. Three to six data points provide the
most stable result (Kiusalaas, 2005). The instability which can result from too
many data points being employed is shown in Figure 4.19. The error occurred
at the beginning and at the end of the polynomial calculation.

1 2 3 4 5 6 7 8 9 10 11
15

10

5

0

5

10

Samples

M
ag

ni
tu

de

Curve fitted to data points

Figure 4.19: Unstable curve constructed from 11 data points

CHAPTER 4. INTERPOLATION 39

4.7 Conclusion

Directly upsampling a signal to a higher rate was shown to be possible. The
resulting waveform was however unacceptable as aliasing occurred in the base-
band spectrum. Adding an anti-imaging filter in conjunction with the upsam-
pler proved to be an effective solution. The FIR filter is however resource
hungry and once higher oversampling ratios are required, its applicability be-
comes questionable.

The polyphase structure did help with reducing the required resources nec-
essary for implementation and would be the only practical choice when imple-
menting a large FIR filter on embedded hardware.

When minimal resources are available, the CIC filter proved to be a very
valuable method for increasing the sample rate, especially by large amounts.
There are undesirable characteristics of the CIC filter which need to be ac-
cepted, it has a very gentle roll-off and the gain is very large. Incorporating
an additional FIR filter to compensate for the edgeless cutoff was shown to be
possible.

Many different methods for polynomial interpolation are available. The La-
grange method, while easier to implement, is not very useful when many new
data samples need to be generated successively. The method which showed
itself to offer the most benefit for this particular project was Newton’s interpo-
lation formula. The calculation of the coefficients is not very complicated and
once the coefficients are available, any number of data points can be quickly
generated using only a few multiplications and additions.

Interpolation is a useful tool which can be used to increase the amount
of samples available. The increase in samples allows for an increase in the
sample rate which then leads to a larger frequency bandwidth. With a larger
bandwidth there is more freedom to utilise the available frequencies above the
audio band. Noise shaping, which is presented in Chapter 5, utilises the unused
bandwidth which the interpolation scheme makes available.

Chapter 5

Noise shaping

This chapter presents the concept of noise shaping and its use in signal process-
ing. The benefits gained from using it in combination with a PWM amplifier
are explained. Examples are given showing how it improves the performance
of a pulse width modulator.

5.1 Introduction

Chapter 4 introduced oversampling and interpolation which can be used to
increase the bandwidth from the original smaller audio band. This allows for
the use of techniques which reduce the in-band quantisation noise by moving
it out of the audio band and up to higher frequencies. It is possible to do
this as there are no useful frequency components outside of the audio band
(Hawksford, 1989b). This technique is referred to as noise shaping.

By reducing the noise power present in the audio band, it is possible to
achieve high-resolution audio while still utilising a modest bit rate for the
modulator. The resolution of each data sample is reduced and the objective
is to locate the extra quantisation noise in the superfluous space created by
oversampling, yet at the same time maintaining a minimal amount of distortion
in the baseband (Hawksford, 1989b). The noise shaping characteristic is that
of a high-pass filter. The difference between using noise shaping and not is
shown in Figure 5.1. The solid line clearly illustrates the high-pass shape,
while the dashed line shows the noise power without noise shaping.

Noise shaping does not eliminate noise from the system, it merely moves
it around. It actually increases the overall noise power at higher frequencies

40

CHAPTER 5. NOISE SHAPING 41

when used in an audio application (Kozak & Kale, 2003). The final result is
always beneficial as the low pass filter of a class-D power stage attenuates the
high frequency components.

Figure 5.1: Shaped and unshaped noise adapted from Craven (1993)

It was shown by Hawksford (1989b) and Logan & Hawksford (1994) that
the usual method for obtaining noise shaping is to enclose the pulse width
modulator within a local recursive loop. Negative feedback has a distortion
shaping characteristic which is then used. Therefore it is possible to use a
low resolution signal instead of a high resolution one if the design can operate
effectively once oversampled. There can be a trade off between sampling rate
and resolution. The higher the sample rate, the lower the resolution. The
quantiser can be reduced down to 1-bit, as is the case for delta-sigma (∆Σ)
data converters, which use very high sample rates.

5.2 General noise shaping

Shown in Figure 5.2 is a typical noise shaper configuration. It is an entirely
digital system where a high resolution input of b-bits is truncated to b′-bits.
The quantisation error is added when the least significant bits are removed
(Goldberg & Sandler, 1991a). The number of bits removed relates to the
resolution of the PWM process. The quantisation error is filtered by H(z) and
through negative feedback is subtracted from the input.

CHAPTER 5. NOISE SHAPING 42

Figure 5.2: Noise shaper configuration adapted from Goldberg & Sandler (1991a)

Goldberg & Sandler (1991a) provided an analysis of the noise shaper con-
figuration shown in Figure 5.2. x[n] is the high resolution input and y[n] is
the coarsely quantised output. The error at the output is represented as ens[n]

which is the noise shaped error. The error which is generated by the quantisa-
tion is represented as eq[n]. The z-transforms for these components are X(z),
Y (z), Ens(z) and Eq(z) respectively.

If the quantiser is modelled as an additive noise source the output then
becomes

y[n] = x[n] + ens[n]. (5.2.1)

The quantisation error can be represented in the z-domain as

Eq(z) = X(z) + Eq(z)H(z)− [X(z) + Ens(z)]. (5.2.2)

The noise transfer function (NTF) can then be constructed as being

NTF (z) =
Ens(z)

Eq(z)
= H(z)− 1. (5.2.3)

Tewksbury & Hallock (1978) found that the optimum form for an over-
sampled noise shaping filter is

H(z) = (1− z−1)N , (5.2.4)

where N is the order of the filter.
Shown in Figure 5.3 are the magnitude responses when different orders

of Equation 5.2.4 are used. The filter is sampled at 384 kHz, fs, which is
the same as the PWM switching frequency. Jacobs (2006) explained that the
magnitude of the transfer function shown in Figure 5.3 will always cut the

CHAPTER 5. NOISE SHAPING 43

0 dB point at fs/6. Therefore a reduction of the quantisation error is only
achieved at frequencies less than fs/6.

2 4 6 8 10 12 14 16 18

x 104

300

250

200

150

100

50

0

50

M
ag

ni
tu

de
 (d

B)

Noise shaper transfer functions for different orders

Frequency (Hz)

10th Order

1st Order

Figure 5.3: Noise shaping filter when calculated for different orders adapted from
Hawksford (1989a) and Jacobs (2006)

In order to evaluate the noise shaping function of the configuration first
shown in Figure 5.2, filter coefficients need to be determined. Equation 5.2.4
is used as the basis for this procedure. Section A.1 in the Appendices details
the calculations needed to find the coefficients for the filter. The coefficients
were calculated for filter orders of one to five.

CHAPTER 5. NOISE SHAPING 44

The resulting coefficients for a fifth order filter are

a0 = −1

a1 = 5

a3 = −10

a4 = 10

a5 = −5

a6 = 1

(5.2.5)

0 20 40 60 80 100 120 140 160 180

80

60

40

20

0

20

40

Frequency (kHz)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

Figure 5.4: Magnitude response of a fifth order filter using calculated coefficients

Once the coefficients have been determined then the system can be simu-
lated using Matlab®’s Simulink tool. Figure 5.5 shows the Simulink configu-
ration for testing the noise shaper.

Putzeys (2006) explained that this method of noise shaping would not be
flawless. The output sampling is signal dependent while the input is sampled
at consistent intervals. This results in phase-modulating a signal with itself,

CHAPTER 5. NOISE SHAPING 45

Figure 5.5: Noise shaper Simulink model

which results in distortion in the audio band due to noise folding back into
the audio band. High order noise shaping with this configuration can actually
increase distortion more than reduce it in the baseband.

5.2.1 Improvement through preprocessing

Goldberg & Sandler (1991b) presented a pre-modulation technique which could
eliminate all audio-band distortion. The technique was dubbed pseudo natural
pulse width modulation (PNPWM). The concept is to achieve the performance
attained when using natural PWM while still using a sampled UPWM. The
low-frequency distortion is corrected for by estimating how a continuous time
equivalent would respond in the same situation (Putzeys, 2006)

The cross-point where a naturally sampled carrier waveform would intersect
with a reference waveform is calculated. Evenly spaced samples are taken and
then an n-th order polynomial is fitted through the points. The comparison
is made between the n-th order polynomial and a first order linear equation
which represents a sawtooth waveform (Jacobs, 2006). Goldberg & Sandler
(1991b) used the Newton-Raphson method for the approximation.

Stability can become an issue as the demodulation of shaped noise is not
corrected for by this scheme (Putzeys, 2006). This results in the design of the
noise transfer function to be a very intricate process to avoid instability.

5.3 Digital noise shaping loop filter

The loop filter, sometimes referred to as a compensator, is a useful tool when
high performance is required from a low resolution modulator. This is the
trademark of a noise shaper and is therefore fitting for this application.

CHAPTER 5. NOISE SHAPING 46

5.3.1 Compensator

The term compensator is often used in control theory (Wescott, 2006:pg. 125).
It refers to an element of the control system that corrects an element of the
plant’s behaviour, in the case of this project the plant would be the pulse
width modulator.

Cascade compensation is a very common control system topology. Figure
5.6 shows cascade compensation where the error signal is found and the control
signal is created entirely from the error signal. H is the compensator and G
is the plant.

Figure 5.6: Cascade compensation adapted from Wescott (2006)

The system transfer function for this configuration is

Hs =
HG

1 +HG
. (5.3.1)

Feedforward compensation operates slightly different to cascade compensa-
tion. The reference signal is combined through a filter with the control signal
without being affected by the feedback. This can increase a system’s tran-
sient response without affecting its stability. Figure 5.7 shows the feedforward
configuration.

Figure 5.7: Feedforward compensation adapted from Wescott (2006)

CHAPTER 5. NOISE SHAPING 47

The system transfer function for this configuration is

Hs =
(H1 +H2)G

1 +H1G
. (5.3.2)

Feedback compensation modifies the plant output before it is compared
to the control signal. Figure 5.8 shows this design. This reason why this
topology would be implemented is to modify a property of the system which
is not actually being measured directly. Wescott (2006) gave an example of
measuring the position of a system and then controlling velocity.

Figure 5.8: Feedback compensation adapted from Wescott (2006)

The transfer function of this system configuration is

Hs =
H1G

1 +H1H2G
. (5.3.3)

5.3.2 Loop filter

Making use of a digital loop filter helps to combat the problems associated with
a classically configured noise shaper. The performance which can be obtained
when using a loop filter is agreeable when trying to reproduce high resolution
audio.

In order to suppress noise and distortion, the elementary pulse width mod-
ulator can be embedded into a feedback loop with a loop filter which provides
high loop gain in the audio-band. The high gain in the audio-band results in
high error suppression (Risbo, 2005). It also typically has a less than unity
gain at the switching frequency (Mouton & Putzeys, 2009).

The implementation of this filter configuration is easily realisable as long as
the design of the filter coefficients is effectuated with care. Stability is however
much easier to achieve than when designing a classic noise shaper as discussed
in Section 5.2.

CHAPTER 5. NOISE SHAPING 48

5.3.3 Loop filter design

The loop filter can be designed using Matlab®’s SISOTOOL component.
SISOTOOL stands for single-in single-out tool and is part of the control sys-
tems toolbox of Matlab®. It enables the user to design a filter with the under-
standing that the filter will be used in some kind of a loop, such as a negative
feedback loop. The SISOTOOL filter designer verifies whether a particular
filter design will be stable or not.

The first part of the design is to achieve the large gain required throughout
the audio band. This can be fulfilled by placing a pole at zero Hz (DC). The
gain can then be adjusted within SISOTOOL to the desired level. Choosing
a value of 100 dB at DC was shown to provide the necessary amount of gain
(Mouton & Putzeys, 2009). Shown in Figure 5.9 is the bode plot of a single
pole placed at DC.

101 102 103 104 105 106
20

0

20

40

60

80

100

G.M.: Inf
Freq: NaN
Stable loop

Open loop bode plot for a first order loop filter

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

Figure 5.9: Open loop bode plot for a first order filter

The pole causes a downward sloping function which crosses the 0 dB point
at 100 kHz. This ensures stability as it is sufficiently lower than the PWM
switching frequency which is chosen as 384 kHz. The sampling frequency was
chosen as 49.152 MHz which is a multiple of 384 kHz. In order for the function

CHAPTER 5. NOISE SHAPING 49

to cross the 0 dB point at the correct frequency, the gain had to be adjusted
from 100 dB to 80 dB. This configuration is not ideal as the gain in the audio
band drops off very quickly.

Mouton & Putzeys (2009) and Schreier & Temes (2005:pg. 101) showed
that the sharp slope which is shown in Figure 5.9 can be flattened out in the
audio band by placing a complex pole pair at a higher frequency. An associated
zero pair is required to stabilise the system once the pole pair is introduced.
Figure 5.10 shows the bode plot of such a system. This is referred to as a
third order system due to the single pole at DC and then the complex pole
pair which have been placed on the unit circle at 6.3 kHz. The accompanying
complex zero pair was placed at 54.818 kHz with a damping ratio of 0.993.

101 102 103 104 105 106

40

20

0

20

40

60

80

100

120

G.M.: 6.21 dB
Freq: 5.5e+04 Hz
Stable loop

Open loop bode plot for a third order loop filter

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

Figure 5.10: Open loop bode plot of a third order filter

The shape of the filter can be further improved by adding another pole
pair and their corresponding zeros. This would then make the system a fifth
order loop filter. Figure 5.11 shows the resulting bode plot when pole pairs
are placed at 7.5 kHz and 16 kHz. Their corresponding zeros were placed at
30 kHz and 40 kHz, both with a damping ratio of 0.707. As can be seen in
Figure 5.10 and Figure 5.11 the gain can be further increased as the order of

CHAPTER 5. NOISE SHAPING 50

the filter increases, there is however a limit of how much gain can be applied
before saturation of the modulator occurs.

101 102 103 104 105 106
50

0

50

100

150

G.M.: 4.24 dB
Freq: 6.79e+04 Hz
Stable loop

Open loop bode plot for a fifth order loop filter

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

Figure 5.11: Open loop bode plot of a fifth order filter

In order to view what effect the filter has on noise in the system, the Noise
Transfer Function (NTF) of the filter can be plotted. In this case it is defined
as

NTF =
1

1 +H(z)
. (5.3.4)

Quantisation noise in the audio band is suppressed due to the high gain in
the audio band which was specified in the design of the filter.

Figure 5.12 and Figure 5.13 show bode plots for the NTF of the loop filters
previously depicted in Figure 5.10 and Figure 5.11 respectively.

CHAPTER 5. NOISE SHAPING 51

Figure 5.12: NTF bode plot of a third order filter

Figure 5.13: NTF bode plot of a fifth order filter

CHAPTER 5. NOISE SHAPING 52

5.3.4 Loop filter verification

Matlab®’s Simulink tool provides a good platform for testing the loop filter.
The entire system with pulse width modulation and feedback can be imple-
mented. The evaluation was performed using an upsampled sine wave input
at 10 kHz. The sine wave was selected to have a sample rate of 12.288 MHz
as the interpolation is assumed to have been performed by the time the input
signal reaches the noise shaping section. The amplitude of the sine wave was
chosen as 0.9 of full scale.

In order for a comparison to be made, the results of using a pulse width
modulator without feedback and a loop filter need to be known. Figure 5.14
shows the Simulink model for a basic pulse width modulator.

The sawtooth carrier is generated by using a 7-bit counter which is scaled so
that its output goes from −1 to +1. The output of the pulse width modulator
is also scaled to give a −1 and +1 output amplitude, which is relevant when
feedback is employed. The scaling is important to keep all the signals within
the same operating boundaries. Figure 5.15 shows the spectral content of
the resulting PWM waveform from Figure 5.14. The switching frequency can
be clearly seen at 384 kHz, along with its sideband harmonics spaced at 10
kHz apart, due to the fundamental 10 kHz input signal. Figure 5.16 shows a
zoomed view of Figure 5.15, focus is towards the audio band.

The first order loop filter can now be added with negative feedback to
evaluate the system’s performance. Figure 5.17 shows the Simulink model for
the pulse width modulator with a first order loop filter. The spectral content
of the resulting PWM waveform is shown in Figure 5.18. The zoomed view of
Figure 5.18 is shown in Figure 5.19. There is still a large amount of harmonics
in the audio band due to the filter’s sharp roll-off which does not provide
enough gain throughout the audio band.

When testing the higher order filters, the same Simulink configuration can
be used as with the first order filter. Figures 5.20 and 5.21 show the spectral
contents of the PWM output when a third and fifth order loop filter is used,
respectively while Figures 5.22 and 5.23 show their zoomed versions.

C
H

A
P

T
E

R
5.

N
O

ISE
SH

A
P

IN
G

53

Figure 5.14: Simulink model for a pulse width modulator

CHAPTER 5. NOISE SHAPING 54

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.15: Spectral content of a 7-bit PWM waveform

0 0.5 1 1.5 2 2.5

x 10
4

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.16: Zoomed view of the audio band of Figure 5.15

C
H

A
P

T
E

R
5.

N
O

ISE
SH

A
P

IN
G

55

Figure 5.17: Simulink model for a pulse width modulator and loop filter

CHAPTER 5. NOISE SHAPING 56

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.18: Spectral content of a 7-bit PWM waveform with a first order filter

0 0.5 1 1.5 2 2.5

x 10
4

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.19: Zoomed view of the audio band of Figure 5.18

CHAPTER 5. NOISE SHAPING 57

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.20: Spectral content of a 7-bit PWM waveform with a third order loop
filter

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.21: Spectral content of a 7-bit PWM waveform with a fifth order loop
filter

CHAPTER 5. NOISE SHAPING 58

0 0.5 1 1.5 2 2.5

x 10
4

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.22: Zoomed view of the audio band of Figure 5.20

0 0.5 1 1.5 2 2.5

x 10
4

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.23: Zoomed view of the audio band of Figure 5.21

CHAPTER 5. NOISE SHAPING 59

When viewing the spectral content in the audio band, it is clear that in-
creasing the order of the loop filter decreases the noise floor. The trend of the
noise floor dropping as the filter order is increased cannot continue indefinitely.
The noise rejection did not improve significantly more when a seventh order
filter was utilised. Employing a higher order filter would not be as beneficial
due to the amount of system resources required to do so.

The use of a loop filter is however not perfect as there is noise being folded
back into the audio band. This can be observed in Figure 5.22 and Figure 5.23
where there is an anomalous spike at 20 kHz. It had been previously thought
that such results are to be expected as the result in a real life situation is
never perfect and numerical errors in simulations can be the cause (Neesgaard
& Risbo, 2006). There is however distortion present and it can be attributed
to the high frequency components of the PWM signal being fed back to the
comparator of the pulse width modulator, this is the ripple signal.

This undesirable situation can be remedied by including a ripple compen-
sation scheme. Risbo (2005) explained that ripple instability occurs when a
race-around condition becomes active in the system. The comparator of the
pulse width modulator prematurely reverts to its previous state due to the
ripple feedback pulling the input of the comparator past the zero point. The
feedback causes a non linearity of the PWM operation due to the high fre-
quency carrier components being aliased (Mouton & Putzeys, 2009). This
eventually leads to distortion of the output signal. The system uses negative
feedback to reduce the distortion, yet intrinsically produces its own distortion
in the process (Candy & Cox, 2004).

It could be thought that the quick solution would be to increase the loop
gain to counteract the aliasing distortion. This would however be void as the
increased closed-loop error suppression would be cancelled in the audio band
due to the proportionally scaled open-loop distortion (Neesgaard & Risbo,
2006).

The next solution could be to add additional high frequency poles or zeros
to the loop filter design. This would commonly just result in more distortion
or an unstable system (Neesgaard & Risbo, 2006).

CHAPTER 5. NOISE SHAPING 60

5.4 Ripple compensation

Neesgaard & Risbo (2006) presented a thorough investigation of the distortion
which is caused by ripple feedback. There were two parts of the distortion
which were identified. The first is that the PWM signal gets phase modulated
by a nonlinear function of the signal itself. The harmonic distortion caused
by phase modulation will be caused by odd harmonics only, due to the time
delay being an even function multiplied by the signal itself, which results in
odd harmonics (Neesgaard & Risbo, 2006). The second mechanism consisted
of distortion of the pulse width which results in a DC non linearity (Mouton
& Putzeys, 2009).

Candy & Cox (2004), Hawksford (2005) , Neesgaard & Risbo (2006) and
Putzeys (2006) have presented methods for counteracting the effect of ripple
feedback.

Candy & Cox (2004) presented a solution where the carrier is modulated
by a small amplitude signal which is proportional to the derivative of the input
signal. The period of the carrier wave is increased by the modulating signal.
This is by an amount which is proportional to the square of the input signal.
This approach effectively eliminates the third harmonic intrinsic distortion
(Candy & Cox, 2004).

Hawksford (2005) introduced the nodal transition filter. When the method
is viewed in the time domain, stability can be achieved by introducing a set of
constant voltage crossover filters. When implemented correctly it can change
the node, where feedback is acquired, in a frequency selective manner (Hawks-
ford, 2005). The concept is that the loop filter would receive the same low
frequency components that it would have before using a nodal transition fil-
ter, yet the high frequency ripple is attenuated by a low pass filter which
forms part of the configuration. Neesgaard & Risbo (2006) showed that this
approach is not very effective in practice and better results could be achieved
by just using a first order integrator modulator instead of the complicated
filter configuration.

Neesgaard & Risbo (2006) introduced the Minimum Aliasing Error (MAE)
loop filter. Through analysis, it was found that a first order loop filter behaved
in a desirable manner, with regards to distortion, yet its performance was less
than adequate. The concept of an MAE filter is to reduce the real part of the

CHAPTER 5. NOISE SHAPING 61

loop transfer function above the switching frequency. The reasoning behind
this is that the real part manages the DC error.

The MAE loop filter was developed by looking at low order filters. An
asymptotic cancellation effect was achieved by summing a low-pass filter with
a second order integrator. This results in a first order high frequency roll off
of the amplitude characteristic which ensures closed-loop stability. The high
frequency amplitude is that of a first order, yet the real part has a fourth order
shape for the MAE filter. Neesgaard & Risbo (2006) also explained that the
dominant contributor of the DC error are the frequency components from the
switching frequency fundamental. The open-loop THD, which is the DC error,
of the MAE filter is reduced by a factor of

L ∼=
(

2πfsw
p

)2

(5.4.1)

where p is the pole frequency.
The pole frequency would typically be chosen as 3 − 10 times below the

switching frequency for closed-loop stability. This would result in a reduction
of the open-loop distortion of a factor of 10−100 while still achieving the same
low frequency loop gain (Neesgaard & Risbo, 2006).

