

Digital Pulse Width Modulation for
Class-D Audio Amplifiers

Deon Jacobs

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Electronic Engineering

at the

University of Stellenbosch

Supervisor: Prof H. dT. Mouton

April, 2006

i

Declaration

I the undersigned, hereby declare that the work contained in this thesis is my

own original work, unless otherwise stated, and has not previously, in its entirety or in

part, been submitted at any university for a degree.

………………….....

Deon Jacobs

December 15, 2005

ii

Abstract

Digital audio data storage mediums have long been used within the consumer

market. Today, because of the advancement of processor clock speeds and increased

MOSFET switching capabilities, digital audio data formats can be directly amplified

using power electronic inverters. These amplifiers known as Class-D have an

advantage over there analogue counterparts because of their high efficiency.

This thesis deals with the signal processing algorithms necessary to convert the

digital audio data obtained from the source to a digital pulse width modulated signal

which controls a full bridge inverter for audio amplification. These algorithms

address difficulties experienced in the past which prevented high fidelity digital pulse

width modulators to be implemented.

The signal processing algorithms are divided into modular blocks, each of

which are defined in theory, designed and simulated in Matlab® and then

implemented within VHDL firmware. These firmware blocks are then used to realize

a Class-D audio amplifier.

iii

Opsomming

Digitale oudiodatabergingsmediums is vir ‘n geruime tyd al beskikbaar in die

verbruikersmark. Vandag, as gevolg van die vooruitgang van verwerker

klokfrekwensies en die verhoogte skakelfrekwensie-eienskappe van MOSFET-

komponente, kan digitale oudiodataformate direk versterk word deur die gebruik van

drywingselektroniese omsetters. Die versterkers staan bekend as klas D-tipes, en is

baie meer effektief as analoog klank versterkers.

Hierdie tesis handel oor die seinverwerkingsalgoritmes wat nodig is vir die

omskakeling van digitale oudiodata na ‘n gemoduleerde digitale pulswydte vir die

beheer van ‘n volbrug omsetter beheer vir klankversterking. Die algoritmes spreek

die struikelblokke aan wat in die verlede verhoed het dat hoëresolusie, digitale pulse

wydte modulators geïmplimenteer kon word.

Die seinverwerkingsalgoritmes word verdeel in modulêre blokke. Elk word

afsonderlik beskryf in teorie, ontwerp en gesimuleer in Matlab® en geïmplimenteer in

VHDL sagteware. Hierdie sagtewareblokke word dan gebruik om ‘n klass-D tipe

klankversterker te realiseer.

iv

Acknowledgements

The following acknowledgements are in order:

• Jesus Christ for His salvation.

• My family for their encouragement and prayers.

• Prof. H. dT. Mouton for his guidance.

• Francois Koeslag, Leon de Wit, Neal de Beer and Riaan van den Dool for their

friendship, help and support during this project.

• Alfred for all his encouraging words.

• NRF and Thrip for providing funds for this project.

v

Contents

Declaration .. i
Abstract .. ii
Opsomming...iii
Acknowledgements... iv
List of Figures ...viii
List of Tables ... x
List of Abbreviations .. xi
List of Symbols ...xiii
Chapter 1 - Introduction... 1

1.0 Backround .. 1
1.1 Research Objectives for Class-D Audio Amplifiers 1
1.2 Digital Audio Amplification .. 2
1.3 Defining High Fidelity ... 3
1.4 PWM Difficulties... 3
1.5 Thesis Objectives ... 3

Chapter 2 - Premodulation Processing... 4
2.0 Introduction.. 4
2.1 PWM Linearization.. 4
2.2 Clock Speed Reduction.. 4
2.3 Thesis Structure.. 5

Chapter 3 - Interpolation .. 7
3.0 Introduction.. 7
3.1 Choice of Sampling Rate ... 7

3.1.1 What is sampling?... 7
3.1.2 Nyquist rate derivation.. 8
3.1.3 Reconstructing the continuous input signal .. 13
3.1.4 Reconstruction as an ideal lowpass characteristic 15

3.2 Sampling Rate Increase – by Integer Factors... 16
3.2.1 Sampling rate conversion system.. 17
3.2.2 Ideal digital lowpass filter necessary .. 18
3.2.3 The impulse response of the lowpass filter ... 21

3.3 Digital Interpolation Filters.. 22
3.3.1 Low pass filter characteristic .. 23
3.3.2 Phase characteristic ... 24
3.3.3 Digital filtering methods ... 25

3.4 Design of a Linear Phase Bandpass FIR Filter .. 27
3.4.1 Choice of a FIR filter design method.. 27
3.4.2 Optimum equiripple linear-phase FIR filters .. 28
3.4.3 FIR filter specifications... 29
3.4.4 Digital filter design characteristics ... 29
3.4.5 Summary ... 29

3.5 Polyphase FIR Structures for Integer Interpolators 29
3.5.1 Polyphase FIR structure .. 29
3.5.2 Properties of polyphase filters... 29

vi

3.5.3 Conversion to the polyphase structure .. 29
3.5.4 Summary ... 29

3.6 Example of the Interpolation Process .. 29
3.6.1 Cosine input signal.. 29
3.6.2 Sample rate expanded signal... 29
3.6.3 Polyphase filtering .. 29
3.6.4 Summary ... 29

Chapter 4 - Pulse Width Modulation ... 29
4.0 Introduction.. 29
4.1 Pulse Width Modulation Schemes ... 29

4.1.1 Natural and uniform PWM ... 29
4.1.2 Harmonic components of PWM ... 29
4.1.3 Trailing edge naturally sampled modulation .. 29
4.1.4 Trailing edge uniformly sampled modulation... 29
4.1.5 Leading edge naturally and uniformly sampled modulation 29
4.1.6 Double edge naturally sampled modulation.. 29
4.1.7 Double edge uniformly sampled modulation.. 29
4.1.8 Conclusion of PWM schemes studied .. 29

4.2 Pseudo-Natural Pulse Width Modulation .. 29
4.2.1 What is PNPWM?... 29
4.2.2 What PNPWM scheme should be used?... 29
4.2.3 PNPWM building blocks .. 29
4.2.4 Numerical root finding algorithms for PNPWM .. 29

4.3 Summary .. 29
Chapter 5 - Noise shaping.. 29

5.0 Introduction.. 29
5.1 Choice of Switching Frequency... 29
5.2 Noise-Shaping Coders.. 29

5.2.1 Clock speed constraints... 29
5.2.2 Bit-size reduction through noise shaping.. 29
5.2.3 Recursive noise shaper.. 29
5.2.4 Noise shaping quantizer .. 29
5.2.5 Derivation of the noise transfer function .. 29
5.2.6 Characteristics of the noise shaper.. 29

5.3 Noise Shaping Simulations .. 29
5.3.1 Noise shaping filter ... 29
5.3.2 Noise shaping of the PNPWM output... 29

5.4 Summary .. 29
Chapter 6 - Firmware Implementation... 29

6.0 Introduction.. 29
6.1 Hardware Description .. 29
6.2 Firmware Development.. 29

6.2.1 Configuration firmware... 29
6.2.2 Digital PWM firmware ... 29
6.2.3 VHDL synthesis.. 29

6.3 Fixed Point Arithmetic... 29
6.4 Cyclone FPGA Resources.. 29
6.5 Implementation Difficulties ... 29
6.6 Summary .. 29

Chapter 7 - Measurements and Results.. 29

vii

7.0 Introduction.. 29
7.1 Measurement Setup.. 29
7.2 Measurements .. 29

7.2.1 PWM gating signals .. 29
7.2.2 Amplified output measurement... 29
7.2.3 Frequency response measurement .. 29
7.2.4 THD+N measurement ... 29

7.3 Discussion of Measurement Results .. 29
7.4 Conclusions.. 29

Chapter 8 - Conclusions... 29
8.0 Overview.. 29
8.1 Fulfillment of Objectives ... 29
8.2 Recommendations and Future Research .. 29

References and Bibliography ... 29
Appendix A .. 29

A1. Interpolation Matlab Code ... 29
Appendix B .. 29

PWM Spectral Calculation... 29
B1. Estimation method.. 29
B2. Matlab Code for PWM Spectral Estimate.. 29

Appendix C .. 29
Spectral Estimate Matlab Code for PWM Schemes .. 29

C1. Trailing edge NPWM ... 29
C2. Trailing edge UPWM, and PNPWM using Newton’s method 29
C3. Trailing edge PNPWM using binary search strategy 29

Appendix D .. 29
DIR 1703.. 29

Appendix E .. 29
ALTERA CYCLONE (EP1C12Q240C6) Features... 29

Appendix F... 29
VHDL Code ... 29

F1. Polyphase filtering .. 29
F2. Polynomial coefficient calculation ... 29
F3. Binary search .. 29
F4. Crosspoint calculation... 29
F5. Noise shaping.. 29
F6. PWM generator... 29

viii

List of Figures

Figure 1.1: (a) Analogue amplifier topology ... 2
(b) Digital Class-D amplifier topology. ... 2
Figure 2.1: Premodulation signal processing blocks. .. 5
Figure 3.1.1: Sampling analogue band-limited signal and aliasing of spectral
components altered from [3]. ... 12
Figure 3.1.2: Continuous-time signal generated from discrete-time formula using the
reconstruction formula. .. 14
Figure 3.1.3: Frequency representation of perfect reconstruction. 15
Figure 3.2.1: Sampling rate conversion system. .. 17
Figure 3.2.2: Block diagram and typical waveforms and spectra for sampling rate
increase by a factor of L , altered from [22]. .. 19
Figure 3.3.1: Filter magnitude response with specification parameters altered from [3].
.. 23
Figure 3.4.1: Magnitude response of the equiripple FIR filter. 29
Figure 3.4.2: Attenuation of linear FIR filter between 19 kHz and 20 kHz. 29
Figure 3.4.3: Impulse response. ... 29
Figure 3.4.4: Phase response.. 29
Figure 3.4.5: Group delay. ... 29
Figure 3.4.6: Step response. ... 29
Figure 3.4.7: Pole/Zero plot. .. 29
Figure 3.4.8: Zoomed pole/zero plot.. 29
Figure 3.5.1: Polyphase structures for a 1 to L interpolator. 29
Figure 3.5.2: Commutator model for the 1 to L polyphase interpolator..................... 29
Figure 3.5.3: Ideal frequency response of the polyphase networks. 29
Figure 3.5.4: Impulse responses of the eight polyphase filters. 29
Figure 3.5.5: Magnitude response of polyphase filters .. 29
Figure 3.5.6: Phase delay of respective polyphase filters. ... 29
Figure 3.6.1: Total interpolation process. .. 29
Figure 3.6.2: 1 kHz sinusoidal input signal ()x n 29
Figure 3.6.3: MTM PSD estimate of ()x n 29
Figure 3.6.4: Sample rate expanded signal ()w n ... 29
Figure 3.6.5: Zoomed view of ()w n 29
Figure 3.6.6: MTM PSD estimate of ()w n 29
Figure 3.6.8: MTM PSD of output ()y n . .. 29
Figure 4.1: Two-level pulse-width modulator adapted from [17]. 29
Figure 4.2: Difference between UPWM and NPWM. ... 29
Figure 4.3: PWM Schemes altered from [17] .. 29
Figure 4.4: Trailing edge NPWM spectrum... 29
Figure 4.5: Trailing Edge UPWM spectrum.. 29
Figure 4.6: Calculation of PNPWM output signal adapted from [15]. 29
Figure 4.7: Building blocks of the PNPWM modulation technique 29
Figure 4.8: Cross Point Derivation .. 29
Figure 4.9: Newton’s method and first two approximations to its zeroα 29

ix

Figure 4.10: PNPWM crosspoint derivation.. 29
Figure 4.11: PNPWM output of Newton’s method ... 29
Figure 4.12: Spectrum of PNPWM using Newton’s method....................................... 29
Figure 4.13: Spectrum of NPWM using Newton’s method... 29
Figure 4.14: Bisection method and the first two approximations to its zeroα 29
Figure 4.15: Binary search method and the first two approximations to its crosspoint
ς .. 29
Figure 4.17: Spectrum of PNPWM using Binary search strategy. 29
Figure 4.18: Spectrum of PNPWM using Newton’s method....................................... 29
Figure 5.1: Noise-shaper architecture altered from [18].. 29
Figure 5.2: Quantizer modeled as added noise source... 29
Figure 5.3: Example of a midtread quantizer [Digital signal processing textbook]. ... 29
Figure 5.4: Noise Transfer Function at various orders of N 29
Figure 5.5: Magnitude response of fifth order noise transfer function. 29
Figure 5.6: Phase response of fifth order noise transfer function. 29
Figure 5.7: Pole/Zero plot of ()H z . .. 29
Figure 5.8: Noise shaped 8-bit PWM output. .. 29
Figure 5.9: Zoomed view of 8-bit PWM output. ... 29
Figure 5.10: Noise shaped 10-bit PWM output. .. 29
Figure 5.11: Zoomed view of 10-bit PWM output. ... 29
Figure 6.1: Signal processing building block for PCM to PWM conversion. 29
Figure 6.2: Firmware blocks developed within the FPGA. ... 29
Figure 6.3: Blockdiagram of the interpolation process... 29
Figure 6.5: Block diagram of polynomial coefficient calculation. 29
Figure 6.9: State diagram of the binary search process. .. 29
Figure 6.13 Timing diagram description of firmware.. 29
Figure 6.14: Mealy Machine [6]. ... 29
Figure 6.15: Example of a two-process Moore state machine. 29
Figure 6.16: A double synchronizer circuit. .. 29
Figure 6.17: Data bus synchronization between asynchronous clock domains. 29
Figure 6.18: Quartus II flow summary... 29
Figure 7.1: Digital modulation measurement setup. .. 29
Figure 7.2: Complete measurement setup.. 29
Figure 7.3: Zoomed view of digital modulation development board. 29
Figure 7.4: PWM gating output signal from FPGA... 29
Figure 7.5: Single cycle of PWM gating signal. .. 29
Figure 7.6: Single cycle of PWM gating signal. .. 29
Figure 7.7: Amplified 1 kHz sinusoidal output.. 29
Figure 7.8: Amplified 10 kHz sinusoidal output.. 29
Figure 7.9: Amplified 12 kHz sinusoidal output.. 29
Figure 7.10: Amplified 16 kHz sinusoidal output.. 29
Figure 7.11: Frequency response of Class-D amplifier system. 29
Figure 7.11: THD+N across the audio band. ... 29
Figure B1: PWM signal. .. 29
Figure B.2: Spectrum estimate calculation. ... 29

x

List of Tables

Table 3.3.1: Comparison between digital filtering methods. 26
Table 3.4.1: Interpolation filter specifications. .. 29
Table 3.5.1: FIR filter structures.. 29
Table 3.6.1: Harmonic intervals at which baseband frequencies are centered. 29
Table 3.6.2: Specifications of low-pass digital filter. .. 29
Table 4.1: Polynomial interpolation methods. ... 29
Table 4.2: Arithmetic counts of one iteration using Newton’s method. 29
Table 4.3: Arithmetic counts of one iteration using the binary search method. 29
Table 4.4: Arithmetic counts of one iteration using the binary search method and
lookup table.. 29
Table 4.5: Total arithmetic complexity of the two PNPWM methods. 29
Table 5.1: Needed clock rates for certain PWM bit resolutions. 29
Table 6.1: Clock speeds of different processes.. 29
Table 6.2: Firmware development time. .. 29

xi

List of Abbreviations

CD Compact Disk

CDA Compact Disk Audio

Class-D Systems using a digital PWM topology

DAC Digital to Analogue Converter

DIR Digital Interface Receiver

DSP Digital Signal Processing

DUT Device Under Test

DVD Digital Video Disc

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GUI Graphical User Interface

IC Integrated Circuit

IIR Infinite Impulse Response

LSB Least Significant Bit

MAC Multiply Accumulate

MOSFET Metal-Oxide Semiconductor Field Effect Transistor

MSB Most Significant Bit

MTM Multitaper Thomson Method

NPWM Natural Pulse Width Modulation

ONS Oversampling Noise Shapers

PBR Pass Band Ripple

PCM Pulse Code Modulation

PLL Phase Lock Loop

PNPWM Pseudo Natural Pulse Width Modulation

PSD Power Spectral Density

PWM Pulse Width Modulation

RAM Random Access Memory

ROM Read Only Memory

xii

SBR Stop Band Ripple

SNR Signal to Noise Ratio

SPDIF Sony Philips Digital Interface

THD+N Total Harmonic Distortion plus Noise

UPWM Uniform Pulse Width Modulation

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

xiii

List of Symbols

F Infinite frequency variable

f Normalized frequency variable

sT Sampling period

sF Sampling frequency

cF Switching frequency

pF Discrete signal spectrum period

maxF Maximum range of f

B Signal Bandwidth

G Interpolation filter gain

'F Upsampled sampling frequency

'T Upsampled sampling frequency

L Upsampling factor

()W z Sampling rate expander z-transform

()X z Digital input signal z-transform

()aX F Continuous signal spectrum

() (/)sX f X F F= Aperiodic Discrete time signal spectrum

ω Corner frequency in rad/s

pω Passband edge ripple

sω Stopband edge ripple

pδ Passband ripple

sδ Stopband ripple

dB Decibel

dBFS Decibels with respect to digital full scale

dBV Decibels relative to a reference value of 1.000 Volts

Hz Hertz

ptpV Volts peak to peak

Introduction

University of Stellenbosch

1

Chapter 1 - Introduction

1.0 Backround

The Class-D mode of operation was originally introduced in 1959 by Baxandall

for the potential application in oscillator circuits [20]. Pulse width modulation

(PWM) is well established in power electronics as a basis for controlling inverters

with sinusoidal output voltages and motor drives [12]. Today PWM is becoming

more prevalent in high quality DACs (Digtal-to-Analogue Converters), particularly

those used in digital audio applications [19]. Audio amplifiers implementing the

PWM strategy have emerged on a great scale.

1.1 Research Objectives for Class-D Audio Amplifiers

Two primary objectives drive the research within digital Class-D audio

amplifiers. The primary objective of Class-D amplifiers is high efficiency.

Conventional audio amplifiers (analogue) rarely exceed 20 % efficiency in use. An

amplifier based on a PWM inverter, in contrast, can reach 90 % efficiency or more

[12]. The lower power losses therefore decrease or even eliminate the use of heat

sinks. It is thus evident that the higher levels of efficiency translate into smaller,

lower cost designs. The potential efficiency improvement for battery-powered

applications or for miniature amplifiers has played a large part in driving the study of

advanced PWM amplification techniques [12].

The second research objective of these amplifier topologies is to amplify digital

audio data directly. This need has arisen because of the growing use of digital audio

in compact disks (CDs), DVDs (Digital Video Disc), movie soundtracks,

broadcasting, and computer applications. Most amplifiers today firstly need to

convert these digital sources to small voltage analogue signals before amplification

can be performed. It is desired that the audio data remain in the digital domain

through the amplification process, and only be converted to the analogue domain at

the output stage.

Introduction

University of Stellenbosch

2

1.2 Digital Audio Amplification

PWM provides a medium for digital audio amplification. It encodes a signal into

two discrete levels, with the information represented in pulse duty ratios. This coding

characteristic enables energy to be delivered to the output by switching power

transistors which are either fully ON or fully OFF. The gating signals fed to these

transistors represent the encoded signal, while the high voltage ON and OFF outputs

represent the discrete and therefore digital amplified output. An advantage of this

modulation is its ability to recover the amplified discrete-level form with a passive

output filter. When the discrete power sources for the power transistors are generated

efficiently, PWM provides the basis for highly efficient signal delivery, especially to

loads with low-pass characteristics [12]. Thus a digital PWM signal prepared from an

audio input can be used as a switching function for a full bridge, half bridge inverter,

where a low pass filter extracts the audio and delivers it to a loudspeaker. Figure 1.1

compares the analogue amplifier topology with the proposed digital Class-D amplifier

topology.

Digital
Source DAC Analogue

Amp

(a)

(b)

Digital
Source PCM to PWM Class D

Amp
LC Low Pass

Filter

Direct Digital Amplifier

Figure 1.1: (a) Analogue amplifier topology
 (b) Digital Class-D amplifier topology.

Introduction

University of Stellenbosch

3

1.3 Defining High Fidelity

With the extensive growth of digital audio, the digital characteristics of a signal

provide a basis for defining high fidelity. For example the 16-bit signal from a CDA

(Compact Disc Audio) source has 1-bit quantization error as the lower bound on noise

and distortion. This is one part in 162 , or -96 dB. A 24-bit audio sampling range

corresponds to a lower bound of -144 dB. An amplifier that can reach these low

levels is effectively perfect by comparison with the audio signal quantization error

[12].

1.4 PWM Difficulties

Two main difficulties however continue to be associated with PWM based

conversion systems, these are practicality and performance. Excessive modulator

clock speeds are required to resolve 162 or 242 distinct pulse widths per pulse interval.

Moreover, harmonic distortion inherent to the uniform sampling modulation processes

makes 16-bit performance very difficult to achieve [17]. Fortunately, methods have

been developed within the digital signal processing field which successfully solves

these short comings associated with uniform sampled modulation. These methods are

known as premodulation, predistortion signal processing linearization algorithms, and

have been described in [19], [17], [15].

1.5 Thesis Objectives

This thesis addresses these PWM difficulties of performance and practicality

by using the premodulation, predistortion algorithms mentioned above. It does this

by:

• Identifying how these algorithms address these difficulties.

• Dividing these algorithms into appropriate blocks.

• Sufficiently describing each block in theory.

• Presenting a design solution for each block.

• Simulating these designs in Matlab®.

• Developing VHDL firmware of the simulated designs.

Introduction

University of Stellenbosch

4

• Attempting to realize a practical Class-D amplifier using the developed

firmware.

Introduction

University of Stellenbosch

4

Chapter 2 - Premodulation Processing

2.0 Introduction

Chapter 1 introduced the difficulties associated with digital PWM, these are

practicality and performance. Chapter 1 also introduced a solution of these difficulties

which are premodulation precompensating linearization algorithms. Here these

algorithms are outlined briefly and it is shown which of these algorithms addresses

which digital PWM difficulty. After the brief outline, a description of the thesis

structure follows.

2.1 PWM Linearization

The fundamental problem of PWM based open-loop digital Class-D audio

power amplifiers are the inherent nonlinearity of the PWM process, this necessitates

the application of linearization algorithms.

Non-linearity of the PWM process is reduced through increasing the sampling

rate of the digital audio signal applied to the modulator input. Unfortunately this

increased rate has no effect on the in band harmonic distortion resulting from the

uniform PWM process. However, a DSP technique has been proposed which has the

ability to imitate the natural PWM process digitally resulting in negligible in band

harmonic distortion [19]. This idea is called 'pseudonatural PWM (PNPWM)'.

Interpolation (upsampling) and PNPWM therefore address the problem of

performance through linearizing the digital PWM process.

2.2 Clock Speed Reduction

The second problem of practicality is addressed through a DSP process known

as noise shaping. This technique reduces the word length of the PWM output since

high fidelity PWM outputs of 16-bits or more cannot be realized. Excessively high

clock speeds are necessary to output these high fidelity signals which cannot be

attained even by today's advanced digital signal processing devices. Noise shaping has

the ability to therefore reduce the word length of the PWM output signal but still

Introduction

University of Stellenbosch

5

attain negligible loss in baseband signal quality. The word length is reduced to such

an extent that current processor clock speeds suffices. The resulting digital DAC

which consist of these algorithms are shown in Figure 2.1. This figure shows the

extent to which this thesis investigates digital Class-D amplifiers. It should be noted

that the amplifier stage and low pass output filter is overlooked in the investigation,

therefore falling outside the scope of this thesis.

Digital
Source

LC
Low Pass

Filter

DSP Processing

Interpolation PNPWM Noise Shaper Digital
Modulator

Analogue
Output

(signal level)

Figure 2.1: Premodulation signal processing blocks.

2.3 Thesis Structure

The precompensation linearization algorithms are the main focus of this thesis

and are represented by the different blocks illustrated in Figure 2.1. Each of these

blocks is dealt with separately within its own chapter, and after its description and

design, simulations are given which prove their functionality.

The first block known as interpolation is presented in Chapter 3. It starts with

the description of sampling a continuous signal which leads to the relation that exists

between the continuous and digital domains. This relation provides insight into digital

filtering which is the fundamental concept in the implementation of the interpolation

process. After this, a digital filter is designed for interpolation and an efficient

structure is described for its implementation.

Introduction

University of Stellenbosch

6

Chapter 4 defines the pulse width modulation process completely. It

investigates and compares various PWM schemes using a two dimensional Fourier

analysis. From these comparisons a desired PWM scheme is identified. The idea of

PNPWM is then described, consisting of calculating the crosspoint between the audio

input signal and a carrier wave through polynomial interpolation, linear interpolation

and iterative root finding algorithms. Two numerical methods for calculating the

crosspoint in the PNWPM scheme are compared and a choice between these is then

made for practical implementation.

Chapter 5 describes the noise shaping coder which has the ability to reduce the

resolution of a digital signal but still retain a certain SNR within a specific band.

Within this chapter 5th order 8-bit and 10-bit noise shaping coders are considered.

Chapter 6 uses the knowledge gained from the previous three chapters which

describe all the precompensation linearization algorithms, in theory, and in simulation

to develop VHDL firmware for a practical implementation within a FPGA. The

developed firmware is described through relevant block, time and state diagrams.

Chapter 7 gives relevant measurements concerning the implementation of the

VHDL firmware, and then interprets them.

Chapter 8 summarizes and concludes the thesis by providing an overview of

the work done and discusses possible future research opportunities.

Interpolation

University of Stellenbosch

7

Chapter 3 - Interpolation

3.0 Introduction

Before any modulation can be performed on the digital audio input signal, its

sampling rate (sF) firstly needs to be converted to that of the PWM switching

frequency (cF). The switching frequency is at a higher rate than the audio input

sampling frequency to increase the linearity of the PWM process (described in

Chapter 4), and for use by the noise shaping process (described in Chapter 5). This

process of sample rate conversion needs to retain all of the audio information since

any loss would result in some form of distortion which will then be reflected in the

modulated PWM signal.

Increasing the sampling rate implies that a certain number of equidistant

samples are placed between the original signal samples at amplitudes that agree with

the original signal. This process is described and implemented in this chapter from a

digital signal processing viewpoint.

The chapter starts off with one of the most fundamental concepts of digital

signal processing, which is the idea of sampling a continuous signal to provide a set of

discrete numbers. It then describes the sample rate conversion process which

concludes that digital filtering is the fundamental ingredient to interpolation. The

remainder of the chapter focuses on the choice, design and filter structure and

simulation of the digital low pass interpolation filter.

3.1 Choice of Sampling Rate

3.1.1 What is sampling?

A continuous signal firstly needs to be converted into a discrete sequence

before any digital signal processing can be performed on it. This conversion process

is called sampling and is done by capturing and truncating the continuous input signal

amplitude at equidistant intervals.

Interpolation

University of Stellenbosch

8

If an analogue input signal ()ax t needs to be “digitized” (where t is the

continuous time variable), it is sampled at an interval known as the sampling period

(sT) resulting in a discrete sequence []x n given by

[] () ,a sx n x nT n= −∞ < < ∞ (3.1.1)

where n is the discrete index variable.

The sampling frequency (1/s sF T=) must be selected so that it is large enough

to ensure that the original continuous signal ()ax t is recoverable from its sampled

counterpart []x n . The correct choice of the sampling frequency is known as the

Nyquist rate which gives insight on the relation between the continuous ()aX F and

discrete ()X f spectra of these signals. Understanding the relation between these

spectra leads to the understanding of digital filtering. An important foundation for this

understanding is the Nyquist theorem, which will subsequently be derived using [3].

3.1.2 Nyquist rate derivation

Assuming ()ax t is an aperiodic analogue signal its spectrum is given by the

Fourier transform [3],

2 () () j Ft
a aX F x t e dtπ∞ −

−∞
= ∫

(3.1.2)

whereas its inverse Fourier transform is given by

2 () () .j Ft
a ax t X F e dFπ∞

−∞
= ∫

(3.1.3)

The spectrum of the discrete signal []x n sampled from ()ax t has the Fourier

transform

Interpolation

University of Stellenbosch

9

2 () [] .j fn

n
X f x n e π

∞
−

=−∞

= ∑ (3.1.4)

The discrete signal []x n can be recovered from the frequency domain by the

inverse Fourier transform given by

1/ 2 2

1/ 2
[] () .j fnx n X f e dfπ

−
= ∫ (3.1.5)

It is known from (3.1.5) that the discrete signal spectrum is finite and repeats

periodically with frequency equaling the sampling frequency (p sF F=).

In order to determine the relationship between the spectra of the discrete signal

and the continuous signal, it can be observed that periodic sampling imposes a

relationship between the independent variables t and n in the signals ()ax t and []x n

respectively. That is,

.s
s

nt nT
F

= = (3.1.6)

The relationship in the time domain implies a corresponding relationship in the

frequency domain between the variables F (infinite frequency variable) and f in

()aX F and ()X f respectively. Indeed substitution of (3.1.1) into (3.1.3) yields

2 /() () .sj nF F
a s ax nT X F e dFπ∞

−∞
= ∫ (3.1.7)

When comparing (3.1.7) with (3.1.5) it is concluded that

1/ 2 2 /2

1/ 2
() () .sj nF Fj fn

aX f e df X F e dFππ ∞

− −∞
=∫ ∫ (3.1.8)

The relationship between the variables F and f is formulated by

.
s

Ff
F

= (3.1.9)

Interpolation

University of Stellenbosch

10

Where it is noted that f is a normalised frequency variable of F . This implies

that the process of periodic sampling of a continuous-time signal causes a mapping of

the infinite frequency range of the variable F onto a finite frequency range for the

variable f . Where the maximum range of f is limited to max 2
sFF = .

Now with the relation in (3.1.9) a simple change of variable is made in (3.1.8)

to obtain the result

/ 2 2 / 2 /

/ 2

1 () .s
s s

s

F j nF F j nF F
aF

s s

FX e dF X F e dF
F F

π π∞

− −∞

=

∫ ∫ (3.1.10)

The integration range of the right-hand side integral can be divided into an

infinite number of intervals of width sF because of the periodical spectral property.

Therefore the integral over the infinite range can be expressed as a sum of integrals.

The right-hand expression of (3.1.10) is now given by

(1/ 2)2 / 2 /

(1/ 2)
() () s

s s

s

k Fj nF F j nF F
a ak F

k
X F e dF X F e dFπ π

∞∞ +

−∞ −
=−∞

= ∑∫ ∫ (3.1.11)

It is observed that ()aX F in the frequency interval (1/ 2) sk F− to (1/ 2) sk F+

is identical to ()a sX F kF− in the interval / 2sF− to / 2sF . Therefore,

(1/ 2) (1/ 2)2 / 2 /

(1/ 2) (1/ 2)

(1/ 2) 2 /

(1/ 2)

() ()

 ()

s s
s s

s s

s
s

s

k F Fj nF F j nF F
a a sk F F

n k

F j nF F
a sF

k

X F e dF X F kF e dF

X F kF e dF

π π

π

∞ ∞+

− −
=−∞ =−∞

∞

−
=−∞

= −

= −

∑ ∑∫ ∫

∑∫
 (3.1.12)

where the periodicity of the exponential is used, namely,

2 () / 2 /s s sj n F kF F j nF Fe eπ π+ = (3.1.13)

Interpolation

University of Stellenbosch

11

Comparing (3.1.12), (3.1.11) and (3.1.10), it is concluded that

() a s
ks

FX X F kF
F

∞

=−∞

= −

∑ , (3.1.14)

or, equivalently,

() . a s
ks

FX X f k F
F

∞

=−∞

= −

∑ (3.1.15)

This is the desired relationship between the spectra (/)sX F F or ()X f of the

discrete and the spectrum ()aX F of the continuous signal. The right-hand side of

(3.1.12) and (3.1.14) consists of a periodic repetition of the scaled spectrum ()s aF X F

with period sF . This periodicity follows as a consequence of the spectrum ()X f of

the discrete signal having a period of 1pf = or p sF F= as mentioned previously.

Because of the periodicity of the discrete-time spectrum (/)a sX F F and its

relation to ()X F , a constraint is placed on the analogue signal spectrum ()aX F to be

bandlimited.

Therefore if all of the spectral content within the analogue signal is to be

preserved within the digital signal’s spectrum (without distortion), the sampling

frequency choice needs to be twice the band-limit of the continuous signal frequency,

which is given by

2sF B= (3.1.16)

where B is the band-limit of ()aX F . The relation in (3.1.16) is known as the

Nyquist sampling rate.

A bandlimited signal ()ax t is shown in Figure 3.1.1(a). If the sampling rate for

this continuous signal sF is chosen according to the Nyquist rate, the discrete signal

[]x n shown in Figure 3.1.1(b) is the result. No distortion within its spectral content is

observed because its baseband frequency content does not overlap with its

neighbour’s. The baseband frequency content of Figure 3.1.1(b) is given by

Interpolation

University of Stellenbosch

12

() .
2

s
s a

s

FFX F X F F
F

= ≤

 (3.1.17)

Figure 3.1.1: Sampling analogue band-limited signal and aliasing of spectral

components altered from [3].

It is therefore observed that the spectrum of the discrete signal is identical

(within the scale factor sF) to the spectrum of the analogue signal, within the

fundamental frequency range / 2sF F≤ or 1/ 2f ≤ .