The method offered by Putzeys (2006) is a very simple approach which
cancels the unmodulated edge of a single sided modulator. Implementation is
much easier than that of the techniques presented by Candy & Cox (2004) or
Neesgaard & Risbo (2006). Being able to ignore the unmodulated edge in a
single sided modulator is the solution to keeping the ripple constant and in
phase.

Figure 5.24 shows the implementation of the scheme presented by Putzeys
(2006). The resulting waveforms are shown in Figure 5.25. The method was
explained fully by Mouton & Putzeys (2009). The feedback signal is comprised
of the modulator output p(t) which is added to the sawtooth carrier s(t). This
cancels the unmodulated edge of p(t). The signal which results is a pseudo
sawtooth waveform y(t). The time average of y(t) is equal to that of the
modulator output p(t). The advantage of this scheme is that the shape of
the ripple component of y(t) is independent of the amplitude of the mean
modulator input signal x(t). The pseudo sawtooth waveform y(t) is then
subtracted from the input i(t) and then passed through the loop filter G(s).
The control loop tracks the pulse width modulator input signal x(t). The

CHAPTER 5. NOISE SHAPING 62

comparison of x(t) and the carrier s(t) coincide with those of i(t) and s(t)

(Mouton & Putzeys, 2009).
What is important to note is that the shape of the ripple component x(t)

is independent of the average value of x(t). This reduces the nonlinearity
resulting from the ripple component of the PWM input signal and the pulse
width modulation process interacting (Mouton & Putzeys, 2009).

Figure 5.24: Implementation of ripple compensation adapted from Mouton &
Putzeys (2009)

5.5 Ripple compensation verification

The ripple compensation scheme presented by Putzeys (2006) was chosen for
implementation due to its simplicity. Figure 5.26 shows the Simulink model
for the pulse width modulator, loop filter and ripple compensator.

Analysing the spectral content of the PWM signal is the true verification
of whether the ripple compensation is an effective treatment for the unwanted
distortion in the audio band. Figure 5.27 shows the spectral content of the
output PWM signal of Figure 5.26 when a third order loop filter is used.
Figure 5.28 shows a zoomed view of Figure 5.27, with an emphasis on the
audio band. Figure 5.29 shows the spectral content when a fifth order filter is
used and Figure 5.30 shows a zoomed view of Figure 5.29.

C
H

A
P

T
E

R
5.

N
O

ISE
SH

A
P

IN
G

63

Time

Am
pl

itu
de

Time

Am
pl

itu
de

Time

Am
pl

itu
de

p(t)

i(t)

s(t)

i(t) x(t)

modulated edge
unmodulated edge

y(t)

Figure 5.25: Ripple compensation waveforms adapted from Mouton & Putzeys (2009)

C
H

A
P

T
E

R
5.

N
O

ISE
SH

A
P

IN
G

64

Figure 5.26: Simulink model for a pulse width modulator and loop filter including ripple compensation

CHAPTER 5. NOISE SHAPING 65

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.27: Spectral content of a 7-bit PWM waveform with a third order loop
filter and ripple compensation

0 0.5 1 1.5 2 2.5

x 10
4

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.28: Zoomed view of the audio band of Figure 5.27

CHAPTER 5. NOISE SHAPING 66

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.29: Spectral content of a 7-bit PWM waveform with a fifth order loop
filter and ripple compensation

0 0.5 1 1.5 2 2.5

x 10
4

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

PWM spectral content

Figure 5.30: Zoomed view of the audio band of Figure 5.29

CHAPTER 5. NOISE SHAPING 67

5.6 Loop filter implementation

The transfer functions of the various order loop filters can be exported from
SISOTOOL and viewed in Matlab®. The transfer function would have to be
implemented in a filter structure for it to be realisable. When exported from
SISOTOOL the transfer function is of the form

H(z) =
bmz

m + bm−1z
m−1 + ... + b1z + b0

anzn + an−1zn−1 + ... + a1z + a0

(5.6.1)

from which specific filter coefficients need to be determined, depending on
the filter structure.

Many loop filter configurations have been presented by Norsworthy et al.
(1997), Kozak & Kale (2003), Schreier & Temes (2005) and Maloberti (2007).
The various structures which they present have been used very successfully
when implementing delta-sigma modulators which use loop filters as the heart
of their operation.

The transfer function for the first order loop filter when exported from
SISOTOOL is

H(z) =
0.012784

z − 1
. (5.6.2)

Equation 5.6.2 is simply an integrator with a scaling factor of 0.012784.
An integrator can be configured either as shown in Figure 5.31 or as shown
in Figure 5.32. The difference between the two configurations is a delay being
placed either in the feedforward or feedback path. Figure 5.31 will feed a
delayed version of its output onwards, while Figure 5.32 will have a non-delayed
version available.

Figure 5.31: Delayed output integrator

The transfer function for the integrator shown in Figure 5.31 is

H(z) =
1

z − 1
=

z−1

1− z−1
. (5.6.3)

CHAPTER 5. NOISE SHAPING 68

Figure 5.32: Non-delayed output integrator

The transfer function for the integrator shown in Figure 5.32 is

H(z) =
z

z − 1
=

1

1− z−1
. (5.6.4)

Schreier & Temes (2005) listed the most commonly used loop filter struc-
tures as being:

• Cascade of integrators with feedback summation (CIFB),

• cascade of resonators with feedback summation (CRFB),

• cascade of integrators with feedforward summation (CIFF) and

• cascade of resonators with feedforward summation (CRFF).

Figure 5.33: Cascade of integrators with feedback summation adapted from
Schreier & Temes (2005)

The CIFB structure contains a chain of N delaying integrators. The feed-
back and input signal are fed to each integrator input port with different scaling
factors ai and bi. This structure is shown in Figure 5.33 for when N = 3.

CHAPTER 5. NOISE SHAPING 69

The Noise Transfer Function (NTF) of the CIFB configuration is of the
form

H(z) =
(z − 1)N

a1 + a2(z − 1) + ... + aN(z − 1)N−1 + (z − 1)N
. (5.6.5)

Thus all the zeros of the NTF for this structure must lie at z = 1, which is
DC. The scaling factors ai are used to introduce finite nonzero poles into the
NTF. The Signal Transfer Function (STF) is

G(z) =
b1 + b2(z − 1) + ... + bN+1(z − 1)N

a1 + a2(z − 1) + ... + aN(z − 1)N−1 + (z − 1)N
. (5.6.6)

This denotes that the zeros of the STF are determined by bi and its poles
by ai. If a STF of 1 is required, then bi = ai can be chosen for all i ≤ N and
bN+1 = 1.

As indicated by Equation 5.6.5, the CIFB structure can have the NTF
zeros only at DC (z = 1). It was shown in Section 5.3.4 that performance is
improved if these zeros are located at nonzero frequencies on the unit circle.
By modifying the CIFB structure to include a resonator, it is then capable of
realising NTF zeros as complex conjugate pairs on the unit circle.

Figure 5.34: Resonator for a loop filter adapted from Norsworthy et al. (1997)

Norsworthy et al. (1997) explained that adding a small amount of negative-
feedback around the integrator pairs of the loop filter can be very beneficial.
This resonator configuration is shown in Figure 5.34. In order to ensure that
the poles stay on the unit circle, one of the integrators in each resonator needs
to be delay free (Schreier & Temes, 2005:pg. 119). It then becomes possible to
move the open-loop poles up from DC. The open-loop poles become the NTF
zeros when the loop is closed. This causes the frequencies where there is high

CHAPTER 5. NOISE SHAPING 70

loop gain, which becomes high noise attenuation, to be shifted away from DC
to positive frequencies. The transfer function for a pair of integrators with
feedback is

R(z) =
z
z−1
· 1
z−1

1 + γ · z
z−1
· 1
z−1

=
z

(z − 1)2 + γz)

=
z

z2 + (−2 + γ)z + 1
.

(5.6.7)

The CRFB structure is shown in Figure 5.35 where the second and third
integrators, combined with the feedback path −γ1 form the resonator. It con-
tains a complex pole which is the zero of z2 +(−2+γ1)z+1. It is conventional
to have a plain integrator as the input stage in order to minimise the input-
referred contribution of noise sources from ensuing stages (Schreier & Temes,
2005). The resonators are inherently unstable, as inferred by the fact that
their poles are located on the unit circle. Local oscillations are prevented by
placing them into a stable feedback system.

Figure 5.35: Cascaded resonator with feedback summation adapted from Schreier
& Temes (2005)

The signal paths which are required to create the zeros of the NTF can also
be realised by using feedforward rather than feedback. Shown in Figure 5.36

CHAPTER 5. NOISE SHAPING 71

is a configuration of cascaded integrators with feedforward branches, CIFF.
As was the functioning of the CIFB structure, the CIFF’s NTF contains its
zeros at DC (Schreier & Temes, 2005). This leads to the implementation of
resonators if optimised zeros are required.

Figure 5.36: Cascaded integrators with feedforward summation adapted from
Schreier & Temes (2005)

Figure 5.37 shows a chain of integrators with feedforward summation and
local resonator feedbacks. What is important to note is that there are no bi
scaling coefficients. When implementing this structure in a real-world situa-
tion, the complexity and amount of multipliers is reduced.

In order to determine the coefficients ai and γi for the CRFF filter structure,
the transfer function of the filter needs to be compared to that of the filter
designed in Matlab®.

The transfer function for the individual sections of the CRFF third order
loop filter shown in Figure 5.37 is

Y (z)

X(z)
=

a1

z − 1
+

a2z

z2(−2 + γ1)z + 1
+

1

z − 1
· a3z

z2(−2 + γ1)z + 1
(5.6.8)

CHAPTER 5. NOISE SHAPING 72

Figure 5.37: Cascaded resonator with feedforward summation adapted from Nor-
sworthy et al. (1997)

When the individual sections are combined, they form the transfer function

Y (z)

X(z)
=
a1z

2 − 2a1z + a1γ1z + a2z
2 − a2z + a3z + a1

z3 − 3z2 + γ1z2 + 3z − γ1z − 1
. (5.6.9)

In order to make the comparison between the Matlab® generated transfer
function and that of the filter much easier, the filter structure is combined in
terms of z which yields

(a1 + a2)z2 + (−2a1 + a1γ1 − a2 + a3)z + a1

z3 + (−3 + γ1)z2 + (3− γ1)z − 1
. (5.6.10)

The loop filter transfer function which was exported from Matlab® is

b(z)

a(z)
=

0.0074761z2 − 0.014844z + 0.00736884

z3 − 2.9999958z2 + 2.9999958z − 1
(5.6.11)

CHAPTER 5. NOISE SHAPING 73

If Equation 5.6.10 and Equation 5.6.11 are equated the result yields the
filter coefficients

a1 =0.007368840280018

a2 =0.000107296127841998

a3 =3.569351756209371× 10−7

γ1 =0.00000418328220019859

The same process which was followed for a third order implementation can
be done for a fifth order. Figure 5.38 shows the filter structure for a fifth order
CRFF.

Figure 5.38: Fifth order CRFF filter adapted from Norsworthy et al. (1997)

The transfer function for the individual sections of the fifth order filter
structure shown in Figure 5.38 is

Y (z)

X(z)
=

a1

z − 1
+

a2z

z2(−2 + γ1)z + 1
+

1

z − 1
· a3z

z2(−2 + γ1)z + 1

+
a4z

z2(−2 + γ2)z + 1
· z

z2(−2 + γ1)z + 1

+
1

z − 1
· z

z2(−2 + γ1)z + 1
· a5z

z2(−2 + γ2)z + 1

(5.6.12)

CHAPTER 5. NOISE SHAPING 74

When the individual sections are combined, they form the transfer function

Y (z)

X(z)
=
a1 − 4a1z − a2z + a3z + 6a1z

2 − 4a1z
3 + a1z

4 + 3a2z
2 − 3a2z

3 + a2z
4 − 2a3z

2

5z − γ1z − γ2z + 3γ1z2 − 3γ1z3 + γ1z4 + 3γ2z2
. . .

+a3z
3 − a4z

2 + a4z
3 + a5z

2 − 2a1γ1z
2 + a1γ1z

3 − 2a1γ2z
2 + a1γ2z

3 − a2γ2z
2

−3γ2z3 + γ2z4 − 10z2 + 10z3 − 5z4 + z5
. . .

+a2γ2z
3 + a3γ2z

2 + a1γ1z + a1γ2z + a1γ1γ2z
2

−γ1γ2z2 + γ1γ2z3 − 1
.

(5.6.13)

Combining the transfer function of the filter structure in terms of z yields

Y (z)

X(z)
=

(a1 + a2)z4 + (a3 − 3a2 − 4a1 + a4 + a1γ1 + a1γ2 + a2γ2)z3

z5 + (γ1 + γ2 − 5)z4 + (γ1γ2 − 3γ2 − 3γ1 + 10)z3
. . .

+(6a1 + 3a2 − 2a3 − a4 + a5 − 2a1γ1 − 2a1γ2 − a2γ2 + a3γ2 + a1γ1γ2)z2

+(3γ1 + 3γ2 − γ1γ2 − 10)z2
. . .

+(a3 − a2 − 4a1 + a1γ1 + a1γ2)z + a1

+(5− γ2 − γ1)z − 1
.

(5.6.14)

The loop filter transfer function which was exported from Matlab® is

b(z)

a(z)
=

0.012097794834141z4 − 0.048238085270980z3 + 0.072128453864227z2

z5 − 4.999994897539333z4 + 9.999984692621844z3
. . .

−0.047933828259711z + 0.011945664836945

−9.999984692621844z2 + 4.999994897539333z − 1
.

(5.6.15)

Equating Equation 5.6.14 with Equation 5.6.15 yields the coefficients for

CHAPTER 5. NOISE SHAPING 75

the fifth order filter as being

a1 =0.011945664836945

a2 =1.521299971961772× 10−4

a3 =9.001329807155925× 10−7

a4 =2.843253341138510× 10−9

a5 =3.748943391513047× 10−12

γ1 =4.183047168858502× 10−6

γ2 =9.194134984581749× 10−7

The filter coefficients can then be simulated by forming a filter model in
Simulink which would replace the transfer function which was previously being
used. This would approximate the real world implementation of the noise
shaper. Figure 5.39 shows the Simulink model for a third order loop filter
while Figure 5.40 shows the fifth order equivalent.

Figure 5.39: Third order loop filter Simulink implementation

C
H

A
P

T
E

R
5.

N
O

ISE
SH

A
P

IN
G

76

Figure 5.40: Fifth order loop filter Simulink implementation

CHAPTER 5. NOISE SHAPING 77

The results obtained when using the calculated filter coefficients and when
using the transfer function exported from SISOTOOL were equivalent. This
verifies that the coefficients are viable.

5.7 Conclusion

Noise shaping presented an effective way of achieving high resolution audio
with a low resolution modulator. There were two categories which were inves-
tigated. The most obvious difference between them was the placement of their
primary noise shaping filter.

The loop filter approach proved to be far more effective than the general
noise shaper technique discussed in Section 5.2. This is especially true when
ripple compensation was coupled with the loop filter.

When viewing the various loop filter configurations, the one which stood
out for practical implementation was the CRFF structure. It made it possible
to place poles above DC and it would not require a large amount of system
resources when implemented on programmable logic.

Chapter 6

VHDL Implementation

Very high speed integrated circuits (V) Hardware Design Language (HDL),
VHDL, was the chosen format for developing this project’s firmware. The
theory behind the various blocks required for an effective PCM to PWM con-
version were detailed in previous chapters. This chapter will outline their
implementation in a system which could be used in practice.

The first consideration for implementation was that the data needs to be
processed in real-time as new audio data would be constantly presented to the
audio processor. The various firmware blocks presented is this chapter are the
device configuration, audio receiver, interpolation, feedback, noise shaper and
the pulse width modulator. VHDL allows for subprograms to be created and
then linked together. This feature allows for an easier programming environ-
ment where pipelined data processing becomes simplified (Ashenden, 2008).

An overview of a complete audio system will be shown which illustrates how
the FPGA would fit into a real life situation. Continuing from the overview, a
more detailed block diagram of the various subsections within the FPGA will
be shown which illustrates their interconnectivity.

This chapter will conclude with a detailing of the resources required to
implement such a system on an FPGA and how the various sub systems are
synchronised with each other.

78

CHAPTER 6. VHDL IMPLEMENTATION 79

6.1 Hardware interconnections

The block diagram in Figure 6.1 shows a complete audio amplifier system
with a digital audio input and an amplified analogue waveform driving a loud-
speaker.

The first block is the digital audio source, which will transmit data using
either the AES/EBU or S/PDIF standard. The audio data is received from
the audio source by the sample rate converter with integrated digital audio
receiver device, in this case the SRC4392 from Texas Instruments. Digital
audio data with either 16, 18, 20 or 24 bits of resolution with a sample rate
from 20 kHz to 216 kHz is acceptable. The SRC4392 device then up-samples
the audio data to a user defined sample rate, below 216 kHz, and passes this
new information to the FPGA in PCM format. The FPGA chosen was the
Cyclone III (EP3C25) from Altera®.

The FPGA performs the PCM to PWM conversion while taking into ac-
count the nonlinearities and low resolution audio normally associated with
such a conversion. The pulse width modulated signal then drives the class-D
switching amplifier’s input with a switching frequency of 384 kHz.

The class-D power stage effectively amplifies the waveform which comes
from the FPGA. The amplified pulses are then filtered by the amplifier’s pas-
sive low-pass filter which attenuates the carrier. This filtered waveform is akin
to the original audio only as an analogue version. The loudspeaker is then
driven by the analogue waveform which finally reproduces the original pro-
gram material which is typically recorded from an analogue source, as most
music is. This system can therefore be thought of as a high powered digital to
analogue converter.

Figure 6.1: Block diagram of a complete audio system

CHAPTER 6. VHDL IMPLEMENTATION 80

Shown in Figure 6.2 is a block diagram of the interconnections between
the firmware modules within the FPGA. When the FPGA is powered on,
configuration of the internal Phase Lock Loop (PLL) takes place. Once this is
complete, the SRC4392 device is configured via the Serial Peripheral Interface
(SPI) bus.

Audio data is then received by the FPGA in a serial data stream and stored
as data words which are used for processing. The received audio is used to
generate new data samples by the interpolation block.

Negative feedback and a loop filter are used for the noise shaping section
which then feeds a reference to the PWM block.

Figure 6.2: Firmware block diagram

6.2 Configuration

Each of the various subsystems shown in Figure 6.2 requires a specific clock
frequency for operation within the whole system. Certain blocks run at faster
or slower speeds than others depending on their function. The desire is that
they are synchronised with each other and complete their operations at the
same time.

The main system clock is provided by an external oscillator which emits
a 24.576 MHz clock pulse. The internal PLL of the Cyclone III is then used
to generate the remaining clock frequencies required from this main system
clock. The megafunction wizard of Altera®’s Quartus II software was utilised
to configure the PLL. Table 6.1 lists the different clocks which were generated
by the PLL. It is interesting to note that they are all multiples of 48 kHz.

CHAPTER 6. VHDL IMPLEMENTATION 81

Table 6.1: PLL clock generation

Clock speed Description
24.576 MHz Master system clock used as PLL input
49.152 MHz Faster clock used for most system blocks
12.288 MHz Audio data bit clock, connected to SRC4392
192 kHz Audio word clock, connected to SRC4392

The specific distribution of the clock signals is shown in Figure 6.3. The
49.152 MHz is used predominately for what could be deemed the calculation
blocks, and the slower 24.576 MHz clock is used for the blocks where informa-
tion is updated less often.

Figure 6.3: PLL clock distribution

The next step was to configure the SRC4392 device via an SPI interface.
Specific data values needed to be sent to the SRC4392’s registers as there
are many different configuration options available. The audio receiver’s data
registers were configured for the following internal functions to take place:

• Enable sample rate converter function block,

• enable receiver function block,

• enable serial port A,

CHAPTER 6. VHDL IMPLEMENTATION 82

• configure port A for 24-bit right justified data,

• put SRC4392 into slave mode,

• output data source of port A is the internal SRC block,

• receive audio data from control register RX3,

• automatically mute output if a loss of lock is detected,

• configure the internal PLL for a 24.576 MHz clock,

• SRC input data source is the internal Digital Interface Receiver,

• enable output attenuation tracking,

• SRC output word length set to 24 bits and

• set output attenuation to −2 dB.

The SPI interface required the use of five of the FPGA’s I/O pins . These
were for the:

• Reset (active low), RST,

• chip select (active low), CS,

• master clock, MCLK,

• serial data clock, CCLK, and

• data in, which is clocked on the rising edge of CCLK, CDIN.

Three bytes of data were required to program each register. The first byte
contained the register address and whether is was being read from or written
to. The second byte is comprised of zeros, as it is just there for when 16 bit
addressing is used. The third byte of information contains the register data.
Data being written to the device is clocked in on the rising edge of the serial
data clock.

The option of reading back information from the registers was not estab-
lished in this instance, yet it is possible. Material being read from the SRC4392
is clocked out on the falling edge of the serial data clock.

CHAPTER 6. VHDL IMPLEMENTATION 83

Figure 6.4 shows the SPI interface with regards to clock timing. The CS
pin goes low, which informs the SRC4392 device that the SPI is active. The
CCLK pin clocks in data from the CDIN pin, which streams the information
in serially. The zoomed view of the first byte of CDIN shows that the most
significant bit lets the slave device know if the master device is reading or
writing to a particular register address.

Figure 6.4: Configuration via SPI

The state diagram shown in Figure 6.5 illustrates the process by which
data is sent to the SRC4392 via SPI.

The natural resting position for the SPI process is to be in idle mode. At
this point, the CS pin is held high, the CCLK pin is held low and the CDIN
pin is held low. The data which will be transmitted is held in an array, which
is called through an address system activated by a counter.

The program then moves to the load data state. The CS pin, which selects
the slave device, goes low. The bit which corresponds to a running counter

CHAPTER 6. VHDL IMPLEMENTATION 84

Figure 6.5: SPI state diagram

value, which acts as the index, is directed to the CDIN pin. The CCLK is again
forced to a low position, which becomes relevant when the program loops back.