−B B0 t F

()ax t ()aX F

(a)

[] ()a sx n x nT=

n

0

0 F0
sT

1

sF

()s aF X F ()s a sF X F F−()s a sF X F F+

(b)

− sF
2
sF

2
− sF

n0 F0− sF sF
2
sF

s

FX
F

sT

s

FX
F

(c)

[]x n

n0
sT

[]x n

F0− sF sF

s

FX
F

0 t

ˆ ()ax t

F

ˆ ()aX F

0
2
sF

2
− sF

(d)

(e)

Interpolation

University of Stellenbosch

13

However if sF is chosen at a lower rate than the Nyquist rate the discrete

signal spectrum (/)sX F F includes aliasing as a consequence of the original analogue

spectrum ()aX F overlapping with its corresponding neighbour. This phenomenon is

shown in Figure 3.1.1(c) and (d). The end result is that the aliasing which occurs

prevents the recovery of the original signal ()ax t from the samples of []x n as shown

in Figure 3.1.1(e).

3.1.3 Reconstructing the continuous input signal

Given the discrete-time signal []x n with the spectrum (/)sX F F , as illustrated

in Figure 3.1.1(b), with no aliasing, it is now possible to reconstruct the original

analogue signal from the samples []x n . Since in the absence of aliasing it is known

that

1 ,
2()

0,
2

s

s s
a

s

FFX F
F FX F

FF

≤ =

 >

,

(3.1.18)

and by the Fourier transform relationship (3.1.4),

2 /() sj nF F

ns

FX x n e
F

π
∞

−

=−∞

=

∑ . (3.1.19)

The inverse Fourier transform of ()aX F is

/ 2 2

/ 2
() () s

s

F j Ft
a aF

x t X F e dFπ

−
= ∫ . (3.1.20)

If it is assumed that 2sF B= , and with the substitution of (3.1.19) into (3.1.18),

and (3.1.18) into (3.1.20), the reconstruction function is given as

Interpolation

University of Stellenbosch

14

/ 2 2 / 2

/ 2

/ 2 2 (/)

/ 2

1() [n]

1 [n]

sin ()
 () .

()

s
s

s

s
s

s

F j nF F j Ft
a F

ns

F j t n F

F
ns

s
s

s
n

s
s

x t x e e dF
F

x e dF
F

t nT
Tx nT

t nT
T

π π

π

π

π

∞
−

−
=−∞

∞
−

−
=−∞

∞

=−∞

=

=

 − =
−

∑∫

∑ ∫

∑

(3.1.21)

Observing that [] ()a sx n x nT= , and that 1/ 1/ 2s sT F B= = is the sampling

interval.

From the reconstruction formula in (3.1.21) it is seen that reconstructing ()ax t

from []x n is a complicated process, involving a weighted sum of the ideal

interpolation function,

[]sin (/)
()

(/)
s

s

T t
g t

T t
π

π
= (3.1.22)

and its time-shifted versions ()sg t nT− for n−∞ < < ∞ , where the weighting

factors are the samples of []x n . Figure 3.1.2 illustrates graphically how the

continuous-time signal is reconstructed using its sampled counterpart as weights and

then convolving with ()g t .

0

1

Time

A
m

pl
itu

de

Reconstructed signal
Discrete signal

Continuous interpolation function

Figure 3.1.2: Continuous-time signal generated from discrete-time formula using

the reconstruction formula.

Interpolation

University of Stellenbosch

15

The reconstruction function forms the basis of the sampling theorem which

after proof can now be stated for completeness:

A bandlimited continuous time signal, with highest frequency (bandwidth) B

Hertz, can be uniquely recovered from its samples provided that the sampling rate is

2sF B≥ samples per second.

3.1.4 Reconstruction as an ideal lowpass characteristic

The reconstruction formula given by (3.1.22) in the time-domain could

alternatively be seen as a linear filtering process in which a discrete sequence of short

pulses (ideally impulses) with amplitudes equal to the signal excites an analogue

lowpass filter. The analogue filter corresponding to the ideal interpolation function

has the frequency response given by

1,
2 2

()
10,

2

s
s

s

s

FT F
T

H F
F

T

 ≤ ==
 >

 (3.1.23)

The filtering process involving (3.1.23) is illustrated in Figure 2.1.3 where

()H F is simply the Fourier Transform of the impulse response ()g t of (3.1.22).

2
sF

−
2

sF

1

sF

()H F
Ideal analogue lowpass filter

Input signal Reconstructed signal

() ()s s
n

x nT t nTδ
∞

=−∞

−∑
sin ()

() ()
()

s
s

s
n

s
s

t nT
Tx t x nT

t nT
T

π

π

∞

=−∞

−
=

−
∑

1
s

s

F
T

=

Passband StopbandStopband

Figure 3.1.3: Frequency representation of perfect reconstruction.

Interpolation

University of Stellenbosch

16

()H F is known as the ideal filter characteristic or an anti-image filter because

of its constant gain in the passband and zero gain in the stopband. This brick wall cut-

off property prevents any frequency images from passing, and only allows baseband

signals to remain completely unchanged.

In all cases, such filters are not physically realisable but serve as a

mathematical idealisation of practical filters. For example, from the impulse response

given by (3.1.22) it is noted that the filter which it represents (3.1.23) is not causal and

is not absolutely summable and therefore also unstable. Consequently, the filter

described in (3.1.23) is physically unrealisable but has a use as a benchmark to

compare the performance of finite practically realisable low pass filters.

In this subsection the sampling theorem was derived to gain insight on the

relation between the spectra of continuous and discrete signal. It was shown that a

continuous time signal could be recovered from it discrete counterpart using the

reconstruction formula. Unfortunately this formula only serves as a mathematical

model to derive the ideal lowpass filter characteristic, and therefore cannot be used

practically.

3.2 Sampling Rate Increase – by Integer Factors

The process of perfect reconstruction of a discrete signal to its original

continuous signal is impossible as was concluded in Section 3.1.4. For increasing the

sampling rate of a digital signal from its present rate to another sampling rate a similar

reconstruction process is needed. But instead of trying to recover continuous time

information as with perfect reconstruction, only fixed distant discrete points between

consecutive samples of the input discrete signal is necessary. Since only discrete

values are necessary between samples, a relaxation on the low pass filter performing

the reconstruction process is implied, which is a discrete filter rather than a continuous

one. The process of increasing a discrete signal’s sampling rate or interpolating it at

fixed intervals with a discrete filter will now be derived theoretically.

Interpolation

University of Stellenbosch

17

3.2.1 Sampling rate conversion system

Figure 3.2.1 shows a general description of a sampling rate conversion system.

The input ()x n is a band limited discrete signal sampled at the Nyquist rate

1/ 2s sF T B= ≥ , and it is desired to attain the output signal ()y m with a higher

sampling rate of ' 1/ 'F T= . Where m defines the higher rate discrete index.

()mg n
()x n ()y m

Figure 3.2.1: Sampling rate conversion system.

If the desired sampling rate increase is a rational factor L then the new

sampling period is given by

' 1

s

T
T L

= (3.2.1)

and the new sampling rate 'F is ' sF LF= . This process of increasing the

sampling rate of a signal ()x n by L implies that 1L − new samples need to be placed

in between ()x n adjacent samples. Figure 3.2.2 illustrates the process of increasing

the sampling rate by a rational of factor 3L = . The input signal is “filled-in” with

1L − zeros between each pair of samples of ()x n resulting in the signal

(/), 0, , 2 ,
()

0, otherwise.
x m L m L L

w m
= ± ±

=

L
 (3.2.2)

The block diagram in Figure 3.2.2 with an up-arrow symbol corresponds to an

increase in sampling rate, resulting in an output signal given by (3.2.2) which is

referred to as a sampling rate expander.

Interpolation

University of Stellenbosch

18

3.2.2 Ideal digital lowpass filter necessary

It will now be shown how an ideal digital lowpass filter reconstructs the

sampling rate expander signal ()w m to the desired interpolated output signal

()y m using theory presented in [22].

The z-transform of ()w m given by (3.2.2) yields

() ()

 ()

 ()

m

m

mL

m
L

W z w m z

x m z

X z

∞
−

=−∞

∞
−

=−∞

=

=

=

∑

∑ (3.2.3)

Evaluating ()W z on the unit circle 'jz e ω= , gives the result

' '() ()j j LW e X eω ω= (3.2.4)

which is the Fourier transform of the signal ()w m expressed in terms of the

spectrum of the input signal ()x n (where ' 2 'fTω π= and 2 sfTω π=).

Interpolation

University of Stellenbosch

19

π2

()x n ()w m ()y m

'F' sF LF=sF

L ()h m

()x n

()w m

()y m

π 2π0 ω

π 'ω/ Lπ

()jX e ω

'()jW e ω

'()jY e ω

/ Lπ π 2π 'ω

(a)

(b)

(c)

(d)

Figure 3.2.2: Block diagram and typical waveforms and spectra for sampling

rate increase by a factor of L , altered from [22].

The spectrum of ()w m shown in Figure 3.2.2 contains not only the baseband

frequencies of interest (i.e. / to /L Lπ π−) but also images of the baseband centered

at harmonics of the original sampling frequency 2 / , 4 / ,L Lπ π± ± L . To recover the

baseband signal of interest and eliminate the unwanted higher frequency components

it is necessary to filter the signal ()w m with a digital low-pass filter which

approximates the ideal characteristic

� '
2 ', '

() 2
0, otherwise.

j
fTG

H e Lω
π πω ≤ ==

 (3.2.5)

The ideal digital low-pass filter characteristic given in (3.2.5) has a similarity

to the ideal low-pass continuous filter characteristic given in (3.1.18), which is, equal

cut-off frequencies. They are dissimilar, in that their passband gains are not the same.

The ideal continuous characteristic has a gain of sT in its passband whereas the digital

characteristic has a gain of G in its passband. It will be shown that in order to ensure

Interpolation

University of Stellenbosch

20

that the amplitude of the upsampled signal ()y m is correct, the gain of the filter G

must be L in the passband.

Letting '()jH e ω denote the frequency response of an actual filter that

approximates the characteristic in (3.2.4) it is seen from [22] that

' ' '() () (()j j j LY e H e X H eω ω ω= (3.2.6)

and within the approximation of (2.2.4) yielding

'

' (), ' /
()

0, otherwise.

j L
j GX e L

Y e
ω

ω ω π ≤=

 (3.2.7)

With the aid of Figure 3.2.2 and (3.2.5) it is seen that

'

' '

/
'

/

(0) () '

 () () '

 () '

 () /

 (0).

j

j j L

L
j L

L

j

y Y e d

H e X e d

G X e d

G X e d L

G x
L

π
ω

π

π
ω ω

π

π
ω

π

π
ω

π

ω

ω

ω

ω

−

−

−

−

=

=

=

=

=

∫

∫

∫

∫

(3.2.8)

Therefore, a gain G L= is required to match the amplitude of the envelopes of

the signals ()y m and ()x n .

Interpolation

University of Stellenbosch

21

3.2.3 The impulse response of the lowpass filter

If ()h m denotes the unit sample response of '()jH e ω , then ()y m can be

expressed from [22] as

() () ().
k

y m h m k w k
∞

=−∞

= −∑ (3.2.9)

Combining (3.2.2) and (3.2.9) leads to

() () (/)

 () ().

k

r

y m h m k x k L

h m k x r

∞

=−∞

∞

=−∞

= −

= −

∑

∑
 (3.2.10)

Next a change of variables is introduced

mr n
L

 = −
, (3.2.11)

and the identity

()mMmM L nM L
L

 − = ⊕
, (3.2.12)

where u denotes the integer less than or equal to u and ()i L⊕ denotes the

value of i modulo L . Applying (3.2.10) and (3.2.11) (with 1M =) to (3.2.9) yields

()

 () .

n

n

m my m h m L nL x n
L L

mh nL m L x n
L

∞

=−∞

∞

=−∞

 = − + −
 = + ⊕ −

∑

∑
 (3.2.13)

Interpolation

University of Stellenbosch

22

Equation (3.2.13) expresses the output ()y m in terms of the input ()x n and the

filter coefficients ()h m thus interpolation by integer factors of L giving

() (), for all and all = + ⊕mg n h nL m L m n (3.2.14)

and it is seen that ()mg n is periodic in m with period L . Therefore ()mg n

splits up the original low pass filter characteristic up into L smaller sub-filters, each

of these filters are used to compute an interpolated output ()y m when receiving a new

input sample ()x n . The periodicity property of ()mg n will be used in Section 3.5 to

implement an efficient structure for digital filtering.

Increasing the sampling rate of a discrete signal involves padding zeros

between consecutive samples according to the sampling rate, and then filtering the

sampling rate expanded signal with an ideal digital lowpass filter. The impulse

response of this filter can be split up into periodical sub filters each used to compute

the interpolated output signal.

3.3 Digital Interpolation Filters

Section 3.2 concluded that an ideal low pass discrete filter is necessary to

interpolate a digital signal. The question now arises if methods exist in which this

interpolation process can be implemented practically in the digital domain without

adding significant distortion to the interpolated output. Practical implementability

implies finiteness, but unfortunately finiteness implies non-ideality.

In this section finite length discrete filters which are used in digital signal

processing will be investigated. The goal of this will be to interpolate an input signal

at an integer rate, and at equidistant intervals. In Section 3.4 the performance of a

finite length discrete interpolation filter method described and chosen here will be

used to design and meet constraints according to audio signal specifications. From

this point on, a discrete finite filter will be referred to as a digital filter.

Interpolation

University of Stellenbosch

23

3.3.1 Low pass filter characteristic

Figure 3.3.1: Filter magnitude response with specification parameters altered

from [3].

Figure 3.3.1 shows the frequency response of a practical digital filter, when

comparing this characteristic with the ideal form given in Figure 3.1.3, various non-

idealities or differences can be observed. Firstly it can be observed that the passband

isn’t completely flat but has a small amount of ripple. Secondly the stopband region

also exhibits ripple. Thirdly the transition of the frequency response from passband to

stopband is nonzero and is defined as the transition band or transition region of the

digital filter. From [3] the following definitions are made.

The band-edge frequency pω defines the edge of the passband, while the

frequency sω denotes the beginning of the stopband. Thus the width of the transition

band is s pω ω− . The width of the passband is usually called the bandwidth of the

filter. For example, if the filter is lowpass with a passband edge frequency pω , its

bandwidth is pω . If there is ripple in the passband of the filter, its value is denoted as

pδ , and the magnitude ()H ω varies between the limits 1 pδ± . The ripple in the

stopband of the filter is denoted as sδ .

Interpolation

University of Stellenbosch

24

Usually the passband and stopband ripple are related to decibels by the

following expressions

2

10 2

(1)
10log

(1)

 17.36() when 1

p

p

p p

PBR
δ
δ

δ δ

+
=

−

� �

 (3.2.14)

and

10 220 log ().SBR δ= (3.2.15)

Where PBR and SBR represent the passband ripple and stopband ripple in

decibel.

3.3.2 Phase characteristic

A desired characteristic of a digital filter is a linear phase response, and this

characteristic will now be derived. It is shown in [3] that if a signal)(nx with

bandwith B passes through a digital filter with frequency response

0
1 2,

()
0, otherwise

j nCe
H

ω ω ω ω
ω

− < <
=

, (3.3.1)

where C and 0n are constants, the signal at the output of the filter has a

spectrum

0
1 2

() () ()
 () .j n

Y X H
CX e ω

ω ω ω

ω ω ω ω−

=

= < <
 (3.3.2)

By applying the scaling and time-shifting properties of the Fourier transform

the time-domain output is obtained by

0() ()y n Cx n n= − . (3.3.3)

Interpolation

University of Stellenbosch

25

Equation (3.3.3) indicates that the output of the filter is simply a delayed and

amplitude scaled version of the input signal. This pure delay is not considered as a

distortion of the input signal. Therefore ideal digital filters have a linear phase

characteristic within its passband, that is,

0() nω ωΘ = − . (3.3.4)

The derivative of the phase with respect to frequency has the units of delay. It

can therefore be defined that the signal delay as a function of frequency is given as

()()g
d

d
ωτ ω
ω

Θ
= − . (3.3.5)

()gτ ω is usually called the envelope delay or the group delay of the filter. The

expression ()gτ ω is interpreted as the time delay that a signal component of frequency

ω undergoes as it passes from the input to the output of a system. Note that when

()ωΘ is linear, 0() constantnτ ω = = . In this case all frequency components of the

input signal undergo the same time delay. The time delay 0n exists because of the

result that half the impulse response of the filter needs to be shifted by half its length

to gain the filter causality.

3.3.3 Digital filtering methods

Two methods of digital filtering exist which could be used to realise the filter

derived in (3.2.13). These two are the finite impulse response (FIR) and the infinite

impulse response (IIR) methods. Table 3.3.1 compares these two respective filtering

methods characteristics.

Interpolation

University of Stellenbosch

26

Finite Impulse Response (FIR) Infinite Impulse Response (IIR)
Linear phase possible Not precise linear phase
Always stable Can be unstable
Higher order filter needed for sharper cut-
off transition band characteristics

Lower order needed for sharp cut-off
transition band characteristics

Higher computational complexity Lower computational complexity
Table 3.3.1: Comparison between digital filtering methods.

The two main characteristics that are of importance in the choice of filtering

methods are magnitude and phase response. From Section 3.3.1 magnitude response

distortion is inevitable in any practical filtering method. But if the magnitude response

is designed such that the noise added to the input signal is less than the resolution of

the input signal itself, magnitude response transparency is guaranteed. Magnitude

transparency of the filter is therefore dependant on the input signal resolution, and to

obtain transparency for an increasing signal resolution a larger filter length is required.

Secondly phase linearity of a digital filter implies no distortion on the phase of the

input and therefore results in phase transparency. According to these characteristics a

discussion between the choice of FIR and IIR is now presented.

The FIR structure is inherently phase linear because it is easy to make the

impulse response absolutely symmetrical. IIR structures are not capable of delivering

exact linear phase within the passband of the filter. Table 3.3.1 shows that FIR filters

are computationally more expensive than IIR filters, and that higher order FIR filters

are required to obtain the same cut-off characteristics as IIR filters. Although FIR

filters have higher computational overhead they still offer higher transparency because

of their linear phase properties. It is because of this property that a FIR filter will be

used in the interpolation process. In Section 3.5 it will be shown that an efficient filter

structure reduces the computational expense when implementing FIR filters.

From this subsection we deduced that finite digital filters do not have ideal

magnitude response characteristics, it was shown that finite digital filters could have

linear phase which is not seen as a distortion in the filtering process. Two filter

methods where presented and compared. Although FIR filters may have a larger filter

length as apposed to IIR filters at a specific input signal resolution, FIR filters are on

the whole more transparent because of there linear phase response characteristic.

Interpolation

University of Stellenbosch

27

In Section 3.4 the design of a FIR filter will be described to interpolate an

audio input signal to a desired output sampling frequency.

3.4 Design of a Linear Phase Bandpass FIR Filter

Any processing done on high resolution digital audio requires a high

transparency to ensure that non-audible distortion is added to its baseband frequency

content. It has been established in Section 3.3 that FIR filters are the best choice when

overall transparency is desired at the cost of greater computational complexity. If a

specific FIR filter design guarantees phase linearity the only design specification that

is left is the magnitude response of the filter. The magnitude response design of the

filter should provide enough dynamic range in its passband and attenuation in its

stopband to ensure that the resolution of the input signal is retained.

3.4.1 Choice of a FIR filter design method

The most common linear phase FIR design methods to date are the

• Window design,
• Frequency sampling,
• Optimum equiripple linear phase filter and
• Minimum mean-square-error design methods.

From the above list the linear-phase equiripple filters are desirable because

they have the smallest maximum deviation from the ideal filter when compared to

methods listed above of the same order. Equiripple filters are ideally suited for

applications in which a specific tolerance must be met. For example, if it is necessary

to design a filter with a given minimum stopband attenuation or a given maximum

passband ripple [23].

In the current application of interpolating high resolution digital audio signals,

the control of the digital filter parameters (Section 3.3.1) to meet certain tolerances are

essential. For this reason the optimum equiripple linear phase filter method is the

preferred filter design method.

Interpolation

University of Stellenbosch

28

3.4.2 Optimum equiripple linear-phase FIR filters

The optimum equiripple linear-phase FIR filter design method is formulated as

a Chebyshev approximation problem [3]. It is viewed as an optimum design criterion

in the sense that the weighted approximation error between the ideal frequency

response and the actual frequency response is spread evenly across the passband and

evenly across the stopband of the filter, minimising the maximum error [3]. The

solutions of the Chebyshev approximation problem are based on either a multiple

exchange Remez algorithm, or a single exchange linear programming solution. These

filter design solutions are readily available in software packages for example:

Matlab®.

For the case of the low-pass characteristic of Figure 3.3.1 an empirical formula

has been derived that relates the parameters of low pass FIR filters into an optimum

equiripple solution.

The formula known as the Hermann-Rabiner-Chan’s formula is expressed in

terms of the digital filter length N , which is given by

(,) ()
(,) 1

() /(2) 2
δ δ ω ω

δ δ
ω ω π π

∞ −
≅ − +

−
p s s p

p s
s p

D
N f (3.4.1)

where
2

1 10 2 10 3 10

2
4 10 5 10 6

(,) [(log) log]log

 [(log) log]
p s p p s

p p

D a a a

a a a

δ δ δ δ δ

δ δ
∞ = + +

+ + +
 (3.4.2)

and

10 10(,) 11.012 0.512(log log),

 for

δ δ δ δ

δ δ

= + −

≤

p s p s

s p

f
 (3.4.3)

lastly

1

2

3

4

5

6

0.00539
0.07114

0.4761
0.00266
0.5941
0.4278

a
a
a
a
a
a

=
=
= −

= −
= −

= −

 (3.4.4)

Interpolation

University of Stellenbosch

29

From (3.4.1) an estimate of the filter order can be calculated given a set of

desired magnitude response specifications.

3.4.3 FIR filter specifications

It is needed to upsample a digital audio signal having an input sampling rate of

44.1 kHz. This data rate increase is necessary in the process of converting a PCM

signal into a PWM signal. This modulation process will be covered in Chapter 4, it is

only of importance now to know that the upsampling rate of 8L = is needed. From

3.2.7 it was derived that the gain of the filter should be 8G L= = .

Table 3.4.1 describes the specifications to upsample a digital input audio signal

at a resolution of 24-bits to its new upsampling rate of 'F :

Table 3.4.1: Interpolation filter specifications.

The transition band (s pω ω−) for this filter is 400 Hz which is relatively wide

but necessary to reduce the order of the filter. An estimate of the digital filter

coefficient length with the above specifications was calculated using 3.4.1, 3.4.2, 3.4.3

and 3.4.4 which resulted in a filter length of 631.42N = .

3.4.4 Digital filter design characteristics

Matlab®’s fdatool filter toolbox was used to design the digital linear phase FIR

filter with specifications given in Table 3.4.1. The filter length achieved fulfilling

these specifications in Matlab® produced an equiripple FIR filter of coefficient length

632N = . This value confirms the estimate calculated by (3.4.1). The large filter

length also agrees with the discussion that FIR filters do require more coefficients to

Passband (pω) 19 kHz

Stopband (sω) 23 kHz

Passband ripple(pδ) 0.001 dB

Stopband ripple (sδ) 150 dB

Final sampling frequency ('F) 352.8 kHz

Interpolation

University of Stellenbosch

30

realise than IIR filters when given the same desired specifications. An IIR Chebyshev

Type II filter was designed using the same specifications given in Table 3.4.1 and

attained a filter order of 35N = but with a non-linear phase response.

Figure 3.4.1 shows the magnitude response of the FIR filter design. The

filter’s lowpass characteristic keeps the output’s baseband undisturbed between 0 kHz

and 19 kHz. From 19 kHz the digital audio input signal’s frequency content starts to

be attenuated and gradually increases attenuation until it reaches a maximum

attenuation of -1.5 dB at 20 kHz as shown in Figure 3.4.2. Fortunately most human

listeners cannot detect audio above 16 kHz therefore a small attenuation of 1.5 dB

above 19 kHz will be unnoticeable. Above 23 kHz any frequency images are

attenuated to -150 dB which implies a filter resolution of 24-bits.

0 0.01 0.02 0.03 0.04 0.05 0.06
-250

-200

-150

-100

-50

0

50

Frequency (MHz)

M
ag

ni
tu

de
 (d

B
)

Figure 3.4.1: Magnitude response of the equiripple FIR filter.

Interpolation

University of Stellenbosch

31

0.019 0.02
-2

-1.5

-1

-0.5

0

0.5

1

Frequency (MHz)

M
ag

ni
tu

de
 (d

B
)

Magnitude Response (dB)

Figure 3.4.2: Attenuation of linear FIR filter between 19 kHz and 20 kHz.

The filter impulse response ()h n of Figure 3.4.1 is given in Figure 3.4.3. The

impulse response resembles the sinc function characteristic encountered in equation

(3.1.22) except that ()h n now has a finite duration. The coefficients of ()h n are

symmetric around its center index with no coefficients present on the negative time

axis thus characterising ()h n as a causal lowpass response.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time (ms)

A
m

pl
itu

de

Figure 3.4.3: Impulse response.

Figure 3.4.4 shows the exact linear phase characteristic within the passband of

the filter. The gradient of the linear phase gives the group delay as a function of

frequency which is given by ()gτ ω and expressed in (3.3.5). After 20 kHz the phase

Interpolation

University of Stellenbosch

32

response becomes non-linear, but this is of no consequence, since the filter rejects any

frequency content of the digital input signal within this band.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

Frequency (MHz)

P
ha

se
 (d

eg
re

es
)

Figure 3.4.4: Phase response.

The group delay ()gτ ω as a function of frequency is given in Figure 3.4.5. It

is observed that the group delay remains constant within the audio baseband at

0 316n = samples but deviates outside this band. From Section 3.3.2 this constant

value implies that all frequencies within this baseband undergo the same delay and

therefore no distortion is added to the frequency content of the filtered signal.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
314

316

318

320

322

324

326

328

330

332

Frequency (MHz)

G
ro

up
 d

el
ay

 (i
n

sa
m

pl
es

)

Figure 3.4.5: Group delay.

The constant group delay’s effect in the time domain can be seen in the step

response of the FIR digital filter shown in Figure 3.4.6. The group delay as a time

Interpolation

University of Stellenbosch

33

value is calculated by multiplying the constant sample delay 0n with the sampling

period 1 1 2.83447
352.8 3s

s

T s
F e

µ= = = which gives:

0 89,569 delay st n T ms= = . (3.4.5)

This time delay value is the same as the centre time value of the impulse

response given in Figure 3.4.3. Therefore the time delay of the FIR filter response is

dependant on half the coefficient length of the filter.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (mseconds)

A
m

pl
itu

de

Figure 3.4.6: Step response.

The transfer function of the digital FIR filter in the z-domain is given by

1

0
() ()

N
n

n
H z h n z

−
−

=

=∑ . (3.4.6)

FIR digital filters are assured to always be stable, this constraint imposes that

all poles lie within the unit circle. From the transfer function of (3.4.6) all poles lie at

0z = and for the current filter design Figure 3.4.7 confirms this, therefore implying

stability. The zeros of the transfer function are therefore allowed to have any position

without affecting the stability of the filter. The positions of the zeros though have an

influence on the phase linearity of the filter. For the FIR filter to exhibit phase

linearity, some zeros are constrained to be positioned outside the unit circle.

Figure 3.4.8 shows the zoomed version of the pole/zero plot, here it can be

seen that some of the zeros which seem to lie on the unit circle in Figure 3.4.7 actually

Interpolation

University of Stellenbosch

34

do lie outside the unit circle confirming phase linearity again. The number of zeros

outside the unit circle is equal to the sample group delay given by 0n .

-1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

632

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 3.4.7: Pole/Zero plot.

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Real Part

Im
ag

in
ar

y
Pa

rt

Pole/Zero Plot

Figure 3.4.8: Zoomed pole/zero plot.

3.4.5 Summary

A complete design of an interpolation filter was presented in this section. The

interpolation filter is necessary to upsample a 24-bit audio signal sampled at 44.1 kHz

to a sampling rate of 352.8 kHz. It was decided to use an optimum equiripple linear

phase FIR method to design an interpolating digital filter complying too a list of

specifications. These specifications ensure that the resolution of the audio input signal

is retained implying no audible distortions on the interpolated output. The Matlab®

Interpolation

University of Stellenbosch

35

filter toolbox was used to design the digital filter with the given specifications and its

simulation results were investigated to confirm that it met the specified requirements.

Next an efficient structure will be presented whereby the designed digital FIR

filter can be implemented with reduced computational complexity.

3.5 Polyphase FIR Structures for Integer Interpolators

The increased filter lengths which FIR methods have over IIR methods make

them computationally more expensive. Different FIR filter structures exist which

reduce the overall computational overhead when implemented. It is not of relevance

here to investigate in detail these different structures, but rather to choose an efficient

structure for the present application. The different FIR filtering structures that do

exist are listed in Table 3.5.1 for completeness.

Direct-form

Transpose-form

Cascade

Latice

Polyphase

Table 3.5.1: FIR filter structures.

It is needed to implement the low pass filter designed in Section 3.4 efficiently

within a FGPA. For this implementation it was decided to choose the polyphase

filtering structure and in the following sub-sections it will be described how this

structure works and why it was chosen for this application.

Firstly the theory of the polyphase filter will be reviewed as described in [22]

to show how this filtering technique is efficient; thereafter some important properties

of the structure will be given which defines polyphase filters. Thirdly the filter design

in Section 3.4 will be converted to the polyphase structure using Matlab®.

Interpolation

University of Stellenbosch

36

3.5.1 Polyphase FIR structure

In Section 3.2 it was derived that the general form for the input-to-output time-

domain relationship for a 1 to L interpolator from [22] was

() ()m
n

my m g n x n
L

∞

=−∞

 = −
∑ , (3.5.1)

where

() (), for all and mg n h nL m L m n= + ⊕ (3.5.2)

is a periodically time-varying filter with period L . Thus to generate each

output sample ()y m , 0,1,2, , 1,m L= −L a different set of coefficients ()mg n are

used. After L outputs are generated, the coefficient pattern repeats; thus ()y L is

generated using the same set of coefficients 0 ()g n as (0)y , (1)y L + uses the same set

of coefficients 1()g n as (1)y , etc.

Similarly the term /m L in (3.5.1) increases by for every L samples of

()y m . Thus for output samples (), (1), , (2 1)y L y L y L+ −L the coefficients ()mg n are

multiplied by samples (1)x n− . In general, for output samples

(), (1), (1)y rL y rL y rL L+ + −L the coefficients ()mg n are multiplied by samples

()x r n− . Thus it is observed that ()x n in (3.5.1) is updated at the low sampling rate

sF , whereas ()y m is evaluated at the high sampling rate LF .

An implementation of the 1 to L interpolator based on the computation of

(3.5.1) is shown in Figure 3.5.1. The way in which this structure works is as follows.

The partitioned subsets, 0 1 1(), (), , (),Lg n g n g n−L of ()h m can be identified with L

separate linear, time invariant filters which operate at a low sampling rate sF . To

make this subtle notational distinction between the time-varying coefficients and the

time-invariant filters, the time-invariant filters will be referred to as

0 1 1(), (), , ()Ln n nρ ρ ρ −L . Thus

Interpolation

University of Stellenbosch

37

() (), for 0,1, 2, , 1 and all p pn g n p L nρ = = −L (3.5.3)

0 ()nρ

1()nρ

2 ()nρ

()m nρ

L

L

L

L

sF sLF

0 ()g n

1()g n

2 ()g n

()mg n

()x n ()y m

1z−

1z−

1z−

Figure 3.5.1: Polyphase structures for a 1 to L interpolator.

These filters ()p nρ are referred to as the polyphase filters. By combining

(3.5.3) with (3.5.2) it is apparent that

() (), 0,1,2, , 1p n h nL p p L nρ = + = −L for and all (3.5.4)

For each new input sample ()x n there are L output samples (see Figure 14).

The output from the upper path 0 ()y m has non-zero values for

, 0, 1, 2, ,m nL n= = ± ± L which correspond to system outputs (), 0, 1,y nL n = ± L.

The output from the next path 1()y m is nonzero for 1, 0, 1, 2,m nL n= + = ± ± L

because of the delay of one sample at the high sampling rate. Thus 1()y m

corresponds to the interpolation output samples (1), 0, 1,y nL n+ = ± L . In general

the output of the ρth path, ()py m corresponds to the interpolation output samples

(), 0, 1,y nL nρ+ = ± L . Thus each input sample ()x n of the L branches of the

polyphase network (Figure 3.5.1) contributes one nonzero output which corresponds

to one of the L outputs of the network.

From a practical point of view it is often convenient to implement the

polyphase structures in terms of a commutator model. By careful examination of

Interpolation

University of Stellenbosch

38

Figure 3.5.2 it can be seen that the outputs of each of the polyphase branches

contributes samples of ()y m for different time slots. Thus the 1 to L sampling rate

expander and delays can be replaced by a commutator as shown in Figure 3.5.2. The

commutator rotates in a counter clockwise direction starting with the zeroth-polyphase

branch at time 0m = .

sF

sLF

()x n
0 ()nρ

1()nρ

2 ()nρ

()m nρ

()y m

0m =

sF

Figure 3.5.2: Commutator model for the 1 to L polyphase interpolator.

From the interpolation equation in (3.5.1) it has been shown theoretically and

diagrammatically that the polyphase FIR filtering structure is efficient because the

filtering process is done at the low sampling rate. There is therefore no need to first

append L zeros between consecutive samples as was the case when the interpolation

process was described in Section 3.2.1. The polyphase filter structure rather divides

the interpolation low pass filter into sub filters (polyphase filters) which directly filters

the input signal ()x n to the interpolated, upsampled output signal ()y m . It is now

necessary to investigate the properties of these individual polyphase filters to gain

further insight into the operation of the polyphase structure.

Interpolation

University of Stellenbosch

39

3.5.2 Properties of polyphase filters

The individual polyphase filters have two interesting properties as a

consequence of the fact that the impulse responses ()p nρ correspond to decimated

versions of the impulse response of the prototype filter ()h m given by (3.5.4).