The next state delays the process by one clock cycle. This ensures enough
time between sending serial data out to maintain a reliable transmission baud
rate. The TX bit state is then activated. The only function which is carried
out is to change the CCLK pin to a high, which then forms the clocking
characteristic of this pin.

The check finished state verifies whether all the bits of a word have been
transmitted, if they have, then the program moves onto a new word to be
transmitted. If all the words have been sent, then the program remains in the
idle mode. Section B.2 in the Appendix lists the VHDL code for this process.

6.3 Receive audio data

The conversion of serial data to parallel is carried out as new audio material is
presented to the FPGA by the SRC4392 device. Information is clocked into a
register of the FPGA and when a complete word is received, the data is carried
forward for further processing.

Two loops are used for the sample collection. When the left/right clock goes
high, it signifies that left channel data is being sent. The first loop activates
on the left channel transmission. The second loop checks for the bit clock to
pulse, whenever it goes high, a single bit of data is clocked into a buffer. The

CHAPTER 6. VHDL IMPLEMENTATION 85

buffer shifts its data through until the left/right clock switches to the right
channel, signifying the completion of the left channel data.

Another flag which is activated when there is a switch between left and
right channels, is to signify the completion of receiving the audio word so that
the next VHDL block can begin running.

Figure 6.6 shows right-justified data being synchronised with the bit clock
and left/right clock.

Figure 6.6: Right-justified data format

The next processing block waits for the completion of the audio receiver,
then stores the received data in a buffer. The buffer contains six pieces of data.
They are required for fifth order polynomial interpolation. The state diagram
for the audio buffer is shown in Figure 6.7.

When in idle mode, the program waits until a flag from the previous VHDL
block has been activated. This signifies that a new audio sample has been
received.

The accept data state shifts the buffer data within an array, where the
oldest data word is discarded. The next state moves the newest information
into the array before going to the succeeding state. The data out state activates
the following VHDL program block, which is part of the interpolation section.
This signifies that the new data has been placed into the array and is ready

CHAPTER 6. VHDL IMPLEMENTATION 86

Figure 6.7: Audio buffer state diagram

to be used. The six buffered values are made available globally to the other
processing blocks of the system.

The delay states are there to ensure that the interpolation block is not
constantly activated. This state waits until the complete receive flag of the
previous block is disabled before it allows the state to move into the idle mode.

6.4 Interpolation

The interpolation section was divided into two VHDL subsystems. The first
generates polynomial coefficients using the six data values stored in the audio
buffer. The second calculates new data points based on the coefficients.

The polynomial coefficients are determined by using the same method pre-
sented in section 4.6.2, Newton’s interpolation formula. Figure 6.8 shows the
state diagram for the coefficient calculations. Each state forms part of the
divided differences table, with the next state requiring the calculated values of

CHAPTER 6. VHDL IMPLEMENTATION 87

the last. The VHDL source code which describes this process is available in
section B.4 of the Appendix.

Figure 6.8: Polynomial coefficients state diagram

Once the coefficients have been determined, the polynomial calculation
block is activated. In order to economise FPGA resources, part of the cal-
culation is performed offline using Matlab®. The results are stored in five
Read Only Memory (ROM) blocks. There are 64 memory locations in each of
the five ROM blocks, this relates to there being 64 new data samples being
generated for every single audio word being received from the SRC4392. The
format chosen for the memory storage was that of a Memory Initialisation File
(MIF). The state diagram for the polynomial calculation block is shown in
Figure 6.9.

The process for the polynomial calculation begins in a similar manner to
that of many of the other processing blocks. The first state is an idle state
which is held until there is a notification that the polynomial coefficients have
been calculated. Once the signal has been received that the coefficients are
complete, the coefficients are first converted from signed values to the signed
fixed point format. They were previously kept as just signed values to reduce
resource usage.

The next step of the state machine is to calculate a new data value using
the coefficients and values from the ROM blocks, addition and multiplication

CHAPTER 6. VHDL IMPLEMENTATION 88

Figure 6.9: Polynomial calculation state diagram

of values is carried out. The address from which to locate the required value
from each of the ROM blocks is then incremented.

The next two delay states provide the two clock cycles necessary for the
previous multiplication to complete. The xCheck state provides a path for
the newly calculated data sample to move onto the other blocks of the global
system. The position of the address counter for the ROM blocks is then
checked. If the end of the memory table has been reached, the address is reset
to zero and the whole process begins afresh.

The 64 times up-sampling relates to a change in the sample rate from 192
kHz to 12.288 MHz. This process is illustrated in Figure 6.10, the 49.152 MHz
clock which is used as the interpolation subsystem clock is included in the
diagram.

6.5 Noise shaping

By choosing the CRFF structured loop filter, implementation is less demanding
than if a structure with more filter coefficients and multipliers were used. The
feedback and noise shaping are both synchronised to the 49.152 MHz clock
which is depicted in Figure 6.10.

CHAPTER 6. VHDL IMPLEMENTATION 89

Figure 6.10: Timing diagram for the sample rate conversion

The important part of the loop filter design is to make sure that the registers
never overflow. They therefore needed to be large enough to handle any typical
audio waveform data which has been integrated by the loop filter. Limits for
the register sizes were established by using the Simulink model of the loop
filter configuration as shown in Figure 5.26. A sine wave with a frequency of
20 kHz and an amplitude of 0.9 times full scale was employed. This provided
a good example of the maximum and minimum word lengths that would be
required for stable operation. The largest of the registers had an integer part
of 40 bits with a fractional part of 31 bits. This was for the final section of the
loop filter.

The approach taken to calculate the loop filter result was very similar
to the approach taken for all the other firmware blocks. A state machine
was configured which divided the process up into steps. The final result is
a combination of delayed and non-delayed versions of the various registers.
The following calculations took place within the state machine to allow for the
filter’s output to be calculated:

• Y1 = Filter input + Y1(delay)

• Y2 = Y1(delay) + Y2(delay) − (γ1 × Y3(delay))

• Y3 = Y2 + Y3(delay)

• Y4 = Y4(delay) + Y3(delay) − (γ2 × Y5(delay))

CHAPTER 6. VHDL IMPLEMENTATION 90

• Y5 = Y4 + Y5(delay)

• Filter output = (Y1(delay)× a1) + (Y2× a2) + (Y3(delay)× a3) + (Y4× a4) +

(Y5(delay) × a5)

The state machine took four clock cycles to complete, this was due to delays
being added which allowed for the multiplications to settle.

6.6 Pulse width modulation and feedback

The PWM block utilised the 49.152 MHz clock as its deciding factor for oper-
ation. The system clock directly affects the switching frequency of the pulse
width modulator. The relationship between the PWM resolution, switching
frequency and system clock frequency is described by

Switching frequency =
System clock frequency

2PWM bit resolution

fsw =
49.152 MHz

27
=

49152000

128

=384 kHz.

(6.6.1)

The sawtooth waveform was generated by utilising a 7 bit counter which
counts up from its minimum to maximum, then resets and repeats. The
counter had a signed value which went from −1 to 0.9923. The compari-
son between the sawtooth and the value coming from the filter was made each
time the sawtooth counter incremented.

If the value of the sawtooth was larger than that of the audio, the PWM
output was set to a logical zero, and vice-versa if the audio had a larger value.
The feedback was determined from the same comparison. The difference was
that instead of the PWM feedback value being zero, it would be negative one.
Ripple compensation was included at this point. The value of the sawtooth was
added to the PWM’s positive or negative value to complete the compensation.

The feedback loop is constructed by subtracting the value leaving the PWM
block and the value leaving the interpolation block. There is a subtraction
between the data because negative feedback is being used.

CHAPTER 6. VHDL IMPLEMENTATION 91

6.7 Synchronisation

Synchronisation between the blocks was possible due to the fact that the var-
ious clocks used are all multiples of one another. The 24.576 MHz oscillator
which was used is a multiple of 48 kHz, which as previously mentioned is a
common audio sampling rate. The audio data from the SRC is upsampled
to 192 kHz regardless of whether it is 32 kHz, 44.1 kHz, 48 kHz or 96 kHz.
Therefore a constant 192 kHz bit stream is sent to the FPGA for processing,
which is again a multiple of 48 kHz.

6.8 Conclusion

This chapter described the various firmware blocks which were implemented.
The various blocks had a common design which was the use of state ma-

chines. Certain parts of the system could be sequentially executed while the
main blocks ran in parallel with each other. This makes the real-time pro-
cessing possible. Being a real-time system it is important to make sure that
timing deadlines are met.

The system resources required for the system implementation are shown
in Table 6.2. As can be seen from the total available resources, many more
features can still be added to the firmware.

Table 6.2: Required FPGA system resources

Family Cyclone III
Device EP3C25Q240C8
Total logic elements 5470 / 24624 (22%)
Total combinational function 4787 / 24624 (19%)
Dedicated logic registers 1650 / 24624 (7%)
Total pins 10 / 149 (7%)
Total memory bits 9600 / 608256 (2%)
Embedded multiplier 9-bit elements 97 / 132 (73%)
Total PLLs 1/4 (25%)

Chapter 7

Test and verification

This chapter outlines the problems which were encountered during the hard-
ware implementation of the project. Due to unforeseeable circumstances, ad-
ditional design work was required to ensure operability of the system. Fault
finding was carried out as per any developing system and errors were found
and corrected for. The information detailed in this chapter extend back to
a redesign and implementation primarily of the noise shaper. This in turn
affected a variation of the feedback and pulse-width modulator parts of the
project.

This chapter merely details the various deviations from the original path
of the project with respect to the VHDL implementation. What worked in the
simulation was not as straight forward to equip in firmware. The final results
will be shown in Chapter 8.

7.1 Initial testing

The first tests with the firmware running on the FPGA were as expected. The
pulse-width modulator produced a pulse train which varied according to the
input reference waveform. The interpolation part of the system was enabled
and behaved as expected. When the noise shaper was introduced it did not
behave as expected.

Much time was spent finding faults in the VHDL code. One fault was in
the latency of the noise shaping filter. Due to restrictions placed on how mul-
tiplications are handled by the FPGA additional delays were required within
the filter. The reason for this is that once a multiplication has taken place, a

92

CHAPTER 7. TEST AND VERIFICATION 93

clock cycle needs to pass before the result of said multiplication can be used.
The clock cycle delays which were introduced result in new data samples being
produced by the filter at a rate eight times slower than required.

The firmware was modified and made as compact as possible, the reduced
latency showed a significant improvement in flattening the frequency response
of the system, yet the noise floor did not improve at all. This was due to the
filter generating new output samples at a rate which was four times slower than
required. Again, further redesign took place and the clock which activates the
filter block was increased.

The filter was initially running with a clock rate of 49.152 MHz. This
provided a stable platform for calculations to take place and produced un-
tainted results. By increasing the clock rate of the filter, it would in theory
produce new samples at a rate which would coincide with the rate at which
the PWM was running. What was found is that the FPGA becomes unstable
when performing large calculations with a high clock rate. Glitches were pro-
duced when even a 98.304 MHz clock was used, errors would occur randomly
in the multiplication between filter coefficients and the data passing through
the filter.

This situation caused a paradox in the research. If the clock rate was
kept at 49.152 MHz then the filter would not operate as expected, due to new
samples being produced too rarely, and noise shaping would not take place. If
the clock rate of the filter was increased, then errors would occur causing the
results to be unusable and therefore noise shaping would not occur.

7.2 System redesign

It was found through simulation that the filter needed to operate at the same
rate as the pulse-width modulator. This was due to the feedback. If the
PWM signal being fed back to the filter was sampled at a lower rate than the
PWM frequency, then the feedback result when the PWM waveform switched
between positive and negative became ambiguous.

The solution to solving the problem of the ambiguous feedback signal was
to average the samples coming from the pulse-width modulator, before ripple
compensation takes place. Introducing a running average filter into the feed-
back path would allow for a filter to be introduced which operated at a lower

CHAPTER 7. TEST AND VERIFICATION 94

rate. The filter was redesigned to operate at 12.288 MHz which allowed for a
49.152 MHz system clock to be used and ensured stability in the calculations.
Figure 7.1 shows the modified Simulink model which incorporates the running
average filter. Four samples are used in the average calculation which allows
for a filter which operates four times slower than the PWM block.

The filter coefficients were calculated using the same method described in
Chapter 5. The coefficients do change depending on the sample rate used,
even though the positions of the poles and zeros of the filter do not.

The new coefficients for the third order filter became

a1 =32.007357963907× 10−3

a2 =2.23532237809242× 10−3

a3 =37.2506773734498× 10−6

γ1 =14.7068533831174× 10−6 .

The fifth order order coefficients were recalculated as being

a1 =48.0667543933888× 10−3

a2 =2.49572438876488× 10−3

a3 =59.6921688489462× 10−6

a4 =754.866410865662× 10−9

a5 =4.15228295977656× 10−9

γ1 =52.7991875389918× 10−6

γ2 =11.2571316734770× 10−6 .

C
H

A
P

T
E

R
7.

T
E

ST
A

N
D

V
E

R
IF

IC
A

T
IO

N
95

Figure 7.1: Simulink model for a pulse width modulator and loop filter including ripple compensation and PWM averaging

CHAPTER 7. TEST AND VERIFICATION 96

7.3 Conclusion

Although there is always much fault finding and reworking when new firmware
is being developed, the redesign of the noise shaper proved to be a very chal-
lenging part of the project. The method for solving the problem of the filter
running at a different rate to that of the PWM block is a simple one, yet
difficult as it was not immediately obvious.

Chapter 8

Results

8.1 Hardware setup

The firmware was assessed using an Altera® Cyclone III based audio ampli-
fier board which was developed by Professor H du T Mouton of Stellenbosch
University, South Africa. The audio amplifier board is shown in Figure 8.1.

Figure 8.1: FPGA based audio amplifier board

The test instruments which were utilised include the

• Tektronix® TDS 2024B digital storage oscilloscope,

• Rohde & Schwarz® UP350 audio analyser and

97

CHAPTER 8. RESULTS 98

• Agilent Technologies® 1683A logic analyser.

The test set up is shown in Figure 8.2. On the right is the logic analyser.
The audio analyser is on the left with the oscilloscope stacked on top of it.

Figure 8.2: Hardware test instrument set up

8.2 Simulation verification

The VHDL development was carried out using version 9 of Altera®’s Quartus
II software. In order to verify the operation of the VHDL code a comparison
between the Simulink and Quartus simulation results was made. Simulating
in Quartus gives a clear indication of how the VHDL code will behave once
programmed onto an FPGA.

Figure 8.3 shows the input to the loop filter while Figure 8.4 shows its
output. Only 1024 samples are shown due to each value from the VHDL
simulation having to be entered manually into MATLAB® to produce the
waveform.

The values which enter the filter’s input, directly correspond to that of the
Simulink simulation and the VHDL code. This verifies that the pulse width
modulator, ripple compensation, running average filter and the feedback are
operating as expected. The output of the compensation filter verifies that the
filter calculations are being processed correctly.

CHAPTER 8. RESULTS 99

0 100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

1.5

Samples

Am
pl

itu
de

Simulink simulation and Quartus VHDL simulation for filter input

Simulink
Quartus

Figure 8.3: Comparisson between Simulink and Quartus simulations for the filter
input

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Am
pl

itu
de

Samples

Simulink simulation and Quartus VHDL simulation for filter output

Simulink
Quartus

Figure 8.4: Comparisson between Simulink and Quartus simulations for the filter
output

CHAPTER 8. RESULTS 100

8.3 Measurements

The first of the tests were conducted using the UP350 audio analyser as a
digital audio source. The FFT analysis was configured to operate with 16384

points which displays the spectrum with a resolution of less than 3 Hz. The
frequency of the sine wave was varied to evaluate the system’s operation over
the entire audio band.

Figure 8.5 shows the resulting PWMwaveform when a zero amplitude audio
signal is used. The duty cycle of the PWM is therefore 50%. Figure 8.6 shows
the PWM waveform when a 20 kHz sine wave with an increased amplitude is
used as the audio input. This shows the varying duty cycle associated with
such an input source.

The logic analyser was used to verify that there were no glitches in the
PWM waveform. Errors are difficult to see on an oscilloscope unless they
occur periodically. The logic analyser stores a long stream pulses and a more
thorough investigation is possible.

The same 20 kHz sine wave which was used previously as the audio input
was again used to give the result shown in Figure 8.7. The varying pulse widths
can be seen as the amplitude of the sine wave increases and decreases.

Figure 8.5: PWM waveform switching at 384 kHz with a 50% duty cycle

CHAPTER 8. RESULTS 101

Figure 8.6: PWM waveform switching at 384 kHz modulated with a 20 kHz sine
wave

Figure 8.7: Logic analyser result of a PWM waveform switching at 384 kHz which
has been modulated with a 20 kHz sine wave

Figure 8.8 shows the test set up configuration for the audio analyser when
taking measurements of the spectral content of the PWM waveform. The audio
analyser connects to the SRC4392 device via a coaxial cable and is electrically
isolated via a transformer on the audio development board. The PCM data
is then transferred to the FPGA where signal processing takes place. The
PWM waveform which is present at the output port of the FPGA is then
fed to a MOSFET driver, IRS20957SPBF, and then a half-bridge MOSFET,
IRFI4019HG, configuration. The waveform measured at the half-bridge’s mid-
point is fed back to the audio analyser. The PWM waveform is not low-pass
filtered as is common place when using a class-D amplifier. The reason for
this is that the audio analyser band limits the spectral content to the band of
interest, in this case the 22 kHz and 88 kHz bands were of interest.

C
H

A
P

T
E

R
8.

R
E

SU
LT

S
102

Figure 8.8: Audio analyser test set up

CHAPTER 8. RESULTS 103

Figure 8.9 shows the spectral content when a 1 kHz sine wave is used as
the audio input for the system. In order to demonstrate the noise-shaping
action of the system, the audio analyser’s viewing bandwidth was extended to
88 kHz, this is illustrated in Figure 8.10. The increasing noise floor can clearly
be seen at frequencies above 20 kHz.

Figure 8.9: Spectral content of the PWM signal when a 1 kHz sine wave is used as
the audio input, viewing the audio band

Figure 8.10: Spectral content of the PWM signal when a 1 kHz sine wave is used
as the audio input, viewing a bandwidth of 88 kHz

CHAPTER 8. RESULTS 104

Figure 8.11 shows the spectral content when a 10 kHz sine wave is used as
the audio input for the system, while Figure 8.12 shows the same result with
an 88 kHz bandwidth.

Figure 8.11: Spectral content of the PWM signal when a 10 kHz sine wave is used
as the audio input, viewing the audio band

Figure 8.12: Spectral content of the PWM signal when a 10 kHz sine wave is used
as the audio input, viewing a bandwidth of 88 kHz

CHAPTER 8. RESULTS 105

Figure 8.13 shows the spectral content when a 20 kHz sine wave is used as
the audio input, while Figure 8.14 shows the same result with a bandwidth of
88 kHz.

Figure 8.13: Spectral content of the PWM signal when a 20 kHz sine wave is used
as the audio input, viewing the audio band

Figure 8.14: Spectral content of the PWM signal when a 20 kHz sine wave is used
as the audio input, viewing a bandwidth of 88 kHz

CHAPTER 8. RESULTS 106

Intermodulation (IM) distortion is generated when the nonlinear mixing of
two or more frequency components occurs (Slone, 2002). When two frequency
components are applied to a linear audio system, there is simply a summation.
However, if the two same components are applied to a nonlinear system, a
modulation of the two will occur. The two original components and the sum
and difference will be present. The magnitude for which it affects a system
depends on how nonlinear the audio system is. The original components will
themselves be distorted proportional to the degree of modulation (Slone, 2002).

The IM distortion is a function of the linearity of the system, which is
directly affected by the THD specification. If the THD is improved, the IM
distortion performance improves.

Figure 8.15 shows the resulting spectrum when a two-tone input at 17 kHz
and 18 kHz is utilised.

Figure 8.15: Spectral content of the PWM signal when a two-tone input at 17 kHz
and 18 kHz is used as the audio input, viewing the audio band

CHAPTER 8. RESULTS 107

8.4 Conclusion

Figures 8.3 and 8.4 show the comparison between the simulation results of
Simulink and Quartus. There is a direct correlation of the waveforms which
verifies that the calculations are being carried out as intended.

The PWM pulse train which is generated by the FPGA can be clearly seen
in Figure 8.5. The 50% duty cycle of the waveform, when averaged by the
low-pass filter of the class-D power stage would result in an amplitude of zero.
This relates to the zero amplitude sine wave which was used as the reference.

When a 20 kHz sine wave with an increased amplitude is utilised, then the
duty cycle varies quite dramatically. The PWM waveform of this particular
situation is shown in Figure 8.6. When the varying pulses are averaged, the
original sine wave will emerge.

Figures 8.9, 8.11 and 8.13 show the resulting spectral content of PWM
waveforms when they have been modulated with 1 kHz, 10 kHz and 20 kHz
sine waves respectively. The low noise floor is evident that the noise shaping
action of the system is working as expected. The spectrum analyser showed a
noise floor approaching −120 dB, which relates to a bit resolution in the audio
band of approximately 20-bits. This performance is achieved while using only
a 7-bit modulator.

Figures 8.10, 8.12 and 8.14 give a clear indication of the noise shaping
action. The noise floor increases at frequencies above the audio band. This is
inconsequential as those higher frequencies would be filtered out by the same
low-pass filter which is used to filter out the PWM carrier.

Chapter 9

Conclusion

9.1 Overview of project objectives

The objectives which were discussed at the onset of this thesis were that of:

• Increasing the linearity of the PCM to PWM conversion process,

• reducing the system clock speed required to reconstruct a high resolution
audio signal,

• simulating the various subsections,

• choosing processing schemes which are computationally efficient when
implemented on embedded hardware and

• developing firmware to demonstrate a working model of the simulations.

9.2 Objectives achieved

General investigations were made into digital signal processing and pulse width
modulation. The need for a digital scheme which could counteract the unde-
sirable effects of UPWM became clear. Linearising the PWM process could
help decrease the presence of harmonics in the baseband.

The issue of linearity was addressed through sample rate conversion by
employing interpolation. Many different methods were presented for achieving
an interpolated waveform. All of which resulted in an increase of the sample
rate. Investigation of these methods found that using the Newton interpolation

108

CHAPTER 9. CONCLUSION 109

formula would be an economical choice. It was thought to be the most fitting
for this application as many new data samples needed to be generated for
each incoming audio data sample, while using a modest amount of system
resources. Interpolation expanded the usable bandwidth of the system which
then allowed for noise shaping.

The simulation results showed that a low noise floor in the audio band
is achievable while still using a modest seven bit modulator. The loop filter
topology was found to be stable and implementation in firmware was possible.
The various loop filter topologies were explained with the most efficient form
chosen, which used a minimal amount of multipliers.

Testing of the firmware demonstrated a functioning PWM block. When the
interpolation and noise shaping subsystems were added the system remained
stable. Stability is a primary concern when employing feedback as it can cause
data registers to overflow and thereby result in an erratic PWM output. The
system maintained its stability and produced an error free PWM waveform.

In practice, the measured results showed a low noise floor in the audio
band. This result proved the effectiveness of the control scheme. Results
showed that the noise floor increased at frequencies above the audio band,
which is indicative of the noise shaper.

9.3 Problems encountered

Calculation errors in the loop filter were mentioned in Chapter 7. A clock
rate four times faster than the rate at which new filter samples needed to be
produced by the loop filter was required. The only way to eliminate the calcu-
lation errors however was to lower the clock rate. By lowering the clock rate of
the filter, noise shaping no longer took place due to a mismatch between the
filter and PWM feedback. The problem was solved by averaging the feedback
which then eliminated the ambiguity caused by sampling the feedback at a
lower rate than that at which the PWM clock was operating.

CHAPTER 9. CONCLUSION 110

9.4 Future research and recommendations

It would be a repetitive action, yet the addition of a second audio channel to
the digital system would enable a stereo reproduction.

The next step would be to utilise global feedback which requires a high
precision ADC. The output of the class-D amplifier, after the analogue low-
pass filter, would be fed back to the FPGA and used instead of the internally
calculated feedback. The imperfections and artefacts introduced by the output
power stage and filter would therefore be taken into account. This approach
has been implemented by Mouton & Putzeys (2009) and found to be very
successful. An extremely low level of distortion is achievable.

Further firmware development could include loudspeaker and room correc-
tion. Implementation would equalise loudspeakers and correct for room effects
which are located at a substantial distance from the loudspeakers themselves.

List of References

Antoniou, A. 2006. Digital signal processing: signals, systems, and filters. pp. 425 -
434, p. 620. McGraw-Hill.

Ashenden, P.J. 2008. The designer’s guide to VHDL. pp. 1 - 2. Morgan Kaufmann.

Bresch, E. & Padgett, W.T. 1999. Tms320c67-based design of a digital audio power
amplifier introducing novel feedback strategy. Technical Report, Rose-Hulman
Institute of Technology.

Butt, R. 2008. Introduction to numerical analysis using MATLAB. pp. 277 - 328.
Infinity Science Press.

Candy, B.H. & Cox, S.M. 2004. Improved analogue class-d amplifier with carrier
symmetry modulation. In Audio Engineering Society Convention 117.

Chitode, J. 2009. Digital signal processing. pp. 147 - 148. Technical Publications.

Cohen, E., Elber, G. & Riesenfeld, R.F. 2001. Geometric modeling with splines: An
introduction. pp. 291 - 294. A K Peters.

Craven, P. 1993. Toward the 24-bit dac: Novel noise-shaping topologies incorpo-
rating correction for the nonlinearity in a pwm output stage. J. Audio Eng. Soc,
41(5):291–313.

Crochiere, R. & Rabiner, L. 1981. Interpolation and decimation of digital signals; a
tutorial review. Proceedings of the IEEE, 69(3):300 – 331.

Frerking, M.E. 1994. Digital signal processing in communication systems. p. 202.
Springer.

Goldberg, J.M. & Sandler, M.B. 1991a. Noise shaping and pulse-width modulation
for an all-digital audio power amplifier. J. Audio Eng. Soc, 39(6):449–460.

Goldberg, J.M. & Sandler, M.B. 1991b. Pseudo-natural pulse width modula-
tion for high accuracy digital-to-analogue conversion. IEEE Electronics Letters,
27(16):1491 –1492.

Goyal, M. 2007. Computer based numerical & statistical techniques. p. 199, pp. 339
- 356. Jones and Bartlett.

111

LIST OF REFERENCES 112

Groenenberg, R., Putzeys, B., van der Hulst, P. & Veltman, A. 2006. All ampli-
fiers are analogue, but some amplifiers are more analogue than others. In Audio
Engineering Society Convention 120.

Hawksford, M. 1989a. Chaos, oversampling, and noise shaping in digital-to-analog
conversion. J. Audio Eng. Soc, 37(12):980–1001.

Hawksford, M. 1989b. A tutorial guide to noise shaping and oversampling in adc
and dac systems. Proc. Institute of Acoustics, 11(7):289 – 302.

Hawksford, M. 2005. Sdm versus pwm power dgital-to-analogue converters (pdac)
in high-resolution digital audio applications. In Audio Engineering Society Con-
vention 118.

Hayes, M.H. 1999. Schaum’s outline of theory and problems of digital signal process-
ing. pp. 104 - 106. McGraw-Hill.

Hogenauer, E. 1981. An economical class of digital filters for decimation and interpo-
lation. Acoustics, Speech and Signal Processing, IEEE Transactions on, 29(2):155
– 162.

Holmes, D.G. & Lipo, T.A. 2003. Pulse width modulation for power converters. p.
96. Wiley-IEEE.

Jacobs, D. 2006. Digital pulse width modulation for class-d audio amplifiers. Master’s
thesis, University of Stellebosch.

Kiusalaas, J. 2005. Numerical methods in engineering with MATLAB. pp. 103 - 111.
Cambridge University Press.

Koeslag, F. 2008. A detailed analysis of the imperfections of pulsewidth modulated
waveforms on the output stage of a class d audio amplifier. Ph.D. thesis, University
of Stellebosch.

Kozak, M. & Kale, I. 2003. Oversampled delta-sigma modulators: analysis, applica-
tions and novel topologies. p. 2, pp. 194 - 201. Springer.

Logan, S. & Hawksford, M. 1994. Linearization of class d output stages for high-
performance audio power amplifiers. In Second international IEE conference
on analogue-to-digital and digital-to-analogue conversion, Cambridge university,
pages 136 –141.

Lutovac, M.D., Tosic, D.V. & Evans, B.L. 2001. Filter design for signal processing
using MATLAB and Mathematica. pp. 415 - 416. Prentice Hall.

Lyons, R.G. 2007. Streamlining digital signal processing: a tricks of the trade guide-
book. p. 174. IEEE Press.

Maloberti, F. 2007. Data converters. pp. 312 - 317. Springer.

Meijering, E. 2002. A chronology of interpolation: from ancient astronomy to modern
signal and image processing. Proceedings of the IEEE, 90(3):319 –342.

LIST OF REFERENCES 113

Mouton, T. & Putzeys, B. 2009. Digital control of a pwm switching amplifier with
global feedback. In Audio Engineering Society Conference: 37th International
Conference: Class D Audio Amplification.

Neesgaard, C. & Risbo, L. 2006. Pwm amplifier control loops with minimum aliasing
distortion. In Audio Engineering Society Convention 120.

Nielsen, K. 1998. Audio power amplifier techniques with energy efficient power
conversion. Ph.D. thesis, Technical University of Denmark.

Norsworthy, S.R., Schreier, R. & Temes, G.C. 1997. Delta-Sigma data converters:
Theory, design, and simulation. pp. 176 - 180. IEEE Press.

Proakis, J.G. & Manolakis, D.G. 1996. Digital signal processing principles, algo-
rithms, and applications. pp. 23 - 28. Prentice Hall.

Putzeys, B. 2006. Simple, ultralow distortion digital pulse width modulator. In
Audio Engineering Society Convention 120.

Risbo, L. 2005. Discrete-time modeling of continuous-time pulse width modulator
loops. In Audio Engineering Society Conference: 27th International Conference:
Efficient Audio Power Amplification.

Schreier, R. & Temes, G.C. 2005. Understanding delta-sigma data converters. p.
101, pp. 115 - 123. IEEE Press.

Self, D. 2006. Audio power amplifier design handbook. pp. 260 - 262, p. 326. Elsevier.

Shannon, C.E. 1949. Communication in the presence of noise. In Proc. Institute of
Radio Engineers, volume 37, pages 10–21.

Slone, G.R. 2002. The audiophile’s project sourcebook. pp. 18 - 19. McGraw-Hill.

Stetter, H.J. 2004. Numerical polynomial algebra. pp. 163 - 166. Society for Industrial
and Applied Math.

Stranneby, D. & Walker, W. 2004. Digital signal processing and applications. p. 7.
Newnes.

Tan, L. 2008. Digital signal processing. pp. 7 - 11, pp. 420 - 429. Elsevier.

Tewksbury, S. & Hallock, R. 1978. Oversampled, linear predictive and noise-shaping
coders of order n > 1. Circuits and Systems, IEEE Transactions on, 25(7):436 –
447.

Trefethen, L.N. 2000. Spectral methods in MATLAB. pp. 41 - 43. Society for Indus-
trial and Applied Math.

Wescott, T. 2006. Applied control theory for embedded systems. pp. 1 - 6, 125 - 128.
Newnes.

Appendices

114

Appendix A

Noise shaper filter coefficients

A.1 Classic noise shaper coefficient design
The transfer function of the noise shaper, where N denotes the order of the
filter is as follows:

H(z) = [1− z−1]N (A.1.1)

H(z) =
zN − 1

zN
(A.1.2)

The denominator of Equation A.1.2 will always equal one. Therefore only
the numerator be focused on. The filter coefficients can be found by using the
binomial formula, which is shown in equation A.1.3.

(a+ z)n =an + nan−1z +
n(n− 1)

2!
an−2z2 +

n(n− 1)(n− 2)

3!
an−3z3

+
n(n− 1)(n− 2)(n− 3)

4!
an−4z4 + . . .

(A.1.3)

1st Order noise shaper:

NTF (z) =(−1)1 + (1)(−1)0z−1

=− 1 + z−1 (A.1.4)

Coefficients = [-1 1]

115

APPENDIX A. NOISE SHAPER FILTER COEFFICIENTS 116

2nd Order noise shaper:

NTF (z) =(−1)2 + 2(−1)1z−1 +
2

2!
(−1)0z−2

=1− 2z−1 + z−2
(A.1.5)

Coefficients = [1 -2 1]

3rd Order noise shaper:

NTF (z) =(−1)3 + 3(−1)2z−1 +
6

2
(−1)1z−2 +

3(2)(1)

6
(−1)0z−3

=− 1z0 + 3z−1 − 3z−2 + 1z−3
(A.1.6)

Coefficients = [-1 3 -3 1]

4th Order noise shaper:

NTF (z) =(−1)4 + 4(−1)4z−1 + 6(−1)2z−2 +
24

6
(−1)z−3 + (−1)0z−4

=1− 4z−1 + 6z−2 − 4z−3 + z−4

(A.1.7)

Coefficients = [1 -4 6 -4 1]

5th Order noise shaper:

NTF (z) =(−1)5 + 5(−1)4z−1 + 10(−1)3z−2 + 10(−1)2z−3 + 5(−1)1z−4 + 1(−1)0z−5

=− 1 + 5z1− − 10z−2 + 10z−3 − 5z−4 + z−5

(A.1.8)

Coefficients = [-1 5 -10 10 -5 1]

Appendix B

VHDL source code

B.1 Main program source code

Listing B.1: Main program
1 −− Design Unit : Main program f i l e o f p r o j e c t
−− F i l e name : main . vhd

3 −− Descr ip t i on : Centra l f i l e f o r c a l l i n g s u b s e c t i on s and
d i r e c t i n g data

−−
5 −− Author : Jason Qu i b e l l
−− Centre f o r Ins t rumenta t ion Research

7 −− Cape Peninsula Un i v e r s i t y o f Technology
−− Revis ion : Version 1.9 07/01/2011

9
l ibrary IEEE ;

11 use IEEE . std_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;

13
Library ieee_proposed ;

15 use ieee_proposed . f ixed_f loat_types . a l l ;
use ieee_proposed . fixed_pkg . a l l ;

17 use ieee_proposed . f loat_pkg . a l l ;

19 entity dig_amp i s

21 port (
CLK : in s td_log i c ; −−24.576 MHz from Os c i l l a t o r

23 pwm_out : out s td_log i c ;
CS : out s td_log i c ; −− SPI Chip S e l e c t

25 CDIN : out s td_log i c ; −− SPI Data In
SCLKo : out s td_log i c ; −− SPI S e r i a l Clock

27 SPI_reset : out s td_log i c ; −− SPI r e s e t

29 SRC_MCLK : out s td_log i c ; −− SRC master c l o c k
SRC_SDOUT : in s td_log i c ; −− SRC Se r i a l Data Out

31 SRC_LRCKA : out s td_log i c ; −− SRC Le f t /Right Clock
SRC_BCKA : out s td_log i c −− SRC Bit Clock

117

APPENDIX B. VHDL SOURCE CODE 118

33
) ;

35 end entity dig_amp ;

37 architecture dig_amp_a of dig_amp i s

39 component SPI_M
port (

41 c l k : in s td_log i c ;
SCLK : out s td_log i c ;

43 SS : out s td_log i c ;
MOSI : out s td_log i c

45) ;
end component ;

47
component dataRX_SRC

49 port (
c l o ck : in s td_log i c ;

51 doneRX : out s td_log i c ; −−Act i va t e "Receive Six va l u e s "
LRclk : in s td_log i c ; −−Le f t /Right Clock

53 Bclk : in s td_log i c ; −−Bit Clock
AudioData : in s td_log i c ; −−Audio data b i t stream in

55 AudioWord : out s igned (23 downto 0) −−Audio Data Word
) ;

57 end component ;

59 component RX_six
port (

61 c l o ck : in s td_log i c ;
doneRX : in s td_log i c ; −− check when f i n i s h e d RX

63 audio_word : in s igned (23 downto 0) ; −−Audio data in
run_coef f : out s td_log i c ; −−Act i va t e " Co e f f i c i e n t c a l c ."

65 audio0 : out s igned (23 downto 0) ; −− Six audio va l u e s
audio1 : out s igned (23 downto 0) ;

67 audio2 : out s igned (23 downto 0) ;
audio3 : out s igned (23 downto 0) ;

69 audio4 : out s igned (23 downto 0) ;
audio5 : out s igned (23 downto 0)

71) ;
end component ;

73
component PolyCoef f

75 port (
c l o ck : in s td_log i c ;

77 run_coef f : in s td_log i c ; −−Act i va t e " Co e f f i c i e n t c a l c ."
coef f_done : out s td_log i c ; −−Act i va t e "Coef f . done"

79
c o e f f 0 : out s igned (23 downto 0) ; −−Polynomial Co e f f i c i e n t s

81 c o e f f 1 : out s igned (23 downto 0) ;
c o e f f 2 : out s igned (23 downto 0) ;

83 c o e f f 3 : out s igned (23 downto 0) ;
c o e f f 4 : out s igned (23 downto 0) ;

APPENDIX B. VHDL SOURCE CODE 119

85 c o e f f 5 : out s igned (23 downto 0) ;

87 audio0 : in s igned (23 downto 0) ; −− Six audio va l u e s
audio1 : in s igned (23 downto 0) ;

89 audio2 : in s igned (23 downto 0) ;
audio3 : in s igned (23 downto 0) ;

91 audio4 : in s igned (23 downto 0) ;
audio5 : in s igned (23 downto 0)

93) ;
ENDCOMPONENT;

95

97 COMPONENT PolyCalc
PORT(

99 c l o ck : in s td_log i c ;
coef f_done : in s td_log i c ;

101 check : out s td_log i c ;
counter : out s f i x e d (23 downto −6) ;

103
c o e f f 0 : in s igned (23 downto 0) ;

105 c o e f f 1 : in s igned (23 downto 0) ;
c o e f f 2 : in s igned (23 downto 0) ;

107 c o e f f 3 : in s igned (23 downto 0) ;
c o e f f 4 : in s igned (23 downto 0) ;

109 c o e f f 5 : in s igned (23 downto 0) ;
upsampled : out s f i x e d (0 downto −23)

111) ;
ENDCOMPONENT;

113
COMPONENT COMPENSATOR

115 PORT(
c l k : in s td_log i c ;

117 f i l t I n : in s f i x e d (1 downto −23) ;
f i l tOu t : out s f i x e d (1 downto −23)

119) ;
ENDCOMPONENT;

121
COMPONENTPWM

123 PORT(
c l o ck : in s td_log i c ;

125 upsampled : in s f i x e d (0 downto −23) ;
f i l tOu t : in s f i x e d (1 downto −23) ;

127 f i l t I n : out s f i x e d (1 downto −23) ;
pwmFB : out s f i x e d (1 downto −23) ;

129 pwmOut : out s td_log i c
) ;

131 ENDCOMPONENT;

133 component p l l
PORT

135 (
a r e s e t : IN STD_LOGIC := ’ 0 ’ ;

APPENDIX B. VHDL SOURCE CODE 120

137 i n c l k 0 : IN STD_LOGIC := ’ 0 ’ ;
c0 : OUT STD_LOGIC ;

139 c1 : OUT STD_LOGIC ;
c2 : OUT STD_LOGIC ;

141 l ocked : OUT STD_LOGIC
) ;

143 end component ;

145

147
−− component por t s

149 signal r e s e t : s td_log i c ; −− SPI r e s e t
signal SCLK : s td_log i c ; −− S lave Clock , SPI

151 signal SS : s td_log i c ; −− S lave S e l e c t / Chip S e l e c t
signal MOSI : s td_log i c ; −− Master out S lave in , SPI data

153 signal pllCLK : s td_log i c ; −− 49.152 MHz c l o c k from PLL
signal bCLK : s td_log i c ; −− 12.288 MHz −Bit Clock

155 signal wCLK : s td_log i c ; −− 192 kHz −Word Clock
signal doneRX : s td_log i c ; −− Receiv ing audio complete

157
signal p l l r e s e t : s td_log i c ;

159 signal nlocked : s td_log i c ;
signal run_coef f : s td_log i c ;

161 signal coef f_done : s td_log i c ;

163 signal check : s td_log i c ;
signal counter : s f i x e d (23 downto −6) ;

165

167 signal AudioLeft : s i gned (23 downto 0) ; −−Le f t channel audio
signal audio0 : s igned (23 downto 0) ;

169 signal audio1 : s igned (23 downto 0) ;
signal audio2 : s igned (23 downto 0) ;

171 signal audio3 : s igned (23 downto 0) ;
signal audio4 : s igned (23 downto 0) ;

173 signal audio5 : s igned (23 downto 0) ;

175 signal c o e f f 0 : s i gned (23 downto 0) ;
signal c o e f f 1 : s i gned (23 downto 0) ;

177 signal c o e f f 2 : s i gned (23 downto 0) ;
signal c o e f f 3 : s i gned (23 downto 0) ;

179 signal c o e f f 4 : s i gned (23 downto 0) ;
signal c o e f f 5 : s i gned (23 downto 0) ;

181
signal f i l t I n : s f i x e d (1 downto −23) ;

183 signal f i l tOu t : s f i x e d (1 downto −23) ;

185 signal upsampled : s f i x e d (0 downto −23) ;
signal pwmout : s td_log i c ;

187
begin

APPENDIX B. VHDL SOURCE CODE 121

189
−− component i n s t a n t i a t i o n

191 DUT1: SPI_M
port map (

193 c l k => CLK, −−24.576 MHz
SCLK => SCLK,

195 SS => SS ,
MOSI => MOSI

197) ;

199 DUT2: dataRX_SRC
port map (

201 c l o ck => CLK, −−24.576 MHz
doneRX => doneRX ,

203 LRclk => wCLK,
Bclk => bCLK,

205 AudioWord => AudioLeft ,
AudioData => SRC_SDOUT

207) ;

209 DUT3: RX_six
port map (

211 c l o ck => CLK, −−24.576 MHz
doneRX => doneRX ,

213 audio_word => AudioLeft ,
run_coef f => run_coeff ,

215 audio0 => audio0 ,
audio1 => audio1 ,

217 audio2 => audio2 ,
audio3 => audio3 ,

219 audio4 => audio4 ,
audio5 => audio5

221) ;

223 DUT4: PolyCoef f
port map (

225 c l o ck => pllCLK , −−49.152 MHz
run_coef f => run_coeff ,

227 coef f_done => coeff_done ,
c o e f f 0 => coe f f 0 ,

229 c o e f f 1 => coe f f 1 ,
c o e f f 2 => coe f f 2 ,

231 c o e f f 3 => coe f f 3 ,
c o e f f 4 => coe f f 4 ,

233 c o e f f 5 => coe f f 5 ,
audio0 => audio0 ,

235 audio1 => audio1 ,
audio2 => audio2 ,

237 audio3 => audio3 ,
audio4 => audio4 ,

239 audio5 => audio5
) ;

APPENDIX B. VHDL SOURCE CODE 122

241
DUT5: PolyCalc

243 port map (
c l o ck => pllCLK , −−49.152 MHz

245 check => check ,
counter => counter ,

247 coef f_done => coeff_done ,
c o e f f 0 => coe f f 0 ,

249 c o e f f 1 => coe f f 1 ,
c o e f f 2 => coe f f 2 ,

251 c o e f f 3 => coe f f 3 ,
c o e f f 4 => coe f f 4 ,

253 c o e f f 5 => coe f f 5 ,
upsampled => upsampled

255) ;

257 DUT6: COMPENSATOR
PORTMAP(

259 c l k => pllCLK , −−49.152 MHz
f i l t I n => f i l t I n , −−Compensated f o r r i p p l e

261 f i l tOu t => f i l tOu t
) ;

263
DUT7: PWM

265 PORTMAP(
c l o ck => pllCLK , −−49.152 MHz

267 f i l tOu t => f i l tOut , −−Upsampled F i l t e r e d Audio
f i l t I n => f i l t I n ,

269 upsampled=> upsampled ,
pwmOut => pwmout ,

271) ;

273
u_pll : p l l −−PLL running

275 PORTMAP (
i n c l k 0 => CLK, −−24.576 MHz − Externa l Osc .

277 c0 => pllCLK , −−49.152 MHz
c1 => bCLK, −−12.288 MHz − Bit Clock

279 c2 => wCLK, −− 192 kHz − Word Clock
l ocked => nlocked ,

281 a r e s e t => p l l r e s e t
) ;

283
process (CLK, pllCLK ,wCLK,bCLK,SCLK)

285 begin

287 SPI_reset <= ’ 1 ’ ;
SRC_MCLK <= CLK; −−24.576 MHz

289 CS <= SS ; −−SPI ch ip s e l e c t
CDIN <= MOSI; −−SPI data in

291 SCLKo <= SCLK; −−SPI data c l o c k

APPENDIX B. VHDL SOURCE CODE 123

293 SRC_LRCKA <= wCLK; −− SRC Le f t /Right Clock 192 kHz
SRC_BCKA <= bCLK; −− SRC Bit Clock 12.288 MHz

295
PWM_out <= pwmout ;

297
end process ;

299
end architecture dig_amp_a ;

APPENDIX B. VHDL SOURCE CODE 124

B.2 SPI source code

Listing B.2: SPI
−− Design Unit : SPI Master

2 −− F i l e name : SPI_M. vhd
−− Descr ip t i on : Use the FPGA as an SPI master to con f i gu r e the

SRC4392 dev i c e . S p e c i f i c data words are addressed and sen t to
the SRC4392 dev i c e . Once complete , the FPGA s top s sending any
f u r t h e r data v ia SPI .