First, different phase shifts are associated with the different filters ()p nρ .

These delays though are compensated for by the delays (1z−) which occur at the high

sampling rate sLF in the network (Figure 3.5.1). The fact that different phases are

associated with different paths of the network is, of course, the reason for the term

polyphase network.

A second property of the polyphase filters is shown in Figure 3.5.3. The

frequency response of the prototype filter ()h m approximates the ideal low-pass

characteristic ()jH e ω% shown in Figure 3.5.3(a). Since the polyphase filters ()p nρ are

decimated versions of ()h m (decimated by L) the frequency response 0 / Lω π≤ ≤

of ()jH e ω% scales to the range 0 'ω π≤ ≤ for '()j
pP e ω% as seen in Figure 3.5.3 where

'()j
pP e ω% is the ideal characteristic that the polyphase filter ()p nρ approximates. Thus

the polyphase filters approximate all-pass functions and each value of

, 0,1, 2, , 1Lρ ρ = −L , corresponds to a different phase shift.

L

0 / Lπ π
ω

()a

()b

π0

1

'ω

()jH e ω%

'()j
pP e ω%

Figure 3.5.3: Ideal frequency response of the polyphase networks.

Interpolation

University of Stellenbosch

40

3.5.3 Conversion to the polyphase structure

The low pass equiripple FIR filter designed in Section 3.4 will now be

converted to a polyphase structure using the multirate filter function in Matlab®. The

properties of the individual polyphase filters attained from the conversion should

therefore confirm Section 3.5.2.

The designed filter ()h m in Section 3.4 has a length of 632N = , the individual

polyphase filters will each therefore have lengths of / 79N L = where 8L = is the

upsampling rate. Figure 3.5.4 and Figure 3.5.5 shows the impulse responses and the

magnitude responses of the L polyphase filters ()p nρ respectively.

0 1.7914
-0.2007

0

0.6327

Time (ms)

A
m

pl
itu

de

ρ1(n)

0 1.7914
-0.1939

0

0.7565

Time (ms)

A
m

pl
itu

de
ρ2(n)

0 1.7914
-0.164

0

0.8527

Time (ms)

A
m

pl
itu

de

ρ3(n)

0 1.7914
-0.1178

0

0.9136

Time (ms)

A
m

pl
itu

de

ρ4(n)

0 1.7914

-0.06280

0.9345

Time (ms)

A
m

pl
itu

de

ρ5(n)

0 1.7914
-0.1178

0

0.9136

Time (ms)

A
m

pl
itu

de

ρ6(n)

0 1.7914
-0.164

0

0.8527

Time (ms)

A
m

pl
itu

de

ρ7(n)

0 1.7914
-0.1939

0

0.7565

Time (ms)

A
m

pl
itu

de

ρ8(n)

Figure 3.5.4: Impulse responses of the eight polyphase filters.

Interpolation

University of Stellenbosch

41

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

Magnitude Response (dB)

P1(z)

P2(z)

P3(z)

P4(z)
P5(z)

P6(z)

P7(z)

P8(z)

Figure 3.5.5: Magnitude response of polyphase filters.

Figure 3.5.5 shows the magnitude response the different polyphase filters, they

only allow frequency content below 1f = or ω π= to pass. Since the polyphase

filtering is done at the input sampling rate, the normalized frequency of 1f =

represents 44.1F = kHz.

Figure 3.5.6 shows the phase shifts of each polyphase filter. The different

phase delays of the corresponding polyphase filters are a result of the different sample

delays each polyphase filter has from the centre of the prototype filter’s symmetry.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2210

2220

2230

2240

2250

2260

2270

Normalized Frequency (×π rad/sample)

P
ha

se
 D

el
ay

 (d
eg

re
es

/(r
ad

ia
ns

 p
er

 s
am

pl
e)

)

Phase Delay

P1(z)

P2(z)

P3(z)

P4(z)

P5(z)

P6(z)

P7(z)

P8(z)

Figure 3.5.6: Phase delay of respective polyphase filters.

Interpolation

University of Stellenbosch

42

3.5.4 Summary

It has been shown that the polyphase filtering structure is an efficient method

to interpolate an input signal at a specific sampling rate to a higher sampling rate.

This is achieved by subdividing the low pass interpolation filter into polyphase filters

according to the upsampling rate L . For each new sample input the L polyphase

filters produce an output which constitutes the interpolated output. The lowpass filter

designed in Section 3.4 was converted to the polyphase filtering structure to

efficiently interpolate audio input signals of 24-bit resolution.

3.6 Example of the Interpolation Process

In this the final section of the chapter a complete simulation of the

interpolation process will be done in Matlab®. The polyphase structure described in

Section 3.5 has no need to zero-pad between adjacent samples. But here the zero

padding phase of the theoretical interpolation process will be included in the

simulation to see the effect it has on the frequency content of the input signal as it

passes through the interpolator given in Figure 3.6.1. Also the goal of this section is

to confirm that the interpolation filter designed and converted to the polyphase

structure meets the specification of interpolating 24-bit audio data.

()x n ()w m ()y m

'F' sF LF=sF

L ()h m

Figure 3.6.1: Total interpolation process.

3.6.1 Cosine input signal

The input ()x n which will be used in the simulation of the interpolation system

in Figure 3.6.1 is a real cosine signal given by the expression

Interpolation

University of Stellenbosch

43

() cos(2)x n A fnπ= , (3.6.1)

where

s

Ff
F

= , (3.6.2)

with

1000 Hz
44.1 kHz.s

F
F
=
=

 (3.6.3)

 The time characteristic of the cosine input is shown in Figure 3.6.2. The

frequency content of this cosine input is estimated using the MTM PSD estimation

method which is shown in Figure 3.6.3 (the Matlab® code used to implement the

simulations presented next are given in Appendix A). This spectral estimation method

is used to attain a high frequency resolution of the signal spectrum and is normally

used with random processes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

0

1

Time (ms)

Am
pl

itu
de

x(n)

Figure 3.6.2: 1 kHz sinusoidal input signal ()x n .

The 1 kHz frequency components of the cosine have been clearly detected by

the MTM estimate. From the normalized frequency axis these frequency components

lie at 0.0227f = and 0.9773f = respectively. The former being the positive

frequency component of 1000 Hz calculated using the relation between the variables

F and f in (3.1.9). The latter frequency component is the frequency image of the

cosine function as a result of the periodicity characteristic of digital signals.

Interpolation

University of Stellenbosch

44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Normalized Frequency (xπ rad/sample)

dB

Figure 3.6.3: MTM PSD estimate of ()x n .

3.6.2 Sample rate expanded signal

With the characteristics of the input signal now defined it can be applied to the

interpolation process. The signal is upsampled by zero padding 1 7L − = zeros

between adjacent ()x n samples. The sample rate expander therefore upsample’s the

input to an increased rate of 8L = . Figure 3.6.4 shows this output ()w m which was

described mathematically in (3.2.2). Figure 3.6.5 shows a zoomed view of the padded

zeros.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Time (ms)

A
m

pl
itu

de

w(n)

Figure 3.6.4: Sample rate expanded signal ()w n .

The spectral estimate of ()w m using the MTM PSD estimate is shown in

Figure 3.6.6. From this figure the images of the baseband frequency component

Interpolation

University of Stellenbosch

45

appears at harmonic intervals of the original sampling frequency (44.1 kHz). Table

3.6.1 shows these harmonic intervals in different frequency formats according to the

relationship of (3.1.9) at the new sampling rate of 'F = 352.8 kHz. These intervals

concur with normalized frequency axis of Figure 3.6.6, therefore validating the sample

rate expander simulation.

0.15 0.2 0.25 0.3 0.35

0

Time (ms)

A
m

pl
itu

de

w(n)

Figure 3.6.5: Zoomed view of ()w n .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Normalized Frequency (xπ rad/sample)

dB

Figure 3.6.6: MTM PSD estimate of ()w n .

Interpolation

University of Stellenbosch

46

 Frequency (Hz) Radians per Sample (rad/s) Normalized frequency (f)

1. 44100 0.3927 0.125

2. 88200 0.7854 0.25

3. 132300 1.1781 0.375

4. 176400 1.5708 0.5

5. 220500 1.9635 0.625

6. 264600 2.3562 0.75

7. 308700 2.7489 0.875

8. 352800 3.1416 1

Table 3.6.1: Harmonic intervals at which baseband frequencies are centered.

3.6.3 Polyphase filtering

Physical zero-padding doesn’t occur when the polyphase filtering structure is

used for interpolation. The input signal is directly filtered. This doesn’t mean that no

baseband images are present in the frequency content, since filtering is still necessary

in the polyphase filtering structure. It will be shown through simulation that images

of the baseband do exist but are attenuated after polyphase filtering.

Table 3.6.2 shows the specifications of the interpolation filter designed in

Section 3.4 to filter away the baseband images.

Table 3.6.2: Specifications of low-pass digital filter.

Passband (pω) 19 kHz

Stopband (sω) 23 kHz

Passband ripple(pδ) 0.001 dB

Stopband ripple (sδ) 150 dB

Final sampling frequency ('F) 352.8 kHz

Interpolation

University of Stellenbosch

47

The passband (pω) of the filter preserves all the audio content beneath the 19

kHz band and prevents any frequency content above 23 kHz to be passed to the

output.

The impulse response ()h n of the above filter was converted to the polyphase

structure in Section 3.5. Figure 3.6.7 shows the interpolated output signal from this

filtering process and also zoomed views to see how the input signal has been

interpolated. It is observed that the interpolated signal follows the original signal

exactly except for the delay and transient response at the start of ()y n . The transient

response is a result of the finiteness of the filter and placing of the poles and zeros in

the complex plane. The delay is a result of the linear phase of the FIR filter which

was calculated in (3.4.9) to be 90 ms± .

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
-1

0

1

(a)

A
m

pl
itu

de

1.8 1.85 1.9 1.95 2 2.05 2.1
0

1

(b)

A
m

pl
itu

de

1.9 1.95 2 2.05
0

1

(c)

A
m

pl
itu

de

Interpolated output signal y(n)
Input signal x(n)

Figure 3.6.7: Input ()x n and interpolated output ()y m .

Figure 3.6.8 shows the spectral estimate of ()y n . Here it can be seen how the

filter has preserved the cosine frequency components and have attenuated the

frequency images below -150 dB outside the passband of the filter. As mentioned

previously this output was generated by the polyphase filtering structure, but the

output spectra still shows attenuated images even though no physical zero-padding

was applied.

Interpolation

University of Stellenbosch

48

With the original baseband in tact and images attenuated sufficiently, the

original signal is restored at a new increased sampling rate. Sufficient attenuation

here implies that unwanted frequency components within the spectra fall below the

resolution of the input signal which is 24-bits. This implies that unwanted frequency

content should fall below -144 dB, which is the case when looking again at Figure

3.6.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-350

-300

-250

-200

-150

-100

-50

0

Normalized Frequency (xπ rad/sample)

dB

1KHz sinusiodal frequency components

Attenuated images of the 1KHz sinusoidal components

Figure 3.6.8: MTM PSD of output ()y n .

3.6.4 Summary

It has been confirmed through simulation and spectral estimates that the

polyphase filtering structure using the low pass equiripple FIR method successfully

interpolates a discrete input signal. A cosine input signal at a sampling rate of sF =

44.1 kHz and resolution of 24-bits was interpolated to a higher sampling rate of

'F =352.8 kHz. The interpolated output retains a resolution of 24-bits as a result of

the high dynamic range the interpolation filter exhibits, which is -150 dB.

The next chapter will now use this upsampled or interpolated PCM signal to

produce digital PWM.

Pulse Width Modulation

University of Stellenbosch

49

Chapter 4 - Pulse Width Modulation

4.0 Introduction

Chapter 3 thoroughly described the process of increasing the sampling rate

()sF of a discrete signal to an upsampled rate ('F). This rate corresponds to the

switching frequency (cF) of the PWM process which is illustrated in Figure 4.1. The

goal of this chapter is to show how the modulation process transforms the now

upsampled PCM (Pulse Code Modulation) signal having 24-bit resolution to a pulse

width signal of equal resolution within the digital domain.

Firstly, PWM and its variant schemes are defined and then compared according

to their spectral content. Secondly a digital PWM technique will be introduced using

an appropriate modulation scheme for implementation. The mathematical calculations

necessary to implement this digital PWM scheme will be derived. Two methods,

known as the Newton’s method and the Bisection method, will be compared. From

this comparison, one method will be chosen to generate 24-bit digital PWM within

VHDL firmware.

+ l

Sample
and

Hold

Comparison
Waveform
Generator

Modulation
Waveform

Comparator
PWM

Waveform

Natural Sampling

Uniform Sampling

or

or

Trailing Edge

Both Edges

Leading Edge

1 '
'

(Switching Frequency)

F
T

=

Comparison waveforms

Figure 4.1: Two-level pulse-width modulator adapted from [17].

Pulse Width Modulation

University of Stellenbosch

50

4.1 Pulse Width Modulation Schemes

“PWM is the modulation of a pulse carrier in which the value of each

instantaneous sample of a modulating wave is caused to vary the duration of a

particular pulse. The modulating wave may vary the time of occurrence of the leading

edge, trailing edge, or both edges of the carrier pulse” [5].

PWM is therefore a process involving two types of waveforms. The first

waveform is the input signal (modulation waveform) which contains the desired

information. The second waveform is known as the carrier waveform. The

modulation process is performed by comparing these two waveforms to produce a

pulse varying output signal (see Figure 4.1). This modulated signal will be called the

PWM output from this point forward. When the modulating waveform is greater than

the comparison waveform the PWM output is high, but if the waveform is less than

the comparison waveform, the PWM output is low. Since only two values (high or

low) occur at the output the process is called a two-level pulse width modulator.

The characteristics of the PWM output signal are therefore dependant on both

the modulation waveform and the carrier waveform (comparison waveform). Within

the next sections it will be determined which of the two waveforms affect which

characteristics of PWM output. PWM output waveforms generated from the different

input waveforms will afterwards be compared according to their spectral content.

4.1.1 Natural and uniform PWM

As noted in the previous section the characteristics of the PWM output signal

are dependant on both the comparison waveform and input information baring signal

characteristics. Attention will firstly be focussed on how the PWM characteristics are

influenced by the input modulation waveform.

Whenever an analogue input signal is used for modulation, natural pulse width

modulation (NPWM) results. This is illustrated in Figure 4.1 when the comparator is

connected to the top node. The sample instants (at the crosspoints) which determine

the pulse variation of the PWM waveform in this type of modulation is signal

dependant and thus non-uniformly spaced.

Pulse Width Modulation

University of Stellenbosch

51

When the modulating waveform is discrete and sampled at fixed intervals these

fixed time instant amplitudes are used for comparison with the carrier wave. This is

called uniform pulse width modulation (UPWM). Figure 4.1 illustrates UPWM when

the comparator is connected to the bottom node, and Figure 4.2 shows the difference

between the NPWM and UPWM process.

UPWM can be generated from an analogue input waveform when a sample and

hold function is applied to it as illustrated in Figure 4.1. The sampling then occurs at

linearly spaced intervals (cT). This sample and hold rate is the same rate at which the

carrier waveform is modulated and is known as the switching frequency (cF) of the

modulator. It is important to note that when a discrete signal is applied to the

modulator input, its sampling frequency equal the same rate as the switching

frequency of the modulator. This ensures that a correct PWM output is generated as

illustrated in Figure 4.2.

=cω

UPWM

NPWM

ω

ω

Comparison Waveform
Analogue Modulating Waveform

Sample and Hold Discrete Modulating Waveform

UPWM Crosspoint

NPWM Crosspoint

Switching Frequency

Figure 4.2: Difference between UPWM and NPWM.

Pulse Width Modulation

University of Stellenbosch

52

Further characteristic changes occur within the PWM output when different

comparison waveforms are used in the modulation process. These various waveforms

have an effect on how the edge or edges of the output pulse are modulated. Both

UPWM and NPWM will be considered when evaluating the different comparison

waveforms. For each comparison waveform used a different PWM scheme results.

These PWM schemes are compared to each other according to their spectral

content. Before these different schemes can be presented, however, the method of

computing the spectral content of a PWM process must be stated.

4.1.2 Harmonic components of PWM

The spectra of PWM outputs consist of different harmonic components. These

different harmonic components can be computed mathematically when using a

sinusoidal modulating input waveform, also known as a tonal input. The harmonic

components generated by the PWM schemes can then be determined using the well

known analytical method developed by Bennet and Black. This method is based on a

double Fourier series expansion in two variables.

The detailed derivation of the Fourier series expansion falls outside the scope

of this thesis and will not be done here. From [4], the result can be stated:

0 1 2 3()f t T T T T= + + + (4.1)
where

00
0

1 0 0 0 0 0 0
1

2 0 0
1

0 0
3

2

 [cos([]) sin([])]

 [cos([]) sin([])]

cos([]) [])

 cos([])

n n
n

m c c m c c
m

mn c c

mn c c

AT

T A n t B n t

T A m t B m t

A m t n t
T

B m t

ω θ ω θ

ω θ ω θ

ω θ ω θ
ω θ

∞

=

∞

=

=

= + + +

= + + +

+ + +
=

+ + +

∑

∑

1 0 0
(0)

,
[])m n

n
n tω θ

∞ ∞

= =−∞
≠

 +

∑ ∑

 (4.2)

and where

2

1 (,) cos()
2mnA f x y mx ny dx dy

π π

π ππ − −

= +∫ ∫ (4.3)

2

1 (,)sin() ,
2mnB f x y mx ny dx dy

π π

π ππ − −

= +∫ ∫ (4.4)

Pulse Width Modulation

University of Stellenbosch

53

Alternatively, in complex form

()
2

1 (,) ,
2

j mx ny
mn mn mnC A jB f x y e dx dy

π π

π ππ
+

− −

= + = ∫ ∫ (4.5)

also

0 0() and () , where
2 carrier angular frequency

c c

c
c

x t t y t t

T

ω θ ω θ
πω

= + = +

= =
 (4.6)

with

0 0 0

carrier interval
arbitrary phase offset angle for carrier waveform
2 / fundamental (sinusoid) angular frequency, ,

c

c

c

T

T
θ
ω π ω ω

=
=
= = <

 (4.7)

and lastly

0

0

period of fundamental waveform
arbitrary phase offset angle for fundamental waveform.

T
θ

=
=

 (4.8)

The variables m and n in (4.2) represent the carrier index and baseband index

respectively. Together m and n define the frequency of each harmonic component

of the PWM output spectra as (0cm nω ω+) [4]. The magnitudes of the harmonic

components defined in equation (4.2) are the and mn mnA B coefficients, which must be

evaluated for particular values of m and n for each PWM scheme to be considered

[4].

The expression (,)f x y represents the pulse width amplitude value at a specific

time t . The variable ()y t represents the time information of the sinusoid (modulating

wave), whereas the variable ()x t represents the time information of the switching

frequency. Combining these parameters to form (,)f x y implies the forming of a

surface consisting of periodical cells. This enables the use of two-dimensional Fourier

analysis to calculate the PWM signal output. For a clearer description of (,)f x y the

reader is referred to [4] or [5].

The first term of (4.2), 0T , corresponds to the DC offset of the PWM

waveform. The second term in (4.2), 1T , defines the output fundamental low-

frequency component (sinusoidal component) and its baseband harmonics. These

baseband harmonics should preferably be eliminated by the modulation process,

Pulse Width Modulation

University of Stellenbosch

54

except for the fundamental frequency component. The third summation term in (4.2),

2T , represents the carrier wave harmonics.

These are relatively high-frequency components, since the lowest frequency

term represented is the modulating carrier frequency component. The last double

summation term, 3T , is the ensemble of all possible frequencies formed by taking the

sum and difference between the carrier or comparison waveform harmonics and the

reference waveform and its associated baseband harmonics. These combinations are

generally referred to as sideband harmonics, and exist as groups around the carrier

harmonic frequencies [4].

Expressing the harmonic content of a PWM waveform mathematically, enables

the comparison of various PWM schemes. The different PWM schemes are a result of

the usage of different comparison waveforms. These waveforms are illustrated in

Figure 4.3. Trailing edge modulation is the result of a positive gradient saw-tooth

comparison waveform; leading edge modulation is the result of a negative gradient

saw-tooth comparison waveform. Double edge modulation is the result of a triangular

comparison waveform.

Modulating
Waveform

(Input Signal)

Trailing Edge
Modulation

Leading Edge
Modulation

Pulse repetition intervals

Double Edge
Modulation

(a)

(b)

(c)

Comparison waveforms

Pulse repetition intervals

Pulse repetition intervals

Figure 4.3: PWM Schemes altered from [17]

Pulse Width Modulation

University of Stellenbosch

55

4.1.3 Trailing edge naturally sampled modulation

An analogue modulating waveform is used here to produce the PWM output

signal. Thus this is an example of naturally sampled modulation. The carrier

waveform is a positive gradient saw-tooth signal. Only the trailing edge of the output

pulse of this modulation scheme is varied to form the PWM output as illustrated in

Figure 4.3(a). Equation (4.9) gives the Fourier series representation of the PWM

output. Its different terms represents the different harmonic components present

within its spectrum.

1 0 0

0
1

0 0

1
(0)

() cos()
2 1 [cos() ()]sin([])

sin cos([] [])
22 1 ()

cos sin([]
2

dc dc

dc
c c

m

c cn
dc

n
m n

n c c

v t V V M t
V m J m M m t

m

n m t n t
V J m M

m
n m t

ω θ

π π ω θ
π

π ω θ ω θ
π

π π ω θ

∞

=

∞ =∞

= =−∞
≠

= + +

+ − +

 + + +
 +
 − + +

∑

∑ ∑
0 0[])n tω θ

+

(4.9)

Where nJ denotes a Bessel function of the first kind in (4.9). The first term of

(4.9), dcV represents the DC-voltage component of the PWM output. In the second

term of (4.9) the expression 0 0cos()M tω θ+ represents the modulating input

waveform at a frequency 0ω . The parameter M is known as the modulation index

and falls within the normalized range of 0 1M< < . If 1M ≥ , over-modulation

occurs this causes the PWM output to saturate. Only one frequency component is

therefore represented by the second term which is known as the fundamental

component exhibiting an amplitude of dcV M and frequency 0ω .

No baseband harmonics of this fundamental component are present within the

second term which is desirable. The third term represents the presence of carrier wave

harmonics at m integer multiples. The fourth term represents the presence of sideband

harmonics situated around the multiples of the carrier harmonics.

Figure 4.4 illustrates a Matlab® simulation (with code given in Appendix C1)

of the various harmonic components present within a trailing edge NPWM output

using a sinusoidal input waveform of 1 kHz, and a modulation index of 0.95M = .

Pulse Width Modulation

University of Stellenbosch

56

0 100 200 300 400
-350

-300

-250

-200

-150

-100

-50

0

(a) kHz

dB

Frequency Content Showing Carrier Harmonics

0 5 10 15 20
-350

-300

-250

-200

-150

-100

-50

0

(b) kHz

Zoomed View of Baseband Frequency Content

DC component

1 kHz fundamental

Noise floor (no baseband haromonics)

Carrier component at 352.8 kHz

Carrier sideband components

Figure 4.4: Trailing edge NPWM spectrum.

4.1.4 Trailing edge uniformly sampled modulation

A discrete modulating waveform input, sampled at fixed intervals is used here

to produce trailing edge UPWM. Equation 4.10 shows the spectral content of the

PWM output. From the second term in (4.10) it is evident that baseband harmonics are

present. These harmonics are situated at multiples of the fundamental frequency

around the fundamental component. Baseband harmonics are a consequence of the

regular sampling process and occur for any fixed sampled PWM strategy [4]. The

roll-off of these harmonic components is dependant on the carrier ratio (ratio between

modulation waveform frequency and switching frequency).

The rest of the terms within (4.10) are similar to (4.9) except for a slight shift

in sideband energy between the lower and higher sideband harmonics [4]. Figure 4.5

shows the results of a Matlab® simulation using trailing edge UPWM. The same

modulating input waveform was used as in the trailing edge NPWM simulation,

except that this input was sampled at a fixed frequency equalling the switching

frequency cF the Matlab ® code is given in Appendix C2.

Pulse Width Modulation

University of Stellenbosch

57

0
0 0

2
1 0

0 0

0 0 0
1

0

sin cos([])
22()

cos sin([])
2

2 1 [cos() ()]sin([])

2

ω ππ ω θ
ω

π πω ω θ
ω

π π ω θ
π

ω π
ω

π

∞

=

∞

=

 + = +
 − +

+ − +

+ +

∑

∑

n
cdc

dc
m

c

dc

m

n
cdc

J n M n n t
Vv t V

n n tn

V m J m M m t
m

J m n M
V 0 0

1 0
(0) 0 0

sin cos([] [])
2

cos sin([] [])
2

π ω θ ω θ

πω ω θ ω θ
ω

∞ =∞

= =−∞
≠

 + + +
 − + + ++

∑∑
c cn

m n
n c c

c

n m t n t

n m t n tm n

 (4.10)

0 100 200 300 400
-350

-300

-250

-200

-150

-100

-50

0
Frequency Content Showing Carrier Harmonics

(a) kHz

dB

0 5 10 15 20
-350

-300

-250

-200

-150

-100

-50

0
Zoomed View of Baseband Frequency Content

(b) kHz

Baseband harmonic components

1 kHz Fundamental component

DC componentCarrier component at 352.8 kHz

Carrier components

Noise floor

Figure 4.5: Trailing Edge UPWM spectrum.

4.1.5 Leading edge naturally and uniformly sampled modulation

PWM output signals with trailing edges modulated become pulses with leading

edges modulated when the time scale is reversed as illustrated in Figure 4.3(b). This

is because the leading edge saw-tooth comparison waveform has a negative gradient

rather than the positive gradient that was the case with trailing edge modulation.

Therefore, to obtain the series expression for the leading edge pulses, it is only

necessary to put a negative sign in front of t in the expressions of the preceding two

sections.

Pulse Width Modulation

University of Stellenbosch

58

 For leading edge naturally sampled modulation the series expansion is given

by

3 1() ()v t v t= − . (4.11)

Similarly, for leading edge uniformly sampled modulation the series is given

by

4 2() ().v t v t= − (4.12)

The sign change of the time variable t has no effect on the magnitude of the

frequency content and only influences its phase. Thus arguments made for trailing

edge modulation schemes also hold for leading edge modulation schemes.

4.1.6 Double edge naturally sampled modulation

PWM outputs with both edges modulated may be considered as a combination

of two pulse trains: One with leading edges modulated, and the other with trailing

edges modulated. When leading and trailing edge modulation occur in the proper time

relationship toward one another, and are added, double edge modulation results. That

is,

5 1 3 1 1() () () () ()v t v t v t v t v t= + = + − . (4.13)

Through the combination of trailing edge and leading edge modulation of

equation (4.13) the following series is obtained in terms of its harmonic components,

5 0 0

1

0 0
1

(0)

() cos()
4 1 sin cos([])

2 2
4 1 sin [] cos([] []).

2 2

ω θ
π π ω θ

π
π π ω θ ω θ

π

∞

=

∞ ∞

= =−∞
≠

= + +

 + +

 + + + + +

∑

∑ ∑

dc dc

dc
o c c

m

dc
n c c

m n
n

v t V V M t
V J m M m m t

m
V J m M m n m t n t

m

(4.14)

The second term in equation (4.14) is identical to that of equation (4.9)

showing that no harmonics are present within the baseband. The significant feature of

double edge naturally sampled PWM is that the odd harmonic sideband components

around odd multiples of the carrier fundamental, and even harmonic sideband

Pulse Width Modulation

University of Stellenbosch

59

components around even multiples of the carrier fundamental, are completely

eliminated by the sin[() / 2]m n π+ expression in equation (4.14), [4].

4.1.7 Double edge uniformly sampled modulation

Similarly as with double edge naturally sampled modulation, the double edge

uniform sampled modulation Fourier series is made by the addition of trailing and

leading edge modulation in the correct relation.

Therefore,

6 2 4 2 2() () () () ()v t v t v t v t v t= + = + − . (4.15)

Two variants of double edge uniformly sampled modulation exist. These are

known as symmetrical and asymmetrical uniformly sampled modulation. The former

modulation type's Fourier series representation is given by

0

0
6() 0 0

1 0

0
1

0

24() sin(1)cos([])
2

4 1 ()]sin cos([])
2 2

24

n
cdc

sym dc
m c

c

dc
c c

m

n
cdc

J n M
Vv t V n n t

n

V J m M m m t
m

J m n M
V

ω π
ω ω π ω θ

π ωω
ω

π π ω θ
π

ω π
ω

π

∞

=

∞

=

 = + + +

 + +

+ +

∑

∑

0

1 0
(0)

0 0

sin
,2

cos([] [])

n

c
m n

n
c c

c

m n n

m n m t n t

ω π
ω

ω
ω θ ω θω

∞ =∞

= =−∞
≠

 + + + × + + +

∑ ∑

 (4.16)

Pulse Width Modulation

University of Stellenbosch

60

whereas the latter is given by

0

6() 0 0
1 0

0
1

0

0

24() sin cos([])
2

4 1 ()]sin cos([])
2 2

24

n
cdc

asym dc
m

c

dc
c c

m

n
cdc

J n M
Vv t V n n t

n

V J m M m m t
m

J m n M
V

m n

ω π
ω π ω θ

π ω
ω

π π ω θ
π

ω π
ω

π ω
ω

∞

=

∞

=

 = + +

 + +

+ +
+

∑

∑

[]
1

(0) 0 0

sin
.2

cos([] [])

n

m n
n c c

c

m n

m t n t

π

ω θ ω θ

∞ =∞

= =−∞
≠

 +
 × + + +

∑ ∑

 (4.17)

The symmetrical uniform sampled modulation spectra of equation (4.16) gives

a considerable reduction in the magnitude of the odd sideband harmonics around the

odd carrier multiples and the even sideband harmonics around the even carrier

multiples. The cancellation is not complete, however. The unwanted baseband

harmonics in equation (4.16) still exist in this modulation scheme. They do have a

much quicker roll-off when compared to the previous trailing or leading edge uniform

modulation schemes.

The asymmetrical modulation variant has the odd harmonic sideband

components around odd multiples of the carrier fundamental and even harmonic

sideband components around even multiples of the carrier fundamental eliminated by

the sin[() / 2]m n π+ in equation (4.16). Some but not all baseband harmonics are also

cancelled due to the sin(/ 2)nπ expression in the second term of (4.16).

4.1.8 Conclusion of PWM schemes studied

A brief overview of the most common PWM schemes was given, Fourier series

expressions was used to gain insight into the differences in the harmonic content of

the schemes studied. These schemes are divided into two main categories namely

NPWM and UPWM schemes. NPWM schemes use analogue modulation waveforms,

whereas UPWM schemes use discrete modulation waveforms. Both these categories

each vary according to the type of carrier waveform used for modulation.

It was found that trailing and leading edge NPWM exhibited no baseband

harmonics except for the fundamental frequency component of the modulation wave.

Pulse Width Modulation

University of Stellenbosch

61

In contrast trailing and leading edge UPWM exhibited baseband harmonics which was

considered as a form of baseband distortion.

Double edge NPWM sees the cancellation of certain sideband harmonic

components centered on carrier frequency components. Also no harmonic components

are present within the baseband. Double edge UPWM is divided into symmetrical and

asymmetrical modulation. The former sees a partial attenuation of certain side- band

harmonic components, and the latter sees a total cancellation of the same sideband

harmonic components. Baseband harmonics are still present in the symmetrical

modulation scheme but have a much faster roll off when compared to single edge

UPWM. Asymmetric double edge UPWM has some baseband harmonics cancelled

while those that remain exhibit the same roll-off as symmetrical double edge UPWM.

It is concluded that the NPWM schemes generally perform better than UPWM

schemes when considering harmonic distortion within the baseband. The double sided

NPWM scheme has the least amount of harmonic distortion when considering the

whole spectral space.

In the next section, a suitable PWM scheme is chosen to modulate a 24-bit

discrete audio signal. If any baseband distortion is added to the audio data due to the

modulation process it may become audible to the human ear. This is inevitable if a

UPWM scheme is used as described above. NPWM schemes cannot be considered

since they use analogue modulation waveforms whereas the input data and modulation

process need to be discrete. The next section therefore investigates a discrete PWM

process in which NPWM spectra properties are attained.

4.2 Pseudo-Natural Pulse Width Modulation

The previous section briefly evaluated the most common schemes of PWM in

terms of their harmonic content. It was concluded that NPWM schemes do not

generate baseband harmonic components. UPWM methods however do generate

baseband harmonics. This is an undesirable characteristic, especially if it is necessary

to modulate digital audio data for audio amplification purposes.

Digital audio amplifiers convert digital audio input data to digital PWM signals

which act as gating signals for the power switching stage. UPWM is therefore

imposed on Class-D amplifiers since digital data is used as the modulating input

signal to the pulse width modulator.

Pulse Width Modulation

University of Stellenbosch

62

The baseband harmonic components which are generated by UPWM are then

audible to the human listener since they are present below 20 kHz. UPWM in Class-D

audio amplifiers cannot be considered if high fidelity audio is desired.

However, a technique known as pseudo-natural pulse width modulation

(PNPWM) was introduced in [17] which mimics NPWM even though a PCM

(discrete) modulating signal is applied at the input of a pulse width modulator.

The rest of this section will concern itself with this modulation scheme. It will

describe exactly what is meant by PNPWM, and will evaluate how implementations

of PNPWM can be used to generate high fidelity PWM signals from PCM input

signals.

4.2.1 What is PNPWM?

PNPWM is a digital PWM scheme where uniform spaced samples are used to

estimate the crosspoint which the analogue waveform would have made with the

comparison waveform in NPWM. The modulation process and pulse width is digital,

which implies that the resolution of the pulse width is dependant on the clock speed

performance of the hardware used for implementation.

The cross point is estimated from the uniformly spaced samples by fitting an

nth-degree polynomial through these points. An expression is then derived for the

particular comparison waveform within the pulse repetition interval. Both functions

are then used to calculate the root of the cross point which corresponds to the pulse

width within that particular switching interval. This is illustrated in Figure 4.6.

Pulse Width Modulation

University of Stellenbosch

63

ω

Analytically Calculated Crosspoint
n-th Order Polynomial Approximation

of Analogue Input Signal Based on
n+1 PCM Samples

PCM Input Samples

PNPWM Output Signal

1st Order Linear Equation
for Sawtooth Waveform

Figure 4.6: Calculation of PNPWM output signal adapted from [15].

4.2.2 What PNPWM scheme should be used?

With the new PNPWM technique introduced from the previous section, a

comparison waveform needs to be chosen to modulate the information baring audio

signal. In Section 4.1 it was concluded that when a triangular comparison waveform

was used for modulation it produced the least amount of harmonic distortion within

the entire frequency space. This was because double edge sampled modulation

exhibited reduced sideband harmonic distortion around the carrier frequency

components. But do these harmonic components influence the baseband where audio

frequency components exist?

If a high enough switching frequency is chosen for the modulation processes

the sideband harmonics do not influence the baseband or audio band frequencies.

This is a result of the large roll off that the sideband components exhibit. The effect is

clearly illustrated in Figure 4.4, where a trailing edge NPWM scheme was used. Here

a switching frequency of 352.8 kHz was used which was more than 16 times larger

than the audio bandwidth of 20 kHzB = . None of the sideband components had an

influence within the audio baseband, since they could not be discerned from the noise

floor which was far below the 24-bit noise floor (-145 dB). Thus if a large enough

Pulse Width Modulation

University of Stellenbosch

64

switching frequency is chosen, carrier sideband harmonics do not influence the

baseband frequency content.

Double edge modulation is computationally very expensive since it requires the

modulation of two edges within the switching frequency. This modulation process

using the PNPWM technique estimates the cross point or point using numerical

algorithms. If two cross points need to be estimated within one switching interval

very fast clock speeds are required.

Trailing edge sampled modulation is therefore chosen as the best method for

implementing PNPWM. It requires only one cross point calculation within a

switching interval, and it is assured that when the switching frequency is chosen

sufficiently large, carrier sideband harmonics have a negligible effect on the baseband

frequency content. Trailing edge sampled modulation is chosen above leading edge

sampled modulation because of its popularity.

The next section will explain how the cross-point within a switching interval is

calculated by using numerical methods to accomplish PNPWM.

4.2.3 PNPWM building blocks

The previous section described a PWM technique which could be used to

generate digital PWM without baseband harmonic distortion. It is similar to the

NPWM but is a digital technique. It was decided that trailing edge modulation would

be used to implement PNPWM, because of the reduction in computational overhead

and the negligible effect the sideband harmonic components have in the baseband.

That is if a high switching frequency is chosen relative to the input signal bandwidth.

The building blocks of the PNPWM technique will be described here.

Polynomial interpolation for the input discrete modulation signal, finding an

expression for the comparison waveform (linear interpolation), and calculating the

crosspoint with these to generate a pulse varying output signal. These blocks are

illustrated in Figure 4.7.

Pulse Width Modulation

University of Stellenbosch

65

()y x
n-th Order
Polynomal

approximation

Trailing Edge
Waveform

Expression within
Switching Interval

Pulse Width
Calculation

PNPWM
Waveform

Numerical Methods

Figure 4.7: Building blocks of the PNPWM modulation technique

4.2.3.1 Polynomial interpolation

An analogue waveform needs to be approximated using the discrete PCM

samples at the input of the PWM modulator. It is done by fitting an nth order

polynomial through the 1n + PCM samples from both sides of the interval to be

reconstructed.

These 1n + samples are distinct and satisfy

0 1 2 ... nx x x x< < < < , (4.18)
where 0 1 2(, , ,...,)ny y y y represent these PCM sample amplitudes.

The objective is to find a polynomial curve that passes through the given points

(,i ix y), 0,1,..., .i n= Hence, as is described in [1], a polynomial ()p x needs to be

found such that

() for 0,1,...,i ip x y i n= = . (4.19)

It is said that the polynomial ()p x interpolates the amplitudes iy at the points

ix which are known as nodes. The polynomial ()p x is given by the form

2

0 1 2() ... n
i np x a a x a x a x= + + + + , (4.20)

which interpolates the PCM samples iy .

Pulse Width Modulation

University of Stellenbosch

66

Applying (4.19) to (4.20) leads to the system

2

0 1 0 2 0 0 0
2

0 1 1 2 1 1 1

2
0 1 2

.

n
n

n
n

n
n n n n n

a a x a x a x y

a a x a x a x y

a a x a x a x y

+ + + + =

+ + + + =

+ + + + =

K

K

M

K

 (4.21)

This is a system of (1n +) linear equations in (1n +) unknowns: 0 1{ , , }na a aK .

In matrix form, the system is described by

Xa y= , (4.22)
where

[] []0 0

 , 0,1, ,

 , , , , .

j
i

T T
n n

X x i j n

a a a y y y

 = =

= =

K

K K
 (4.23)

The matrix X is known as the Vandermonde matrix [1]. Thus, solving for the

system in equation (4.21) is equivalent to solving the polynomial interpolation

problem.

The polynomial interpolation theorem can hence be stated as follows: Given

1n + distinct points 0 1, , , nx x xK and 1n + arbitrary real values 0 1 2, , ,..., ny y y y , there

is a unique polynomial ()p x of degree ≤ n that interpolates the points (,i ix y),[1].

From the 1n + PCM samples a polynomial ()p x can thus be fitted and any

value between these samples can be computed if the polynomial coefficients

0 1{ , , }na a aK are known. Using the PCM sample amplitudes and their position

coordinates the polynomial coefficients can be directly calculated by using matrix

algebra to manipulate (4.22) to give,

1a X y−= . (4.24)

With the polynomial coefficients calculated the expression for ()p x is solved.

Other methods do also exist in the calculation of the polynomial coefficients

and are listed in Table 4.1.

Pulse Width Modulation

University of Stellenbosch

67

Bezier Techniques

Cubic Splines

Neville’s Algorithm

Newtons Interpolation Formula

Lagrange

Table 4.1: Polynomial interpolation methods.

The direct form calculation derived here is sufficient for implementation within

an FPGA, since it only involves matrix multiplication and uses no other formulae.

The next step in calculating the cross point of ()p x within a particular

switching interval involves finding an expression for the trailing edge saw-tooth wave.

4.2.3.2 Trailing Edge Sawtooth Wave

Having fitted a polynomial ()p x of order n through 1n + PCM samples it is

now required to find an expression for the trailing edge saw-tooth wave (comparison

waveform) within a switching interval to completely define the PNPWM process.

Suppose the maximum and minimum amplitude of the saw-tooth wave is 1 and

-1 respectively, and the polynomial function ()p x < 1 to insure that over modulation

does not occur. Then an expression for the saw-tooth wave within any given

switching frequency from Figure 4.5 is given by

)21()(nxmxs s +−= , (4.25)

where sm is the gradient expressed as

() ,2

12 xx
ms −

= (4.26)

and n is the current switching interval. This 1st order linear equation)(xs in

(4.25) and the nth order polynomial equation)(xp in (4.20) can now be used to

determine the cross point within the switching interval. This is illustrated in Figure

4.8.

Pulse Width Modulation

University of Stellenbosch

68

In Section 4.3 different methods of calculating the root or pulse width from the

cross point will be evaluated for practical implementation within an FPGA. In the

next section it will be shown how)(xp and)(xs can be used to calculate the PWM

output.

1

-1

Crosspoint Interval

)1,(2x

2x

)1,(1x

1x

Analytically Calculated Crosspoint

()12 xx −

)(xp

)(xs

0x 3x

0y 1y 2y
3y

rootx

sm

pwx

x

y

Figure 4.8: Cross Point Derivation

4.2.3.3 Root Finding and Pulse Width Calculation

To calculate the original analogue modulating wave cross point with the

comparison waveform, expressions for both the approximated analogue waveform and

comparison waveform are necessary. These expressions have been derived in the

previous two sections and are given by)(xp and)(xs respectively.

The cross point of these two functions within a particular switching interval is
given by

)()(xsxp = . (4.27)

Equation (4.27) is transformed into a root finding problem when this

expression is written as:

)()(0 xsxp −= . (4.28)

Pulse Width Modulation

University of Stellenbosch

69

Substituting (4.20) and (4.25) into (4.28) yields

[]
[] .)()21(

)21(0
2

210

2
210

n
ns

s
n

n

xaxaxmana

nxmxaxaxaa

+++−+++=

+−−++++=

K

K
 (4.29)

Equation (4.29) gives the final rational polynomial expression, the root or zero

of this expression gives the x-coordinate (rootx) of the cross point between)(xp and

)(xs . The pulse width of this particular interval from Figure 4.8 is given by

)(1 nnrootpw xxnxx −−= + . (4.30)

Unfortunately solving for rootx in (4.29) is analytically impossible,

necessitating the use of numerical methods for an approximate solution. For this

reason two popular techniques for numerical root finding will be presented in the next

section.

4.2.4 Numerical root finding algorithms for PNPWM

All of the PNPWM building blocks have been described in the previous

section. The last stage of calculating the pulse width within a particular switching

interval cannot be solved exactly. This is because no mathematical equation exist for

finding the root of a polynomial function exhibiting an order larger than three.

Iterative methods however do exist which approximate these roots within a

given interval, in this case, the switching interval. A couple of root finding techniques

exist which can be used to iteratively solve polynomial roots. Within this chapter only

two methods will be described and compared for the use of computing a pulse varying

output signal.

These two methods are known as the Newton’s and bisection methods. A

variant of the bisection method will also be described which works on the same

principle but is implemented more practically.

Pulse Width Modulation

University of Stellenbosch

70

4.2.4.1 Newton’s Method

Newton’s method is one of the most widely used iterative techniques for

solving roots of equations [1]. Figure 4.9 gives a graphical interpretation of the

method.

)(xf
ax bx

α x

y

cx

Figure 4.9: Newton’s method and first two approximations to its zeroα .

To use the method an initial guess (ax) sufficiently close to the root α is

needed. The next approximation bx is given by the point at which the tangent line

to)(xf at))(,(aa xfxf crosses the -x axis. It is clear that the value bx is much

closer to α than the original guess ax . If 1+nx denotes the value obtained by the

succeeding iterations, that is the x -intercept of the tangent line to)(xf at

))(,(nn xfxf , then a formula relating nx and 1+nx , known as Newton’s method, is

given by

0 ,
)('
)(

1 ≥−=+ n
xf
xf

xx
n

n
nn (4.31)

provided)(' nxf is not zero [1]. With the theory of Newton’s method

described, an example will be given to clarify how this method is used to generate a

PNPWM output.

Pulse Width Modulation

University of Stellenbosch

71

4.2.4.2 PNPWM example using Newton’s Method

This example continues from Section 3.6 where a 1 kHz sinusoidal discrete

signal was interpolated to a sampling frequency of 352.8=cF kHz. The increased

sampling frequency ratio was chosen to be the same value as the switching frequency

of the pulse width modulator; as is required from Section 4.1.1. A PNPWM output

will be generated from this upsampled sinusoidal signal using Newton’s method to

estimate the crosspoint within a particular switching interval. This example therefore

starts from the input signal and then progresses through the different building blocks

of PNPWM process as illustrated in Figure 4.7.

The discrete upsampled sinusoid given by

])'/(2cos[)(mFFAmy π= , (4.32)

here

0.95
1 kHz

' 352.8 kHz.

=
=
=

A
F
F

 (4.33)

For each new input PCM sample, an 8th order polynomial)(xp is fitted

through the new sample and the previous eight samples as illustrated in Figure 4.10.

Within the 5th interval the crosspoint between the polynomial and trailing edge saw-

tooth wave is calculated using Newton’s method. The saw-tooth comparison

waveform within this interval is given by

9)(−= xmxs s , (4.34)

where

'
2
T

ms = , (4.35)

and

1'
'

T
F

= . (4.36)

Pulse Width Modulation

University of Stellenbosch

72

The polynomial expression which is generated by the comparison between the

polynomial and trailing edge saw-tooth from (4.29) yields,

[]

.
'

2)9(

)21()(

8
8

2
210

8
8

2
210

xaxax
T

aa

nxmxaxaxaaxf s

+++

 −++=

+−−++++=

K

K

 (4.37)

0 1 2 3 4 5 6 7 8
-1

1

y(m) y(m-1) y(m-2) y(m-3) y(m-4)

y(m-5)
y(m-6) y(m-7) y(m-8)

Time reference

A
m

pl
itu

de

Crosspoint

Trailing edge comparison waveform s(x)

PCM samples (Input modulation signal)

8th Order polynomial approximation p(x)

Figure 4.10: PNPWM crosspoint derivation.

The polynomial coefficients in (4.37) are calculated using (4.24) which is

stated here for convenience

1a X y−= . (4.38)

The system matrix X contains the position or time parameter and is given by

2 8

2 8

2 8

1

1

1

x x x

x x x
X

x x x

 =

L

L

M M M O M

L

. (4.39)

Pulse Width Modulation

University of Stellenbosch

73

When each sample’s integer position (see Figure 4.9) is substituted in (4.25)

the system matrix becomes,

1 0 0 0

1 1 1 1

1 2 4 256

1 8 64 16777216

X

 =

L

L

L

M M M O M

L

. (4.40)

The result obtained in (4.26) will be the same for every set of polynomial

coefficients calculated, because the time window stays the same as the sample values

are shifted down according to their time reference. The inverse of (4.40) is then

calculated and multiplied with the current nine input PCM samples according to

(4.38).

With the polynomial coefficients calculated, Newton’s method is used to

determine the crosspoint within the 5th interval. Firstly, it is necessary to determine

the derivative of (4.37) which is

2 7
1 2 3 8

2'() 2 3 8 .
'

f x a a x a x a x
T

 = − + + + +

K (4.41)

Secondly, an initial guess of the crosspoint time coordinate in the center of the

switching interval (0 4.5x =) is inserted into (4.31) after which each iteration result is

substituted back into (4.31) and re-iterated until a satisfactory crosspoint value is

achieved. In this example three iterations where used to attain an appropriate root of

(4.41), equivalent to the crosspoint coordinate between the polynomial and

comparison waveforms.

This root or crosspoint coordinate within the switching interval is then scaled

as a ratio of the switching interval, thus yielding the current pulse width which is

output by the pulse width modulator. The pulse train generated from one period of

()y m is evaluated by looking at its spectral content, calculated by a spectral estimate

Pulse Width Modulation

University of Stellenbosch

74

method described in Appendix C. Figure 4.11 shows a section of the input

modulating signal ()y m and its corresponding PNPWM output below it.

100 110 120 130 140 150 160 170 180 190 200

0

1

y(m)

100 110 120 130 140 150 160 170 180 190 200

0

Vdc

Time(µs)

PNPWM output

Figure 4.11: PNPWM output of Newton’s method

0 100 200 300 400
-350

-300

-250

-200

-150

-100

-50

0
Frequency Content Showing Carrier Harmonics

(a) kHz

dB

0 5 10 15 20
-350

-300

-250

-200

-150

-100

-50

0
Zoomed View of Baseband Frequency Content

(b) kHz

Figure 4.12: Spectrum of PNPWM using Newton’s method.

The PNPWM estimated spectra using Newton’s method is shown in Figure

4.12. The Matlab ® code for this estimate is given in Appendix C2.

Pulse Width Modulation

University of Stellenbosch

75

0 100 200 300 400-350

-300

-250

-200

-150

-100

-50

0

(a) kHz

dB

Frequency Content Showing Carrier Harmonics

0 5 10 15 20-350

-300

-250

-200

-150

-100

-50

0

(b) kHz

Zoomed View of Baseband Frequency Content

Figure 4.13: Spectrum of NPWM using Newton’s method.

Figure 4.13 shows the NPWM spectra estimate using Newton’s method as

given previously in Figure 4.4. The carrier harmonic and its sideband components are

the same in both Figure 4.12(a) and Figure 4.13(a). The only difference between the

former and the latter figures is the increased noise floor which Figure 4.12(a) exhibits,

causing some of the sideband carrier harmonics to be masked by the noise. The

increased noise floor is of no concern since it still lies below -145 dB which is the

desired dynamic range for 24-bit resolution.

Figure 4.12 (b) and Figure 4.13 (b) illustrate the PWM baseband spectral

content of human hearing for the two schemes. It is important to note that no

baseband harmonics occur above the noise floor of the PNPWM spectral content when

using Newton’s method. The fundamental 1 kHz tone and the DC component of both

NPWM and PNPWM schemes are the same. Digital PWM signal’s can therefore be

generated with baseband harmonic components sufficiently attenuated when an

efficient crosspoint derivation technique is used in the PWM modulator.

Now that Newton’s method has been used to generate digital PWM by the use

of the PNPWM, another crosspoint derivation scheme will be evaluated known as the

bisection method. The binary search method will then be derived from the principle

of the bisection method to iteratively find the crosspoint. After the binary method is

described, the same example as was used with Newton’s method will be evaluated for

Pulse Width Modulation

University of Stellenbosch

76

the binary search method. These two methods will then be compared according to

their practicality of implementation and speed of convergence to the root or

crosspoint.

4.2.4.3 Introduction to bisection and binary search methods

With Newton’s method it was seen that the crosspoint between two waveforms

could be determined by forming a new rational function: in (4.28) the crosspoint

derivation problem became a root finding problem.

The bisection method evaluated here, also solves the root of a rational function

based on the principle of halving intervals. Instead of creating a new rational function

and finding its root to determine the crosspoint, a different approach will be used

based on the binary search method.

The binary search method works on the same principle as the bisection method,

but differs in the way it determines the crosspoint. It compares the two waveforms of

interest)(xp and)(xs rather than creating a new rational function as with the

bisection method. It should be clear that)(xp and)(xs are the input modulating and

comparison waveforms respectively.

Firstly the theory of the bisection method will be presented, after which the

binary search algorithm will be given.

Bisection method

Using [1], let)(xf be the function in (4.37), which is continuous on an interval

],[ba , such that

0)()(<bfaf . (4.42)

It follows from (4.42) that there exists at least one zero of)(xf in (ba,). It is

assumed that)(xf has exactly one root α , which corresponds to the desired

crosspoint. Such a function is shown in Figure 4.14.

Pulse Width Modulation

University of Stellenbosch

77

)(xf

α x

y

a
1c 2c

b

Figure 4.14: Bisection method and the first two approximations to its zeroα

The bisection method is based on halving the interval],[ba to determine a

smaller and smaller interval within which α must lie. The procedure is carried out by

first defining the midpoint of],[ba , 2/)(bac += and then computing the product

)()(bfcf . If the product is negative, the root is in the interval],[bc . If the product is

positive, the root is in the interval],[ca . Thus, a new interval containing α is

obtained. The process of halving the new interval continues until the root is located as

accurately as desired, that is

ε<− nn ba (4.43)

Where na and nb are the endpoints of the n -th interval],[nn ba and ε is a

specified tolerance value [1].

Binary Search method

This approach uses the search principle that the bisection method uses to locate

the root of the polynomial function. Instead of using the rational function in (4.28) to

find the root, functions)(xp and)(xs are used to find the crosspoint within a certain

interval as described previously. Therefore within the interval],[ba a crosspoint

between)(xp and)(xs exists. The midpoint of],[ba is calculated by

Pulse Width Modulation

University of Stellenbosch

78

2/)(bac += , then if () ()p c s c> the crosspoint ς occurs within the interval],[bc ,

but if () ()p c s c< the crosspoint ς occurs within the interval],[ca . Figure 4.15

shows such a procedure.

x

y

a
1c 2c

ς

b

()s x

()p x

Figure 4.15: Binary search method and the first two approximations to its

crosspoint ς

The process of halving the interval is repeated until a satisfactory crosspoint

value is determined with an allowable tolerance given by

2 n
n na b ε−− = < . (4.44)

Where the exponent n of base 2 in (4.44) gives the amount of intervals formed

before reaching the desired tolerance value. Because the allowable tolerance is

calculated using a base of two, the name binary search was given to the method.

This method of searching is more efficient than the bisection method because it

does not need to do a multiplication when determining the next halved search interval.

Only a comparison is needed.

Next, this method will be evaluated using the same example used for Newton’s

method to generate PNPWM.

Pulse Width Modulation

University of Stellenbosch

79

4.2.4.4 PNPWM example using the binary search method

The same example used in Section 4.2.3.5 will now be done here using the

binary search algorithm described in the previous section. The derivation of the 8th

order polynomial expression)(xp and the trailing edge saw tooth wave expression

)(xs stays the same here as derived in Section 4.2.3.5. Again, the crosspoint between

these functions within the 5th interval needs to be determined as illustrated in Figure

4.10. The strategy for using the binary search method in calculating the PNPWM will

now be explained.

After)(xp is approximated from ()y m the binary search algorithm is used to

find the crosspoint within a tolerance of 9
1 2ε −= . After this first tolerance has been

achieved,)(xp is approximated by a 1st order linear equation ()linp x which is given

by

8 9 8

9 9 8

() if
()

() if
lin

lin
lin

m x p c c c
p x

m x p c c c
+ >

= + <
, (4.45)

where

9 8

9 8

() ()
lin

p c p cm
c c

 −
= −

. (4.46)

A further binary search is then performed between ()linp x and)(xs within the

first tolerance interval until a second tolerance 24
2 2ε −= is achieved. The 1st order

approximation very closely follows the 8th order polynomial within the first tolerance

interval and therefore reduces the amount of calculation needed to achieve the second

tolerance value. The midpoint value attained from the second tolerance interval

represents the 24-bit PWM signal.

Figure 4.16 illustrates graphically how the binary search method is applied to

generate PNPWM. pwx represents the pulse width distance achieved using the binary

search method. Figure 4.17 shows the spectrum of the PNPWM generated using the

binary search strategy. It can be seen that a SNR or dynamic range of more than 150

dB was achieved, which is more than sufficient for 24-bit pulse width modulation.

Pulse Width Modulation

University of Stellenbosch

80

It is important to note that many other numerical methods exist in which 24-bit

PNPWM can be generated. But to investigate and compare all of these methods,

would be impossible within the scope of this theses. A proper comparison between

the two previously discussed methods will be done instead. Important properties of

both methods will be considered for practical implementation within an FPGA.

x

y

a
1c 2c

ς

b

()p x

8c 9c

24c

()s x

8c 9c

ς

24c

()p x

()linp x

pwx

Zoomed view of crosspoint

10c

L

11c

Figure 4.16: Binary search strategy for generating PNPWM.

Pulse Width Modulation

University of Stellenbosch

81

0 100 200 300 400
-350

-300

-250

-200

-150

-100

-50

0
Frequency Content Showing Carrier Harmonics

(a) kHz

dB

0 5 10 15 20
-350

-300

-250

-200

-150

-100

-50

0
Zoomed View of Baseband Frequency Content

(b) kHz

Figure 4.17: Spectrum of PNPWM using Binary search strategy.

0 100 200 300 400
-350

-300

-250

-200

-150

-100

-50

0
Frequency Content Showing Carrier Harmonics

(a) kHz

dB

0 5 10 15 20
-350

-300

-250

-200

-150

-100

-50

0
Zoomed View of Baseband Frequency Content

(b) kHz

Figure 4.18: Spectrum of PNPWM using Newton’s method.

4.2.4.5 Comparison between Newton’s and the Binary method for PNPWM

When comparing the spectra of Figure 4.17 (Binary search strategy with

Matlab code given in Appendix C3) to Figure 4.18 (Newton’s method) it is clearly

seen that the binary searched PNPWM has a reduced dynamic range. Both exhibit an

SNR well above 145 dB, with no baseband harmonic distortion above the noise floor.

Pulse Width Modulation

University of Stellenbosch

82

This qualifies both methods for 24-bit PWM implementation. Only one of these

methods can however be implemented.

The criteria for comparison and selection are based on the convergence and

complexity of each method. Convergence is defined as the number of iterations

needed to find the crosspoint or root within a certain error constraint resulting in 24-

bit PWM output. Complexity is defined as the number of multiplications, divisions,

additions and subtractions used in the method.

Newton’s method converges quadratically to the desired root whilst the binary

search method converges according to 2log N where N represents the maximum

integer value of the crosspoint x -coordinate within a switching interval. It was seen

in Section 4.2.3.5 that Newton’s method only required three iterations to assure a SNR

of more than 145 dB. In contrast the binary search method required nine iterations

within the first tolerance interval and a further fifteen iterations within the second

interval to reach a required SNR of more than 145 dB. Newton’s method therefore

outperforms the binary search method in terms of the convergence criteria.

Comparison of complexity involves counting all multiplications, divisions,

additions and subtractions of one iteration of the specific method being evaluated.

These arithmetic operation counts are not considered in the calculation of the

polynomial coefficients or in the comparison waveform calculations. This is since

they remain the same for both methods in the calculation of the PWM width outputs.

For Newton’s method, arithmetic calculations are considered for expressions

(4.37), (4.41) and (4.31). Table 4.2 shows the count of the arithmetic calculations for

each of these expressions.

Expressions Multiplications & Divisions Additions & Subtractions

()f x 16 10

'()f x 14 7

1nx + 1 1

Total 31 18

Table 4.2: Arithmetic counts of one iteration using Newton’s method.

Pulse Width Modulation

University of Stellenbosch

83

The binary method arithmetic calculations are considered for expressions

(4.20) and (4.25) within the first tolerance interval 1ε , and expressions (4.20) and

(4.45) within the second tolerance interval 2ε . Table 4.3 shows the arithmetic count

for each expression within each tolerance interval.

Tolerance

Interval
Expressions

Multiplications &

Divisions

Additions &

Subtractions

)(xp 16 8

)(xs 1 1 1ε

Total 17 9

()linp x 1 1

)(xs 1 1 2ε

Total 2 2

Table 4.3: Arithmetic counts of one iteration using the binary search method.

From Table 4.2 and Table 4.3 it is clear that the binary search method has a

reduced computational complexity when considering a single iteration. But when

considering that Newton’s method only required 3 iterations, whereas the binary

search method required 24 iterations to achieve 145 dB SNR, it seems that Newton’s

method should be the preferred choice.

However, the binary search arithmetic can further be reduced since every

possible midpoint within a switching frequency can be calculated beforehand (as is the

case with the polynomial coefficients). When these midpoints 1 2 3{ , , ,..., }Nc c c c or x -

coordinates as illustrated in Figure 4.15 are substituted in equation (4.20) a system

matrix results, given by

2 3 8

0 0 0 0
2 3 8

1 1 1 1

2 3 8

1
1

1

mid

N N N N

c c c c
c c c c

X

c c c c

 =

L

L

M M M M O M

L

 (4.47)

Pulse Width Modulation

University of Stellenbosch

84

where N is the maximum amount of possible midpoint values within a

switching frequency. The amplitude of)(xp at a midpoint nc is calculated by

multiplying the transpose of the n th row of (4.47) with the polynomial coefficients

(a) which yields,

2

0 1 8

8

() []

n

n
n

n

c
c

p c a a a

c

 =

L
M

. (4.48)

If the system matrix in (4.47) is stored in memory as a lookup table, the

polynomial amplitude at that specific midpoint can be calculated using the appropriate

memory address. This approach halves the number of multiplications necessary to

compute)(xp . Table 4.4 shows the updated arithmetic using (4.47) as a lookup table.

Tolerance

Interval
Expressions

Multiplications &

Divisions

Additions &

Subtractions

)(xp 8 8

)(xs 1 1 1ε

Total 9 9

()linp x 1 1

)(xs 1 1 2ε

Total 2 2

Table 4.4: Arithmetic counts of one iteration using the binary search method and
lookup table.

With the binary search method optimized, a complete comparison between the

two methods can be done taking into account their number of iterations needed to

converge and the complexity in converging. The number of iterations used in the

Newton’s method example (4.2.3.5), and the binary search strategy example (4.2.3.8)

to generate 24-bit PNPWM will be used here for comparison. Table 4.4 shows the

arithmetic complexity when these iteration values are considered.

Pulse Width Modulation

University of Stellenbosch

85

Tolerance

Interval

Mul

& Div

Add

& Sub
Iterations

Total Mul

& Div

Total Add &

Sub

Newton’s

Method
- 31 18 3 93 54

1ε 9 9 9 81 81

2ε 2 2 15 30 30

Binary

Search

Method

Total 111 111

Table 4.5: Total arithmetic complexity of the two PNPWM methods.

Results from Table 4.5 indicate that Newton’s method theoretically out

performs the optimized binary search method in both the categories of convergence

and complexity. It would seem that the Newton’s method would be the preferred

choice for PNPWM implementation again.

Unfortunately it has a drawback in its practical computation: It has a division

arithmetic operation when calculating iterations. Generally, division arithmetic takes

more time and resources within practical implementation than multiplication

arithmetic.

Because of this reason, Newton’s method and the optimized binary search

method compares head to head and both are suitable methods for PNPWM

implementation. Only one of these methods will however be implemented practically.

It was decided to implement the binary search method to avoid using any division

arithmetic in the practical implementation of PNPWN within an FPGA.

Pulse Width Modulation

University of Stellenbosch

86

4.3 Summary

This chapter started off defining the PWM process. It then went on to define

different PWM schemes. These schemes were compared and evaluated according to

their spectral content using a two-dimensional Fourier series expansion. From these

comparisons it became clear that UPWM schemes, which are digital, exhibited

unwanted baseband harmonic distortion whereas NPWM schemes, which are

analogue, did not exhibit baseband harmonic distortion. Another digital PWM

scheme was therefore introduced known as PNPWM which could estimate the

NPWM crosspoint from digital data through numerical methods.

The numerical methods used in PNPWM are polynomial interpolation and linear

interpolation. These methods were implemented to estimate the crosspoint within a

particular switching interval (cF). The crosspoint of these numerical expressions was

estimated to find the pulse width using two different root finding methods.

The methods used are known as the Newton’s method and the bisection method.

The bisection method was adapted into an optimal binary search method. Newton’s

method and the binary search method were compared according to their characteristics

of convergence and computational complexity.

Newton’s method has a better theoretical performance than the binary search

method when generating PNPWM. Unfortunately this method contains division

arithmetic which takes more time and resources to compute. Therefore, the binary

search method will perform similarly to Newton’s method when implemented

practically, since it exhibits no division arithmetic in its computation. Because of this

reason it was decided to implement the binary search strategy described to implement

a 24-bit PNPWM process.

Noise Shaping

University of Stellenbosch

87

Chapter 5 - Noise Shaping

5.0 Introduction

The pulse width is calculated digitally at a resolution of 24-bits through the

PNPWM technique. The question now arises: Are existing hardware clock speeds

capable of pulsing out these high resolution gating signals to the power electronic

converter? The answer to the question is “no”, and this chapter describes why it is

impossible. It then presents a solution known as “noise shaping” which reduces the bit

resolution of the PWM output without sacrificing the SNR within the audio baseband.

Before the noise shaping process is presented, it is necessary to clarify the

decision for choosing the switching frequency at 352.8 kHz. After this discussion the

noise shaper will be described in its entirety. Continuing from the previous chapters,

simulations will follow to confirm the working and design of the noise shaper both

theoretically and practically.

5.1 Choice of Switching Frequency

Chapter 3 provided an in-depth description of an interpolation process whereby

a 24-bit digital audio signal (sampled at 44.1 kHz) was upsampled to a frequency of

352.8 kHz. This upsampled frequency is the switching frequency (cF) of the

modulator described in Chapter 4.

But why is this specific frequency value used as the switching frequency of the

modulator? There are various reasons for its choice, but the most important of these

enables the use of the noise shaping process which will be described within this

chapter in later sections. The different factors influencing the choice of the switching

frequency are now presented:

First, from Chapter 4, it was shown that the switching frequency represents the

first carrier harmonic, which produces multiples of itself within the PWM output

spectrum. Around these carrier components, sideband harmonics exist. When the

switching frequency is chosen at a higher rate, the carrier harmonic components move

further away from the baseband frequency content. This implies that the sideband

harmonic components situated around the carrier components also move with the

Noise Shaping

University of Stellenbosch

88

carrier harmonics, causing less sideband harmonic distortion within the baseband. In

[12] it is given that when the switching frequency is chosen approximately ten times

the bandwidth of the baseband, the sideband harmonic components have a negligible

effect within the baseband. The choice of the current switching frequency (352.8cF =

kHz) is seventeen times that of the audio baseband, implying that sideband harmonic

distortion for this application is negligible.

A second consideration in the choice of the switching frequency concerns itself

with the switching ability of the amplifier or converter stage. MOSFET’s are used to

amplify the small PWM gating signals output from the two-level modulator. The

choice of the switching frequency therefore has an influence on the switching ability

of a specific MOSFET. A switching frequency therefore needs to be chosen

according to the MOSFET’s switching characteristics to obtain the least amount of

distortion. Not only this, but many other factors and components within the converter

stage influence the switching frequency. To consider all of these factors falls outside

the scope of this thesis. A switching frequency of 352.8 kHz does seem to be a

practicable choice for the power electronic output stage since it was successfully

implemented in [15].

Third, according to the Nyquist theorem presented in Section 3.1.3 an analogue

signal can be recovered from its digital counterpart when it is sampled at twice its

bandwidth. The sampling frequency therefore represents the range of frequencies

(negative and positive) that will be kept in the sampling process. When the sampling

frequency is however chosen to be higher than twice the bandwidth of the signal

baseband, oversampling occurs. This means that a larger bandwidth is generated than

actually needed for the signal’s frequency content. In other words, some part of the

bandwidth is unused. Noise shaping coders uses this unused part of the bandwidth to

increase the SNR within the signals baseband. Therefore a sampling frequency

chosen at a high enough rate (when compared to the Nyquist frequency) implies that

noise shaping coders can be considered. The current switching frequency (cF) is a

multiple of eight larger than the Nyquist frequency of 44.1 kHz, implying that a large

enough unused bandwidth will be generated for the implementation of a noise shaping

coder.