4 −−
−− Author : Jason Qu i b e l l

6 −− Centre f o r Ins t rumenta t ion Research
−− Cape Peninsula Un i v e r s i t y o f Technology

8 −− Revis ion : Version 1.1 05/05/2009

10 l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

12 use i e e e . numeric_std . a l l ;

14 entity SPI_M i s
port (

16 c l k : in s td_log i c ;
SCLK : out s td_log i c ;

18 SS : out s td_log i c ;
MOSI : out s td_log i c

20) ;
end SPI_M;

22
architecture a of SPI_M i s

24 type state_type i s (i d l e , loadData , delay1 , txBit ,
CheckFinished) ;

signal s t a t e : state_type := i d l e ;
26

signal DataToTx : std_log ic_vector (23 downto 0) ;
28 signal StartTX : s td_log i c := ’ 1 ’ ;

signal counter : unsigned (3 downto 0) ;
30

begin
32 process (c lk , counter)

34 variable index : i n t e g e r := 0 ;
variable dataLen : i n t e g e r := 23 ; −− l e n g t h o f data to TX

36 variable MOSI_v : s td_log i c ; −−Master Out S lave In

38 begin

40 i f (counter = 0) then
DataToTx <= "110011000000000010000000" ; −− r e g i s t e r 01

42 e l s i f (counter = 1) then
DataToTx <= "001011000000000011000000" ; −−r e g i s t e r 03

44 e l s i f (counter = 2) then
DataToTx <= "010100000000000010110000" ; −−r e g i s t e r 0D

APPENDIX B. VHDL SOURCE CODE 125

46 e l s i f (counter = 3) then
DataToTx <= "100100000000000001110000" ; −−r e g i s t e r 0E

48 e l s i f (counter = 4) then
DataToTx <= "010001000000000011110000" ; −−r e g i s t e r 0F

50 e l s i f (counter = 5) then
DataToTx <= "010000100000000010110100" ; −− r e g i s t e r 2D

52 e l s i f (counter = 6) then
DataToTx <= "000000110000000011110100" ; −− r e g i s t e r 2F

54 e l s i f (counter = 7) then
DataToTx <= "001000000000000000001100" ; −− r e g i s t e r 30

56 e l s i f (counter = 8) then
DataToTx <= "000000000000000000000000" ; −−Disab l e SPI

58 end i f ;

60 i f (c lk ’ event and c l k = ’1 ’) then
case s t a t e i s

62 when i d l e =>
SCLK <= ’0 ’ ;

64 SS <= ’ 1 ’ ; −− s top SPI
MOSI_v := ’ 0 ’ ;

66 i f (StartTx = ’1 ’) then
s t a t e <= loadData ;

68 else
s t a t e <= i d l e ;

70 index := 0 ;
end i f ;

72
when loadData =>

74 SS <= ’ 0 ’ ; −− s t a r t SPI
SCLK <= ’0 ’ ;

76 MOSI_v := DataToTx(index) ; −− TX data to s l a v e
s t a t e <= delay1 ;

78
when delay1 =>

80 s t a t e <= txBit ;

82 when txBit =>
SCLK <= ’1 ’ ;

84 s t a t e <= CheckFinished ;

86 when checkFin i shed =>
i f (index = dataLen) then

88 i f counter = 8 then
SS <= ’ 1 ’ ;

90 else
index := 0 ;

92 counter <= counter + 1 ;
s t a t e <= i d l e ;

94 end i f ;
else

96 s t a t e <= loadData ;
index := index + 1 ;

APPENDIX B. VHDL SOURCE CODE 126

98 end i f ;

100 when others => null ;
end case ;

102
end i f ;

104 MOSI <= MOSI_v;
end process ;

106 end a ;

APPENDIX B. VHDL SOURCE CODE 127

B.3 Receive audio data source code

Listing B.3: Receive audio data word
−− Design Unit : Receive audio data from SRC dev i c e

2 −− F i l e name : dataRX_SRC. vhd
−− Descr ip t i on : Receive audio data be ing t ransmi t t ed by SRC4392

dev i c e and pass i t to the next b l o c k which c o l l e c t s s i x audio
data words to be used f o r a f i f t h order po lynomia l c a l c u l a t i o n .

4 −−
−− Author : Jason Qu i b e l l

6 −− Centre f o r Ins t rumenta t ion Research
−− Cape Peninsula Un i v e r s i t y o f Technology

8 −− Revis ion : Version 1.2 17/05/2009

10 l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

12 use i e e e . numeric_std . a l l ;

14 entity dataRX_SRC i s
port (

16 c l o ck : in s td_log i c ;
LRclk : in s td_log i c ;

18 Bclk : in s td_log i c ;
AudioData : in s td_log i c ;

20 AudioWord : out s igned (23 downto 0) ;
doneRX : out s td_log i c

22) ;
end dataRX_SRC;

24
architecture a of dataRX_SRC i s

26 type state_type i s (go , stop) ;
signal s t a t e : state_type := stop ;

28

30 signal DataRX : s igned (15 downto 0) ; −−Actual 16 b i t
r e c e i v ed data

signal Audio_L : s igned (23 downto 0) ; −−16 b i t + 8 b i t
padding (24 b i t)

32
begin

34 process (LRclk , Bclk)
begin

36 i f LRclk = ’1 ’ then
i f Bclk ’ event and Bclk = ’0 ’ then

38 DataRX(15 downto 1) <= DataRX(14 downto 0) ;
DataRX(0) <= AudioData ;

40 doneRX <= ’0 ’ ;
end i f ;

42 else

44 Audio_L(7 downto 0) <= "00000000" ;
Audio_L(23 downto 8) <= DataRx ;

APPENDIX B. VHDL SOURCE CODE 128

46 AudioWord <= Audio_L ;
doneRX <= ’1 ’ ;

48 end i f ;
end process ;

50

52 end a ;

APPENDIX B. VHDL SOURCE CODE 129

Listing B.4: Store six audio words
−− Design Unit : Store s i x audio words

2 −− F i l e name : dataRX_SRC. vhd
−− Descr ip t i on : Received audio data i s s t o r ed u n t i l s i x va l u e s

have been accumulated . They are then passed to the po lynomia l
c o e f f i c i e n t c a l c u l a t o r

4 −−
−− Author : Jason Qu i b e l l

6 −− Centre f o r Ins t rumenta t ion Research
−− Cape Peninsula Un i v e r s i t y o f Technology

8 −− Revis ion : Version 1 13/05/2009

10 l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

12 use i e e e . numeric_std . a l l ;

14 entity RX_six i s
port (

16 c l o ck : in s td_log i c ;
doneRX : in s td_log i c ; −− check when done RX data

18 audio_word : in s igned (23 downto 0) ; −−Audio data in
run_coef f : out s td_log i c ; −−Act i va t e " Co e f f i c i e n t c a l c "

20 audio0 : out s igned (23 downto 0) ; −− Six audio va l u e s
audio1 : out s igned (23 downto 0) ;

22 audio2 : out s igned (23 downto 0) ;
audio3 : out s igned (23 downto 0) ;

24 audio4 : out s igned (23 downto 0) ;
audio5 : out s igned (23 downto 0)

26) ;
end RX_six ;

28
architecture a of RX_six i s

30
type state_type i s (i d l e , acceptData , newValue , dataOut , delay ,

de lay2) ;
32 signal s t a t e : state_type := i d l e ;

34 type audio_arr i s array (INTEGER range <>) of s igned (23 downto
0) ;

signal audio_array : audio_arr (0 to 5) ; −− a 6 x 24 b i t array
36

38 begin
process (c lock , audio_array)

40

42 begin
i f (c lock ’ event and c l o ck = ’1 ’) then

44 case s t a t e i s

46 when i d l e =>
run_coef f <= ’ 0 ’ ; −−Deac t i va t e Co e f f i c i e n t Calc .

APPENDIX B. VHDL SOURCE CODE 130

48
i f doneRX = ’1 ’ then

50 s t a t e <= acceptData ;
else

52 s t a t e <= i d l e ;
end i f ;

54
when acceptData =>

56 audio_array (0) <= audio_array (1) ;
audio_array (1) <= audio_array (2) ;

58 audio_array (2) <= audio_array (3) ;
audio_array (3) <= audio_array (4) ;

60 audio_array (4) <= audio_array (5) ;
s t a t e <= newValue ;

62
when newValue =>

64 audio_array (5) <= audio_word ; −−In troduce new data
s t a t e <= dataOut ;

66
when dataOut =>

68 run_coef f <= ’ 1 ’ ; −−Act i va t e Co e f f i c i e n t Ca l cu l a t o r
audio0 <= audio_array (0) ; −−6 va l u e s f o r c o e f f i c i e n t c a l c .

70 audio1 <= audio_array (1) ;
audio2 <= audio_array (2) ;

72 audio3 <= audio_array (3) ;
audio4 <= audio_array (4) ;

74 audio5 <= audio_array (5) ;
s t a t e <= delay ;

76
when delay =>

78 i f doneRX = ’0 ’ then
s t a t e <= i d l e ;

80 else
s t a t e <= delay2 ;

82 end i f ;

84 when delay2 =>
run_coef f <= ’ 0 ’ ;

86 s t a t e <= delay ;

88
when others => null ;

90 end case ;
end i f ;

92 end process ;
end a ;

APPENDIX B. VHDL SOURCE CODE 131

B.4 Interpolation source code

Listing B.5: Calculate polynomial coefficients
1 −− Design Unit : Ca l cu l a t e po lynomia l c o e f f i c i e n t s
−− F i l e name : PolyCoef f . vhd

3 −− Descr ip t i on : Six audio data va l u e s are r e c e i v ed and used to
c r ea t e f i f t h order po lynomia l c o e f f i c i e n t s . The c o e f f i c i e n t s
are then passed to the next b l o c k which then genera t e s new data
, i n t e r p o l a t i o n .

−−
5 −− Author : Jason Qu i b e l l
−− Centre f o r Ins t rumenta t ion Research

7 −− Cape Peninsula Un i v e r s i t y o f Technology
−− Revis ion : Version 1.4 11/06/2009

9
l ibrary i e e e ;

11 use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

13
Library ieee_proposed ;

15 use ieee_proposed . f ixed_f loat_types . a l l ;
use ieee_proposed . fixed_pkg . a l l ;

17 use ieee_proposed . f loat_pkg . a l l ;

19 entity PolyCoef f i s
port (

21 c l o ck : in s td_log i c ;
run_coef f : in s td_log i c ; −−Act i va t e " Co e f f i c i e n t c a l c u l a t o r

"
23 coef f_done : out s td_log i c ; −−Act i va t e " Co e f f i c i e n t done"

25 c o e f f 0 : out s igned (23 downto 0) ; −−Six c o e f f i c i e n t s
c o e f f 1 : out s igned (23 downto 0) ;

27 c o e f f 2 : out s igned (23 downto 0) ;
c o e f f 3 : out s igned (23 downto 0) ;

29 c o e f f 4 : out s igned (23 downto 0) ;
c o e f f 5 : out s igned (23 downto 0) ;

31
audio0 : in s igned (23 downto 0) ; −− Six audio data

va l u e s
33 audio1 : in s igned (23 downto 0) ;

audio2 : in s igned (23 downto 0) ;
35 audio3 : in s igned (23 downto 0) ;

audio4 : in s igned (23 downto 0) ;
37 audio5 : in s igned (23 downto 0)

) ;
39 end PolyCoef f ;

41 architecture a of PolyCoef f i s

43 type state_type i s (i d l e , ca l cCoe f f 1 , ca l cCoe f f 2 , ca l cCoe f f 3 ,
ca l cCoe f f 4 , ca l cCoe f f 5 , coef fDone , de lay) ;

APPENDIX B. VHDL SOURCE CODE 132

signal s t a t e : state_type := i d l e ;
45

type coe f f_ar r i s array (INTEGER range <>) of s igned (23 downto
0) ;

47 signal coe f f_0 : coe f f_ar r (0 to 5) ; −− a 6 x 24 b i t array
signal coe f f_1 : coe f f_ar r (0 to 4) ; −− a 5 x 24 b i t array

49 signal coe f f_2 : coe f f_ar r (0 to 3) ; −− a 4 x 24 b i t array
signal coe f f_3 : coe f f_ar r (0 to 2) ; −− a 3 x 24 b i t array

51 signal coe f f_4 : coe f f_ar r (0 to 1) ; −− a 2 x 24 b i t array
signal coe f f_5 : coe f f_ar r (0 to 0) ; −− a 1 x 24 b i t array

53

55

57 begin
process (c lock , coeff_0 , coeff_1 , coeff_2 , coeff_3 , coeff_4 ,

coe f f_5)
59

variable index : i n t e g e r := 0 ;
61

begin
63 i f (c lock ’ event and c l o ck = ’1 ’) then

case s t a t e i s
65

when i d l e =>
67 coef f_done <= ’ 0 ’ ;

i f run_coef f = ’1 ’ then
69 coe f f_0 (0) <= audio0 ;

coe f f_0 (1) <= audio1 ;
71 coe f f_0 (2) <= audio2 ;

coe f f_0 (3) <= audio3 ;
73 coe f f_0 (4) <= audio4 ;

coe f f_0 (5) <= audio5 ;
75 s t a t e <= ca l cCoe f f 1 ;

else
77 s t a t e <= i d l e ;

end i f ;
79

when ca l cCoe f f 1 =>
81 coe f f_1 (0) <= coef f_0 (1) − coe f f_0 (0) ;

coe f f_1 (1) <= coef f_0 (2) − coe f f_0 (1) ;
83 coe f f_1 (2) <= coef f_0 (3) − coe f f_0 (2) ;

coe f f_1 (3) <= coef f_0 (4) − coe f f_0 (3) ;
85 coe f f_1 (4) <= coef f_0 (5) − coe f f_0 (4) ;

s t a t e <= ca l cCoe f f 2 ;
87

when ca l cCoe f f 2 =>
89 coe f f_2 (0) <= (coef f_1 (1) − coe f f_1 (0)) /2 ;

coe f f_2 (1) <= (coef f_1 (2) − coe f f_1 (1)) /2 ;
91 coe f f_2 (2) <= (coef f_1 (3) − coe f f_1 (2)) /2 ;

coe f f_2 (3) <= (coef f_1 (4) − coe f f_1 (3)) /2 ;
93 s t a t e <= ca l cCoe f f 3 ;

APPENDIX B. VHDL SOURCE CODE 133

95 when ca l cCoe f f 3 =>
coef f_3 (0) <= (coef f_2 (1) − coe f f_2 (0)) /3 ;

97 coe f f_3 (1) <= (coef f_2 (2) − coe f f_2 (1)) /3 ;
coe f f_3 (2) <= (coef f_2 (3) − coe f f_2 (2)) /3 ;

99 s t a t e <= ca l cCoe f f 4 ;

101
when ca l cCoe f f 4 =>

103 coe f f_4 (0) <= (coef f_3 (1) − coe f f_3 (0)) /4 ;
coe f f_4 (1) <= (coef f_3 (2) − coe f f_3 (1)) /4 ;

105 s t a t e <= ca l cCoe f f 5 ;

107
when ca l cCoe f f 5 =>

109 coe f f_5 (0) <= (coef f_4 (1) − coe f f_4 (0)) /5 ;
c o e f f 0 <= coef f_0 (0) ;

111 c o e f f 1 <= coef f_1 (0) ;
c o e f f 2 <= coef f_2 (0) ;

113 c o e f f 3 <= coef f_3 (0) ;
c o e f f 4 <= coef f_4 (0) ;

115 c o e f f 5 <= coef f_5 (0) ;
coef f_done <= ’ 1 ’ ;

117 s t a t e <= coef fDone ;

119 when coef fDone =>
coef f_done <= ’ 1 ’ ;

121 s t a t e <= delay ;

123 when delay =>
s t a t e <= i d l e ;

125
when others => null ;

127 end case ;
end i f ;

129 end process ;
end a ;

APPENDIX B. VHDL SOURCE CODE 134

Listing B.6: Calculate new audio data
−− Design Unit : Generate new data from polynomia l c o e f f i c i e n t s

2 −− F i l e name : PolyCalc . vhd
−− Descr ip t i on : Receive po lynomia l c o e f f i c i e n t s and genera te new

data , t he reby inc r ea s e s the number o f samples a v a i l a b l e , which
then makes i t p o s s i b l e to inc rea se the sample ra t e at which the
system opera t e s . 64 new samples are generated f o r every s i n g l e
sample which i s r e c e i v ed by the FPGA. Pre−c a l c u l a t e d va l u e s

were s t o r ed in ROM.
4 −−
−− Author : Jason Qu i b e l l

6 −− Centre f o r Ins t rumenta t ion Research
−− Cape Peninsula Un i v e r s i t y o f Technology

8 −− Revis ion : Version 1.6 17/08/2009

10 l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

12 use i e e e . numeric_std . a l l ;

14 Library ieee_proposed ;
use ieee_proposed . f ixed_f loat_types . a l l ;

16 use ieee_proposed . fixed_pkg . a l l ;
use ieee_proposed . f loat_pkg . a l l ;

18
entity PolyCalc i s

20 port (
c l o ck : in s td_log i c ;

22 coef f_done : in s td_log i c ;

24 c o e f f 0 : in s igned (23 downto 0) ;
c o e f f 1 : in s igned (23 downto 0) ;

26 c o e f f 2 : in s igned (23 downto 0) ;
c o e f f 3 : in s igned (23 downto 0) ;

28 c o e f f 4 : in s igned (23 downto 0) ;
c o e f f 5 : in s igned (23 downto 0) ;

30
check : out s td_log i c ;

32 counter : out s f i x e d (23 downto −6) ;

34 upsampled : out s f i x e d (0 downto −23)
) ;

36 end PolyCalc ;

38 architecture a of PolyCalc i s

40 type state_type i s (i d l e , ca l c , delay , delay2 , xCheck) ;
signal s t a t e : state_type := i d l e ;

42
type Data_arr i s array (INTEGER range <>) of s f i x e d (23 downto

−6) ;
44 signal a : Data_arr (0 to 5) ; −− Coe f f i c i e n t s in 6 x24 b i t

array r e s i z e d to 23 downto −6

APPENDIX B. VHDL SOURCE CODE 135

46 signal x : s f i x e d (23 downto −6) := "
000000000000000000000000000000" ;

signal p : s f i x e d (23 downto −6) ;
48 signal p_tmp : s f i x e d (23 downto −6) ;

50 signal s i x : s f i x e d (23 downto −6) ;
signal add : s f i x e d (23 downto −6) ;

52 signal zero : s f i x e d (23 downto −6) ;

54 signal address_s ig :UNSIGNED (5 DOWNTO 0) := "000000" ;
signal address_tmp :UNSIGNED (5 DOWNTO 0) := "000000" ;

56 signal q_sig1 : s f i x e d (23 downto −6) ;
signal q_sig2 : s f i x e d (23 downto −6) ;

58 signal q_sig3 : s f i x e d (23 downto −6) ;
signal q_sig4 : s f i x e d (23 downto −6) ;

60 signal q_sig5 : s f i x e d (23 downto −6) ;
signal q_sig1_tmp : s f i x e d (23 downto −6) ;

62 signal q_sig2_tmp : s f i x e d (23 downto −6) ;
signal q_sig3_tmp : s f i x e d (23 downto −6) ;

64 signal q_sig4_tmp : s f i x e d (23 downto −6) ;
signal q_sig5_tmp : s f i x e d (23 downto −6) ;

66

68
component ROM

70 PORT
(

72 address : IN UNSIGNED (5 DOWNTO 0) ;
c l o ck : IN STD_LOGIC ;

74 q : OUT s f i x e d (23 downto −6)
) ;

76 end component ;

78 component ROM2
PORT

80 (
address : IN UNSIGNED (5 DOWNTO 0) ;

82 c l o ck : IN STD_LOGIC ;
q : OUT s f i x e d (23 downto −6)

84) ;
end component ;

86
component ROM3

88 PORT
(

90 address : IN UNSIGNED (5 DOWNTO 0) ;
c l o ck : IN STD_LOGIC ;

92 q : OUT s f i x e d (23 downto −6)
) ;

94 end component ;

APPENDIX B. VHDL SOURCE CODE 136

96 component ROM4
PORT

98 (
address : IN UNSIGNED (5 DOWNTO 0) ;

100 c l o ck : IN STD_LOGIC ;
q : OUT s f i x e d (23 downto −6)

102) ;
end component ;

104
component ROM5

106 PORT
(

108 address : IN UNSIGNED (5 DOWNTO 0) ;
c l o ck : IN STD_LOGIC ;

110 q : OUT s f i x e d (23 downto −6)
) ;

112 end component ;

114
begin

116 −− Pre−c a l c u l a t e d va l u e s
ROM_inst : ROM PORTMAP (

118 address => address_sig ,
c l o ck => clock ,

120 q => q_sig1_tmp
) ;

122
ROM_inst2 : ROM2 PORTMAP (

124 address => address_sig ,
c l o ck => clock ,

126 q => q_sig2_tmp
) ;

128 ROM_inst3 : ROM3 PORTMAP (
address => address_sig ,

130 c l o ck => clock ,
q => q_sig3_tmp

132) ;

134 ROM_inst4 : ROM4 PORTMAP (
address => address_sig ,

136 c l o ck => clock ,
q => q_sig4_tmp

138) ;

140 ROM_inst5 : ROM5 PORTMAP (
address => address_sig ,

142 c l o ck => clock ,
q => q_sig5_tmp

144) ;

146
process (c l o ck)

APPENDIX B. VHDL SOURCE CODE 137

148
variable index : i n t e g e r := 0 ;

150
begin

152
s i x <= to_sf ixed (4 . 96875 , s i x) ; −−Upper l im i t

154 add <= to_sf ixed (0 .015625 , add) ;−−Step s i z e (64 x OSR)
zero <= to_sf ixed (4 , ze ro) ; −−Lower l im i t

156
i f (c lock ’ event and c l o ck = ’1 ’) then

158 case s t a t e i s

160 when i d l e =>
i f coef f_done = ’1 ’ then

162
a (0) (23 downto 0) <= to_sf ixed (coe f f 0 , 2 3 , 0) ;

164 a (1) (23 downto 0) <= to_sf ixed (coe f f 1 , 2 3 , 0) ;
a (2) (23 downto 0) <= to_sf ixed (coe f f 2 , 2 3 , 0) ;

166 a (3) (23 downto 0) <= to_sf ixed (coe f f 3 , 2 3 , 0) ;
a (4) (23 downto 0) <= to_sf ixed (coe f f 4 , 2 3 , 0) ;

168 a (5) (23 downto 0) <= to_sf ixed (coe f f 5 , 2 3 , 0) ;

170 s t a t e <= ca l c ;
else

172 check <= ’ 0 ’ ;
s t a t e <= i d l e ;

174 end i f ;

176 when c a l c =>

178 p_tmp <= r e s i z e (a (0) + q_sig1∗a (1) + q_sig2∗a (2) + q_sig3∗
a (3) + q_sig4∗a (4) + q_sig5∗a (5) ,p_tmp’ high , p_tmp’ low) ;

address_tmp <= address_tmp + 1 ;
180 check <= ’ 1 ’ ;

s t a t e <= delay ;
182

when delay =>
184

s t a t e <= delay2 ;
186

when delay2 =>
188

s t a t e <= xCheck ;
190

when xCheck =>
192 upsampled <= p_tmp(23 downto 0) ;

194 i f x = s i x then
x <= zero ;

196 address_tmp <= "000000" ;
s t a t e <= i d l e ;

198 else

APPENDIX B. VHDL SOURCE CODE 138

x <= r e s i z e (x + add , x ’ high , x ’ low) ;
200 counter <= x ;

check <= ’ 0 ’ ;
202 s t a t e <= ca l c ;

end i f ;
204

when others => null ;
206 end case ;

end i f ;
208 end process ;

210 process (c l o ck)
begin

212 i f (c lock ’ event and c l o ck = ’1 ’) then
address_s ig <= address_tmp ;

214 q_sig1 <= q_sig1_tmp ;
q_sig2 <= q_sig2_tmp ;

216 q_sig3 <= q_sig3_tmp ;
q_sig4 <= q_sig4_tmp ;

218 q_sig5 <= q_sig5_tmp ;
end i f ;

220 end process ;
end a ;

APPENDIX B. VHDL SOURCE CODE 139

B.5 Noise shaper source code

Listing B.7: 3rd Order noise shaping loop filter
1 −− Design Unit : 3 rd Order Loop F i l t e r
−− F i l e name : COMPENSATOR3rdOrder . vhd

3 −− Descr ip t i on : F i l t e r upsampled audio wi th a 3rd order cascaded
i n t e g r a t o r s wi th f eed forward summation and resonator f eedback
f i l t e r . The f i l t e r c o e f f i c i e n t s were c a l c u l a t e d o f f l i n e .

−−
5 −− Author : Jason Qu i b e l l
−− Centre f o r Ins t rumenta t ion Research

7 −− Cape Peninsula Un i v e r s i t y o f Technology
−− Revis ion : Version 1.4 02/04/2011

9
l ibrary i e e e ;

11 use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

13
Library ieee_proposed ;

15 use ieee_proposed . f ixed_f loat_types . a l l ;
use ieee_proposed . fixed_pkg . a l l ;

17 use ieee_proposed . f loat_pkg . a l l ;

19
−−

21 entity COMPENSATOR i s
port (

23 c l k : in s td_log i c ;
f i l t I n : in s f i x e d (1 downto −23) ;

25 f i l tOu t : out s f i x e d (1 downto −23)
) ;

27 end COMPENSATOR;

29 −−
−−Module Arch i t e c tu re : compensator

31 −−
ARCHITECTURE r t l OF COMPENSATOR IS

33
−− Coe f f i c i e n t s

35

37
−−3rd Order c o e f f i c i e n t s

39
−− 12.288 MHz

41 CONSTANT a1 : s f i x e d (0 downto −34) := "
00000100000110001101000100101101111" ;

CONSTANT a2 : s f i x e d (0 downto −39) := "
0000000001001001001111110011111001000001" ;

43 CONSTANT a3 : s f i x e d (0 downto −41) := "
000000000000000100111000011110110011100010" ;

APPENDIX B. VHDL SOURCE CODE 140

45 CONSTANT g1 : s f i x e d (0 downto −39) := "
0000000000000000011110110101111010111010" ;

47 −− S i gna l s
SIGNAL Y1 : s f i x e d (8 DOWNTO −31):= "

00" ;
49 SIGNAL Y2 : s f i x e d (14 DOWNTO −31):= "

00" ;
SIGNAL Y3 : s f i x e d (22 DOWNTO −31):= "

00" ;
51

−−Delay v a r i a b l e s
53 SIGNAL Y1_delay : s f i x e d (8 DOWNTO −31):= "

00" ;
SIGNAL Y2_delay : s f i x e d (14 DOWNTO −31):= "

00" ;
55 SIGNAL Y3_delay : s f i x e d (22 DOWNTO −31):= "

00" ;

57 −−Fina l f i l t e r e d output
SIGNAL f i l t e r e d : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
59

−−Temporary c a l c u l a t i o n s t o rage
61 SIGNAL tmp_one : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
signal tmp_two : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
63 signal tmp_three : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;

65 signal Y3_feedback : s f i x e d (1 downto −31):= "
000000000000000000000000000000000" ;

67
type state_type i s (s t a r t , delay1 , delay2 , stop) ;

69 signal s t a t e : state_type := s t a r t ;

71 begin

73 de lay_process_sect ion : process (c l k)
begin

75 i f c lk ’ event AND c l k = ’1 ’ THEN

77 case s t a t e i s

79 when s t a r t =>

81 f i l tOu t <= r e s i z e (tmp_one + tmp_two + tmp_three , f i l t e r e d ’
high , f i l t e r e d ’ low) ;

APPENDIX B. VHDL SOURCE CODE 141

83 Y2 <= r e s i z e (Y1_delay + Y2_delay − Y3_feedback ,Y2 ’ high ,Y2 ’
low) ;

85 s t a t e <= delay1 ;

87 when delay1 =>

89 Y1 <= r e s i z e (f i l t I n + Y1_delay ,Y1 ’ high ,Y1 ’ low) ;
Y3 <= r e s i z e (Y2_delay + Y3_delay ,Y3 ’ high ,Y3 ’ low) ;

91 Y3_feedback <= r e s i z e (g1∗Y3_delay , Y3_feedback ’ high ,
Y3_feedback ’ low) ;

93 s t a t e <= delay2 ;

95 when delay2 =>
tmp_one <= r e s i z e (Y1∗a1 , tmp_one ’ high , tmp_one ’ low) ;

97 tmp_two <= r e s i z e (Y2∗a2 , tmp_two ’ high , tmp_two ’ low) ;
tmp_three <= r e s i z e (Y3∗a3 , tmp_three ’ high , tmp_three ’ low) ;

99
s t a t e <= stop ;

101
when stop =>

103
Y1_delay <= Y1 ;

105 Y2_delay <= Y2 ;
Y3_delay <= Y3 ;

107
s t a t e <= s t a r t ;

109 when others => null ;

111 end case ;
end i f ;

113
end process de lay_process_sect ion ;

115
end r t l ;

APPENDIX B. VHDL SOURCE CODE 142

Listing B.8: 5th Order noise shaping loop filter
−− Design Unit : 5 th Order Loop F i l t e r

2 −− F i l e name : COMPENSATOR5thOrder . vhd
−− Descr ip t i on : F i l t e r upsampled audio wi th a 5 th order cascaded

i n t e g r a t o r s wi th f eed forward summation and resonator f eedback
f i l t e r . The f i l t e r c o e f f i c i e n t s were c a l c u l a t e d o f f l i n e .

4 −−
−− Author : Jason Qu i b e l l

6 −− Centre f o r Ins t rumenta t ion Research
−− Cape Peninsula Un i v e r s i t y o f Technology

8 −− Revis ion : Version 1.4 02/04/2011

10

12 l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;

14 use i e e e . numeric_std . a l l ;

16 Library ieee_proposed ;
use ieee_proposed . f ixed_f loat_types . a l l ;

18 use ieee_proposed . fixed_pkg . a l l ;
use ieee_proposed . f loat_pkg . a l l ;

20

22 −−−
entity COMPENSATOR i s

24 port (
c l k : in s td_log i c ;

26 f i l t I n : in s f i x e d (1 downto −23) ;
f i l tOu t : out s f i x e d (1 downto −23)

28) ;
end COMPENSATOR;

30
−−

32 −−Module Arch i t e c tu re : compensator
−−

34 ARCHITECTURE r t l OF COMPENSATOR IS

36 −− 5 th Order c o e f f i c i e n t s
−− 12.288 MHz

38 CONSTANT a1 : s f i x e d (0 downto −34) := "
00000101100001001000111000110011010" ;

CONSTANT a2 : s f i x e d (0 downto −39) := "
0000000001001001010101111100000000010101" ;

40 CONSTANT a3 : s f i x e d (0 downto −41) := "
000000000000000110110111100100010000101100" ;

CONSTANT a4 : s f i x e d (0 downto −44) := "
000000000000000000000101101011011101001000000" ;

42 CONSTANT a5 : s f i x e d (0 downto −49) := "
00000000000000000000000000000111111111110011110000" ;

CONSTANT g1 : s f i x e d (0 downto −39) := "
0000000000000010100101110111011100000000" ;

APPENDIX B. VHDL SOURCE CODE 143

44 CONSTANT g2 : s f i x e d (0 downto −39) := "
0000000000000000010111100110111010000010" ;

46 −− S i gna l s
SIGNAL Y1 : s f i x e d (8 DOWNTO −31):= "

00" ;
48 SIGNAL Y2 : s f i x e d (14 DOWNTO −31):= "

00" ;
SIGNAL Y3 : s f i x e d (22 DOWNTO −31):= "

00" ;
50 SIGNAL Y4 : s f i x e d (30 DOWNTO −31):= "

00
00000000" ;

52 SIGNAL Y5 : s f i x e d (39 DOWNTO −31):= "
00

00000000000000000" ;
54

56 −−Delay v a r i a b l e s
SIGNAL Y1_delay : s f i x e d (8 DOWNTO −31):= "

00" ;
58 SIGNAL Y2_delay : s f i x e d (14 DOWNTO −31):= "

00" ;
SIGNAL Y3_delay : s f i x e d (22 DOWNTO −31):= "

00" ;
60 SIGNAL Y4_delay : s f i x e d (30 DOWNTO −31):= "

00
00000000" ;

62 SIGNAL Y5_delay : s f i x e d (39 DOWNTO −31):= "
00

00000000000000000" ;
64

−−Fina l f i l t e r e d output
66 SIGNAL f i l t e r e d : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;

68 −−Temporary c a l c u l a t i o n s t o rage
SIGNAL tmp_one : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
70 signal tmp_two : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
signal tmp_three : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
72 signal tmp_four : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
signal tmp_five : s f i x e d (1 downto −23):= "

0000000000000000000000000" ;
74

signal Y3_feedback : s f i x e d (1 downto −31):= "
000000000000000000000000000000000" ;

76 signal Y5_feedback : s f i x e d (1 downto −31):= "
000000000000000000000000000000000" ;

APPENDIX B. VHDL SOURCE CODE 144

78 type state_type i s (s t a r t , delay1 , delay2 , stop) ;
signal s t a t e : state_type := s t a r t ;

80
begin

82
de lay_process_sect ion : process (c l k)

84 begin
i f c lk ’ event AND c l k = ’1 ’ THEN

86
case s t a t e i s

88
when s t a r t =>

90
f i l tOu t <= r e s i z e (tmp_one + tmp_two + tmp_three + tmp_four +

tmp_five , f i l t e r e d ’ high , f i l t e r e d ’ low) ;
92 Y2 <= r e s i z e (Y1_delay + Y2_delay − Y3_feedback ,Y2 ’ high ,Y2 ’

low) ;
Y4 <= r e s i z e (Y3_delay + Y4_delay − Y5_feedback ,Y4 ’ high ,Y4 ’

low) ;
94

s t a t e <= delay1 ;
96

when delay1 =>
98

Y1 <= r e s i z e (f i l t I n + Y1_delay ,Y1 ’ high ,Y1 ’ low) ;
100 Y3 <= r e s i z e (Y2_delay + Y3_delay ,Y3 ’ high ,Y3 ’ low) ;

Y3_feedback <= r e s i z e (g1∗Y3_delay , Y3_feedback ’ high ,
Y3_feedback ’ low) ;

102 Y5 <= r e s i z e (Y4_delay + Y5_delay ,Y5 ’ high ,Y5 ’ low) ;
Y5_feedback <= r e s i z e (g2∗Y5_delay , Y5_feedback ’ high ,

Y5_feedback ’ low) ;
104

s t a t e <= delay2 ;
106

when delay2 =>
108

tmp_one <= r e s i z e (Y1∗a1 , tmp_one ’ high , tmp_one ’ low) ;
110 tmp_two <= r e s i z e (Y2∗a2 , tmp_two ’ high , tmp_two ’ low) ;

tmp_three <= r e s i z e (Y3∗a3 , tmp_three ’ high , tmp_three ’ low) ;
112 tmp_four <= r e s i z e (Y4∗a3 , tmp_four ’ high , tmp_four ’ low) ;

tmp_five <= r e s i z e (Y5∗a5 , tmp_five ’ high , tmp_five ’ low) ;
114

s t a t e <= stop ;
116

when stop =>
118

Y1_delay <= Y1 ;
120 Y2_delay <= Y2 ;

Y3_delay <= Y3 ;
122 Y4_delay <= Y4 ;

Y5_delay <= Y5 ;

APPENDIX B. VHDL SOURCE CODE 145

124

126 s t a t e <= s t a r t ;
when others => null ;

128
end case ;

130 end i f ;
end process de lay_process_sect ion ;

132
end r t l ;

APPENDIX B. VHDL SOURCE CODE 146

B.6 Pulse Width Modulation source code

Listing B.9: Pulse width modulator
1 −− Design Unit : Pulse width modulation
−− F i l e name : PWM. vhd

3 −− Descr ip t i on : Generate pu l s e width modulation from the output
o f the loop f i l t e r . A 7− b i t sawtooth wave i s generated and
compared aga in s t the output o f the loop f i l t e r . The PWM output
i s then averaged , r i p p l e compensated and f ed back to the
compensator b l o c k .

−−
5 −− Author : Jason Qu i b e l l
−− Centre f o r Ins t rumenta t ion Research

7 −− Cape Peninsula Un i v e r s i t y o f Technology
−− Revis ion : Version 1.6 13/04/2011

9
l ibrary i e e e ;

11 use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

13
Library ieee_proposed ;

15 use ieee_proposed . f ixed_f loat_types . a l l ;
use ieee_proposed . fixed_pkg . a l l ;

17 use ieee_proposed . f loat_pkg . a l l ;

19
−−

21 entity PWM i s
port (

23 c l o ck : in s td_log i c ;
f i l tOu t : in s f i x e d (1 downto −23) ;

25 upsampled : in s f i x e d (0 downto −23) ;
f i l t I n : out s f i x e d (1 downto −23) ;

27 pwmOut : out s td_log i c ;
) ;

29 end PWM;

31 architecture a of PWM i s

33 signal sawtooth : s f i x e d (1 downto −6):= "11000000" ; −− −1

35 signal pwmHold : s td_log i c ;
signal pwmFix : s f i x e d (1 downto −23) ;

37 signal pwmDelay1 : s f i x e d (1 downto −23) := "
0000000000000000000000000" ;

signal pwmDelay2 : s f i x e d (1 downto −23) := "
0000000000000000000000000" ;

39 signal pwmDelay3 : s f i x e d (1 downto −23) := "
0000000000000000000000000" ;

41 signal one : s f i x e d (1 downto −6) ;
signal p63 : s f i x e d (1 downto −6) ;

APPENDIX B. VHDL SOURCE CODE 147

43 signal n64 : s f i x e d (1 downto −6) ;

45 signal PWMpos : s f i x e d (1 downto −23):= "
0100000000000000000000000" ;

signal PWMneg : s f i x e d (1 downto −23):= "
1100000000000000000000000" ;

47
begin

49
process (c lock , f i l tOut , pwmFix)

51 begin
−−7 b i t PWM (8 b i t s are used in c a l c u l a t i o n f o r s i g n a l

c ompa t i b i l i t y)
53 one <= "00000001" ;

p63 <= "00111111" ;
55 n64 <= "11000000" ;

57
i f (c lock ’ event and c l o ck = ’1 ’) then

59
i f sawtooth = p63 then

61 sawtooth <= n64 ;
−−Audio i s now l a r g e r

63 pwmOut <= ’ 0 ’ ;

65 −−Delays
pwmDelay1 <= "1100000000000000000000000" ;

67 pwmDelay2 <= pwmDelay1 ;
pwmDelay3 <= pwmDelay2 ;

69
−−Averaging

71 f i l t I n <= r e s i z e (upsampled−((PWMneg+pwmDelay1+pwmDelay2+
pwmDelay3) /4)−sawtooth , pwmFix ’ high , pwmFix ’ low) ;

73 else
sawtooth <= r e s i z e (sawtooth + one , sawtooth ’ high , sawtooth ’

low) ;
75 i f f i l tOu t > sawtooth then

pwmOut <= ’ 1 ’ ;
77

−−Delays
79 pwmDelay1 <= "0100000000000000000000000" ; −− 1

pwmDelay2 <= pwmDelay1 ;
81 pwmDelay3 <= pwmDelay2 ;

83 −−Averaging
f i l t I n <= r e s i z e (upsampled−((PWMpos+pwmDelay1+pwmDelay2+

pwmDelay3) /4)−sawtooth , pwmFix ’ high , pwmFix ’ low) ;
85

else
87 pwmOut <= ’ 0 ’ ;

APPENDIX B. VHDL SOURCE CODE 148

89 −−Delays
pwmDelay1 <= "1100000000000000000000000" ;

91 pwmDelay2 <= pwmDelay1 ;
pwmDelay3 <= pwmDelay2 ;

93
−−Averaging

95
f i l t I n <= r e s i z e (upsampled−((PWMneg+pwmDelay1+pwmDelay2+

pwmDelay3) /4)−sawtooth , pwmFix ’ high , pwmFix ’ low) ;
97 end i f ;

99 end i f ;

101 end i f ;
end process ;

103 end a ;

Appendix C

Matlab source code

C.1 Interpolation

Listing C.1: Upsample by factor L
1 %Upsample s i g n a l by f a c t o r L

%Jason Qu i b e l l
3 %June 2008

5 clear ; close a l l ;

7 %Export f i g op t i ons
opts = s t r u c t (’ LockAxes ’ , 0 , ’FontMode ’ , ’ f i x e d ’ , ’ FontSize ’ , 8 , ’ he ight

’ ,10 , ’ c o l o r ’ , ’ rgb ’) ;
9

f s = 48 e3 ; % sampling ra t e
11 Ts = 1/ f s ;

N = 2048 ; % number o f samples
13 n = 0 :N−1;

t = n∗Ts ;
15 L = 4 ; % up sampling f a c t o r

A = 1 ; % ampl i tude
17

f r e q = 1e3 ; % genera te a 1 kHz s ine wave
19 s i g n a l = A∗ sin (2∗ pi∗ f r e q ∗ t) ;

21
% up sampling by a f a c t o r o f L wi th zero−padding

23 upsampled=zeros (1 ,L∗N) ;
for n=0:1:N−1

25 upsampled (L∗n+1)=s i g n a l (n+1) ;
end

27
%Spec t r a l components

29 SIGNAL = 2∗abs (f f t (s i gna l ,N)) /N;
SIGNAL(1) = SIGNAL(1) /2 ;

31
UPSAMPLED = 2∗abs (f f t (upsampled ,N∗L)) /N∗L ;

149

APPENDIX C. MATLAB SOURCE CODE 150

33 UPSAMPLED(1) = UPSAMPLED(1) /2 ;
UPSAMPLED = UPSAMPLED/4 ;

35
f r e q p l o t = (0 :N/2 −1)∗ f s /N;

37 f r e qp l o t 2 = (0 :N∗L/2 −1)∗ f s /N;

39 %Plot waveforms
subplot (2 , 1 , 1) ;

41 stem(s i g n a l) ;
t i t l e (’ Or i g i na l s i n e wave ’) ;

43 xlabel (’ Samples ’) ;
ylabel (’ Amplitude ’) ;

45 axis ([0 length (s i g n a l) −1.1 1 . 1])

47 subplot (2 , 1 , 2) ;
stem(upsampled) ;

49 t i t l e (’Upsampled s i n e wave ’) ;
xlabel (’ Samples ’) ;

51 ylabel (’ Amplitude ’) ;
axis ([0 length (upsampled) −1.1 1 . 1])

53
e xpo r t f i g (gcf , ’ upsampleSine . eps ’ , opts) ;

55
%p l o t the f r e q o f s ine wave in the top pane l

57 f igure
subplot (2 , 1 , 1)

59 plot (f r e qp l o t ,SIGNAL(1 : 1 :N/2))
t i t l e (’ Or i g i na l s i n e wave spectrum ’)

61 xlabel (’ Frequency (Hz) ’) ;
ylabel (’ Amplitude ’) ;

63 %ax i s ([0 l e n g t h (SIGNAL) −1.1 1 . 1])

65 %p l o t the upsampled s ine wave in the bottom pane l
subplot (2 , 1 , 2)

67 plot (f r eqp l o t2 ,UPSAMPLED(1 : 1 : length (UPSAMPLED) /2))
t i t l e (’Upsampled s i n e wave spectrum ’)

69 xlabel (’ Frequency (Hz) ’) ;
ylabel (’ Amplitude ’) ;

71 %ax i s ([0 l e n g t h (UPSAMPLED) −1.1 1 . 1])

73 e xpo r t f i g (gcf , ’ upsampleSpectrum . eps ’ , opts) ;