Noise Shaping

University of Stellenbosch

89

Taking all the above factors into consideration, it seems that the switching

frequency of 352.8cF = kHz suffices. This is since the choice agrees with negligible

sideband harmonic distortion, practical implementation of the converter amplifier

stage and ensures enough increased bandwidth for the noise shaping process.

It is now clear why this frequency number was used as the upsampling rate in

Chapter 3, and then related to the switching frequency in Chapter 4. Next, the

physical noise shaping process will be extrapolated using this specific switching

frequency.

5.2 Noise-Shaping Coders

The third factor in the choice of the oversampling frequency given above,

vaguely described the noise shaping process and why it is necessary. It is the goal of

this section to give a clearer understanding of the working of the noise shaping

process and why its use is necessary to implement digital PWM.

5.2.1 Clock speed constraints

Hardware constraints do not make it possible for a modulator to directly

convert a 24-bit crosspoint value to a 24-bit PWM output. This is because 242 1−

integer values are necessary to represent the 24-bit pulse width signal on the discrete

time axis within one switching interval. Therefore,

13
3 24

1 1 1 1 1.689 10 s
2 1 352.8 10 2 1clock b

c
T

F
− = × = × ≈ × − × −

. (5.1)

This implies a clock frequency of at least: 1/ 5919clock clockF T= ≈ GHz. Table

5.1 shows the range of approximate clock frequencies needed for different desired

PWM output resolutions using (5.1) and the chosen switching frequency of

352.8cF = kHz.

Noise Shaping

University of Stellenbosch

90

PWM bit resolution Clock Rate (GHz)

24 5919.00

16 23.12

10 0.361

8 0.09

Table 5.1: Needed clock rates for certain PWM bit resolutions.

The maximum clock frequency available within the specific FPGA used in this

thesis is 400 MHz, a far cry from the clock frequencies needed in the first and second

rows of Table 5.1. to attain 24-bit or 16-bit PWM output resolution. This necessitates

the use of noise shaping coders which have the ability to reduce the bit size of the

PWM output (therefore reducing the clock speed needed to generate it), but still

maintaining baseband signal quality. From Table 5.1 only 10-bit and 8-bit PWM

resolutions are therefore feasible for implementation with the current clock speed of

400 MHz. Next it will be described how bit-size reduction is accomplished through

noise shaping.

5.2.2 Bit-size reduction through noise shaping

Information theory [12] predicts that when a bandlimited signal is

oversampled, the output data can tolerate a reduction in amplitude resolution, yet

maintain a similar baseband SNR [21].

The amplitude resolution referred to here is similar to the 24-bit pulse width

calculated by the PNPWM process in Chapter 4, and the in-band frequency range is

similar to the bandwidth of the input modulating signal (digital audio signal).

Therefore, the PWM output value which is finely quantized at a resolution of

24-bits can be requantized to a lower resolution. This implies an increased noise floor

of the signal bandwidth. The role of the noise shaper is to take the requantized noise

added to the baseband and shift it into the unused bandwidth area which was

generated by the interpolation process in Chapter 3. This causes the noise floor within

the baseband to be reduced and the noise floor in the unused band to be increased,

thus resulting in an increased SNR within the baseband. Although the bit resolution

of the PWM output has now been reduced, the increased SNR within the baseband

Noise Shaping

University of Stellenbosch

91

ensures that the quality of the PWM output is similar before requantization was

introduced.

The next section will present the different components of the noise shaper

which reduces the bit resolution of the PWM output.

5.2.3 Recursive noise shaper

Figure 5.1 shows an efficient recursive noise shaping architecture. It consists

of a coarse quantizer embedded in an error feedback loop to alter the frequency

distribution of the quantization noise associated with an input digital signal [18].

The noise shaper accepts a finely quantized b -bit input and produces a more

coarsely quantized 'b -bit output ('b b>). The quantizer generates a requantization

error signal by truncating the low-order bits of the signal presented to its input by the

summing node. The spectrum of this requantization error signal is then frequency

shaped by a filter ()H z and then fed back to the input as illustrated in Figure 5.1.

Quantizer

∑

()H z

∑
ˆ()x n ˆ() () ()q nsd n x n e n= +

b 'b

()rqe n

'b b−

+
−

+

+

Figure 5.1: Noise-shaper architecture altered from [18].

∑

()H z

∑
ˆ()x n ˆ() () ()q nsd n x n e n= +

b 'b

()rqe n

'b b−

+
−

+

+
∑

()qe n

+
+()d n

Figure 5.2: Quantizer modeled as added noise source.

Noise Shaping

University of Stellenbosch

92

5.2.4 Noise shaping quantizer

The midtread quantizer within the noise shaper can be modeled as a linear network

with an additive noise source ()qe n , this is shown in Figure 5.2. The following

assumptions are made concerning the statistical properties of ()qe n [3]:

• The error ()qe n is uniformly distributed over the range

1/ 2 () / 2, where / 2b
qe n R +−∆ < < ∆ ∆ = is the step size of the quantizer, R

represents the amplitude range of the quantizer and 1b + represents the word

length (Figure 5.3).

• The error sequence ()qe n is a stationary white noise sequence.

• The error sequence ()qe n is uncorrelated with the signal sequence ()d n in

Figure 5.2.

x

() []qx n Q x=

Input

Output

3∆

2∆

∆

3− ∆

4− ∆

2− ∆

−∆

/ 2−∆ / 2∆

3
2
∆

−
3
2
∆ 5

2
∆5

2
∆

− 7
2
∆7

2
∆

−
9
2
∆9

2
∆

−

Range = full scale rangeR

Quantization levels

Decision levels

Figure 5.3: Example of a midtread quantizer [Digital signal processing textbook].

Noise Shaping

University of Stellenbosch

93

5.2.5 Derivation of the noise transfer function

An analysis of the noise shaper in Figure 5.2 is now given. Let

ˆ (), (), (), ()q rq nsX z D z E z E z be the respective z -transforms of ˆ(),x n (),qd n (),rqe n

 ()nse n . With the assumptions made for ()qe n it is clear that ()qd n is simply the sum

of the input and the noise-shaped error,

ˆ() () ()q nsd n x n e n= + . (5.2)

From Figure 5.2 it is apparent that in the z -domain the following expression

can be deduced,

ˆ ˆ() () () () [() ()]rq rq nsE z X z E z H z X z E z= + − + , (5.3)

this is manipulated into

()() () 1
()

ns

rq

E zNTF z H z
E z

= = − , (5.4)

where ()NTF z is a noise transfer function [18]. If ()NTF z is evaluated on the

unit circle, cj Tz e ω= , it is seen that the output error spectrum ()nsE ω is a frequency-

weighted version of the spectrum of the requantization error signal produced by the

quantizer ()rqE ω .

Any information available about the statistical or spectral properties exhibited

by the error signal (generated by the quantizer ()rqe n) can be used in order to select an

appropriate feedback filter (()H z) to approximate some desired output error spectrum

(()nsE ω) as described in [17].

It is known from Section 5.2.4 that ()qe n closely approximates a wide-sense-

stationary white-noise discrete-time random process. As such, ()nsS ω , the power

spectral density (PSD) of the output error, is proportional to the squared magnitude

frequency response of ()NTF z :

Noise Shaping

University of Stellenbosch

94

2 2

() () () ()j j
ns rqS NTF e S NTF eω ωω ω= ∝ (5.5)

The noise shaper cannot reduce the total output requantization error power

associated with a regular 'b -bit linear digital signal. The noise shaped requantized

error power of the 'b -bit quantization process (Figure 5.2) actually exceeds the

conventional 'b -bit non-noise shaped error power by a factor:

1 1

2 2

0 1

[] 1.0 [] 1.0
N N

n n

K ntf n h n
− −

= =

= = + ≥∑ ∑ , (5.6)

with ()ntf n and ()h n the impulse responses of the noise transfer function and

the feedback filter, respectively[17].

Next a few of the noise shaper transfer function characteristics will be

highlighted in order to gain an understanding of the design of the feedback filter

()H z .

5.2.6 Characteristics of the noise shaper

Tewksbury and Hallock [25] have shown that an optimal function for the noise

shaper characteristic ()NTF z is

1() 1
NzH z

z
− − =

, (5.7)

this is effectively N cascaded digital differentiators. Thus for a given filter

order N , the slope of the shaping function against frequency is maximum and gives

the best suppression of low-frequency distortion.

The frequency domain representation of ()NTF z is determined by substituting

2 / cj f Fz e π= , (5.8)

resulting in

() 2sin
N

c

fNTF f
F
π

=

. (5.9)

Noise Shaping

University of Stellenbosch

95

Figure 5.4 illustrates the frequency response of (5.7) for different orders of N .

These graphs reveal two frequencies of interest,

1
6
cFNTF =

, (5.10)

 2
2

NcFNTF =

. (5.11)

Figure 5.4: Noise Transfer Function at various orders of N .

Equation (5.9) reveals that all graphs take unit value at / 6cF and that

reduction is achieved only for / 6cf F< Hz, while for / 6 / 2c cF f F< < the noise

spectrum is actually amplified, reaching a maximum at / 2cF Hz [21].

All parts of the noise shaping coder have now been described; an optimal

design expression has also been presented for the feedback filter ()H z in (5.7). This

filter characteristic could be generated based on the assumptions made for the

Noise Shaping

University of Stellenbosch

96

quantizer process described in 5.2.4. A few further remarks are in order before

continuing to the simulation of the noise shaping process:

Oversampling noise shapers (ONS), as described here, first found its use in

amplitude quantization of an analogue signal input. This assumes that no carrier or

sideband harmonic frequency components exist within the frequency content of the

input to the noise shaper. Within this chapter ONS is used for requantization of digital

PWM signals. Carrier and sideband frequency components therefore do exist within

the signal input of the noise shaper. It is not totally clear what effect the noise shaper

has on these frequency components. What is known is that the noise shaping process

causes a form of PWM foldback which results in baseband distortion [17].

It should also be noted that the noise shaper does not have the ability to

attenuate correlated noise added to the digital input, since the filter ()H z is derived

from the assumption that a statistically independent quantizer is used.

With this said, simulations of the noise shaper can now be done using ()H z to

show the extent to which the PWM resolution can be reduced for feasible clock speed

implementation.

5.3 Noise Shaping Simulations

The simulations that follow continue from Chapter 4 where 24-bit PNPWM

was generated using a 1 kHz modulating wave and a trailing edge modulation scheme.

The goal of the simulations used here is to show how the noise shaper has the ability

to increase the SNR within the audio baseband when the high digital pulse width has

been quantized to a lower resolution or bit size.

This section starts off by firstly describing the characteristics of a fifth order

noise shaping filter derived from expressions presented in Section 5.2.6. This filter is

then used to generate the lower resolution PWM output using different quantizer

resolutions.

Noise Shaping

University of Stellenbosch

97

5.3.1 Noise shaping filter

A fifth order noise shaping transfer characteristic is given by

1 2 3 4 5

0 1 2 3 4 5()NTF z a a z a z a z a z a z− − − − −= + + + + + (5.12)
with

0

1

2

3

4

5

1
 5
10

 10
5

 1

a
a
a
a
a
a

= −
=
= −
=
= −
=

, (5.13)

calculated using (5.7). Its magnitude and phase response are given in Figure

5.5 and Figure 5.6, respectively.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16-350

-300

-250

-200

-150

-100

-50

0

50

Frequency (MHz)

M
ag

ni
tu

de
 (d

B
)

Figure 5.5: Magnitude response of fifth order noise transfer function.

Noise Shaping

University of Stellenbosch

98

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

Frequency (MHz)

Ph
as

e
(d

eg
re

es
)

Figure 5.6: Phase response of fifth order noise transfer function.

The magnitude response in Figure 5.5 agrees with the theoretical results given

in Figure 5.4 derived using (5.9). The linear phase characteristic exhibited in Figure

5.6 ensures that no additional distortion is added to the filtered noise output.

Obtaining ()H z from ()NTF z yields

1 2 3 4 5

1 2 3 4 5()H z a z a z a z a z a z− − − − −= + + + + , (5.14)

assuming that 0a is unity in (5.12). Figure 5.7 gives the pole zero plot of

()H z .

From this figure it is seen that all poles lie within the unit circle, therefore

ensuring that the feedback loop of the noise shaping coder is stable.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4

Real Part

Im
ag

in
ar

y
Pa

rt

Figure 5.7: Pole/Zero plot of ()H z .

Noise Shaping

University of Stellenbosch

99

5.3.2 Noise shaping of the PNPWM output

The noise shaping process using the fifth order filter ()H z described above is

now applied to the 24-bit PNPWM output calculated in Chapter 4. Figure 5.8

illustrates the noise shaped PWM output of the PNPWM widths using an 8-bit

quantizer (Matlab ® code given in Appendix C2). It can be seen from this figure how

the noise transfer function has displaced the baseband noise error power to the higher

frequency band.

0 50 100 150 200 250 300 350 400-160

-140

-120

-100

-80

-60

-40

-20

0

kHz

dB

1kHz fundamental

Attenuated error noise power

Amplified error noise power

Carrier harmonic

Carrier sideband harmonics

Figure 5.8: Noise shaped 8-bit PWM output.

Figure 5.9 shows a zoomed view of the audio band frequency content. It is

seen from this figure that the noise floor falls below the 16-bit noise floor which is -

96dB. The fifth order noise shaping filter is therefore sufficient to obtain 16-bit

quality audio resolution from an 8-bit PWM output.

Noise Shaping

University of Stellenbosch

100

0 2 4 6 8 10 12 14 16 18 20-150

-100

-50

0

kHz

dB

16-bit noise floor

Figure 5.9: Zoomed view of 8-bit PWM output.

Figure 5.10 shows the PWM spectrum with the same fifth order noise shaping

filter but with a 10-bit quantizer (Matlab ® code given in Appendix C2).

0 50 100 150 200 250 300 350 400-160

-140

-120

-100

-80

-60

-40

-20

0

kHz

dB

Figure 5.10: Noise shaped 10-bit PWM output.

The zoomed view of the 10-bit PWM spectrum shows that an SNR of 120 dB

has been attained within the audio baseband. This gives the PWM output a resolution

of 20-bits.

Noise Shaping

University of Stellenbosch

101

0 2 4 6 8 10 12 14 16 18 20-160

-140

-120

-100

-80

-60

-40

-20

0

kHz

dB

20-bit noise floor

Figure 5.11: Zoomed view of 10-bit PWM output.

From Table 5.1 it was concluded that only 8-bit and 10-bit PWM outputs

where feasible with the current FPGA clock speed of 400 MHz. Here it has been

shown that with these PWM output resolutions of 8-bit and 10-bit, audio resolutions

of 16-bit and 20-bit can be attained respectively using a fifth order noise shaper.

Unfortunately 24-bit baseband resolution could not be attained using higher

order noise shapers with 10-bit quantisers.

5.4 Summary

This chapter started by discussing different factors which influence the choice of

the switching frequency for a digital pulse width modulator. It was concluded that a

switching frequency of 352.8cF = kHz suffices in the consideration of all these

mentioned factors.

Next, it was shown that numerically calculated 24-bit PNPWM outputs could not

be physically generated within current hardware because of clock speed constraints.

Noise shaping coders were then introduced, which provide a means to reduce the

PWM bit output through a requantising process and a feedback filter. This structure

increases the SNR within the baseband of the audio whilst moving the quantization

noise power to an unused part of the bandwidth created by oversampling.

Noise Shaping

University of Stellenbosch

102

Simulations were then done using a noise shaping coder having a feedback filter

order of five. This noise shaping coder was then used to generate PWM outputs of 8-

bits and 10-bits respectively. The 8-bit PWM output attained a baseband resolution of

16-bits whereas the 10-bit PWM output achieved a baseband resolution of 20-bits.

Unfortunately 10-bit PWM outputs with a baseband resolution of 24-bits could

not be achieved, therefore causing a bottle neck at this last output stage of the PCM to

PWM modulator. The simulation results attained shows that high resolution PWM

can be practically implemented within an FPGA exhibiting a maximum clock speed of

400 MHz.

Within the next chapter, the VHDL firmware implementation of the different

block-sets of the digital PWM calculation will be given. These blocks include

interpolation from Chapter 3, PNPWM from Chapter 4 and noise shaping coders from

this chapter.

Firmware Implementation

University of Stellenbosch

103

Chapter 6 - Firmware Implementation
6.0 Introduction

Most of the premodulation building blocks needed to convert a PCM input

signal to a digital PWM output signal have been completely described theoretically

within the previous three chapters. Here these building blocks, consisting of

interpolation, PNPWM and noise shaping will be translated into VHDL firmware, for

implementation within an FPGA.

The chapter starts off by first describing the hardware system which comprises

the digital audio amplifier. It then describes the VHDL firmware in two categories,

namely: configuration firmware and algorithm firmware. After these firmware blocks

have been described, a timing diagram of the implementation will be given, where

after attention is then given to the synthesis involved in the firmware development.

Next, fixed point arithmetic computation within the FPGA is investigated and some

difficulties encountered with the firmware development are mentioned. Lastly the

chapter shows how much resources are necessary to implement the described

firmware for one digital audio channel.

6.1 Hardware Description

The digital audio amplifier configuration is shown in Figure 6.1. The first

block on the left represents the audio source which could either be a 24-bit or 16-bit

resolution S/PDIF (Sony/Philips Digital Interface) output sampled at a rate of 44.1

kHz. The DIR (Digital Interface Receiver) converts the S/PDIF file transfer format

into a PCM signal which is then converted to the digital PWM output using an

ALTERA® CYCLONE FPGA. The PWM output gating signals are fed to a full

bridge inverter which amplifies these signals into a speaker load.

CD-Player

Digital
Interface
Reciever

(DIR 1703)

Amplifier
(Full Bridge
Inverter &

Passive
filter)

S/PDIF
24/16-bit

PCM PWM
(L-Channel)

Speaker
Load

Analogue
Signal
(High

Voltage)

Signal
Processing

(Altera
Cyclone)

Figure 6.1: Signal processing building block for PCM to PWM conversion.

Firmware Implementation

University of Stellenbosch

104

The firmware developed in VHDL to implement the signal processing block

(coloured grey) in Figure 6.1 comprises all of the practical work done within this

thesis. Firmware blocks developed within the ALTERA® CYCLONE FPGA are

shown in Figure 6.2. These various blocks will be extrapolated within the next

section.

Interpolation PNPWM Noise
Shaping

PWM
Generator

Setup and
Synchronization
with DIR 1703

PLL's setup for desired
clock frequencies

Serial to Parallel
Data Conversion

Figure 6.2: Firmware blocks developed within the FPGA.

6.2 Firmware Development

The firmware blocks given in Figure 6.2 are divided into two categories which

have been developed during this study. The top row represents firmware blocks

necessary for the configuration of resources, and the transformation of data, which are

present within or at the disposal of the FPGA.

The bottom row represents the utilization of these resources and data to

implement the digital pulse width modulation.

A third group of firmware is not shown in Figure 6.2 since it has not been

developed. This firmware is known as megafunctions which are already available for

use within the Quartus II software [26]. These Megafunctions form part of the

developed blocks and will be described when used.

6.2.1 Configuration firmware

Three configuration firmware blocks are described here. The first block

configures the digital interface receiver shown in Figure 6.2. The second sets up the

necessary clock rates needed by the different PWM firmware blocks to execute. The

Firmware Implementation

University of Stellenbosch

105

last block converts the serial bit data received from the DIR in the FPGA to 16-bit

words.

6.2.1.1 DIR 1703

The top left firmware block in Figure 6.2 sets up the TI (Texas Instruments) digital

interface receiver (DIR 1703, Appendix D) to do the following:

• Reset it
• Set its sampling rate to 44.1sF = kHz
• Set its audio bit clock to 22.5792 MHz which is output to one of the phase lock

loops (PLL) of the FPGA
• Sets the data formatting to 16-bit, MSB first, right justified

The DIR 1703 therefore converts the S/PDIF audio input to a 16-bit PCM output

serial stream sampled at 44.1 kHz. Unfortunately a 24-bit S/PDIF source was not

available when implementing the firmware, but can be easily introduced by changing

the configuration of the DIR 1703.

It is desired to use a 24-bit audio source in future work since all processes within

the PWM firmware have 24-bit resolution, and to attain a high as possible audio-band

bit quality at the noise shaping coder output.

6.2.1.2 PLL setup

The various firmware blocks used to calculate the digital PWM need different

clock frequencies. These clock frequencies are setup using the two PLLs of the

ALTERA® CYCLONE FPGA. External clocks are coupled to each PLL

respectively. The first is coupled to a 40 MHz external crystal oscillator, the second is

coupled to the DIR 1703 BCKO clock output which has a clock frequency of 22.5792

MHz.

From these two PPLs four different clock frequencies are generated within the

FPGA which service the different firmware or signal processing blocks within the

second group in Figure 6.2.

The clock frequencies of the PLLs are setup using the GUI, PLL megafunction

within the Quartus II software. The specific clock frequencies needed for specific

processing blocks will be given in Section 6.2.3.2.

Firmware Implementation

University of Stellenbosch

106

6.2.1.3 Serial to parallel data conversion

This firmware block receives the left audio channel serial bits from the DIR

1703 IC within a sampling period and converts them to a 16-bit word for latching

within the FPGA. After the 16-bit word has been latched or stored it is used by the

interpolation process.

Within the next section it will be shown how the latched 16-bit PCM word is

used to implement a digital PWM output.

6.2.2 Digital PWM firmware

The second row of firmware blocks showed in Figure 6.2 implements the PCM

to PWM conversion process within the FPGA. All of these blocks together form the

PWM modulator. The grey coloured blocks in Figure 6.2, each refers to a chapter

specifically devoted to the theory and functionality of it within the PWM conversion

process.

Here the implementation of each of these blocks will be discussed separately in

order of their chapter layout within this thesis. At the end of this section a timing

diagram will be given of the firmware implementation.

6.2.2.1 Interpolation

The interpolation process implements a FIR polyphase filter structure to up

sample the input PCM audio signal. It has a total filter tap count of 632 and an

upsampling rate of 8L = , implying eight polyphase filters each exhibiting a length of

79 taps.

Figure 6.3 illustrates the different components that make up the interpolation

process, where the grey coloured blocks represent the Quartus II megafunction

firmware. Please note that all figures that follow in this chapter that contain grey-

shaded blocks continue to represent Quartus II megafunction firmware.

On the rising edge of the 44.1 kHz clock a 16-bit PCM value is stored at the

second address of the input buffer, 78 previous samples are stored at the next

consecutive addresses of the input buffer. The first address of the input buffer has a

value of zero and this address is assigned by the state machine whenever the MAC

Firmware Implementation

University of Stellenbosch

107

output needs to be retained (since a zero multiplication result will be added to the

current output value).

50 MHz Clock

352.8 kHz Clock

44.1 kHz Clock

Interpolated
output

Address & Read/Write

MAC

Input Buffer
(RAM)

16-bit word length
80 words

(1.3K)

Data × Polyphase
Coeficient Lookup

Table (ROM)
51-bit word length
633 word length

(32K)

Data

∑
67-bit

67-bit

Data_Temp
Register Output

Latch

16-bit 16-bit

State Machine
Control

PCM Audio input

St
ar

t,
St

op

WriteIn
pu

t d
at

a

A
dd

re
ss

 &
 R

ea
d/

W
rit

e

Buffer Shift Data

Figure 6.3: Blockdiagram of the interpolation process.

The input buffer (1-PORT RAM megafunction) samples are then used to

calculate eight output samples using the eight polyphase filters stored consecutively in

the coefficient lookup table (1-PORT ROM megafunction). Each polyphase

coefficient set is filtered with the input buffer sample values using the MAC (Multiply

Accumulate) megafunction firmware. Before a 352.8 kHz rising edge occurs the

specific polyphase filter completes and stores the output sample in a temporary

register. When the 352.8 kHz rising edge occurs, the 16-bit interpolated value is

latched for use by the next PNPWM process.

During the calculation of the last polyphase filter, all the sample values of the

input buffer are shifted down to make space for the new PCM input occurring at the

next 44.1 kHz rising edge. Before this 44.1 kHz edge occurs, the 8th polyphase filter

output needs to be computed and stored within the temporary register.

Figure 6.4 shows a state diagram of how the polyphase filtering process is

controlled by the state machine. The VHDL code used to implement the interpolation

Firmware Implementation

University of Stellenbosch

108

process is given in Appendix F1. Below the state diagram in Figure 6.4 the

requirements for changing state are given for easy reference within the VHDL code.

The state machine starts at reset (state_0) and waits for the 44.1 kHz pulse. If it

occurs, state_1 is entered which stores the PCM input in the input buffer. When

storage has completed, state_2 is entered. This state implements the polyphase

filtering and keeps track of which polyphase phase filter is currently busy executing.

After a polyphase filter has completed state_3 is entered where some time is used to

wait until the MAC function has completed all its calculations where after the final

value is stored within the temporary register.

State_2 is entered again and after each polyphase filter state_3 is entered to

wait and store the interpolated output. The last polyphase filter executes within

state_4 since the buffer shift function needs to be performed while computing the

polyphase filter. When the next 16-bit PCM sample is used for filtering it is

overwritten by the previous, the last sample in the input buffer is therefore lost to

make space for the new input sample.

After the input buffer data has been shifted, a one clock cycle delay is needed

to finish the last polyphase filter where after state_3 is entered again to store the final

output in the temporary register. A second process reacting on the 352.8 kHz rising

edge and synchronized with the 50 MHz clock, reads the temporary register and

latches its value for use by the following process which will be described in the next

section.

Firmware Implementation

University of Stellenbosch

109

(1) Pulse_44_1_in = '0'

(2) Pulse_44_1_in = '1'

(3) State1_f_sig = '1'

(4) State1_f_sig = '0'

(5) *Buf_adr_sig < Buf_cnt_max

(6) *Buf_adr_sig = Buf_cnt_max

(7) State3_cnt_sig = pf_cnt_max

(8) Coef_adr_sig = Coef_cnt_max

(9) Coef_adr_sig = (Coef_cnt_max - Buf_cnt_max - 1)

(10) State3_cnt_sig < pf_cnt_max

(11) State4_f_sig ='1'

(12) Buf_adr_sig = Buf_cnt_max + 2

* When Coef_adr_sig < Coef_cnt_max

Coef_cnt_max = 632
Buf_cnt_max = 79

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

(10)

(11)

(12)

Reset
State_0

Data Arrived
State_1

Filter Control
State_2

Buffer Shift
State_4

Wait 1 Clk Cycle
State_5

Polyphase
Complete

State_3

(13)

Figure 6.4: State diagram of the interpolation process.

Firmware Implementation

University of Stellenbosch

110

6.2.2.2 PNPWM

Here the process of calculating a 24-bit PWM signal as described in Chapter 4

will be implemented within VHDL firmware. The description of this implementation

will be done within three subsections.

The first section will show how the polynomial coefficients are calculated

using the interpolated input data.

Secondly, the binary search algorithm implementation will be extrapolated

which finds the crosspoint within a 9-bit resolution or a first tolerance interval.

Lastly the crosspoint calculation implementation will be done by linear

interpolation within the first tolerance interval and then a binary search algorithm is

used again to obtain a 24 bit PWM output.

Polynomial Coefficient Calculation

16-bit

50 MHz Clock

352.8 kHz Clock

MAC
Interpolated
input Buffer

(1-Port RAM)
16-bit word length

10 words
(0.156K)

Data ×

X-coordinate
System Matrix of

Interpolated
Samples

(1-Port ROM)
30-bit word length

74 word length
(2.168K)

Data

∑

30
-b

it
Po

l C
oe

f D
at

a
54

-b
it

State Machine
Control of Poly

Coeff Calculation

St
ar

t,
St

op

In
pu

t d
at

a

A
dd

re
ss

 &
 R

ea
d/

W
rit

e

Buffer Shift Data

4th and 5th
Polynomial

Amplitude Samples
between which the

Crosspoint is
calculated

(Data Latch)
24-bit word length

2 words

16-bit 4th

16-bit 5th

Ping, Pong Buffer
(2-Port RAM)

30 -bit word length
20 words
(0.586K)

Address & Read/Write

Address & Read

Poly Coeff Data Binary
Search
Process

Binary
Search
Process

State Machine
Control of Coeff

Storage Address &
Write

Fl
ag

Interpolated 16-bit input

Synchronization flag for next process

Figure 6.5: Block diagram of polynomial coefficient calculation.

Figure 6.5 gives a graphical view of how the VHDL firmware which is used to

compute the 8th order polynomial coefficients. A new interpolated sample is stored

Firmware Implementation

University of Stellenbosch

111

within the input buffer at a frequency of 352.8 kHz and the previous samples are

shifted down to make space for the new sample to be stored. The input buffer

represents nine polynomial amplitude values, and their respective polynomial

coefficient values are calculated by the multiplication given in (4.40).

The system matrix of (4.40) is stored in memory as a lookup table and

illustrated in Figure 6.5. The multiplication between the amplitude samples and the

system matrix is done using a MAC megafunction. After the coefficients have been

calculated they are stored within a ping-pong buffer.

While one set of coefficients are stored within one part of the buffer, the

previous set is stored in the other half of the buffer and are read by the binary search

process, hence the expression ping-pong buffer. Therefore within one 352.8 kHz

clock period one set of coefficients are calculated.

The fourth and fifth polynomial amplitudes are also latched out at this rate

since the crosspoint is calculated within this switching interval as described in Chapter

4, and is also needed by the binary search process to find the first tolerance interval.

The state diagram that controls the polynomial coefficient calculation is shown

in Figure 6.6. The state transition conditions are also given below the state diagram

for easy referral to the VHDL code which is given in Appendix F2. The polynomial

coefficient calculation is similar to the filtering process and will now be explained

using the state diagram.

The reset state (state_0) in Figure 6.6 waits for a 352.8 kHz rising edge, when

it occurs, states are changed and the new interpolated data sample is stored within the

input buffer in state_1. After one 60 MHz clock cycle state_3 is entered. This state

computes the first polynomial coefficient. Only one multiplication arithmetic is

necessary to compute the first coefficient since the first column of the first row in

(4.40) exhibits the only non-zero value.

Because of this, the first coefficient is calculated in state_3. After the first

calculation is completed, state_2 is entered where the rest of the polynomial

coefficients are calculated. When the last coefficient needs to be calculated the buffer

shift state (state_4) is entered. Here both the last coefficient calculation and the input

buffer shift functions are accomplished. Whenever a coefficient calculation has been

completed state_2 sets a flag which is discerned by a second state machine given in

Figure 6.7.

Firmware Implementation

University of Stellenbosch

112

This state machine stores the coefficient value in the appropriate address within

the ping-pong buffer. It keeps record of which half is currently used for writing and

which half is currently being read. When the first complete set of coefficients has

been stored, a flag is set to indicate to the binary search process that it can start on the

next 352.8 kHz rising edge clock. Whenever a coefficient has been stored the state

machine returns to state_0, waiting until the next coefficient value has been

calculated.

Reset
State_0

Store Input Data
State_1

Matrix
Multiplication

State_2

1st Coef Calc&
Wait

State_3

Buffer Shift
State_4

(1)

(2) (3) (4)

(5)
(6)

(7)

(10)

(9)

(8)

(11)

(1) pulse_352_in = '0'

(2) pulse_352_in = '1'

(3) No condition

(4) (*state3_cnt_sig<7) or (**state3_cnt_sig<wait_cnt_max)

(5) (*state3_cnt_sig=8) or (**state3_cnt_sig=wait_cnt_max)

(6) ***Buf_adr_sig = Buf_cnt_max

(7) ***Buf_adr_sig < Buf_cnt_max

(8) ***Mat_adr_sig = (Mat_cnt_max-Buf_cnt_max)

(9) Mat_adr_sig = Mat_cnt_max

(10) Buf_adr_sig = Buf_cnt_max + 2

(11) Buf_adr_sig < Buf_cnt_max + 2

* Only when frst_coef_f_sig = '0'
** Only when frst_coef_f_sig = '1'
*** Only when Mat_adr_sig < Mat_cnt_max

wait_cnt_max = 6
Mat_cnt_max = 73
Buf_cnt_max = 9

Figure 6.6: State diagram of the polynomial coefficient calculation.

Firmware Implementation

University of Stellenbosch

113

Poly Storage
Start

State_0

Poly Storage
Finish
State_1

(1)

(3)

(2)

(1) Coef_finish_f_sig = '0'

(2) Coef_finish_f_sig = '1'

(3) No condition

Figure 6.7 State diagram of the polynomial coefficient storage.

Binary search

The previous section explained how the polynomial coefficients are calculated

using VHDL firmware. With the polynomial coefficients calculated it is now

necessary to find the first interval wherein the crosspoint between the polynomial and

comparison waveform is located. This is done using the binary search strategy

explained in Chapter 4. Figure 6.8 shows a map of how this is accomplished within

VHDL firmware. This process will now be explained.

Address & Read

Address & Read/Write

MAC
Ping, Pong Buffer

(2-Port RAM)
30 -bit word length

20 words
(0.586K)

DataAddress & Write

Poly Coeff Data

Polynomial
Coefficient
Calculation

Process

×

∑

60
-b

it
25

-P
ol

 A
m

p
D

at
a

System Matrix of all
Possible

X-coordinates of
Binary Search

Algoritm
(1-Port ROM)

30-bit word length
4096 word length

(120K)

Data

Trailing Edge
Saw-Tooth

Lookup Table
25-bit word length
513 word length

(12K)

∑ Data

Binary
Search

25
-b

it

State Machine
Control

Data

A
dd

re
ss

 &
 R

e a
d

St
ar

t,
St

op

Lathced
Relevant

Polynomial and
Sawtooth

Amplitudes

25-bit pol_amp1

25-bit pol_amp2

25-bit sawth_amp

Crosspoint
Calculation

60 MHz Clock

352.8 kHz Clock

A
dd

re
ss

 in
fo

4th Interval Poly Amp

5th Interval Poly Amp

Control

Synchronization flag for next process

10-bit Index512

Figure 6.8: Block diagram of binary search within first tolerance interval.

Firmware Implementation

University of Stellenbosch

114

An initial guess of the crosspoint is made at the position halfway between the

fourth and fifth polynomial amplitude positions which represent the switching

interval. There are 512 time positions, since the first tolerance interval searches the

crosspoint time to an accuracy of 9-bits (92).

The initial guess is thus chosen to be 256. The amplitude of the polynomial is

calculated at this initial guess and then compared to the trailing edge sawtooth

waveform. The result of this comparison determines a new position which falls within

the 512 value set. This new position value halves the previous interval therefore

moving closer to the crosspoint interval. The polynomial amplitude of this position is

calculated again and the process repeats until nine comparisons have been made, after

which the polynomial amplitudes left and right of the searched interval is output.

Also, the sawtooth amplitude located at the left polynomial amplitude is output for

crosspoint calculation within the next process.

From Figure 6.8 the polynomial amplitude is calculated by multiplying the

stored polynomial coefficients in the ping-pong buffer with the x-coordinate system

matrix lookup table. This multiplication process is represented by (4.48). The

polynomial amplitude calculated is then compared by the appropriate sawtooth

amplitude read from a lookup table. From the comparison the binary search firmware

determines if the search is complete. If not, it determines the new address information

which is then used by the state machine for the next polynomial amplitude calculation.

If the search has been completed the relevant amplitude data is latched for use by the

next process.

Figure 6.9 shows the state diagram which implements the binary search process

(its VHDL code is given in Appendix F3).

In the reset state a rising edge of the 352.8 kHz clock and a high value from the

synchronization flag from the previous process causes state_1 to be entered. Within

this state the initial crosspoint position guess is assigned where after state_2 is entered

which calculates the polynomial amplitude. State_3 is then entered which waits until

the MAC completes its calculation. The result of this calculation is then compared to

the sawtooth amplitude which is located at the same position as the calculated

polynomial amplitude.

When the comparison has completed, state_4 is entered which decides whether

the binary search has completed. If it has, the reset state is entered. If it has not,

Firmware Implementation

University of Stellenbosch

115

state_5 is entered where relevant memory addresses are updated for the next

polynomial amplitude calculation and sawtooth wave comparison.

When the 9-bit interval has been found, the relevant polynomial amplitudes

and sawtooth amplitudes are latched to the output in state_4. The final 9-bit index

value is also latched to the output for the final 24-bit PWM calculation. A

synchronization flag is set for the next process to know when this relevant data has

been latched for use.

Reset
State_0

New Binary
Search
State_1

Polynomial
Amplitude
Calculation

State_2

Sawtooth
Comparison with

Polynomial
Amplitude

State_3Assignment of
High and Low
Index Signals

State_4

Update of Index
Matrix Address

State_5

(1) [(pulse_352_in = '0') & (Pol_coef_sync_in = '0')], or
 [(pulse_352_in = '1') & (Pol_coef_sync_in = '0')], or
 [(pulse_352_in = '0') & (Pol_coef_sync_in = '1')]

(2) (pulse_352_in = '1') & (Pol_coef_sync_in = '1')

(3) No condition

(4) [state2_f_sig = '0'] or [(state2_f_sig = '1') & (Mult_adr_sig < 7)]

(5) (state2_f_sig = '1') & (Mult_adr_sig = 8)

(6) state3_cnt_sig < 6

(7) state3_cnt_sig = 6

(8) (High_var-Low_var) = 1

(9) (High_var-Low_var) > 1

(10) No condition

(1)

(2) (3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)

Figure 6.9: State diagram of the binary search process.

Firmware Implementation

University of Stellenbosch

116

Crosspoint calculation

This section concludes the final stage of the 24-bit PWM calculation. From the

binary search process four data values have been latched to calculate the PWM output.

Firstly, two polynomial amplitudes are available which are used to calculate a linear

equation approximating the polynomial (audio wave) within the second tolerance

interval. These two amplitudes are necessary to calculate the linear equation gradient

using (4.46). The trailing edge sawtooth waveform is also calculated using the latched

sawtooth amplitude. Its gradient is known within the interval, and therefore its

calculation is simple. The 9-bit index value which has also been latched is used to

calculate the 24-bit output.

Figure 6.10 illustrates the state diagram which calculates the 24-bit PWM

output within VHDL firmware. Within this process, no megafunctions are used. The

VHDL code implementing this process is given in Appendix F4.

State_1 is entered when the synchronization flag from the previous state is high

and a 352.8 kHz rising edge occurs. Within state_1 the gradient of the straight line

polynomial approximation is calculated and the initial binary search index is assigned

for the second tolerance interval. This index variable has a range of 152 32768= .

Therefore when the second tolerance interval has completed its binary search, a 24-bit

PWM value can be attained. This is due to the first binary search attaining a 9-bit

resolution where after the second tolerance interval attains a 15-bit search resolution.

After one 60 MHz clock cycle state_1 is finished and state_2 is entered which

calculates both the sawtooth and straight line polynomial equation values at the

current index value.

Then state_3 is entered and a new index value is calculated according to the

binary search algorithm. With the new index value attained the algorithm tests to see

if the search has completed. If it has, state_4 is entered, and if it has not, state_2 is

entered again. Here the new index value is substituted in the sawtooth and polynomial

linear equation to gain new amplitude values which will be compared at the next

binary search in state_3. This iteration repeats itself until the interval to be searched

reaches a width of one. When this occurs as mentioned, state_4 is entered. The 15-bit

second tolerance interval index and the 9-bit first tolerance interval index value is then

used together to calculate a 24-bit PWM output. This PWM output value is then

Firmware Implementation

University of Stellenbosch

117

latched for the use of the next process which reduces its resolution through a noise

shaping coder.

Reset
State_0

Gradient
Calculation

State_1

Binary search
State_3

Sawtooth &
Polynomial
straigth line
Calculation

State_2

24-bit PWM
calculation

State_4

(1)

(2) (3)

(4)

(5)

(6)

(7)

(1) [(pulse_352_in = '0') & (sync_in = '1')], or
 [(pulse_352_in = '0') & (sync_in = '1')], or
 [(pulse_352_in = '1') & (sync_in = '0')]

(2) (pulse_352_in = '1') & (sync_in = '1')

(3) No condition

(4) No condition

(5) (High_var - Low_var) > 1

(6) (High_var - Low_var) = 1

(7) No condition

Figure 6.10: State diagram of final crosspoint calculation.

Firmware Implementation

University of Stellenbosch

118

6.2.2.3 Noise Shaping

The last signal processing block necessary to convert a PCM signal to a

practical PWM output signal is described here within VHDL firmware. The physical

VHDL code of this firmware is given in Appendix F5. The 24-bit PWM output

calculation accomplished within the previous PNPWM firmware is now reduced in bit

size through the use of a noise shaping coder. Figure 6.11 gives a block diagram

layout of the complete noise shaping process.

Address & Read/Write

MACQuantization
Noise Input Buffer

(1-Port RAM)
14-bit word length

5 words
(70-bits)

Data ×

∑

45
-b

its

Noise Shaping
Filter

Coefficients
(1-Port ROM)

31-bit word
length

5 words
(155-bits)

Data

∑ Quantizer

Noise Shaper
Filter Output

Register

State Machine
Control

Address &
Read/Write

Start & Stop

Control

Top 10-bit PWM Output

24-bit PWM input

60 MHz Clock

352.8 kHz Clock

Control

lower 14-bit Quantization Noise

Figure 6.11: Block diagram of noise shaping process.

From the above figure it can be seen that the 24-bit PWM input signal is

quantized after the addition node through truncating the 14 least significant bits

(LSB). The top 10 most significant bits (MSB) are output to the full bridge converter

for amplification.

It was shown in Chapter 5 that 20-bit audio quality is achievable when using a

10-bit PWM resolution. The 14 LSB are stored within a buffer. This buffer is then

used for filtering, much the same as described previously with the interpolation

firmware implementation. A MAC megafunction is used to perform the

multiplication and addition arithmetic between the quantization noise buffer and the

noise shaper filter coefficients.

Firmware Implementation

University of Stellenbosch

119

Chapter 5 described a fifth order noise shaping filter whose coefficients are

stored within the coefficient lookup table configured using a 1-Port ROM

megafunction. The noise shaped filtered result is stored within a register which is

then fed back and added to the 24-bit PNPWM input.

Reset
State_0

Quantizing &
Storage & Noise

Shaper Reg
Addition
State_1

Noise Shaping
Filtering &

Buffer Shift
State_2

Filter out Store
in Noise Shaper

Register
State_3

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(1) pulse_352_in = '0'

(2) pulse_352_in = '1'

(3) State1_f_sig = '0'

(4) State1_f_sig = '0'

(5) Buf_adr_sig < Buf_adr_max + 2

(6) Buf_adr_sig = Buf_adr_max + 2

(7) State3_cnt_sig < 5

(8) State3_cnt_sig = 5

Figure 6.12: State diagram of noise shaping process.

Firmware Implementation

University of Stellenbosch

120

Figure 6.12 shows the state diagram of the state machine which is implemented

to control the noise shaping process. Again a reset state waits until a 352.8 kHz rising

clock edge is detected. When it has, a 24-bit PNPWM result is available for noise

shaping, resulting in the entrance of state_1. Within state_1 the previous noise

shaping filter (()H z) output is added to the current 24-bit PNPWM input and then

quantized. As described above, quantization is performed through capturing the top

10-bits of the added result. The lower 14-bits are also stored in a buffer within

state_1. When quantization and storage has completed, state_2 is entered where the

feedback noise shaping filter is executed. While the filter is executing the input buffer

data is shifted down to make space at the first buffer address for the next quantization

noise value to be stored.

Upon filter completion, state_3 is entered which scales and stores the filter

output within a register for addition with the next 24-bit PNPWM input at the rising

edge of the next 352.8 kHz clock.

6.2.2.4 PWM Generator

The 10-bit PNPWM data value obtained from the noise shaping process needs

to be converted to a physical pulse width. From Table 5.1 it is seen that a clock

frequency of 361 MHz is needed to generate a physical 10-bit PNPWM signal.

Although the ALTERA® CYCLONE FPGA can attain a maximum clock frequency

of 400 MHz, a 10-bit PWM generator which was implemented within VHDL could

not run at needed 361 MHz. This was because the physical logic generated from the

VHDL code on the FPGA could not execute at this fast clock frequency. This was

evaluated by the Quartus II timing analyser [28]. An 8-bit PNPWM was rather

implemented in VHDL firmware executing at a clock frequency of 90.317 MHz. This

implies that only 16-bit audio output quality is attainable from the simulations

presented in Chapter 5. A description of this generator will now be given

The PWM generator consists of a counter whose maximum value is assigned

the 8-bit PWM input value for a specific switching interval. The counter therefore

starts at zero and increments at a rate of 90.317 MHz. As soon as the counter reaches

its maximum assigned value, the logic output goes low, therefore ending the current

high output pulse duration. The output then stays low until the switching interval has

Firmware Implementation

University of Stellenbosch

121

ended. At the start of the next switching interval the logic output becomes high again

until the counter has reached its new maximum value which represents the pulse

width. This form of PWM generation is known as trailing edge modulation as was

thoroughly described in Chapter 4. The VHDL firmware implementing this PNPWM

generation process is given in Appendix F6.

Most important processes have now been described which work together to

produce the desired PWM output. These processes use state machines within the

VHDL firmware to control them. Different clock domains also exist between these

different processes and it is thus necessary to synchronize control signals and data

between them. In the next section a timing diagram description of how these

firmware blocks work together will be given.

6.2.2.5 Timing diagram

Figure 6.13 shows a timing diagram representation of how the different

firmware blocks work together. Each firmware block executes at its clock rate or in

its clock domain. Two event clocks are used which determine when processes start,

when data needs to be transferred from one process to the other, or when the data

needs to be output. All events within the firmware processes occur at the rising edge

of a clock.

Firmware Implementation

University of Stellenbosch

122

50 MHz
Clock

60 MHz
Clock

90.3 MHz
Clock

44.1 kHz

352.8 kHz

Different Process Clock Domains

Event Clocks

PCM sample captured &
Polyphase filter starts

1 - 1st calculated upsampled output
- start 1st poly coeff calculation

1st rising edge after polyphase filter start

1 2 3 4 5 6

2 - 2nd calculated upsampled output
 - 1st poly coeff set finished
 - 1st binary search starts to find 1st tolerance interval

3 - 3rd calculated upsampled output
 - 2st poly. coeff. set finished
 - 2nd binary search starts to find 1st tolerance interval
 - 1st crosspoint calculation of 24-bit resolution (2nd tol. int.)

4 - 4th calculated upsampled output
 - 3rd poly. coeff. set finished
 - 3rd binary search starts to find 1st tolerance interval
 - 2nd crosspoint calculation of 24-bit resolution (2nd tol. int.)
 - Noise shaping coder starts using 1st cross. pnt. value

5 - 5th calculated upsampled output
 - 4th poly. coeff. set finished
 - 4th binary search starts to find 1st tolerance interval
 - 3rd crosspoint calculation of 24-bit resolution (2nd tol. int.)
 - Noise shaping coder uses 2nd cross. pnt. value for calc
 - 8-bit PWM width calculation starts (PWM generator)

using 1st Noise shaping result

6 - 6th calculated upsampled output
 - 5th poly. coeff. set finished
 - 5th binary search starts to find 1st tolerance interval
 - 4th crosspoint calculation of 24-bit resolution (2nd tol. int.)
 - Noise shaping coder uses 3rd cross. pnt. value
 - 8-bit PWM width calculation of 2nd Noise shaping result
 - 1st, 8-bit PWM output at the 352.8 kHz rising edge

7 8

Before next sample is captured
the 8th upsampled value is

calculated and latched for used

Figure 6.13 Timing diagram description of firmware.

Therefore when a PCM sample is available for processing it is captured by the

polyphase filtering process as described previously. After six 352.8 kHz clock cycle

delays (17 sµ) the first 8-bit PWM calculated value is output. This is the total

execution time needed for the digital processing to calculate a PWM output. With the

negligible delay, pulse width value outputs are therefore generated real-time.

Figure 6.13 shows and describes which firmware block is active during each

352.8 kHz clock count until the PWM signal is output.

The next section describes how state machines are implemented within the

VHDL firmware to control the processes which comprise the PWM modulator, and

how these different clock domains can be synchronized among them.

Firmware Implementation

University of Stellenbosch

123

6.2.3 VHDL synthesis

Synthesis is the process of building up separate elements; these elements

within the context of this thesis are the different firmware blocks described above.

The firmware blocks are controlled by state machines and there structure will be

described here. The firmware blocks also use different clock frequencies; the

communication accomplished between these asynchronous clock domains will also be

described.

6.2.3.1 State Machines

All the state machines implemented within this thesis are called Moore state

machines [6]. Figure 6.14 illustrates the architecture of such a state machine which is

an example of a synchronous sequential system. Sequential systems are those who

change state because of past input values. The present state of the system can either

be updated as soon as the next state changes, in which case the system is said to be

asynchronous, or the present state can be updated only when a clock signal changes,

which is synchronous behaviour [6].

The Moore machine is triggered by a single clock for synchronization. Its next

state is determined by some (combinational) function of the inputs and the present

state.

OutputsNext state
logic

State
Register

Output
Logic

Inputs

Clock

Figure 6.14: Mealy Machine [6].

The Moore machines implemented within the current VHDL firmware

described in the previous sections use two processes. The first process represents the

middle block within Figure 6.14. It is therefore sensitive to the clock input and only

assigns the next state or output signals when a rising edge on the clock occurs or when

the process is in reset. The second process represents the first block within Figure

6.14. It contains the combinational logic which decides what the value or state will be

Firmware Implementation

University of Stellenbosch

124

of the registers at the following clock edge. Figure 6.15 shows a VHDL example of a

two-process state machine [27].

Figure 6.15: Example of a two-process Moore state machine.

The top process in the above example is the combination logic which

determines the next state. It can be seen that the two input signals (car and timed)

determine which state will be entered next within a specific state. The second process

in the example assigns the result of the combination logic state calculation at the rising

edge of the clock signal to the present state register. The asynchronous reset signal is

the only other signal to which this process is sensitive and is only used to assure the

correct state is entered at startup of the firmware. Two-process state machines assures

that the Quartus II development software interprets the VHDL code correctly and

assures that hazards do not occur which can cause the wrong state to be entered [27].

6.2.3.2 Asynchronous Clock Domains

Different clock domains exist among the various firmware processes described

in Section 6.2.2.5 which are now listed in Table 6.1. A design subsection, driven by a

single clock source is called a clock domain [16]. The frequency and phase of each

Firmware Implementation

University of Stellenbosch

125

clock source can be different from the rest. If two clock signals do not have a

synchronous, or fixed, relationship, they are asynchronous to each other. For instance,

the interpolation process represents one clock domain, while the PNPWM and noise

shaping processes represent another. A third clock domain is represented by the PWM

generation process. These various clock domains are asynchronous toward each

other.

Firmware Process Clock Speed

Interpolation 50 MHz
PNPWM 60 MHz

Noise Shaping 60 MHz
PWM Generation 90.317 MHz

Table 6.1: Clock speeds of different processes.

From the description of the above digital PWM modulator design it is obvious

that data and signals are read and written between different clock domains. These

signals and data cannot be directly read when sent from a process representing a

different clock domain. If two asynchronous clock domains need to communicate

with each other, some consideration needs to be given to how this operation can be

performed reliably. Figure 6.16 shows a double synchroniser for simple bit data

transfer consisting of a 2-bit shift register structure clocked by the receiving clock

[27].

D Q
DFF

Data synchronized to
Tx_clk

Data Could be
Metastable

Rx_clk

Data Synchronized
(50 MHz)

D Q
DFF

D Q
DFF

Tx_clk

Data

Figure 6.16: A double synchroniser circuit.

The second stage of the shift register reduces the probability of metastability

(unknown state) on the data output from the first register propagating through to the

output of the second register. The data from the transmitting clock domain should

come directly from a register. All 1-bit signals transmitted from one clock domain to

another within the VHDL firmware implemented within this thesis are synchronised

Firmware Implementation

University of Stellenbosch

126

using the double synchroniser circuit. Figure 6.17 shows an example of how a data

bus is synchronised between asynchronous clock domains within the implemented

VHDL firmware described previously.

Figure 6.17: Data bus synchronisation between asynchronous clock domains.

The FIR_data_out[15..0] data bus (Figure 6.17) result is a latched output from

a 50 MHz process which is kept unchanged for a couple of 50 MHz clock cycles. At

the rising edge of the 352.8 kHz pulse which is synchronised to the 60 MHz data

latch, the data bus result is stored within the 16-bit latch. This stored data value is then

available at the output of the latch at the next rising edge of the 60 MHz clock. The

next process which reads the latch output is synchronised at 60 MHz, therefore

assuring data integrity.

6.3 Fixed Point Arithmetic

An important aspect to consider in the implementation of the firmware

described is the arithmetic computations executed within the FPGA. A factor which

needs to be considered are the accuracy with which arithmetic is executed to attain the

desired resolution output. All arithmetic performed within the FPGA is fixed point

implying that only integer valued arithmetic is done. To assure that the correct

resolution is achieved the following provisions are made within the firmware:

• All filter coefficients and system matrix values are normalised and scaled

sufficiently before stored within the ROM megafunctions.

• The MAC megafunctions used to perform arithmetic have sufficient bit widths

ensuring that multiplication and addition results do not overflow or truncate.

Firmware Implementation

University of Stellenbosch

127

Therefore all arithmetic computed within the FPGA has a resolution higher

than 24-bits, but since the maximum desired PWM output resolution is 24-bits, the

MAC output results are truncated when used by other processes. Making sure that all

computational results and data have 24-bit resolution implies that minor alterations

need to be made to the VHDL firmware when 24-bit audio quality can be achieved

through the noise shaping process described previously.

6.4 Cyclone FPGA Resources

The last factor considered with the implementation of the VHDL firmware is to

evaluate how much of the Cyclone FPGA resources are used. It is important to note

that only one channel of the audio data has been implemented, therefore the resources

used for one channel need to be doubled when both channels are implemented in a

practical system. Appendix E gives a complete list of features of the Cyclone FPGA

(EP1C12Q240C6) used to implement the firmware described within this chapter.

The Quartus II software report shown in Figure 6.18 gives the percentage of

these resources used. The two resources which are of main concern are the total logic

elements and total memory bits. When doubling the percentages of these resources it

is concluded that not enough logic elements would be available for a second channel,

since 80% of memory bits are used for the one channel implementation. It will

therefore be necessary to use two Cyclone FPGA devices if a reduction in memory

usage of the digital PWM modulator cannot be achieved.

Figure 6.18: Quartus II flow summary.

Firmware Implementation

University of Stellenbosch

128

6.5 Implementation Difficulties

The following difficulties where encountered with the implementation of the

VHDL firmware described.

• Meeting the timing constraints of the Quartus II megafunctions

• Proper testing of the complete firmware implementation using the

Quartus II waveform simulator.

These mentioned difficulties caused the implementation of the firmware to take

an excessively long time. This is because a long simulation time window is needed to

properly simulate timing characteristics of the megafunctions and the other developed

firmware.

When a long time window is used (typically 2 ms) the simulator runs for hours

before a result is obtained. If a small adjustment is made to the VHDL code, hours are

then past until the next result is available. Table 6.2 gives the estimated time duration

used to implement the various firmware blocks, excluding the time still needed to test

all the firmware blocks together. Based on these tabulated projections, the complete

implementation involving the different signal processing blocks could regrettably not

be tested to its full extent through Quartus II simulation. This was only due to a

limited time constraint.

Firmware Duration in weeks

Configuration 5

Polyphase filtering 21

PNPWM 6

Noise Shaper 2

PWM Generator 2

Total 36≈ (9 Months)

Table 6.2: Firmware development time.

Firmware Implementation

University of Stellenbosch

129

6.6 Summary

The chapter started off by describing the complete hardware system for a mono

channel class-D audio amplifier. It then described the VHDL firmware blocks

implemented within an ALTERA® CYCLONE FPGA. These blocks represent the

signal processing necessary for a digital PWM converter. Although a 16-bit audio

source was used to implement the converter all arithmetic processes used within the

firmware assured a computational resolution of 24-bits or higher. The high resolution

arithmetic processes simplify the alteration of the firmware when a 24-bit audio

source is used.

The highest digital PWM output resolution attained was 8-bit since logic

switching at 361 MHz could not be implemented within the FPGA. The highest audio

resolution expected at the output would therefore be 16-bits according to simulation

results in Chapter 5. Difficulties with the timing constraints of the Quartus II

megafunctions and long simulation run time hindered the complete testing of the

firmware developed. It was also concluded that two ALTERA® CYCLONE FPGAs

would be necessary to implement two audio channels since 80% of the ICs memory is

used to implement one channel using the current developed firmware.

The next chapter will proceed to give a practical measurement of the digital

PWM modulator firmware explained and developed within this chapter.

Measurements and Results

University of Stellenbosch

130

Chapter 7 - Measurements and Results

7.0 Introduction

Complete simulations have been done in Matlab® of the digital signal

processing blocks given in chapters three to five which comprise the premodulation

algorithms. Chapter 6 then implemented these algorithms within VHDL firmware for

programming of an ALTERA® CYCLONE FPGA. Within this chapter the

performance of this firmware implementation is determined through measurement.

The measurement setup is firstly described and various measurements obtained are

given. A discussion of these measurements will then follow ending off the chapter.

7.1 Measurement Setup

Figure 7.1 shows the measurement setup. The Audio precision test system or

ATS1-system generates a 16-bit S/PDIF digital input signal connected via an optical

fibre to the development board which implements the digital modulation and

generates four PWM gating signals.

These gating signals are then fed to a full bridge inverter which passes through

a passive low pass filter for audio amplification. The amplified left channel output is

then filtered again by an external filter which assures that all carrier and sideband

harmonics outside the audio band is sufficiently attenuated.

This output is then sent to the ATS1-system for measurement. The actual

system and measurement setup is illustrated in Figure 7.2.

The hardware design of the digital modulation board and the full bridge

inverter with passive low pass output filter was developed by Prof H dt Mouton at the

faculty of Electric and Electronic Engineering, University of Stellenbosch.

Measurements and Results

University of Stellenbosch

131

Digital Modulation Development Board

Digital
Interface
Reciever

(DIR 1703)

16-bit
PCM

4-PWM Gating
Signals

(L-Channel)

Signal
Processing &
Modulation

(Altera Cyclone
FPGA)

Audio
Precision

ATS-1 Audio
Test System

Optical
16-bit

S/PDIF

LC
Low Pass

Filter Analogue
Output

(signal level)

Audio
Precision

ATS-1 Audio
Test System

Full Bridge
Inverter &

Passive Low
Pass filter

Figure 7.1: Digital modulation measurement setup.

Figure 7.2: Complete measurement setup.

Measurements and Results

University of Stellenbosch

132

Figure 7.3: Zoomed view of digital modulation development board.

7.2 Measurements

A 1 kHz 16-bit sinusoidal tone exhibiting an amplitude of 0 dBFS was

generated by the ATS-1 audio test system and input to the digital modulator as

described above. All the simulations done previously within this thesis used a 1 kHz

sinusoidal tone which is a common choice for measuring audio systems. The

measurements which were done here not only used the 1 kHz tone but used various

other frequencies as well to gain a good understanding of the amplifier performance.

The measurements which were taken will now be described.

7.2.1 PWM gating signals

Figure 7.4 shows one of the FPGAs PWM output gating signals when a 16-bit,

1 kHz tone is applied by the ATS1-system. The different pulse durations are

superimposed on each other in this measurement. From this figure it is seen that the

duty cycle of the PWM signal doesn’t vary more than 50%. Figures 7.5 and 7.6 show

single cycle measurements of the PWM gating signal, from these figures it can be

seen how the pulse width signal is varying. An overshoot of 38% is also observed on

these PWM gating signals.

Measurements and Results

University of Stellenbosch

133

Figure 7.4: PWM gating output signal from FPGA.

Figure 7.5: Single cycle of PWM gating signal.

Figure 7.6: Single cycle of PWM gating signal.

Measurements and Results

University of Stellenbosch

134

7.2.2 Amplified output measurement

The amplified output of the filtered inverter was then measured using an

oscilloscope at frequencies of 1, 10, 12 and 16 kHz respectively. These measurements

are illustrated in Figure 7.7, 7.8, 7.9 and 7.10 respectively

Figure 7.7: Amplified 1 kHz sinusoidal output.

Figure 7.8: Amplified 10 kHz sinusoidal output.

Measurements and Results

University of Stellenbosch

135

Figure 7.9: Amplified 12 kHz sinusoidal output

Figure 7.10: Amplified 16 kHz sinusoidal output

From Figure 7.7 it is seen that the 1 kHz amplified output has a clear sinusoidal

form at 5 ptpV with some added noise component. The 10 kHz output does not have a

clear sinusoidal form but is distorted by some non-linearity. The 12 kHz output shows

a peculiar result of about -1 V with noise superimposed on it. An even more peculiar

result is given in Figure 7.10 here a 16 kHz input was applied and a distorted 7.9 kHz

output was attained.

7.2.3 Frequency response measurement

With the strange results obtained above the frequency response of the Class-D

amplifier was measured in dBV using the ATS1-system and is given in Figure 7.11.

In this figure a clear attenuation is observed in the region between 10 and 14 kHz.

Measurements and Results

University of Stellenbosch

136

0 2 4 6 8 10 12 14 16 18 20-100

-80

-60

-40

-20

0

20

Frequency (kHz)

dB
V

FREQUENCY RESPONSE

Figure 7.11: Frequency response of Class-D amplifier system.

7.2.4 THD+N measurement

A Common measurement for a DAC system as is investigated here is the

THD+N (Total Harmonic Distortion plus Noise) measurement [2]. The ATS-1-

system was used to do this measurement and is shown in Figure 7.11.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Frequency (kHz)

Pe
rc

en
ta

ge
 (%

)

THD+N

Figure 7.11: THD+N across the audio band.

Measurements and Results

University of Stellenbosch

137

High fidelity systems of 16-bit resolution should exhibit a THD+N of 0.02

within the entire audio band. When examining Figure 7.11 it is seen that the lowest

THD+N is around 2% at an audible frequency of about 1 kHz. The THD+N level

rises gradually until about 12 kHz where it then increases exponentially and then

flattens out at 20 kHz with a THD+N of 98%. This measurement of THD+N obtained

here is extraordinarily high.

7.3 Discussion of Measurement Results

It is clearly deduced from the above measurements that the digital modulator

implemented using the developed firmware described in Chapter 6 doesn’t work

correctly. The first concern with these measurements starts with the PWM gating

signal which has a maximum duty cycle of 50%, the duty cycle should be able to vary

to 90%. The second concern is the attenuation present in the frequency response of

the amplifier between 10 and 14 kHz. This attenuation was confirmed by both the

oscilloscope amplitude measurement and the frequency response measurement of the

ATS1-system. The third concern is the frequency division which occurs after 12 kHz

frequency, this division phenomenon is confirmed by the THD+N measurements

which increases drastically from this frequency value. Fourthly the overall THD+N

measurement results are too high, and therefore this system cannot be considered as

high fidelity.

It is not totally clear what the source/s of these system inaccuracies are, what is

clear is that the design methodology followed to implement the firmware was proven

by theory and simulation in Matlab® within the previous chapters. The source of

these inaccuracies therefore probably lies within the synthesis of the firmware

implementation. More testing and simulation of the firmware is therefore necessary to

identify and rectify the faults within the digital modulator.

7.4 Conclusions

Within this chapter a complete Class-D amplifier was setup for measurement.

The goal of the setup was to test the firmware which was developed to implement a

digital modulator. It was concluded through relevant measurements that the current

developed firmware does not implement a high fidelity digital PWM modulator. It

Measurements and Results

University of Stellenbosch

138

was suggested that more simulation and testing of the firmware be done since the fault

most probably lies within the synthesis of the firmware implementation.

Conclusions

University of Stellenbosch

139

Chapter 8 - Conclusions

8.0 Overview

At the outset of this thesis the following objectives were given to address the

difficulties associated with the digital PWM process:

• Identifying how these algorithms address these difficulties.

• Dividing these algorithms into appropriate blocks.

• Sufficiently describing each block in theory.

• Presenting a design solution for each block.

• Simulating these designs in Matlab®.

• Developing VHDL firmware of the simulated designs.

• Attempting to realize a practical Class-D amplifier using the developed

firmware.

8.1 Fulfilment of Objectives

It was identified that linearization and clock rate reduction addresses the digital

PWM difficulties of performance and practicality respectively. The pre-

compensation, pre-modulation algorithms which implement linearization are divided

into interpolation and PNPWM. A noise shaping coder was used to implement clock

rate reduction of PWM output signals.

These defined signal processing blocks were each described separately within

their own chapter. Design of these algorithm blocks were implemented successfully

within Matlab ® attaining satisfactory results.

If 24-bit audio data is available, the digital modulator designed (comprising of

the modular pre-compensation algorithms) and simulated in Matlab® is able to

transparently process the data up to the noise shaping coder. The highest audio bit

resolution attained at the output of the noise shaping coder was 20-bits. These results

where confirmed through relevant graphs.

The firmware implementation of the digital PWM modulator exhibits 24-bit

resolution within the arithmetic computation. Only an 8-bit noise shaping coder could

Conclusions

University of Stellenbosch

140

be implemented within the firmware resulting in a maximum audio resolution output

of 16-bits. This is still regarded as high fidelity. Difficulties were encountered with

the implementation of the firmware which implied more time for development than

expected, therefore hindering the complete testing of the firmware in simulation.

Relevant measurements of the developed firmware used in a practical Class-D

audio amplifier setup were then taken. The measurements concluded that the firmware

developed does not exhibit a high fidelity digital PWM modulator. The fault(s)

present within the PWM modulator is(are) most probably caused by VHDL synthesis

problems.

Apart from the fault(s) which is(are) present within the VHDL firmware, all

the objectives given have therefore been attained.

8.2 Recommendations and Future Research

It is firstly recommended that more time should be spent simulating and

debugging the VHDL firmware. When the synthesis fault(s) has(have) been found,

the current VHDL firmware developed should attain a 16-bit PWM audio resolution

output.

A second recommendation is to implement a 10-bit noise shaping coder which

has the potential to increase the audio resolution output to 20-bits.

Thirdly a reduction in VHDL memory resources could enable the processing of

both audio channels on one Cyclone FPGA. This would cut development costs quite

dramatically, since the Cyclone FPGA used in this thesis to implement one audio

channel costs R405.

Further research needs to be done on the noise shaping coder since it is the

only block within the digital PWM modulator that does not attain a 24-bit output.

Noise shaping coders therefore need to be developed which are able to produce 24-bit

audio resolution from a 10-bit output, or FPGA clock speeds of 723 MHz or faster are

necessary to implement noise shapers of 11-bits or more. With current clock speed

constraints the second option is not viable within an FPGA implementation.

References and Bibliography

University of Stellenbosch

141

References and Bibliography

Textbooks

[1] Abdelwahab Kharab, Ronald B. Guenther, An Introduction to Numerical Methods

a Matlab Approach, Chapman & Hall/CRC, 2002.