APPENDIX C. MATLAB SOURCE CODE 151

Listing C.2: Filter upsampled signal
1 %F i l t e r upsampled s i g n a l

%Jason Qu i b e l l
3 %June 2008

5
f i l t e r e d=f i l t e r (Num, 1 , upsampled) ; % app ly i n t e r p o l a t i o n

f i l t e r
7

f i l t e r e d = f i l t e r e d ∗4 ;
9 %Spec t r a l components

11 UPSAMPLED = 2∗abs (f f t (upsampled ,N∗L)) /N∗L ;
UPSAMPLED(1) = UPSAMPLED(1) /2 ;

13 UPSAMPLED = UPSAMPLED/4 ;

15 FILTERED = 2∗abs (f f t (f i l t e r e d ,N∗L)) /N∗L ;
FILTERED(1) = FILTERED(1) /2 ;

17 FILTERED = FILTERED/16 ;

19 f r e qp l o t 2 = (0 :N∗L/2 −1)∗ f s /N;

21 %Plot waveforms
subplot (2 , 1 , 1) ;

23 stem(upsampled) ;
t i t l e (’Upsampled s i n e wave ’) ;

25 xlabel (’ Samples ’) ;
ylabel (’ Amplitude ’) ;

27 axis ([0 length (upsampled) −1.1 1 . 1])

29 subplot (2 , 1 , 2) ;
stem(f i l t e r e d) ;

31 t i t l e (’ F i l t e r e d upsampled s i n e wave ’) ;
xlabel (’ Samples ’) ;

33 ylabel (’ Amplitude ’) ;
axis ([0 length (f i l t e r e d) −1.1 1 . 1])

35
e xpo r t f i g (gcf , ’FIRupsAmp . eps ’ , opts) ;

37
%p l o t the f r e q o f s ine wave in the top pane l

39 f igure ;
subplot (2 , 1 , 1)

41 plot (f r eqp l o t2 ,UPSAMPLED(1 : 1 : length (UPSAMPLED) /2))
t i t l e (’Upsampled s i n e wave spectrum ’)

43 xlabel (’ Frequency (Hz) ’) ;
ylabel (’ Amplitude ’) ;

45
%p l o t the upsampled s ine wave in the bottom pane l

47 subplot (2 , 1 , 2)
plot (f r eqp l o t2 ,FILTERED(1 : 1 : length (FILTERED) /2))

49 t i t l e (’ F i l t e r e d s i n e wave spectrum ’)
xlabel (’ Frequency (Hz) ’) ;

APPENDIX C. MATLAB SOURCE CODE 152

51 ylabel (’ Amplitude ’) ;
%ax i s ([0 l e n g t h (UPSAMPLED) −1.1 1 . 1])

53
e xpo r t f i g (gcf , ’ FIRupsAmpFIlt . eps ’ , opts) ;

APPENDIX C. MATLAB SOURCE CODE 153

Listing C.3: Polyphase filter implementation
%Polyphase f i l t e r implementat ion f o r i n t e r p o l a t i o n

2 %Jason Qu i b e l l
%July 2008

4

6 f s = 96 e3 ; % sampling ra t e
Ts = 1/ f s ;

8 N = 1024 ; % number o f samples
n = 0 :N−1;

10 t = n∗Ts ;
L = 8 ; % in t e r p o l a t i o n f a c t o r

12 A = 5 ; % ampl i tude

14
f r e q = 1e3 ; %sine wave f requency

16 s i g n a l = A∗ sin (2∗ pi∗ f r e q ∗ t) ; % genera te a s ine wave
%noise = 0.1∗ (randn (1 , l e n g t h (s i g n a l))) ; %Random noise

18 %s i g n a l = s i g n a l + noi se ;

20 % polyphase f i l t e r s

22 for i =1:1 :8
p(i , :)=Num(i : L : length (Num)) ; %sub f i l t e r c r ea t i on

24 end

26 for i =1:1 :8
w(i , :)=f i l t e r (p(i , :) , 1 , s i g n a l) ; %f i l t e r i n g

28 end

30 for i =1:1 :8
y (i , :)=zeros (1 ,L∗ length (w(i , :))) ;

32 end

34 for i =1:1 :8
y (i , (i : L :L∗(length (w(i , :)))))=w(i , :) ; %f i l t e r i n g

36 end

38 f i l t e r e d=y (1 , :)+y (2 , :)+y (3 , :)+y (4 , :)+y (5 , :)+y (6 , :)+y (7 , :)+y (8 , :) ;

APPENDIX C. MATLAB SOURCE CODE 154

Listing C.4: CIC automatic filter design
%Design CIC f i l t e r and CIC compensator f i l t e r

2 %Jason Qu i b e l l
%March 2009

4
clear ; close a l l ;

6
%Export f i g op t i ons

8 opts = s t r u c t (’ LockAxes ’ , 0 , ’FontMode ’ , ’ f i x e d ’ , ’ FontSize ’ , 8 , ’ he ight
’ ,10 , ’ c o l o r ’ , ’ rgb ’) ;

10 M = 1; %D i f f e r e n t i a l de l ay
L = 16 ; %Oversampling r a t i o

12 Fp = 22 e3 ; %Passband frequency
Fs = 3.072 e6 ; %Fina l sample ra t e

14 Ast = 60 ; %Al i a s ing a t t enua t i on (60 dB)

16 %CIC f i l t e r
f = fd e s i gn . i n t e r p o l a t o r (L , ’CIC ’ ,M,Fp , Ast , Fs) ;

18 Hm = des ign (f) ;
f v t o o l (Hm) ;

20
%CIC compensator

22 Nsecs = Hm. NumberOfSections ;
d = fd e s i gn . ciccomp (M, Nsecs) ;

24 Hd = des ign (d) ;
f v t o o l (Hd) ;

26
%Cascade f i l t e r s

28 Hc = cascade (Hd,Hm) ;
f v t o o l (Hc) ;

APPENDIX C. MATLAB SOURCE CODE 155

Listing C.5: CIC filter implementation
1 %2nd order CIC f i l t e r implementat ion

%Jason Qu i b e l l
3 %March 2009

5 Lcic = 100 ;
de l ayBuf f e r = zeros (1 , 1) ; %Delay o f "1"

7 de layBuf f e r2 = zeros (1 , 1) ; %Delay o f "1"
de layBuf f e r3 = zeros (1 , 1) ; %Delay o f "1"

9 intOut = 0 ;
intOut2 = 0 ;

11 intOut3 = 0 ;
f i l t e r e d x= [] ; %I n i t i a l i s e v a r i a b l e

13 f i l t e r e d = r e f e r e n c e / (Lc ic) ; %Compensate gain f a c t o r

15 for i i = 1 : length (f i l t e r e d)

17

19 %Comb
combOut = f i l t e r e d (i i) − de layBuf f e r (end) ;

21 de layBuf f e r (2 :end) = de layBuf f e r (1 :end−1) ;
de l ayBuf f e r (1) = f i l t e r e d (i i) ;

23
combOut2 = combOut − de layBuf f e r2 (end) ;

25 de layBuf f e r2 (2 :end) = de layBuf f e r2 (1 :end−1) ;
de layBuf f e r2 (1) = combOut ;

27

29 %Upsample
combOutU = [combOut2 zeros (1 , Lcic −1)] ;

31
%In t e g r a t o r

33 for j j = 0 : Lcic−1
intOut = intOut + combOutU(j j +1) ;

35 intOut2 = intOut2 + intOut ;
f i l t e r e d x = [f i l t e r e d x intOut2] ;

37 end
end

39
upsample = f i l t e r e d x ;

APPENDIX C. MATLAB SOURCE CODE 156

C.2 Polynomial interpolation

Listing C.6: Newton’s interpolation formula
%Newton polynomia l i n t e r p o l a t i o n

2 %Jason Qu i b e l l
%May 2009

4
count = 0 ;

6 xData = [1 2 3 4 5 6] ;
yData = [0 0 0 0 0 0] ;

8 upsample = [] ;

10 for z = 1 : 1 : length (r e f e r e n c e)

12 yData (6) = r e f e r e n c e (z) ;

14 %Newton Co e f f i c i e n t s (Divided D i f f e r enc e s)
n = length (xData) ;

16 c o e f f = yData ;

18
for k = 2 : n

20 c o e f f (k : n) = (c o e f f (k : n) − c o e f f (k−1)) . / (xData (k : n) − xData (k
−1)) ;

end
22

%In t e r p o l a t i o n us ing po lynomia l c o e f f i c i e n t s
24

for x = 4 : 0 . 015625 : 4 .96875 %64x oversampl ing
26 n = length (xData) ;

p = c o e f f (n) ;
28

for k = 1 : n−1;
30 p = c o e f f (n−k) + (x − xData (n−k)) ∗p ;

end
32

upsample = [upsample p] ;
34 end

yData (1) = yData (2) ;
36 yData (2) = yData (3) ;

yData (3) = yData (4) ;
38 yData (4) = yData (5) ;

yData (5) = yData (6) ;
40

end

APPENDIX C. MATLAB SOURCE CODE 157

Listing C.7: FPGA ROM file contents generator
1 %Generate MIF ROM f i l e con ten t s f o r FPGA

%Jason Qu i b e l l
3 %September 2009

5 clear ;
array = [] ;

7 x_val1 = [] ;
x_val2 = [] ;

9 x_val3 = [] ;
x_val4 = [] ;

11 x_val5 = [] ;
xData = [1 2 3 4 5 6] ;

13
for x = 4 : 0 . 015625 : 4 .984375 % 64X OSR

15 x1 = (x−xData (1)) ;
x2 = (x−xData (1)) ∗(x−xData (2)) ;

17 x3 = (x−xData (1)) ∗(x−xData (2)) ∗(x−xData (3)) ;
x4 = (x−xData (1)) ∗(x−xData (2)) ∗(x−xData (3)) ∗(x−xData (4)) ;

19 x5 = (x−xData (1)) ∗(x−xData (2)) ∗(x−xData (3)) ∗(x−xData (4)) ∗(x−
xData (5)) ;

21 array = [array ; x1 x2 x3 x4 x5] ;
x_val1 = [x_val1 ; x1] ;

23 x_val2 = [x_val2 ; x2] ;
x_val3 = [x_val3 ; x3] ;

25 x_val4 = [x_val4 ; x4] ;
x_val5 = [x_val5 ; x5] ;

27 end

29 A_sign = f i (array , 1 , 3 1 , 7) ; %Fixed po in t s i gned
BINARYsign = bin (A_sign) ;

31
A_sign = f i (x_val1 , 1 , 3 1 , 7) ; %Fixed po in t s i gned

33 BINARYsign1 = bin (A_sign) ;

35 A_sign = f i (x_val2 , 1 , 3 1 , 7) ; %Fixed po in t s i gned
BINARYsign2 = bin (A_sign) ;

37
A_sign = f i (x_val3 , 1 , 3 1 , 7) ; %Fixed po in t s i gned

39 BINARYsign3 = bin (A_sign) ;

41 A_sign = f i (x_val4 , 1 , 3 1 , 7) ; %Fixed po in t s i gned
BINARYsign4 = bin (A_sign) ;

43
A_sign = f i (x_val5 , 1 , 3 1 , 7) ; %Fixed po in t s i gned

45 BINARYsign5 = bin (A_sign) ;

APPENDIX C. MATLAB SOURCE CODE 158

C.3 Noise shaper filter coefficient calculator

Listing C.8: Coefficient calculation for a 3rd order loop filter
1 %Coe f f i c i e n t Ca l cu l a t i on

%3rd Order no i se shaper
3 %Jason Qu i b e l l

%December 2010
5

syms a1 a2 a3 g1 z
7

%Transfer func t i on o f CIFF with resonator f eedback
9

%Y(z) / X(z) =
11 three = (a1 /(z−1)) + ((a2∗z) /(z^2+(−2+g1) ∗z + 1)) . . .

+ (1/(z−1)) ∗ ((a3∗z) /(z^2+(−2+g1) ∗z+1)) ;
13

[num den] = numden(three) ;
15

[b , a] = t fda ta (C, ’ v ’) ;
17

num_z = c o l l e c t (num) ;
19 den_z = c o l l e c t (den) ;

21 a1 = b (4) ;
a2 = b (2) − a1 ;

23 g1 = 3 − a (3) ;

25 a3 = b (3) + (b (4) ∗2) − (a1∗g1) + a2 ;

27
%Clean up

29
clear num_z den_z num den f i v e

31
%Generate f i x e d po in t va l u e s o f c o e f f i c i e n t s

33
a1_sign = f i (a1 , 1 , 3 5 , 34) ; %35 b i t Fixed po in t s i gned

35 a1_BIN = bin (a1_sign) ;

37 a2_sign = f i (a2 , 1 , 4 0 , 39) ; %40 b i t Fixed po in t s i gned
a2_BIN = bin (a2_sign) ;

39
a3_sign = f i (a3 , 1 , 4 2 , 41) ; %42 b i t Fixed po in t s i gned

41 a3_BIN = bin (a3_sign) ;

43
g1_sign = f i (g1 , 1 , 4 0 , 39) ; %40 b i t Fixed po in t s i gned

45 g1_BIN = bin (g1_sign) ;

APPENDIX C. MATLAB SOURCE CODE 159

Listing C.9: Coefficient calculation for a 5th order loop filter
1 %Coe f f i c i e n t Ca l cu l a t i on

%5 th Order no i se shaper
3 %Jason Qu i b e l l

%August 2010
5

syms a1 a2 a3 a4 a5 g1 g2 z x
7

%Transfer func t i on o f CIFF with resonator f eedback
9

%Y(z) / X(z) =
11 f i v e = (a1 /(z−1)) + ((a2∗z) /(z^2+(−2+g1) ∗z + 1)) . . .

+ (1/(z−1)) ∗ ((a3∗z) /(z^2+(−2+g1) ∗z+1)) . . .
13 + ((a4∗z) /(z^2+(−2+g2) ∗z+1)∗(z /(z^2+(−2+g1) ∗z+1))) . . .

+ (1/(z−1)) ∗ (z /(z^2+(−2+g1) ∗z + 1)) ∗ ((a5∗z) /(z^2+(−2+g2)
∗z +1)) ;

15
[num den] = numden(f i v e) ;

17
[b , a] = t fda ta (C, ’ v ’) ;

19
num_z = c o l l e c t (num) ;

21 den_z = c o l l e c t (den) ;

23 %Solve c o e f f i c i e n t "a1"
a1 = b (6) ;

25
g2_temp = 3∗(a (2) +5−g2) + 3∗g2 − g2 ∗(a (2) + 5 −g2) − 10 ;

27
%INSERT a (4) where −9.999998. . . i s :

29 %INSERT g2_temp where o ther s t u f f i s f i r s t

31

33 %49MHz
%g2_x = so l v e (’ g2 ∗(g2 − 2872429995/562949953421312) −

5629490916923135/562949953421312 = −9.999984692621844 ’) ;
35 %g2 = doub le (g2_x (1)) ;

37 %24MHz
%g2_x = so l v e (’ g2 ∗(g2 − 15914144539/1125899906842624) −

11258951325992623/1125899906842624 = −9.99995759623830 ’) ;
39

%g2 = doub le (g2_x (1)) ;
41

43 %12MHz
g2_x = so l v e (’ g2 ∗(g2 − 36060501917/562949953421312) −

5629391352707369/562949953421312 = −9.99980783163673 ’) ;
45

g2 = double (g2_x (1)) ;
47

APPENDIX C. MATLAB SOURCE CODE 160

49 %g1
g1 = double (a (2) + 5 − g2) ;

51
%Solve a2 :

53 a2 = b (2) − a1 ;

55 %Solve a3 :
a3 = b (5) + a2 + 4∗a1 − a1∗g1 − a1∗g2 ;

57
%Solve a4 :

59 a4 = b (3) − a3 + 3∗a2 + 4∗a1 − a1∗g1 − a1∗g2 − a2∗g2 ;

61 %Solve a5 :
a5 = b (4) − 6∗a1 − 3∗a2 + 2∗a3 + a4 + 2∗a1∗g1 + 2∗a1∗g2 + a2∗g2 −

a3∗g2 − a1∗g1∗g2 ;
63

%Clean up
65

%c l e a r x z num_z den_z num den g2_x g2_temp f i v e
67

%Generate f i x e d po in t va l u e s o f c o e f f i c i e n t s
69

a1_sign = f i (a1 , 1 , 3 5 , 34) ; %35 b i t Fixed po in t s i gned
71 a1_BIN = bin (a1_sign) ;

73 a2_sign = f i (a2 , 1 , 4 0 , 39) ; %40 b i t Fixed po in t s i gned
a2_BIN = bin (a2_sign) ;

75
a3_sign = f i (a3 , 1 , 4 2 , 41) ; %42 b i t Fixed po in t s i gned

77 a3_BIN = bin (a3_sign) ;

79 a4_sign = f i (a4 , 1 , 4 5 , 44) ; %45 b i t Fixed po in t s i gned
a4_BIN = bin (a4_sign) ;

81
a5_sign = f i (a5 , 1 , 5 0 , 49) ; %50 b i t Fixed po in t s i gned

83 a5_BIN = bin (a5_sign) ;

85 g1_sign = f i (g1 , 1 , 4 0 , 39) ; %40 b i t Fixed po in t s i gned
g1_BIN = bin (g1_sign) ;

87
g2_sign = f i (g2 , 1 , 4 0 , 39) ; %40 b i t Fixed po in t s i gned

89 g2_BIN = bin (g2_sign) ;

APPENDIX C. MATLAB SOURCE CODE 161

C.4 Modulation

Listing C.10: Pulse width modulation
1 %Uniform Pulse Width Modulation

%Jason Qu i b e l l
3 %June 2009

5 clear ;
c a r r i e r =0:1/49152000:1/1000;

7 r e f e r e n c e =0:1/192000:1/1000;
len_c=length (c a r r i e r) ;

9 len_r=length (r e f e r e n c e) ;

11
for t =1:1 : len_c

13
f s =384e3 ; %Carrier wave f requency : 384 kHz

15 f_ ca r r i e r (t)=(2/pi) ∗asin (sin (2∗ pi∗ f s ∗ c a r r i e r (t))) +1;
end

17
for t = 1 : 1 : len_r

19
f r =6.7 e3 ; %Reference wave f requency

21 r e f (t) =0.8∗ sin (2∗ pi∗ f r ∗ r e f e r e n c e (t))+1; % 0.8 ampl i tude

23 i f f_ ca r r i e r (t)<r e f (t)

25 switch (t)=1;

27 e l s e i f r e f (t)<f_ca r r i e r (t)
switch (t)=0;

29 end
end

31 f igure ;
plot (c a r r i e r , f_c1 , ’ g ’) ;

33 hold on ;
plot (r e f e r en c e , f_r , ’b ’) ;

35 hold on ;
plot (r e f e r en c e , s1 , ’ r ’) ;

37 ylabel (’ Amplitude ’) ;
xlabel (’Time [s] ’) ;

39 axis ([0 0 .0001 −0.1 1 . 1]) ;
hold o f f ;

APPENDIX C. MATLAB SOURCE CODE 162

Listing C.11: 5th order delta-sigma modulator
%Implementation o f 5 th Order DSM CIFB St ruc ture

2 %Jason Qu i b e l l
%March 2009

4
f s = 48 e3 ; % sampling ra t e

6 Ts = 1/ f s ;
N = 2048 ; % number o f samples

8 m = 1 :N;
n = 0 :N−1;

10 t = n∗Ts ;
L = 128 ; % up sampling f a c t o r

12 A = 0 . 5 5 ; % ampl i tude
k = 1 ;

14

16 %SDM Coe f f i c i e n t s
a1 = 0 . 0007 ;

18 a2 = 0 . 0100 ;
a3 = 0 . 0737 ;

20 a4 = 0 . 3149 ;
a5 = 0 . 8090 ;

22
b1 = 0 . 0007 ;

24 b2 = 0 . 0100 ;
b3 = 0 . 0737 ;

26 b4 = 0 . 3149 ;
b5 = 0 . 8090 ;

28 b6 = 1 ;

30 y (1) = 0 ;
y1 (1) = 0 ;

32 y2 (1) = 0 ;
y3 (1) = 0 ;

34 y4 (1) = 0 ;
y5 (1) = 0 ;

36
v (1) = 0 ;

38
f r e q = 10 e3 ; % genera te a s ine wave

40 u = A∗ sin (2∗ pi∗ f r e q ∗ t) ;

42 % up sampling by a f a c t o r o f L
upsampled=zeros (1 ,L∗(length (u))) ;

44
for n=0:1 : (length (u)−1)

46 upsampled (L∗n+1)=u(n+1) ;
end

48
B=f i r 1 (256 ,1/(L∗2)) ;

50 u=f i l t e r (B, 1 , v) ; % app ly i n t e r p o l a t i o n f i l t e r

APPENDIX C. MATLAB SOURCE CODE 163

52

54 for n = 2 : length (u)−1

56 % −−−− One−b i t quan t i s e r

58 i f (y (n−1) >= 0) v (n) = +k ;
else v (n) = −k ;

60 end

62 e1 (n) = (b1∗u(n)) − (a1∗v (n)) ;
y1 (n) = y1 (n−1) + e1 (n) ;

64
e2 (n) = b2∗u(n) − a2∗v (n) ;

66 y2 (n) = y1 (n) + y2 (n−1) + e2 (n) ;

68 e3 (n) = b3∗u(n) − a3∗v (n) ;
y3 (n) = y2 (n) + y3 (n−1) + e3 (n) ;

70
e4 (n) = b4∗u(n) − a4∗v (n) ;

72 y4 (n) = y3 (n) + y4 (n−1) + e4 (n) ;

74 e5 (n) = b5∗u(n) − a5∗v (n) ;
y5 (n) = y4 (n) + y5 (n−1) + e5 (n) ;

76
y (n) = y5 (n) + b6∗u(n) ;

78
end

80
f igure ;

82 pwelch (v , [] , [] , [] , f s ∗L) ;

84 f igure ;
B=f i r 1 (256 ,1/(L∗2)) ;

86 f i l t e r e d=f i l t e r (B, 1 , v) ; % app ly f i l t e r
plot (f i l t e r e d)

88 f igure ;
pwelch (f i l t e r e d , [] , [] , [] , f s ∗L) ;

APPENDIX C. MATLAB SOURCE CODE 164

C.5 Spectral content

Listing C.12: Spectral content of PWM waveform
1 %FFT of PWM waveform

%Jason Qu i b e l l
3 %November 2009

5
f igure () ;

7
f s = 98.304 e6 /2 ;

9 Y = f f t (PWM.∗ blackman (length (PWM))) /(length (PWM) ∗0 . 2) ;
hz500k = 500000∗ length (Y) / f s ; %Limit v iewing to 500kHz

11 f =(0: hz500k) ∗ f s / length (Y) ;
plot (f , 20∗ log10 (abs (Y(1 : length (f))))) ;

13 ylabel (’ Magnitude (dB) ’) ;
xlabel (’ Frequency (Hz) ’) ;

Appendix D

Data sheets

D.1 SRC4392

165

��������� �������

�� �	��� �������	���

SRC4392

1FEATURES

SRC4392

SBFS029C–DECEMBER 2005–REVISED SEPTEMBER 2007

Two-Channel, Asynchronous Sample Rate Converter with
Integrated Digital Audio Interface Receiver and Transmitter

• Digital Audio Interface Receiver (DIR)
234• Two-Channel Asynchronous Sample Rate – PLL Lock Range Includes Sampling Rates

Converter (SRC) from 20kHz to 216kHz
– Dynamic Range with –60dB Input – Includes Four Differential Input Line

(A-Weighted): 144dB typical Receivers and an Input Multiplexer
– Total Harmonic Distortion and Noise – Bypass Multiplexer Routes Line Receiver

(THD+N) with Full-Scale Input: –140dB Outputs to Line Driver and Buffer Outputs
typical – Block-Sized Data Buffers for Both Channel

– Supports Audio Input and Output Data Status and User Data
Word Lengths Up to 24 Bits – Automatic Detection of Non-PCM Audio

– Supports Input and Output Sampling Streams (DTS CD/LD and IEC 61937
Frequencies Up to 216kHz formats)

– Automatic Detection of the Input-to-Output – Audio CD Q-Channel Sub-Code Decoding
Sampling Ratio and Data Buffer

– Wide Input-to-Output Conversion Range: – Status Registers and Interrupt Generation
16:1 to 1:16 Continuous for Flag and Error Conditions

– Excellent Jitter Attenuation Characteristics – Low Jitter Recovered Clock Output
– Digital De-Emphasis Filtering for 32kHz, • Two Audio Serial Ports (Ports A and B)

44.1kHz, and 48kHz Input Sampling Rates – Synchronous Serial Interface to External
– Digital Output Attenuation and Mute Signal Processors, Data Converters, and

Functions Logic
– Output Word Length Reduction – Slave or Master Mode Operation with

Sampling Rates up to 216kHz– Status Registers and Interrupt Generation
for Sampling Ratio and Ready Flags – Supports Left-Justified, Right-Justified, and

Philips I2S™ Data Formats• Digital Audio Interface Transmitter (DIT)
– Supports Audio Data Word Lengths Up to– Supports Sampling Rates Up to 216kHz

24 Bits– Includes Differential Line Driver and
• Four General-Purpose Digital OutputsCMOS Buffered Outputs

– Multifunction Programmable Via Control– Block-Sized Data Buffers for Both Channel
RegistersStatus and User Data

• Extensive Power-Down Support– Status Registers and Interrupt Generation
for Flag and Error Conditions – Functional Blocks May Be Disabled

Individually When Not In Use• User-Selectable Serial Host Interface: SPI or
Philips I2C™ • Operates From +1.8V Core and +3.3V I/O

Power Supplies– Provides Access to On-Chip Registers and
Data Buffers • Small TQFP-48 Package, Compatible with the

SRC4382 and DIX4192U.S. Patent No. 7,262,716

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2Dolby is a registered trademark of Dolby Laboratories.
3I2C, I2S are trademarks of Koninklijke Philips Electronics N.V.
4All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 2005–2007, Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

APPENDIX D. DATA SHEETS 166

www.ti.com

APPLICATIONS DESCRIPTION

SRC4392

SBFS029C–DECEMBER 2005–REVISED SEPTEMBER 2007

• DIGITAL AUDIO RECORDERS AND The SRC4392 is a highly-integrated CMOS device
MIXING DESKS designed for use in professional and broadcast digital

• DIGITAL AUDIO INTERFACES FOR audio systems. The SRC4392 combines a
COMPUTERS high-performance, two-channel, asynchronous

sample rate converter (SRC) with a digital audio• DIGITAL AUDIO ROUTERS AND
interface receiver (DIR) and transmitter (DIT), twoDISTRIBUTION SYSTEMS
audio serial ports, and flexible distribution logic for• BROADCAST STUDIO EQUIPMENT
interconnection of the function block data and clocks.• DVD/CD RECORDERS
The DIR and DIT are compatible with the AES3,• SURROUND SOUND DECODERS AND
S/PDIF, IEC 60958, and EIAJ CP-1201 interfaceA/V RECEIVERS
standards. The audio serial ports, DIT, and SRC may• CAR AUDIO SYSTEMS
be operated at sampling rates up to 216kHz. The DIR
lock range includes sampling rates from 20kHz to
216kHz.

The SRC4392 is configured using on-chip control
registers and data buffers, which are accessed
through either a 4-wire serial peripheral interface
(SPI) port, or a 2-wire Philips I2C bus interface.
Status registers provide access to a variety of flag
and error bits, which are derived from the various
function blocks. An open drain interrupt output pin is
provided, and is supported by flexible interrupt
reporting and mask options via control register
settings. A master reset input pin is provided for
initialization by a host processor or supervisory
functions.

The SRC4392 requires a +1.8V core logic supply, in
addition to a +3.3V supply for powering portions of
the DIR, DIT, and line driver and receiver functions. A
separate logic I/O supply supports operation from
+1.65V to +3.6V, providing compatibility with low
voltage logic interfaces typically found on digital
signal processors and programmable logic devices.
The SRC4392 is available in a lead-free, TQFP-48
package, and is pin- and register-compatible with the
Texas Instruments SRC4382 and DIX4192 products.

2 Submit Documentation Feedback Copyright © 2005–2007, Texas Instruments Incorporated

Product Folder Link(s): SRC4392

APPENDIX D. DATA SHEETS 167

www.ti.com

PIN CONFIGURATION

Top View TQFP

36

35

34

33

32

31

30

29

28

27

26

25

SYNC

BLS

AESOUT

VDD33

TX+

TX-

DGND2

GPO4

GPO3

GPO2

GPO1

MCLK

B
C

K
B

L
R

C
K

B

S
D

IN
B

S
D

O
U

T
B

B
G

N
D

D
G

N
D

3

V
IO

N
C

S
D

O
U

T
A

S
D

IN
A

L
R

C
K

A

B
C

K
A

R
X

C
K

I

M
U

T
E

R
D

Y

D
G

N
D

1

V
D

D
1
8

C
P

M

C
S

C
C

L
K

C
D

IN

C
D

O
U

T

IN
T

R
S

T

1

2

3

4

5

6

7

8

9

10

11

12

RX1+

RX1-

RX2+

RX2-

RX3+

RX3-

RX4+

RX4-

VCC

AGND

LOCK

RXCKO

48 47 46 45 44 43 42 41 40 39 38

13 14 15 16 17 18 19 20 21 22 23

37

24

SRC4392

NC = No Connection

SRC4392

SBFS029C–DECEMBER 2005–REVISED SEPTEMBER 2007

PIN DESCRIPTIONS
NAME PIN NUMBER I/O DESCRIPTION

RX1+ 1 Input Line Receiver 1, Noninverting Input

RX1– 2 Input Line Receiver 1, Inverting Input

RX2+ 3 Input Line Receiver 2, Noninverting Input

RX2– 4 Input Line Receiver 2, Inverting Input

RX3+ 5 Input Line Receiver 3, Noninverting Input

RX3– 6 Input Line Receiver 3, Inverting Input

RX4+ 7 Input Line Receiver 4, Noninverting Input

RX4– 8 Input Line Receiver 4, Inverting Input

VCC 9 Power DIR Comparator and PLL Power Supply, +3.3V Nominal

AGND 10 Ground DIR Comparator and PLL Power-Supply Ground

LOCK 11 Output DIR PLL Lock Flag (active Low)

RXCKO 12 Output DIR Recovered Master Clock (tri-state output)

RXCKI 13 Input DIR Reference Clock

MUTE 14 Input SRC Output Mute (active High)

RDY 15 Output SRC Ready Flag (active Low)

DGND1 16 Ground Digital Core Ground

VDD18 17 Power Digital Core Supply, +1.8V Nominal

CPM 18 Input Control Port Mode, 0 = SPI Mode, 1 = I2C Mode

CS or A0 19 Input Chip Select (active Low) for SPI Mode or Programmable Slave Address for I2C Mode

CCLK or SCL 20 Input Serial Data Clock for SPI Mode or I2C Mode

CDIN orA1 21 Input SPI Port Serial Data input or Programmable Slave Address for I2C Mode

CDOUT or SDA 22 I/O SPI Port Serial Data Output (tri-state output) or Serial Data I/O for I2C Mode

10 Submit Documentation Feedback Copyright © 2005–2007, Texas Instruments Incorporated

Product Folder Link(s): SRC4392

APPENDIX D. DATA SHEETS 168

www.ti.com

SRC4392

SBFS029C–DECEMBER 2005–REVISED SEPTEMBER 2007

PIN DESCRIPTIONS (continued)
NAME PIN NUMBER I/O DESCRIPTION

INT 23 Output Interrupt Flag (open-drain, active Low)

RST 24 Input Reset (active Low)

MCLK 25 Input Master Clock

GPO1 26 Output General-Purpose Output 1

GPO2 27 Output General-Purpose Output 2

GPO3 28 Output General-Purpose Output 3

GPO4 29 Output General-Purpose Output 4

DGND2 30 Ground DIR Line Receiver Bias and DIT Line Driver Digital Ground

TX– 31 Output DIT Line Driver Inverting Output

TX+ 32 Output DIT Line Driver Noninverting Output

VDD33 33 Power DIR Line Receiver Bias and DIT Line Driver Supply, +3.3V Nominal

AESOUT 34 Output DIT Buffered AES3-Encoded Data

BLS 35 I/O DIT Block Start Clock

SYNC 36 Output DIT internal Sync Clock

BCKA 37 I/O Audio Serial Port A Bit Clock

LRCKA 38 I/O Audio Serial Port A Left/Right Clock

SDINA 39 Input Audio Serial Port A Data Input

SDOUTA 40 Output Audio Serial Port A Data Output

NC 41 — No Internal Signal Connection, Internally Bonded to ESD Pad

VIO 42 Power Logic I/O Supply, +1.65V to +3.6V

DGND3 43 Ground Logic I/O Ground

BGND 44 Ground Substrate Ground, Connect to AGND (pin 10)

SDOUTB 45 Output Audio Serial Port B Data Output

SDINB 46 Input Audio Serial Port B Data Input

LRCKB 47 I/O Audio Serial Port B Left/Right Clock

BCKB 48 I/O Audio Serial Port B Bit Clock

Copyright © 2005–2007, Texas Instruments Incorporated Submit Documentation Feedback 11

Product Folder Link(s): SRC4392

APPENDIX D. DATA SHEETS 169

www.ti.com

PRODUCT OVERVIEW

SRC4392

SBFS029C–DECEMBER 2005–REVISED SEPTEMBER 2007

The SRC4392 is a two-channel asynchronous sample rate converter (SRC) with an integrated digital audio
interface receiver and transmitter (DIR and DIT). Two audio serial ports, Port A and Port B, support input and
output interfacing to external data converters, signal processors, and logic devices. On-chip routing logic
provides for flexible interconnection between the five functional blocks. The audio serial ports, DIT, and SRC may
be operated at sampling rates up to 216kHz. The DIR is specified for a PLL lock range that includes sampling
rates from 20kHz to 216kHz. All function blocks support audio data word lengths up to 24 bits.

The SRC4392 requires an external host processor or logic for configuration control. The SRC4392 includes a
user-selectable serial host interface, which operates as either a 4-wire serial peripheral interface (SPI) port or a
2-wire Philips I2C bus interface. The SPI port operates at bit rates up to 40MHz. The I2C bus interface may be
operated in standard or fast modes, supporting operation at 100kbps and 400kbps, respectively. The SPI and I2C
interfaces provide access to internal control and status registers, as well as the buffers utilized for the DIR and
DIT channel status and user data.

The asynchronous SRC is based upon the successful SRC4192 core from Texas Instruments. The SRC in the
SRC4392 has been further enhanced to provide exceptional jitter attenuation characteristics, helping to improve
overall application performance. The SRC operates over a wide input-to-output sampling ratio range, from 1:16
to 16:1 continuous. The input-to-output sampling ratio is determined automatically by the SRC rate estimation
circuitry, with the digital re-sampler parameters being updated in real-time without the need for programming.
Interpolation and decimation filter delay are user-selectable. Additional SRC features include de-emphasis
filtering, output word length reduction, output attenuation and muting, and input-to-output sampling ratio readback
via status registers.

The digital interface receiver (DIR) includes four differential input line receiver circuits, suitable for balanced or
unbalanced cable interfaces. Interfacing to optical receiver modules and CMOS logic devices is also supported.
The outputs of the line receivers are connected to a 1-of-4 data selector, referred to as the receiver input
multiplexer, which is utilized to select one of the four line receiver outputs for processing by the DIR core. The
outputs of the line receivers are also connected to a second data selector, the bypass multiplexer, which may be
used to route input data streams to the DIT CMOS output buffer and differential line driver functions. This
configuration provides a bypass signal path for AES3-encoded input data streams.

The DIR core decodes the selected input stream data and separates the audio, channel status, user, validity, and
parity data. Channel status and user data is stored in block-sized buffers, which may be accessed via the SPI or
I2C serial host interface, or routed directly to the general-purpose output pins (GPO1 through GPO4). The validity
and parity bits are processed to determine error status. The DIR core recovers a low jitter master clock, which
may be utilized to generate word and bit clocks using on-chip or external logic circuitry.

The digital interface transmitter (DIT) encodes digital audio input data into an AES3-formatted output data
stream. Two DIT outputs are provided, including a differential line driver and a CMOS output buffer. Both the line
driver and buffer include 1-of-2 input data selectors, which are utilized to choose either the output of the DIT
AES3 encoder, or the output of the bypass multiplexer. The line driver output is suitable for balanced or
unbalanced cable interfaces, while the CMOS output buffer supports interfacing to optical transmitter modules
and external logic or line drivers. The DIT includes block-sized data buffers for both channel status and user
data. These buffers are accessed via either the SPI or I2C host interface, or may be loaded directly from the DIR
channel status and user data buffers.

The SRC4392 includes four general-purpose digital outputs, or GPO pins. The GPO pins may be configured as
simple logic outputs, which may be programmed to either a low or high state. Alternatively, the GPO pins may be
connected to one of 14 internal logic nodes, allowing them to serve as functional, status, or interrupt outputs. The
GPO pins provide added utility in applications where hardware access to selected internal logic signals may be
necessary.

22 Submit Documentation Feedback Copyright © 2005–2007, Texas Instruments Incorporated

Product Folder Link(s): SRC4392

APPENDIX D. DATA SHEETS 170

APPENDIX D. DATA SHEETS 171

D.2 Altera Cyclone III (EP3C25)

© December 2009 Altera Corporation Cyclone III Device Handbook, Volume 1

1. Cyclone III Device Family Overview

Cyclone® III device family offers a unique combination of high functionality, low
power and low cost. Based on Taiwan Semiconductor Manufacturing Company
(TSMC) low-power (LP) process technology, silicon optimizations and software
features to minimize power consumption, Cyclone III device family provides the ideal
solution for your high-volume, low-power, and cost-sensitive applications. To address
the unique design needs, Cyclone III device family offers the following two variants:

■ Cyclone III: lowest power, high functionality with the lowest cost

■ Cyclone III LS: lowest power FPGAs with security

With densities ranging from 5K to 200K logic elements (LEs) and 0.5 Mbits to 8 Mbits
of memory for less than ¼ watt of static power consumption, Cyclone III device
family makes it easier for you to meet your power budget. Cyclone III LS devices are
the first to implement a suite of security features at the silicon, software, and
intellectual property (IP) level on a low-power and high-functionality FPGA platform.
This suite of security features protects the IP from tampering, reverse engineering and
cloning. In addition, Cyclone III LS devices support design separation which enables
you to introduce redundancy in a single chip to reduce size, weight, and power of
your application.

This chapter contains the following sections:

■ “Cyclone III Device Family Features” on page 1–1

■ “Cyclone III Device Family Architecture” on page 1–6

■ “Reference and Ordering Information” on page 1–12

Cyclone III Device Family Features
Cyclone III device family offers the following features:

Lowest Power FPGAs
■ Lowest power consumption due to:

■ TSMC low-power process technology

■ Altera® power-aware design flow

■ Low-power operation offers the following benefits:

■ Extended battery life for portable and handheld applications

■ Reduced or eliminated cooling system costs

■ Operation in thermally-challenged environments

■ Hot-socketing operation support

CIII51001-2.2

APPENDIX D. DATA SHEETS 172

1–2 Chapter 1: Cyclone III Device Family Overview
Cyclone III Device Family Features

Cyclone III Device Handbook, Volume 1 © December 2009 Altera Corporation

Design Security Feature
Cyclone III LS devices offer the following design security features:

■ Configuration security using advanced encryption standard (AES) with 256-bit
volatile key

■ Routing architecture optimized for design separation flow with the Quartus® II
software

■ Design separation flow achieves both physical and functional isolation
between design partitions

■ Ability to disable external JTAG port

■ Error Detection (ED) Cycle Indicator to core

■ Provides a pass or fail indicator at every ED cycle

■ Provides visibility over intentional or unintentional change of configuration
random access memory (CRAM) bits

■ Ability to clear contents of the FPGA logic, CRAM, embedded memory, and
AES key

■ Internal oscillator enables system monitor and health check capabilities

Increased System Integration
■ High memory-to-logic and multiplier-to-logic ratio

■ High I/O count, low-and mid-range density devices for user I/O constrained
applications

■ Adjustable I/O slew rates to improve signal integrity

■ Supports I/O standards such as LVTTL, LVCMOS, SSTL, HSTL, PCI, PCI-X,
LVPECL, bus LVDS (BLVDS), LVDS, mini-LVDS, RSDS, and PPDS

■ Supports the multi-value on-chip termination (OCT) calibration feature to
eliminate variations over process, voltage, and temperature (PVT)

■ Four phase-locked loops (PLLs) per device provide robust clock management and
synthesis for device clock management, external system clock management, and
I/O interfaces

■ Five outputs per PLL

■ Cascadable to save I/Os, ease PCB routing, and reduce jitter

■ Dynamically reconfigurable to change phase shift, frequency multiplication or
division, or both, and input frequency in the system without reconfiguring the
device

■ Remote system upgrade without the aid of an external controller

■ Dedicated cyclical redundancy code checker circuitry to detect single-event upset
(SEU) issues

■ Nios® II embedded processor for Cyclone III device family, offering low cost and
custom-fit embedded processing solutions

APPENDIX D. DATA SHEETS 173

Chapter 1: Cyclone III Device Family Overview 1–3
Cyclone III Device Family Features

© December 2009 Altera Corporation Cyclone III Device Handbook, Volume 1

■ Wide collection of pre-built and verified IP cores from Altera and Altera
Megafunction Partners Program (AMPP) partners

■ Supports high-speed external memory interfaces such as DDR, DDR2,
SDR SDRAM, and QDRII SRAM

■ Auto-calibrating PHY feature eases the timing closure process and eliminates
variations with PVT for DDR, DDR2, and QDRII SRAM interfaces

Cyclone III device family supports vertical migration that allows you to migrate your
device to other devices with the same dedicated pins, configuration pins, and power
pins for a given package-across device densities. This allows you to optimize device
density and cost as your design evolves.

Table 1–1 lists Cyclone III device family features.

Table 1–1. Cyclone III Device Family Features

Family Device Logic
Elements

Number of
M9K Blocks

Total RAM
Bits

18 x 18
Multipliers PLLs Global Clock

Networks
Maximum
User I/Os

Cyclone III

EP3C5 5,136 46 423,936 23 2 10 182

EP3C10 10,320 46 423,936 23 2 10 182

EP3C16 15,408 56 516,096 56 4 20 346

EP3C25 24,624 66 608,256 66 4 20 215

EP3C40 39,600 126 1,161,216 126 4 20 535

EP3C55 55,856 260 2,396,160 156 4 20 377

EP3C80 81,264 305 2,810,880 244 4 20 429

EP3C120 119,088 432 3,981,312 288 4 20 531

Cyclone III LS

EP3CLS70 70,208 333 3,068,928 200 4 20 413

EP3CLS100 100,448 483 4,451,328 276 4 20 413

EP3CLS150 150,848 666 6,137,856 320 4 20 413

EP3CLS200 198,464 891 8,211,456 396 4 20 413

APPENDIX D. DATA SHEETS 174

	Declaration
	Abstract
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Problem statement
	Objectives of the research
	Structure of the thesis

	Digital signal processing
	DSP applications
	Signal sampling and quantisation
	Hardware for signal processing
	Conclusion

	Pulse width modulation
	Theory of operation
	Natural and uniform sampling
	Harmonic distortion
	Conclusion

	Interpolation
	Introduction
	Sample rate conversion
	Finite impulse response interpolation filter
	Polyphase interpolation filter
	Cascaded integrator comb filter
	Polynomial interpolation
	Conclusion

	Noise shaping
	Introduction
	General noise shaping
	Digital noise shaping loop filter
	Ripple compensation
	Ripple compensation verification
	Loop filter implementation
	Conclusion

	VHDL Implementation
	Hardware interconnections
	Configuration
	Receive audio data
	Interpolation
	Noise shaping
	Pulse width modulation and feedback
	Synchronisation
	Conclusion

	Test and verification
	Initial testing
	System redesign
	Conclusion

	Results
	Hardware setup
	Simulation verification
	Measurements
	Conclusion

	Conclusion
	Overview of project objectives
	Objectives achieved
	Problems encountered
	Future research and recommendations

	List of References
	Appendices
	Noise shaper filter coefficients
	Classic noise shaper coefficient design

	VHDL source code
	Main program source code
	SPI source code
	Receive audio data source code
	Interpolation source code
	Noise shaper source code
	Pulse Width Modulation source code

	Matlab source code
	Interpolation
	Polynomial interpolation
	Noise shaper filter coefficient calculator
	Modulation
	Spectral content

	Data sheets
	SRC4392
	Altera Cyclone III (EP3C25)