[2] Bob Metzler, Audio Measurement Handbook, Audio Precision, Inc 1993

[3] John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Third Edition,

Prentice Hall, Inc 1996, p269-273, p331-332, p619-p620, p637, p638.

[4] Grahame D. Holmes, Pulse Width Modulation Theory for Power Converters, John

Wiley, 2003.

[5] Harold S. Black, Modulation Theory, D. Van Nostrand Company, Inc 1953.

[6] Mark Zwolinski, Digital System Design with VHDL, Prentice Hall, 2000.

[7] Peter J. Ashenden, The Designer’s Guide to VHDL, Academic Press, 2002.

[8] Peter Deufhard, Andreas Hohmann, Numerical Analysis in Modern Scientific

Computing, Second Edition, Springer-Verlag New York, Inc 2003.

[9] R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill

Book Company, Inc 1962.

[10] Simon Haykin, An Introduction to Analogue and Digital Communications,

John Wiley & Sons, Inc 1989.

[11] William H. Press, Saul A. Teukolsky, William T. Vettering, Brian P. Flanery,

Numerical Recipes in C++, The Art of Scientific Computing, Second Addition,
Cambridge University Press, 2002.

Papers

[12] C. E. Shannon, “A Mathimatical Theory of Communication”, Reprinted with

corrections form The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-
656, July, October, 1948.

[13] C. Pascual, Z. Song, P.T. Krein, D.V. Sarwate, P. Midya, W.J. Roeckner,

“High Fidelity PWM Inverter for Digital Audio Amplification: Spectral Analysis,
Real-Time DSP Implementation, and Results” IEEE Transactions on Power
Electronics, Vol. 18, No.1, January 2003.

[14] D. De Koning, W. Verhelst, “On Psychoacoustic Noise Shaping for Audio

Requantization”, Vrije Universiteit Brussels, dept. ETRO-DSSP, Pleinlaan 2, B-
1050 Brussels, Belgium.

References and Bibliography

University of Stellenbosch

142

[15] E. Bresch, W. T. Padgett, “TMS320C67-Based Design of a Digital Audio

Power Amplifier Introducing Novel Feedback Strategy”, Rose-Hulman Institute of
Technology, Electrical and Computer Engineering Department, 5500 Wabash
Ave., Terre Haute, IN 47803.

[16] J. Stephenson, “Design Guidelines for Optimal results in FPGAs”, Altera

Corporation, 2005.

[17] J. M. Goldberg, M. B. Sandler, “Digital-to-Analogue convertor/Power

Amplifier”, IEE Proc.-Circuits Devices Syst., Vol. 141, No. 4, August 1994

[18] J.M. Goldberg, M. B. Sandler, “Noise Shaping and Pulse-Width Modulation

for an All-Digital Audio Power Amplifier”, Department of Electronic and
Electrical Engineering, King’s College, University of London, London WC2R
2LS, UK.

[19] J. M. Goldberg, M. B. Sandler, “Pseudo-Natural Pulse Width Modulation for

High Accuracy Digital-to-Analogue Conversion”, Electronic Letters, Vol. 27, No.
16, 1 August 1991.

[20] M. Streitenberger, H. Bresch, W. Mathis, “Theory and Implementation of a

New Type of Digital Power Amplifiers for Audio Applications”, IEEE
International Symposium on Circuits and Systems, May 2000.

[21] M. O. J. Hawksford, Chaos, Oversampling, and Noise Shaping in Digital-to-

Analog Conversion, Department of Electronic Systems Engineering, University of
Essex, Colchester, Essex, C04 3SQ, UK.

[22] R. E. Crochiere, L. R. Rabiner, “Interpolation and Decimation of Digital

Signals- A Tutorial Review”, Proceedings of the IEEE, Vol. 69, No. 3, March
1981.

[23] R. A. Losada, “Practical FIR Filter Design in Matlab®”, Revision 1.0, The

Math Works, Inc., 3 Apple Hill, Dr Natick, MA 01760, USA, March 31, 2003

[24] R. W. Schafer, L. R. Rabiner, “A Digital Signal Processing Approach to

Interpolation”, Proceedings of the IEEE, Vol 61, No. 6, June 1973.

[25] S. K. Tewksbury, R. W. Hallock, “Oversampled Linear Predictive and Noise-

Shaping Coders of Order 1N > ”, IEEE Trans. Circuits Sys., Vol. CAS-25, pp
437-447, July 1978.

References and Bibliography

University of Stellenbosch

143

Websites

[26] ALTERA.COM, “Altera Megafunctions”,

http://www.altera.com/products/ip/altera/mega.html, 2005.

[27] ALTERA.COM, “Hardware Design Considerations”,

http://www.altera.com/literature/hb/hrd/hc_h5v1_03.pdf, 2005

[28] ALTERA.COM, “Quartus II Timing Analysis”,

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf, 2005

Appendix A

University of Stellenbosch

144

Appendix A

A1. Interpolation Matlab Code

%Programmer : Deon Jacobs
%Date : 15 July 2005
%Goal : (a) Find PSD of a signal sampled at 44.1 KHz
% : (b) Using mfilt construct a polyphase filter structure
% from the equiripple FIR filter (ER_632.fda) designed
% with the fdatool. The goal of the structure is to interpolate
% (c) Filter the input signal with the polyphase structure
% Filename : signal_psd.m
% Revision : 1.1

clc
data_length = 2^16;
n = [0:1:data_length]; %signal data length vector
n_up = [0:1:data_length*8]; %Upsampled filtered output data length vector
F1 = 1000; %sinusoidal frequency
Fs = 44100; %sampling frequency
F_up = 352.8e3; %upsampling frequency
Na = 1/(2^24); %noise component amplitude
A = 1; %sinusoidal component amplitude
L1 = 1; %amounts of experiments of signal
L = 8; %upsampling ratio
nfft = 2^16; %length of the PSD estimate (nfft-data_length=zero_padded)
Z = 1024; %Amount of zeros to be padded after input signal
fs = 18; %Font size of graph labels
lw = 2;

%--
% Input signal array
%--

[xn_arr] = data_array(n,F1,Fs,Na,L1,A,Z); % Sinusoidal input signal

%--
% Setup Polyphase structure from the filter coeficients contained in Num,
% for interpolation. Using Matlab function mfilt
%--

 Pn = mfilt.firinterp(L,Num);

%--
%Use own polyphase structure code
%--

[yn_own_arr,Poly_matrix] = polyphase_filter_arr(xn_arr,L1,Num,L);

%--
% Zero pad between consequtive samples (sample rate expander)
%--
% Oversample by 8 through pending zeros between consecutive samples if L1=1
 if (L1 == 1),
 z = zeros(1,7); % Zero vector for oversampling
 for i=[1:1:data_length],
 if i==1
 xn_zero = [xn_arr(i) z];
 else
 xn_zero = [xn_zero xn_arr(i) z];
 end;

Appendix A

University of Stellenbosch

145

 end;
 end;
%--
% PSD estimates of the input signal
%--

for i=[1:1:L1], % Make L1 realizations of each estimate

 [MTM_xx,fx_MTM] = pmtm(xn_arr,[],length(xn_arr),[],'onesided'); % MTM estimate of input
 [MTM_ww,fw_MTM] = pmtm(xn_zero,[],length(xn_zero),[],'twosided'); % MTM estimate of sample rate
 expanded signal
end;

%--
%PSD estimates of the output signal
%--

 for i=[1:1:L1], % Make L1 realizations of each estimate

 [MTM_yy,fy_MTM] = pmtm(yn_own_arr,[],length(yn_own_arr),[],'twosided');
 end;

%--
%Averages of PSD estimates
%--
 MTM_xx_avg = MTM_xx;
 MTM_ww_avg = MTM_ww;
 MTM_yy_avg = MTM_yy;

%--
% Logarithms of PSD estimates
%--

MTM_xx_dB = 10*log10(MTM_xx_avg);
MTM_ww_dB=10*log10(MTM_ww_avg);
MTM_yy_dB = 10*log10(MTM_yy_avg);

%%---
%% Graph code -
%% --
set(0,'DefaultAxesColorOrder',[0 0 0],'DefaultLineLineWidth',lw);

%---
%Plots of PSD estimates
%---

%Plot of the input signal PSD
% Figure(1)
% plot(fx_MTM,MTM_xx_dB);
% set(gca,'FontSize',fs);
% set(get(gca,'XLabel'),'FontSize',fs);
% set(get(gca,'YLabel'),'FontSize',fs);
% set(get(gca,'Title'),'FontSize',fs);
% xlabel('Normalized Frequency (x\pi rad/sample)');
% ylabel('dB');
% axis([0 1 -200 0]);

% Plot of the sample rate expanded PSD
% Figure(2)
% plot(fw_MTM,MTM_ww_dB);
% set(gca,'FontSize',fs);
% set(get(gca,'XLabel'),'FontSize',fs);
% set(get(gca,'YLabel'),'FontSize',fs);
% set(get(gca,'Title'),'FontSize',fs);
% xlabel('Normalized Frequency (x\pi rad/sample)');

Appendix A

University of Stellenbosch

146

% ylabel('dB');
% axis([0 1 -200 0]);

% Plot of upsampled and original signal
 Figure(3)
 subplot(3,1,1)
 begin1 = 312;
 index = 800;
 extra = 5;
 end1 = begin1+index;
 end2 = index/L+1;
 %Upsampled signal
 if (L1 ~= 1),
 stem((n_up(begin1:end1)/F_up)*1e3,yn_own_arr(1,begin1+extra:end1+extra),'b','filled');
 else
 stem((n_up(begin1:end1)/F_up)*1e3,yn_own_arr(begin1+extra:end1+extra),'filled','color',[0.569 0.569 0.569]);
 end;
 hold on
 % stem(n_up(1115:1483)/F_up,yn_matlab_arr(1,1117:1485),'b');

 %Original signal
 if (L1 ~= 1),
 stem((n_up(begin1:L:end1)/F_up)*1e3,xn_arr(1,1:end2),'k','filled');
 else
 stem((n_up(begin1:L:end1)/F_up)*1e3,xn_arr(1:end2),'k','filled');
 end;
 hold off
 xlabel('(a)');
 ylabel('Amplitude');
 %title('y(n)');
 set(gca,'FontSize',fs);
 set(get(gca,'XLabel'),'FontSize',fs);
 set(get(gca,'YLabel'),'FontSize',fs);
 set(get(gca,'Title'),'FontSize',fs);
 set(gca,'YTick',[-1 0 1]);
 axis([0.9 2.6 -1.1 1.1]);
 legend('Interpolated output signal y(n)','Input signal x(n)');
 legend('boxoff');
 box off
 subplot(3,1,2)

 %Upsampled signal
 if (L1 ~= 1),
 stem((n_up(begin1:end1)/F_up)*1e3,yn_own_arr(1,begin1+extra:end1+extra),'b','filled');
 else
 stem((n_up(begin1:end1)/F_up)*1e3,yn_own_arr(begin1+extra:end1+extra),'filled','color',[0.569 0.569 0.569]);
 end;
 hold on
 % stem(n_up(1115:1483)/F_up,yn_matlab_arr(1,1117:1485),'b');

 %Original signal
 if (L1 ~= 1),
 stem((n_up(begin1:L:end1)/F_up)*1e3,xn_arr(1,1:end2),'k','filled');
 else
 stem((n_up(begin1:L:end1)/F_up)*1e3,xn_arr(1:end2),'k','filled');
 end;
 hold off
 xlabel('(b)');
 ylabel('Amplitude');
 %title('y(n)');
 set(gca,'FontSize',fs);
 set(get(gca,'XLabel'),'FontSize',fs);
 set(get(gca,'YLabel'),'FontSize',fs);
 set(get(gca,'Title'),'FontSize',fs);
 set(gca,'YTick',[-1 0 1]);
 axis([1.8 2.1 0 1.1]);

Appendix A

University of Stellenbosch

147

 box off
 subplot(3,1,3)

 %Upsampled signal
 if (L1 ~= 1),
 stem((n_up(begin1:end1)/F_up)*1e3,yn_own_arr(1,begin1+extra:end1+extra),'b','filled');
 else
 stem((n_up(begin1:end1)/F_up)*1e3,yn_own_arr(begin1+extra:end1+extra),'.','color',[0.569 0.569
0.569],'LineStyle','none');
 end;
 hold on
 % stem(n_up(1115:1483)/F_up,yn_matlab_arr(1,1117:1485),'b');

 %Original signal
 if (L1 ~= 1),
 stem((n_up(begin1:L:end1)/F_up)*1e3,xn_arr(1,1:end2),'k','filled');
 else
 stem((n_up(begin1:L:end1)/F_up)*1e3,xn_arr(1:end2),'k','filled');
 end;
 hold off
 xlabel('Time (\itms)');
 xlabel('(c)');
 ylabel('Amplitude');
 text(0.5,0.5,'(\itms)');
 %title('y(n)');
 set(gca,'FontSize',fs);
 set(get(gca,'XLabel'),'FontSize',fs);
 set(get(gca,'YLabel'),'FontSize',fs);
 set(get(gca,'Title'),'FontSize',fs);
 set(gca,'YTick',[-1 0 1]);
 axis([1.9 2.05 0 1.1]);
 box off
%--
%
% set(0,'DefaultAxesFontSize',fs);

%Sinusoidal input signal & Spectral estimate
% Figure(5)
% stem((n(1:100)/Fs)*1e3,xn_avg(1:100),'k','filled');
% xlabel('Time (\itms)');
% ylabel('Amplitude');
% title('x(n)');
% set(gca,'FontSize',fs);
% set(get(gca,'XLabel'),'FontSize',fs);
% set(get(gca,'YLabel'),'FontSize',fs);
% set(get(gca,'Title'),'FontSize',fs);
% set(gca,'YTick',[-1 0 1]);
% axis([0 2 -1 1]);
% grid off

%Sample rate expanded signal
% Figure(6)
% stem((n(1:350)/F_up)*1e3,xn_zero(1:350),'k','filled');
% xlabel('Time (\itms)');
% ylabel('Amplitude');
% title('w(n)');
% set(gca,'FontSize',fs);
% set(get(gca,'XLabel'),'FontSize',fs);
% set(get(gca,'YLabel'),'FontSize',fs);
% set(get(gca,'Title'),'FontSize',fs);
% set(gca,'YTick',[-1 0 1]);
% grid off

Appendix B

University of Stellenbosch

148

Appendix B

PWM Spectral Calculation

B1. Estimation method

All spectrum plots of PWM signals are generated using the following spectral

estimate method (assuming a periodical modulating waveform): A typical PWM

signal has a pulse varying characteristic shown in Figure B1.

Switching Interval

0

Vdc

0τ
1τ

2τ
3τ

Figure B1: PWM signal.

The spectrum is estimated by storing a number of pulses of the PWM output

signal which represents one period of the modulating waveform. Each one of these

pulses within the period represents a rectangular function in the time domain which is

offset by a certain time value from the zero time coordinate. These time intervals are

illustrated in Figure B1. Each of these rectangular functions has a frequency

characteristic related to it and given by the following mathematical expression

2Rect Sinc() nj fn
n

n

tA AT T f e
T

π ττ − − ⇔
. (C.1)

Appendix B

University of Stellenbosch

149

Where nτ represents the time position of a particular pulse from the time origin,

and nT represents the particular pulse width. The exponential term is present because

of the time displacement each pulse width exhibits from the origin.

Figure B2 shows how each rectangle is converted to its frequency domain

counterpart using (B.1). A frequency index is generated to include the relevant

frequency values according to the signal characteristics.

For example if it is known that the switching frequency component is 352.8

kHz, this frequency number needs to be included in the frequency index otherwise it

will not be represented within the estimated spectrum. The frequency index therefore

needs to be chosen as fine as possible to insure that the estimate is a true

representation of the PWM signal spectrum.

After the relevant frequency sinc values have been calculated from the

corresponding pulse width, these sequences are then multiplied with a Hanning

window function to minimize spectral leakage occurring (Figure B.2). The windowed

sinc sequences resulting from each pulse width forms a matrix which is then added

column wise and then averaged according to the number of pulse widths within used

for the spectral estimate. This averaged sequence represents a statistical average of

the PWM spectra. The more modulating periods used to estimate the spectra the more

accurate the result becomes.

The next section in this Appendix gives the Matlab ® code which is used to

estimate the PWM spectra within this thesis.

Appendix B

University of Stellenbosch

150

⇔

⇔

⇔

⇔

Time Domain Frequency Domain

0T

1T

2T

3T

×

×

×

×

Hanning
Window
Function

Hanning
Window
Function

Hanning
Window
Function

Hanning
Window
Function

∑

∑

∑

Average

Estimated Spectra

Relevant frequency index values

Figure B.2: Spectrum estimate calculation.

Appendix B

University of Stellenbosch

151

B2. Matlab Code for PWM Spectral Estimate

%Programmer : Deon Jacobs
%Date : 4 August 2005
%Goal : Determine the spectral conent of a PWM signal
% : Instead of using spectral estimate methods, the
%Filename : PWM_spectra.m
%Revision : 1.0

function [pwm_spec,f] = PWM_spectra(pwm_widths,Fs,Fstep,F_end)

% pwm_widths : vector containing calculated pwm_widths
% Fs : sampling frequency
% F1 : resolution of the frequency axis

Ts = 1/Fs; % Sampling frequency
f = [0:Fstep:F_end]; % Frequency index
Window = hanning(length(pwm_widths)); % Window function

% Make sure window has unity variance

window_square_sum = sum(Window.^2);
ratio = sqrt(window_square_sum);
Hann_window = Window/ratio*sqrt(length(Window));

% Compute different sinc contributions at specified frequency values

for i = [1:1:length(pwm_widths)],
 %half the length of the pwm_width
 half_width = pwm_widths(i)/2;

 %Middle point time of square window with respect to the origin
 middle_point(i) = Ts*(i-1)+half_width;

 %Sinc calculation in the frequency domain
 f_sinc(i,:) = ((pwm_widths(i)*sinc(f*pwm_widths(i))).*exp(-j*2*pi*f*middle_point(i)))*Hann_window(i);

end;
pwm_spec = sum(f_sinc)/length(pwm_widths);

Appendix C

University of Stellenbosch

152

Appendix C

Spectral Estimate Matlab Code for PWM Schemes

C1. Trailing edge NPWM

% Programmer : Deon Jacobs
% Date : 5 Augustus 2005
% Goal : NPWM spectral estimation using Newton Raphson
% : iteration
% Filename : Newton_Raphson.m
% Revision : 1.0
clear all
close all
clc

% Graph properties
%-----------------
fs = 18;
lw = 2;
set(0,'DefaultAxesColorOrder',[0 0 0],'DefaultLineLineWidth',lw);

Fs = 352.8e3; %Saw-tooth frequency
ws = 2*pi*Fs; %Corner frequency of sampling frequency
Ts = 1/Fs; %Period of the saw-tooth wave
f_divider = 353; %Divider to get the tonal frequency
F_end = Fs; %Maximum spectral frequency value
k = [0:1:f_divider]; %Cross point index
F1 = Fs/(f_divider); %Signal frequency content
w1 = 2*pi*F1; %Corner frequency of input signal
T1 = 1/F1; %Signal period
t_cross_pnt = k*Ts; %Crosspoint interval boundaries
t_app_zero = (k+0.5)*Ts; %Guesses to crosspoints within PWM intervals
A = 0.95; %Sinusoidal amplitude
omega = 2*pi*F1; %Corner frequency of sinusoidal signal

for i = [1:1:f_divider],

 for iter =[1:1:5],
 % Calculate the sawtooth waveform for the present interval
 st(i) = (2/Ts)*t_app_zero(i) + (1-2*i);

 % Input signal
 xt(i) = A*sin(omega*t_app_zero(i));

 % Subtract above two equations to gain the new function which roots
 % need to be determined
 ft(i) = st(i)- xt(i);

 % Calculate the denominator derivative
 ft_der(i) = (2/Ts) - A*omega*cos(omega*t_app_zero(i));

 % Newton Raphson iteration
 t_app_zero(i) = t_app_zero(i) - ft(i)/ft_der(i);
 end;
 t_pwm_width(i) = t_app_zero(i)-t_cross_pnt(i);
end;

C1. Trailing edge NPWM

University of Stellenbosch

153

[pwm_spec,f] = PWM_spectra(t_pwm_width,Fs,F1,F_end); % Compute PWM spectra
pwm_spec = pwm_spec/max(pwm_spec);
pwm_spec_dB = 10*log10((abs(pwm_spec)).^2); % Decibel value of spectra

Figure(1)
stem(t_pwm_width);

Figure(2)
subplot(1,2,1)
plot((f/1e3),pwm_spec_dB,'.','markersize',20);
hold on
plot((f/1e3),pwm_spec_dB);
hold off
%hold on
%plot(f,pwm_spec_wind_dB,'.r');
%hold off
set(gca,'FontSize',fs);
set(get(gca,'XLabel'),'FontSize',fs);
set(get(gca,'YLabel'),'FontSize',fs);
set(get(gca,'Title'),'FontSize',fs);
%title(['NPWM Spectral Estimate of ',num2str(F1),' Hz modulation tone']);
title('Frequency Content Showing Carrier Harmonics','Fontsize',14);
xlabel('(a) kHz');
ylabel('dB');
box off

subplot(1,2,2)
plot((f/1e3),pwm_spec_dB,'.','markersize',20);
hold on
plot((f/1e3),pwm_spec_dB);
hold off
%hold on
%plot(f,pwm_spec_wind_dB,'.r');
%hold off
set(gca,'FontSize',fs);
set(get(gca,'XLabel'),'FontSize',fs);
set(get(gca,'YLabel'),'FontSize',fs);
set(get(gca,'Title'),'FontSize',fs);
%title(['NPWM Spectral Estimate of ',num2str(F1),' Hz modulation tone']);
title('Zoomed View of Baseband Frequency Content','Fontsize',14);
xlabel('(b) kHz');
%ylabel('dB');
axis([0 20 -350 0]);
box off

C2. Trailing edge UPWM, and
PNPWM using Newton’s method

University of Stellenbosch

154

C2. Trailing edge UPWM, and PNPWM using Newton’s method

% Programmer : Deon Jacobs
% Date : 26 October 2005
% Goal : Pseudo pulse width modulation simulation, using an 8th order
% : polynomial p(t) fitted through PCM samples x(n) and trailing edge
% : modulation s(t).
% Filename : PNPWM.m
% Revision : 3.1

clc
clear
fsize = 18;
lw = 2;
set(0,'DefaultAxesColorOrder',[0 0 0],'DefaultLineLineWidth',lw);
set(0,'DefaultTextFontSize',18,'DefaultAxesFontSize',18);

A = 0.95; % Amplitude
bit = 24; % Bit resolution
fs = 352.8e3; % Switching frequency
Ts = 1/fs; % Switching period
f1 = fs/352; % Tonal frequency
f_end = fs; % Last frequency value represented in spectra
cycle_num = 10; % Number of sinusoidal cycles, must be larger than 3;
ratio = fs/f1;
n = [-3:1:cycle_num*ratio+4]; % Index
t = n/fs; % Time index representation
O = 8; % Order of approximated polynomial
Qbit = 8; % Bit resolution after quantization
bit_res = 24; % Resolution of PWM input
ms = 2; % Sawtooth gradient
c = 9; % y-axis crosspoint
I = 1; % Number of experminents for statistical average

%------------------------------------
% Sinusoidal modulation wave
%-----------------------------------
xn = A*cos(2*pi*(f1/fs)*n); %+(1/2^bit)*randn(1,length(n));

% Determine polynomial 8th order coefficients
%--
% Xa=b
% a=polynomial coeficients
% X=system matrix
% b=input samples
x = [0:1:O]; %O sample index vector
for i=[1:1:O+1], %Row array loop
 matrix_temp = 1;
 for j=[2:1:O+1]; %Column fill in
 matrix_temp = [matrix_temp x(i)^(j-1)];
 end;
 X(i,:) = matrix_temp;
end;
% Inversion of the square system matrix
X_inv = inv(X);

% Step through input modulation wave:
%-----------------------------------

%ns_filter_num = [5 -10 10 -5 1]; % Fifth order feedback filter
filt_order = length(ns_filter_num); % Order of noise shaper feedback filter

C2. Trailing edge UPWM, and
PNPWM using Newton’s method

University of Stellenbosch

155

int_cnter = 1; % number of switching intervals
x_iter = 4.5; %Crosspoint guess within switching interval
ns_output = [];
ns_output(1)= 0; %first output of feedback filter, delay of one sample
erq_vec = zeros(1,filt_order); %feedback filtering vector

for i=[1:1:(length(xn)-O)],

 xn_capt(int_cnter,:) = xn(i:i+O); % Captured 9 samples

 % Calculate polynomial coeficients
 a(int_cnter,:) = X_inv*xn_capt(int_cnter,:)'; % a = X_inv*y

 %(1) UPWM modulation
 UPWM(int_cnter) = (((xn_capt(int_cnter,4)+c)/2)-4)/fs;

 %(2) Newton's Method for PNPWM
 [Newton_width(int_cnter)] = Newton_PNPWM(ms,c,a,int_cnter,x_iter,fs);

 %(3) Noise shaper
 %Generate 24-bit pwm
 Newton_width_24bit = round(Newton_width(int_cnter)*2^24);

 %1st adder
 dn = Newton_width_24bit + ns_output;

 %Quantizer
 pwm_8bit = bitshift(dn,-16);

 %Scale 8-bit resolution to 24-bit
 pwm_8bit_scale = bitshift(pwm_8bit,16);

 %Noise from quantization process (2nd adder/subtractor)
 e_rq = (dn-pwm_8bit_scale);

 %Update filter vector
 erq_vec = [e_rq erq_vec(1:end-1)];

 %Filter error e_rq
 filt_out = erq_vec(1:end)*(bitshift(ns_filter_num,32))'; %round(ns_filter_num*2^32)';

 %New feedback filter H(z) output
 ns_output = bitshift(filt_out,-32);

 %8-bit PWM vector
 pwm_ns_t(int_cnter) = pwm_8bit/((2^Qbit)*fs);

 %Increment counter
 int_cnter = int_cnter+1;
end;

[pwm_spec_ns,f_ns] = PWM_spectra(pwm_ns_t(356:end),fs,f1,f_end);
pwm_spec_ns_avg = pwm_spec_ns;
pwm_spec_norm = pwm_spec_ns_avg/max(pwm_spec_ns_avg);
pwm_spec_ns_dB = 10*log10(abs(pwm_spec_norm).^2);

C2. Trailing edge UPWM, and
PNPWM using Newton’s method

University of Stellenbosch

156

% %=> UPWM
% %---------------
% % Spectral calculation
% [UPWM_spec,f] = PWM_spectra(UPWM,fs,f1,f_end);
% pwm_spec_norm = UPWM_spec/max(UPWM_spec);
% UPWM_spec_dB = 10*log10(abs(pwm_spec_norm).^2);
% %Spectral plot
% % Figure(1)
% % plot(f/1e3,UPWM_spec_dB,'.');
% % set(gca,'FontSize',fsize);
% % set(get(gca,'XLabel'),'FontSize',fsize);
% % set(get(gca,'YLabel'),'FontSize',fsize);
% % set(get(gca,'Title'),'FontSize',fsize);
% % title(['Uniform Pulse Width Modulated Spectral Estimate: ',num2str(f1),' Hz']);
% % xlabel('kHz');
% % ylabel('dB');
% % axis([0 400 -400 0]);
% Figure(1)
% subplot(1,2,1)
% plot(f/1e3,UPWM_spec_dB,'.','markersize',20);
% hold on
% plot(f/1e3,UPWM_spec_dB);
% hold off
% box off
% title('Frequency Content Showing Carrier Harmonics','Fontsize',14);
% xlabel('(a) kHz');
% ylabel('dB');
% axis([0 400 -350 0]);
% subplot(1,2,2)
% plot(f/1e3,UPWM_spec_dB,'.','markersize',20);
% hold on
% plot(f/1e3,UPWM_spec_dB);
% hold off
% box off
% title('Zoomed View of Baseband Frequency Content','Fontsize',14);
% xlabel('(b) kHz');
% %ylabel('dB');
% axis([0 20 -350 0]);

% => Newton's Method for PNPWN
% ----------------------------
% Spectral calculation
[pwm_spec_N,f] = PWM_spectra(Newton_width(355:end),fs,f1,f_end);
pwm_spec_norm = pwm_spec_N/max(pwm_spec_N);
pwm_spec_N_dB = 10*log10(abs(pwm_spec_norm).^2);

% %PWM_output generate
% %[pwm_N_output] = plot_pwm(Newton_width,fs);
%
% % %PWM output plot
% % Figure(1)
% % % x-axis scaling
% % m = [0:length(pwm_N_output)/length(xn):length(pwm_N_output)-1]*2.8987e-2;
% % m_pwm = [0:2.898704e-2:1.023242e3];
% % % plot details
% % subplot(2,1,1)
% % % Modulating input
% % plot(m,xn);
% % hold on
% % stem(m,xn,'.','markersize',20);
% % hold off
% % axis([1.00e2 2.00e2 -0.2 max(xn)+0.2]);
% % set(gca,'YTick',[0 1]);

C2. Trailing edge UPWM, and
PNPWM using Newton’s method

University of Stellenbosch

157

% % xlabel('Time({\mu}s)');
% % ylabel('Amplitude');
% % title('{\ity(m)}');
% % box off
% % % PWM output
% % subplot(2,1,2)
% % plot(m_pwm,pwm_N_output);
% % axis([1.00e2 2.00e2 min(pwm_N_output)-0.2 max(pwm_N_output)+0.2]);
% % set(gca,'YTick',[0 1]);
% % set(gca,'YTickLabel',{'0';'Vdc'})
% % xlabel('Time({\mu}s)');
% % ylabel('Amplitude');
% % title('PNPWM output');
% % box off
% %
%PNPWM output spectra
Figure(2)
subplot(1,2,1)
plot(f/1e3,pwm_spec_N_dB,'.','markersize',20);
% hold on
% plot(f/1e3,pwm_spec_N_dB);
% hold off
box off
title('Frequency Content Showing Carrier Harmonics','Fontsize',14);
xlabel('(a) kHz');
ylabel('dB');
axis([0 400 -350 0]);
subplot(1,2,2)
plot(f/1e3,pwm_spec_N_dB,'.','markersize',20);
% hold on
% plot(f/1e3,pwm_spec_N_dB);
% hold off
box off
title('Zoomed View of Baseband Frequency Content','Fontsize',14);
xlabel('(b) kHz');
%ylabel('dB');
axis([0 20 -350 0]);

% Noise shaped PWM spectra
Figure(3)
plot(f_ns/1e3,pwm_spec_ns_dB,'.','markersize',20);
hold on
plot(f_ns/1e3,pwm_spec_ns_dB);
hold off
xlabel('kHz');
ylabel('dB');
axis([0 400 -160 0]);
Figure(4)
plot(f_ns/1e3,pwm_spec_ns_dB,'.','markersize',20);
hold on
plot(f_ns/1e3,pwm_spec_ns_dB);
hold off
xlabel('kHz');
ylabel('dB');
axis([0 20 -160 0]);

C3. Trailing edge PNPWM using
binary search strategy…

University of Stellenbosch

158

C3. Trailing edge PNPWM using binary search strategy

%Programmer : Deon Jacobs
%Date : 29 October 2005
%Goal : Polynomial interpolation using the direct method
%Filename : direct_pol_int.m

clc;
clear;
fsize = 18;
lw = 2;
set(0,'DefaultAxesColorOrder',[0 0 0],'DefaultLineLineWidth',lw);
set(0,'DefaultTextFontSize',18,'DefaultAxesFontSize',18);

O = 8; % Order of interpolation polynomial
O_slc = ((O+1)/2)-1; % Samples on the left of the centre of O+1
L = 8; % Interpolation ratio
divider = 10584; % Divider of sampling frequency to get tonal frequency
N = divider+8; % Sequence length
n = [0:1:N]; % Sequence vector
n_up = [0:1:(N*L)-1]; % Interpolated sequence vector
L1 = 1; % Amount of experiments
A = 0.95; % Amplitude cosine input signal
Na = 0; % Amplitude of noise superiposed on cosinal signal
Z = 0; % Zeros pended after input signal has been generated
Fs = 352.8e3; % Sampling frequency of the input
Ts = 1/Fs; % Sampling period of input signal
F1 = 1e3; %Fs/divider; % Frequency of the cosinal input
F2 = 1e3;
Fs_up = L*Fs; % The interpolated sampling frequency
F_end = Fs;
intervals = 15; % Number of intervals until 24bit crosppoint resolution is found

%----------------------
%Generated signals
%----------------------

%Cosinal input sequence
%[xn] = data_array(n,F1,Fs,Na,L1,A,Z);
xn =A*cos(2*pi*(F2/Fs)*n);
%Interpolated input sequency using matlab
[xn_up_mat] = data_array(n_up,F1,Fs_up,Na,L1,A,Z);

%---
% Determine polynomial coeficients
%---

% Xa=b
% a=polynomial coeficients
% X=design matrix
% b=input samples
x = [0:1:O]; %O sample index vector
for i=[1:1:O+1], %Row array loop
 matrix_temp = 1;
 for j=[2:1:O+1]; %Column fill in
 matrix_temp = [matrix_temp x(i)^(j-1)];
 end;
 X(i,:) = matrix_temp;
end;
% Inversion of the square design matrix
X_inv = inv(X);
% Scale X_inv until no decimals are present
X_inv_scale = X_inv*2^29;

C3. Trailing edge PNPWM using
binary search strategy…

University of Stellenbosch

159

% Restructure the scaled inverse matrix to be in vector format
% for use in a lookup table
for y = [1:1:O+1],
 if (y==1)
 X_inv_sc_vec =X_inv_scale(y,1);
 else
 X_inv_sc_vec =[X_inv_sc_vec X_inv_scale(y,:)];
 end;
end;
X_inv_sc_vec = X_inv_sc_vec';

%--
% Calculation of system matrix for interpolated points
%--

x_int = [4:(1/L):5]; % interval of interpolation from vector x
pol_arr = [];
% Calculate the characteristic polynomial design matrix with the use of x_int
% x_int is the interval where the polynomial needs to be calculated
for i=[1:1:L+1], %Row array loop
 pol_temp = 1;
 for j=[2:1:O+1]; %Column fill in
 pol_temp = [pol_temp x_int(i)^(j-1)]; %System matrix row [1 x x^2...x^(O-1)]
 end;
 pol_arr(i,:) = pol_temp;
end;
pol_arr_scale = (pol_arr*2^10); %Scaled polinomial matrix
pol_arr_scale1 = pol_arr_scale(:,2:end);
pol_mat_vec = [];
for m=[2:1:L+1],
 pol_mat_vec = [pol_mat_vec pol_arr_scale1(m,:)];
end;
pol_mat_vec = pol_mat_vec';

% Matrix multiplication (a = X_inv*b)
% and interpolated point calculation
x_saw = [0:1:L]; % saw_tooth index
m = 2/(L); % gradient of the saw_tooth
c = -1; % crosspoint of saw-tooth waveform with veritcal axis
saw_int = (m*x_saw +c); % Saw-tooth waveform values to find the first tolerance interval

saw_int_scale = (saw_int*2^23)';
yn_up = [];
x1_vec = [];
x2_vec = [];
pwm_width = [];
pwm_width_24bit = [];
y_int_cubic = [];
for j=[((O+1)/2):1:(n(end)-((O+1)/2))],

 %Extract O+1 samples from the data record with only one new sample each
 %time
 xn_sampl = (xn(j-O_slc:(j+((O+1)/2)))');
 %Matrix multiplication to get O+1 coeficients
 b = X_inv*xn_sampl;
 %Matrix multiplication for L+1 interpolated points between vector x = 4
 %and x = 5 (interpolated point at x=5 is included)
 int_points = pol_arr*b; %Calculate interpolated output
 yn_up = [yn_up int_points(1:end-1)']; %Interpolated output
 [x1,x2] = binary_search(int_points,saw_int); %Search interval of crosspoint with saw_tooth
 x1_vec = [x1_vec x1]; %Build x1 coordinate vector
 x2_vec = [x2_vec x2]; %Build x2 coordinate vector
 %Determine the crosspoint between saw_tooth and consecutive samples of xn
 [pwm_temp] = crosspoint(x1,x2,int_points(x1),int_points(x2),m); %Linear interpolation

crosspoint derivation

C3. Trailing edge PNPWM using
binary search strategy…

University of Stellenbosch

160

 %Second interval crosspoint derivation
 [x1_int,pol_int,saw_tooth] = Crosspoint_24bit(x1,int_points(x1),int_points(x2),m,c,intervals)
 pwm_width = [pwm_width pwm_temp]; %Build PWM width vector
 pwm_width_24bit = [pwm_width_24bit x1_int];

end;
pwm_width = (pwm_width/L)*Ts;
pwm_width_24bit = (pwm_width_24bit/L)*Ts;

[pwm_spec,f] = PWM_spectra(pwm_width,Fs,F1,F_end); % Compute PWM spectra
[pwm_spec_24bit,f] = PWM_spectra(pwm_width_24bit,Fs,F1,F_end); % Compute PWM spectra
pwm_spec_24bit_norm = pwm_spec_24bit/max(pwm_spec_24bit);

pwm_spec_dB = 10*log10(abs(pwm_spec).^2);
pwm_spec_24bit_dB = 10*log10(abs(pwm_spec_24bit_norm).^2);
pwm_spec_dB = pwm_spec_dB - max(pwm_spec_dB);

xn_up_mat_par = xn_up_mat(33:end-40);
 % Figure(1)
% stem(yn_up);
% hold on
% stem(xn_up_mat_par,'r');
% hold off

% Figure(2)
% plot(x1_vec);
% hold on
% plot(x2_vec,'r');
% hold off
%
% Figure(3)
% stem(pwm_width,'markersize',1);

% Figure(4)
% plot(f,pwm_spec_dB,'.');
% title('19.6 KHz sinusoidal input, 512 interval search');

% Figure(6)
% plot(f,pwm_spec,'.');

% Figure(5)
% plot(y_int_cubic);

%PNPWM output spectra
Figure(6)
subplot(1,2,1)
plot(f/1e3,pwm_spec_24bit_dB,'.','markersize',20);
hold on
plot(f/1e3,pwm_spec_24bit_dB);
hold off
box off
title('Frequency Content Showing Carrier Harmonics','Fontsize',14);
xlabel('(a) kHz');
ylabel('dB');
axis([0 400 -350 0]);
subplot(1,2,2)
plot(f/1e3,pwm_spec_24bit_dB,'.','markersize',20);
hold on
plot(f/1e3,pwm_spec_24bit_dB);
hold off
box off
title('Zoomed View of Baseband Frequency Content','Fontsize',14);
xlabel('(b) kHz');
%ylabel('dB');
axis([0 20 -350 0]);

Appendix D

University of Stellenbosch

161

Appendix D

DIR 1703

Appendix D

University of Stellenbosch

162

Appendix D

University of Stellenbosch

163

Appendix E

University of Stellenbosch

164

Appendix E

ALTERA CYCLONE (EP1C12Q240C6) Features

Appendix F

University of Stellenbosch

165

Appendix F

VHDL Code

F1. Polyphase filtering
--
-- Design unit : FIR polyphase filter
-- File name : FIR_poly.vhd
-- Description : Implements a FIR filter using the polyphase filtering technique:
-- : => 8 polyphase filters are implemented within the 44.1Khz sampling frequency,
-- : => Therefore the input is upsampled 8 times, increasing the
-- : sampling frequency to 352.8 Khz.
-- : => The main state machine executes at a rate of 50MHz, allowing a filter
-- : length of 632 coeficients(L), thus 8 polyphase filters having 79 coeficients each(P).
-- : => The state machine is implemented using a two process structure ensuring that
-- : Quartus II synthesizes it correctly.
-- : => The filter implementation makes use of 3 Megafunctions: 1-port ROM, 1-port RAM, MAC
-- : function.

: * The ROM is used for the Input buffer
-- : * The RAM is used for the Coeficient lookup table
-- : * The MAC function is used to implement the multiply and accumulate arithmetic
-- : => The input buffer (where input samples are stored) has a length equal to P+1,
-- : where the first buffer address value is zero to enforce a zero result from
-- : the MAC function where neccesary.
-- : => The coeficient lookup table's length equals L= 632 taps/coeficients, where the
-- : last address value memory is zero to force a zero result from the MAC if the input buffer
-- : isn't able to do it.
-- : => The third process (Latch_FIR_output) latches the Data_temp register as output data at
-- : 352.8KHz.
-- : Data_temp captures the top 16-bits of the Polyphase FIR filter output, within the filtering
-- : process.
-- System : VHDL'93
-- Author : Deon Jacobs
-- : Department of Electrical Engineering
-- : University of Stellenbosch
-- : Deonj@sun.ac.za
-- Revision : Version 4.1 12/05/2005

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY FIR_poly IS
PORT (clk50Meg_in : IN STD_LOGIC; -- 50 MHz Clock input

clk352KHz_in : IN STD_LOGIC; -- 352.8 KHz clock input
 reset_in : IN STD_LOGIC; -- Signal to reset
 pulse_44_1_in : IN STD_LOGIC; -- Data pulse (44.1Khz)=> input data ready
 data_in : IN STD_LOGIC_VECTOR(15 downto 0); -- 16 bit data input
 filt_stat_out : OUT STD_LOGIC; -- Filter status output
 LED_out : OUT STD_LOGIC; -- State indicators
 Poly_out : OUT STD_LOGIC; -- Polyphase output pulse indicator
 Data_out : OUT STD_LOGIC;
 latch_out : OUT STD_LOGIC_VECTOR(15 downto 0)
);
END ENTITY FIR_poly;

ARCHITECTURE Poly_do OF FIR_poly IS

F1. Polyphase filtering

University of Stellenbosch

166

 COMPONENT MAC
 PORT
 (
 dataa : IN STD_LOGIC_VECTOR (50 DOWNTO 0);
 datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
 clock0 : IN STD_LOGIC := '1';
 aclr0 : IN STD_LOGIC := '0';
 result : OUT STD_LOGIC_VECTOR (66 DOWNTO 0)
);
 END COMPONENT;

 COMPONENT Buf
 PORT
 (
 address : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 clock : IN STD_LOGIC ;
 data : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
 wren : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
);
 END COMPONENT;

 COMPONENT Coef
 PORT
 (
 address : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 clock : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (50 DOWNTO 0)
);
 END COMPONENT;

 -- State machine decleration
 TYPE State_machine IS (state_0,state_1,state_2,state_3,state_4,state_5);
 SIGNAL current_state, next_state : State_machine;

 -- Combinational logic signals

 -- Misc
 SIGNAL cstate1_f_sig : STD_LOGIC; -- One clock cycle wait flag in state1
 SIGNAL cstate3_cnt_sig : unsigned(7 downto 0); -- State_3 wait cnt signal
 SIGNAL cstate4_f_sig : STD_LOGIC; -- One clock cycle wait flag in state4
 SIGNAL cFil_stat_f_sig : STD_LOGIC; -- Polyphase filtering status flag
 SIGNAL cLED_sig : STD_LOGIC; -- LED State status indicator
 SIGNAL cPoly_finish_f_sig: STD_LOGIC; -- Polyphase filter has finished indicator flag
 SIGNAL cpf_cnt_max : unsigned(7 downto 0); -- Polyphase finished max wait clk cycles
 SIGNAL cData_temp : STD_LOGIC_VECTOR(15 downto 0); -- Temp signal to store poly

 filter output
 -- MAC
 SIGNAL cMAC_clr_sig : STD_LOGIC; -- clear
 SIGNAL cMAC_datab_sig : STD_LOGIC_VECTOR(15 downto 0);-- Data input from the input buffer

 -- Input Buffer
 SIGNAL cBuf_adr_sig : unsigned(6 downto 0); -- address
 SIGNAL cBuf_dat_sig : STD_LOGIC_VECTOR(15 downto 0); -- data input
 SIGNAL cBuf_wren_sig : STD_LOGIC; -- Write/read pin

 -- Coeficient Lookup Table
 SIGNAL cCoef_adr_sig : unsigned(9 downto 0); -- Coeficient lookup table address

F1. Polyphase filtering

University of Stellenbosch

167

--
 -- Latched output (memory) signals

 -- Misc
 SIGNAL state1_f_sig : STD_LOGIC; -- One clock cycle wait flag in state1
 SIGNAL state3_cnt_sig : unsigned(7 downto 0); -- State_3 wait cnt signal
 SIGNAL state4_f_sig : STD_LOGIC; -- One clock cycle wait flag in state4
 SIGNAL Poly_finish_f_sig : STD_LOGIC; -- Polyphase filter indicator flag
 SIGNAL pf_cnt_max : unsigned(7 downto 0); -- Polyphase finished max wait clk cycles
 SIGNAL Data_temp : STD_LOGIC_VECTOR(15 downto 0); -- Temp signal to store poly

 filter output
 -- MAC
 SIGNAL MAC_clr_sig : STD_LOGIC; -- MAC clear signal
 SIGNAL MAC_dataa_sig : STD_LOGIC_VECTOR(50 downto 0); -- MAC dataA input signal
 SIGNAL MAC_datab_sig : STD_LOGIC_VECTOR(15 downto 0); -- MAC dataB input signal
 SIGNAL MAC_result_sig : STD_LOGIC_VECTOR(66 downto 0);

 -- Input Buffer
 SIGNAL Buf_adr_sig : unsigned(6 downto 0); -- address
 SIGNAL Buf_out_sig : STD_LOGIC_VECTOR(15 downto 0); -- data output
 SIGNAL Buf_dat_sig : STD_LOGIC_VECTOR(15 downto 0); -- data input
 SIGNAL Buf_wren_sig : STD_LOGIC; -- Write/read pin

 -- Coeficient Lookup Table
 SIGNAL Coef_adr_sig : unsigned(9 downto 0); -- Coeficient lookup table address

 --Latch_FIR_output Signals

 SIGNAL Data_capture_f_sig : STD_LOGIC; -- Flag indicating that output data
 -- from polyphase filter has been latched

 -- Constant values
 CONSTANT coef_cnt_max : integer:=632; -- Maximum coeficient address range
 CONSTANT buf_cnt_max : integer:=79; -- Maximum input buffer address range

BEGIN

 MAC_inst : MAC PORT MAP (
 dataa => MAC_dataa_sig,
 datab => MAC_datab_sig,
 clock0 => clk50Meg_in,
 aclr0 => MAC_clr_sig,
 result => MAC_result_sig
);
 Buf_inst : Buf PORT MAP (
 address => std_logic_vector(unsigned(Buf_adr_sig(6 downto 0))),
 clock => clk50Meg_in,
 data => Buf_dat_sig,
 wren => Buf_wren_sig,
 q => Buf_out_sig
);
 Coef_inst : Coef PORT MAP (
 address => std_logic_vector(unsigned(Coef_adr_sig(9 downto 0))),
 clock => clk50Meg_in,
 q => MAC_dataa_sig
);

F1. Polyphase filtering

University of Stellenbosch

168

 Register_process:

 PROCESS (clk50Meg_in,reset_in,cCoef_adr_sig,cBuf_adr_sig,cstate3_cnt_sig,cBuf_dat_sig) IS

 BEGIN
 IF (reset_in = '1') THEN
 -- Misc
 filt_stat_out <='0'; -- Filtering is not in progress
 Coef_adr_sig <= "0000000000"; -- Reset counter
 LED_out <='1'; -- " LEDS state indicator
 state1_f_sig <='0'; -- " State1 flag
 state3_cnt_sig <= "00000000"; -- " State3 wait counter
 state4_f_sig <='0'; -- " State4 flag
 Poly_finish_f_sig <='0'; -- " flag
 pf_cnt_max <="00110010"; -- Set to maximum_wait of 10 clock cycles
 Data_temp <="0000000000000000"; -- Inisialize temp data signal

-- MAC
 MAC_clr_sig <= '1'; -- Clear MAC output
 -- Input Buffer
 Buf_adr_sig <= "0000000"; -- Reset Buffer address to output zero (0h)
 Buf_dat_sig <= "0000000000000000"; -- " data input
 Buf_wren_sig <= '0'; -- Buffer in read mode
 current_state <= state_0; -- Force state machine to reset state

 ELSIF rising_edge(clk50Meg_in) THEN
 -- Update latches (memory units)
 --Misc registers
 Coef_adr_sig <= cCoef_adr_sig; -- Coeficient Address
 LED_out <= cLED_sig; -- State indicate output
 filt_stat_out <= cFil_stat_f_sig; -- Filter completion indicate
 state1_f_sig <= cstate1_f_sig; -- State_1 one clk cycle wait flag
 state3_cnt_sig <= cstate3_cnt_sig; -- State_3 wait flag
 state4_f_sig <= cstate4_f_sig; -- State_4 one clk cycle wait flag
 Poly_finish_f_sig <= cPoly_finish_f_sig;
 pf_cnt_max <= cpf_cnt_max; -- Updata maximum clock cylces wait (State3)
 Data_temp <= cData_temp; -- Update data temp
 --MAC registers
 MAC_datab_sig <= cMAC_datab_sig; -- Update MAC datab input from input buffer
 Buf_adr_sig <= cBuf_adr_sig;
 -- Address input
 Buf_dat_sig <= cBuf_dat_sig;
 -- Data input
 Buf_wren_sig <= cBuf_wren_sig;
 Poly_out <= Poly_finish_f_sig;
 Data_out <= Data_capture_f_sig;

 -- State register
 current_state <= next_state; -- Assign next state as current state
 END IF;
 END PROCESS Register_process;

 --
 Combinational_process:
 --
 PROCESS (current_state,data_in,pulse_44_1_in,Coef_adr_sig,Buf_adr_sig,state1_f_sig,state3_cnt_sig,

MAC_datab_sig,Buf_dat_sig,Buf_out_sig,state4_f_sig,Poly_finish_f_sig,pf_cnt_max,
Data_temp, Data_capture_f_sig, MAC_result_sig) IS

 BEGIN
 CASE (current_state) IS

F1. Polyphase filtering

University of Stellenbosch

169

 -- Reset state

 When state_0 =>
 -- Mealy machine
 cFil_stat_f_sig <='0'; -- Filtering hasn't started
 cLED_sig <= '0'; -- Reset state
 cCoef_adr_sig <= "0000000000"; -- Reset counter
 cMAC_clr_sig <= '1'; -- Clear MAC output: no data yet
 cMAC_datab_sig <= "0000000000000000";
 cBuf_adr_sig <= "0000000"; -- Reset Buffer address to output zero
 cBuf_dat_sig <= "0000000000000000"; -- " data input
 cBuf_wren_sig <= '0'; -- Write zero at the 1st buffer address
 cstate1_f_sig <= '0'; -- State1 wait flag reset
 cstate3_cnt_sig <= "00000000"; -- Reset State3 wait counter
 cstate4_f_sig <= '0'; -- Reset state4 flag
 cPoly_finish_f_sig<= Poly_finish_f_sig; -- Reset Polyphase filter finished flag
 cpf_cnt_max <= "00110010"; -- Set to maximum_wait of 10 clock cycles
 cData_temp <= Data_temp; -- Keep Data Temp at its current value
 IF (pulse_44_1_in = '1') THEN -- Have new data arrived
 next_state <= state_1; -- Go store data
 ELSE
 next_state <= state_0; -- Stay in reset and wait for data
 END IF;
 --
 -- Data arrived: store it in input buffer at address 0h
 --
 When state_1 =>

 cFil_stat_f_sig <= '1'; -- Filtering process busy
 cLED_sig <= '0'; -- Storage LED indicate
 cMAC_clr_sig <= '0'; -- Set MAC to start arithmetic in next state
 cstate3_cnt_sig <= "00000000"; -- Reset State3 wait counter
 cstate4_f_sig <= '0'; -- Reset state4 flag
 cMAC_datab_sig <= Buf_out_sig;
 cPoly_finish_f_sig<= Poly_finish_f_sig; -- Reset Polyphase filter finished flag
 cpf_cnt_max <= "00110010"; -- Set to maximum_wait of 10 clock cycles
 cData_temp <= Data_temp; -- Keep Data Temp at its current value

IF (state1_f_sig ='0') THEN
 -- Inputs of MAC are used for calculation
 cBuf_dat_sig <= data_in; -- New sample applied to input buffer
 cBuf_wren_sig <= '1'; -- Write new sample to buffer
 cstate1_f_sig <= '1'; -- Wait cycle entered: indicate
 cCoef_adr_sig <= "0000000000"; -- Zero Coeficient address
 cBuf_adr_sig <= "0000001"; -- Reset buffer address (1h) to 1st input

 sample
 next_state <= state_1; -- Wait to ensure data has been stored
 ELSE
 -- Second Arithmetic calculation of MAC inputs
 cBuf_dat_sig <= "0000000000000000";
 cBuf_wren_sig <= '0';
 cstate1_f_sig <= '0'; -- Reset flag for next new sample

 occurance
 cCoef_adr_sig <= "0000000000";
 cBuf_adr_sig <= "0000010"; -- 2nd buffer address for arithmetic

 calculation
 next_state <= state_2; -- Start Controlling filter operation
 END IF;

 -- Filter control

 When state_2 =>
 cFil_stat_f_sig <='1'; -- Filtering process busy
 cLED_sig <='0'; -- Filter control indicate

F1. Polyphase filtering

University of Stellenbosch

170

 cstate1_f_sig <= '0'; -- Reset state_1 wait cycle flag
 cstate3_cnt_sig <= "00000000"; -- Reset State3 wait counter
 cstate4_f_sig <= '0'; -- Keep State4 first entrance flag value

 equal 2 zero
 cPoly_finish_f_sig<= Poly_finish_f_sig; -- Reset Polyphase filter finished flag
 cpf_cnt_max <= "00110010"; -- Keep current value
 cData_temp <= Data_temp; -- Keep Data Temp at its current value

-- Test for filter completion
 IF (to_integer(Coef_adr_sig) < coef_cnt_max) THEN
 -- Whole filter has not been completed
 cMAC_clr_sig <= '0'; -- Start/Continue arithmetic

-- Test for buffer content shift when last poly-filt is executing
 IF (to_integer(Coef_adr_sig) >= (coef_cnt_max - buf_cnt_max-1)) THEN

-- Last polyphase filter execution => Buffer shift operation
 cCoef_adr_sig <= Coef_adr_sig+1; -- Keep Coef address at

 current value
 cBuf_adr_sig <= "0000001"; -- Buffer address equal to

 buffer temp value
 cMAC_datab_sig <= Buf_out_sig;
 cBuf_wren_sig <= '0';
 cBuf_dat_sig <= "0000000000000000"; -- Reset input data to

 Input Buffer
 next_state <= state_4;
 ELSE
 -- Not last polyphase filter execution
 cMAC_datab_sig <= Buf_out_sig;
 cBuf_dat_sig <="0000000000000000";
 cBuf_wren_sig <= '0';
 cCoef_adr_sig <= Coef_adr_sig + 1; -- Set address to next

 coeficient value

 -- Test if current polyphase filter operation is finished
 IF (to_integer(Buf_adr_sig) < buf_cnt_max) THEN
 -- polyphase filter not finished yet
 cBuf_adr_sig <= Buf_adr_sig + 1;
 next_state <= state_2;
 ELSE
 -- polyphase filter is finished, start next one
 cBuf_adr_sig <= "0000000";
 next_state <= state_3;
 END IF;
 END IF;
 ELSE
 -- Whole filter has been completed & state 4 did not terminate the filtering,
 -- this ELSE is therefore pre-cautionary for state 2 not to hang/loop

cMAC_datab_sig <= "0000000000000000";
 cMAC_clr_sig <= '1'; -- Reset MAC function (stop arithmetic)
 cCoef_adr_sig <= "0000000000";
 cBuf_adr_sig <= "0000000";
 cBuf_dat_sig <= "0000000000000000";
 cBuf_wren_sig <= '0';
 next_state <= state_0;-- Enter reset state to wait for new sample
 END IF;
 --
 -- Polyphase complete
 --
 When state_3 =>

 cMAC_datab_sig <= Buf_out_sig;
 cFil_stat_f_sig <= '1'; -- Filtering process busy
 cLED_sig <= '0'; -- Filter control indicate

F1. Polyphase filtering

University of Stellenbosch

171

 cstate1_f_sig <= '0'; -- Reset state_1 wait cycle flag
 cstate4_f_sig <= state4_f_sig; -- Keep value to see if state4 assigned this state
 cCoef_adr_sig <= Coef_adr_sig; -- Keep Coef lookup table at current address
 cBuf_dat_sig <= "0000000000000000"; -- Reset input data to Input Buffer
 cBuf_wren_sig <= '0'; -- Buffer in read mode
 cpf_cnt_max <= pf_cnt_max; -- Keep current value

-- Did the delay complete between polyphase filters
 IF (state3_cnt_sig < pf_cnt_max) THEN
 IF ((to_integer(state3_cnt_sig) = 15)or(state4_f_sig ='1')) THEN

-- Decision when between consecutive poly filters
 IF((Poly_finish_f_sig = '0')and(Data_capture_f_sig = '0')) THEN
 cData_temp <= MAC_result_sig(66)&

 MAC_result_sig(63 DOWNTO 49);
-- Copy top MS-16-bits to
temporary register

 cPoly_finish_f_sig <= '1'; -- Toggle Poly flag according
 to current instance

 cstate4_f_sig <= '0'; -- Make sure state4 flag is
 reset

 ELSE
 cData_temp <= MAC_result_sig(66)&

 MAC_result_sig(63 DOWNTO 49);
 -- Polyphase filter also

 finished but at different
 instance

 cPoly_finish_f_sig <= '0'; -- Toggle Poly flag according
 to current instance

 cstate4_f_sig <= '0';
 END IF;
 ELSE

 cData_temp <= Data_temp;
 cPoly_finish_f_sig<= Poly_finish_f_sig;
 END IF;
 cstate3_cnt_sig<= state3_cnt_sig + 1;-- State_3 wait cycle entered indicate
 cMAC_clr_sig<= '0'; -- Allow MAC to finish its calculations
 cBuf_adr_sig <= "0000000"; -- Reset Buffer address to output zero
 next_state <= state_3;
 ELSE
 cstate3_cnt_sig <= "00000000"; -- Wait cycle period hasn't ended yet
 cMAC_clr_sig <= '1'; -- Clear MAC for next polyphase

 filtering procedure
 cBuf_adr_sig <= "0000001"; -- Reset buffer address (1h) to 1st input

 sample
 cData_temp <= Data_temp;
 cPoly_finish_f_sig<= '0'; -- Reset Polyphase filter finished flag
 cData_temp <= Data_temp;-- Keep Data Temp at its current value
 cPoly_finish_f_sig<= Poly_finish_f_sig;
 next_state <= state_2; -- Start next polyphase filter
 END IF;

 -- Buffer Shift

 When state_4 =>

 cFil_stat_f_sig <= '1'; -- Filtering process busy
 cMAC_clr_sig <= '0'; -- Continue MAC arithmetic function
 cLED_sig <= '0'; -- Filter control indicate
 cstate1_f_sig <= '0'; -- Reset state_1 wait cycle flag
 cstate3_cnt_sig <= "00000000"; -- Reset State3 wait counter
 cPoly_finish_f_sig<= Poly_finish_f_sig; -- Reset Polyphase filter finished flag
 cData_temp <= Data_temp; -- Keep Data Temp at its current value
 -- Has buffer address reached its end
 IF (Buf_adr_sig < (Buf_cnt_max+2)) THEN

F1. Polyphase filtering

University of Stellenbosch

172

 cpf_cnt_max <= pf_cnt_max; -- Keep current value
 -- No it hasn't...
 -- Has state4 flag been set
 IF (state4_f_sig = '0') THEN
 --No it hasn't...
 cstate4_f_sig <='1'; -- For Buffer write mode
 cCoef_adr_sig <= Coef_adr_sig; -- Keep address the same
 cBuf_adr_sig <= Buf_adr_sig; -- Keep address the same
 cBuf_wren_sig <= '1'; -- Buffer in read mode
 cBuf_dat_sig <= Buf_out_sig;
 cMAC_datab_sig <= Buf_out_sig; -- Output to MAC for

 multiplication
 next_state <= state_4;-- Enter Buffer write mode of state
 ELSE
 -- Yes, data will now be written to new shifted address
 cBuf_adr_sig <= Buf_adr_sig +1; -- Inc Buffer address for next

 multiplication
 cstate4_f_sig <= '0'; -- For Buffer read mode
 cCoef_adr_sig <= Coef_adr_sig +1; -- Inc Coeficient address for

 next calculation
 cBuf_wren_sig <= '0'; -- Write data to Buffer
 cBuf_dat_sig <= "0000000000000000"; -- Reset input data

to Input Buffer
 cMAC_datab_sig <= "0000000000000000";-- Reset MAC input

B, for zero
multiplication result

 next_state<= state_4; -- Enter Buffer read mode of state
 END IF;
 ELSE
 --Buffer shift completed
 cBuf_adr_sig <= "0000000";
 cMAC_datab_sig <= "0000000000000000";
 cCoef_adr_sig <= "1001111000"; -- Address that stores zero value, for

 zero value MAC result
 cBuf_dat_sig <= "0000000000000000"; -- Reset input data to Input

 Buffer
 cBuf_wren_sig <= '0'; -- Buffer in read mode
 cstate4_f_sig <= '1'; -- Set to inform state3 filter is finished
 cpf_cnt_max <= "00000001"; -- Change max value to 1
 next_state <= state_5;
 END IF;

 When state_5 => -- Extra state to wait one clock cycle

 cFil_stat_f_sig <= '1'; -- Filtering process busy
 cMAC_clr_sig <= '0'; -- Continue MAC arithmetic function
 cLED_sig <= '0'; -- Filter control indicate
 cstate1_f_sig <= '0'; -- Reset state_1 wait cycle flag
 cstate3_cnt_sig <= "00000000"; -- Reset State3 wait counter
 cPoly_finish_f_sig<= Poly_finish_f_sig; -- Reset Polyphase filter finished flag
 cData_temp <= Data_temp; -- Keep Data Temp at its current value
 cBuf_adr_sig <= "0000000"; -- Reset Buffer address to output zero (0h)
 cMAC_datab_sig <= "0000000000000000"; -- filter complete no input data

 required
 cCoef_adr_sig <= "1001111000"; -- Address that stores zero value, for

 zero value MAC result
 cBuf_dat_sig <= "0000000000000000"; -- Reset input data to Input Buffer
 cBuf_wren_sig <= '0'; -- Buffer in read mode
 cstate4_f_sig <= '1'; -- Set to inform state3 filter is finished
 cpf_cnt_max <= "00000001"; -- Change max value to 1
 next_state <= state_3;

 END CASE current_state;
 END PROCESS Combinational_process;

F1. Polyphase filtering

University of Stellenbosch

173

 Latch_FIR_output:

 -- Latches top 16-bits of FIR output to register
 PROCESS (clk50Meg_in) IS
 BEGIN
 IF rising_edge(clk50Meg_in) THEN
 IF (clk352KHz_in = '1') THEN -- Latch at 352_8KHz
 IF((Poly_finish_f_sig = '1')and(Data_capture_f_sig = '0')) THEN
 Data_capture_f_sig <='1'; -- Set flag according to latch instance
 Latch_out <= cData_temp; -- Latch Data_temp reg to

 output reg
 ELSIF((Poly_finish_f_sig = '0')and(Data_capture_f_sig = '1')) THEN
 Data_capture_f_sig <='0'; -- Set flag according to latch

 instance
 Latch_out <= cData_temp; -- Latch Data_temp reg to

 output reg
 END IF;
 END IF;
 END IF;
 END PROCESS Latch_FIR_output;
END ARCHITECTURE Poly_do;

F2. Polynomial coefficient
calculation

University of Stellenbosch

174

F2. Polynomial coefficient calculation

--
-- Design unit : Polynomial coefficient calculation
-- File name : Poly_coef.vhd
-- Description : Calculates the coeficients of an 8th order polynomial which will be used
-- : to calculate the crosspoint between the polynomial and a sawtooth waveform
-- : A new set of coefficients are calculated each time an interpolated data sample
-- : at a frequency of 352.8 kHz is input. After each of the 9 coefficients
-- : are calculated they are stored in a ping pong buffer.
-- System : VHDL'93
-- Author : Deon Jacobs
-- : Department of Electrical Engineering
-- : University of Stellenbosch
-- : Deonj@sun.ac.za
-- Revision : Version 2.0 18/08/2005

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY poly_coef IS
PORT (
 clk_60Meg_in : IN STD_LOGIC;
 pulse_352_in : IN STD_LOGIC;
 reset_in : IN STD_LOGIC;
 sample_in : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 Polcoef_wren_in : IN STD_LOGIC;
 Polcoef_adr_in : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
 Coef_sync_out : OUT STD_LOGIC;
 Input_buf4_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
 Input_buf5_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
 Polcoef_out : OUT STD_LOGIC_VECTOR(29 DOWNTO 0)
);
END ENTITY poly_coef;

ARCHITECTURE coef_calc OF poly_coef IS

 COMPONENT input_buf
 PORT
 (
 address : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 clock : IN STD_LOGIC ;
 data : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
 wren : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
);
 END COMPONENT;

 COMPONENT interpol_mat
 PORT
 (
 address : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 clock : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (29 DOWNTO 0)
);
 END COMPONENT;

F2. Polynomial coefficient
calculation

University of Stellenbosch

175

COMPONENT MAC_coef
 PORT
 (
 dataa : IN STD_LOGIC_VECTOR (29 DOWNTO 0);
 datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
 clock0 : IN STD_LOGIC := '1';
 aclr0 : IN STD_LOGIC := '0'; -- Result high enough resolution for 24-bit input
 result : OUT STD_LOGIC_VECTOR (45 DOWNTO 0)
);
 END COMPONENT;

 COMPONENT pol_coef
 PORT
 (
 data_a : IN STD_LOGIC_VECTOR (29 DOWNTO 0);
 wren_a : IN STD_LOGIC := '1';
 address_a : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 data_b : IN STD_LOGIC_VECTOR (29 DOWNTO 0);
 address_b : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 wren_b : IN STD_LOGIC := '1';
 clock_a : IN STD_LOGIC ;
 clock_b : IN STD_LOGIC ;
 q_a : OUT STD_LOGIC_VECTOR (29 DOWNTO 0);
 q_b : OUT STD_LOGIC_VECTOR (29 DOWNTO 0)
);
 END COMPONENT;

-- State machine declerations

--Matrix multiplication
 TYPE State_machine1 IS (state_0,state_1,state_2,state_3,state_4);
 SIGNAL current_state1, next_state1 : State_machine1;

--Polynomial coeficient latching
 TYPE State_machine2 IS (state_0,state_1);
 SIGNAL current_state2, next_state2 : State_machine2;

-- Combinational logic

-- Input Buffer signals

 SIGNAL cBuf_dat_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL cBuf_wren_sig : STD_LOGIC;
 SIGNAL cBuf_adr_sig : unsigned(3 DOWNTO 0);

-- Interpolation matrix signals

 SIGNAL cMat_adr_sig : unsigned(6 DOWNTO 0);

-- Coeficient MAC signals

 SIGNAL cMAC_coef_datab_sig: STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL cMAC_coef_clr_sig : STD_LOGIC;

-- Polynomial Coeficient storage buffer

 SIGNAL cPolcoef_adr_sig : unsigned(4 DOWNTO 0);
 SIGNAL cPolcoef_wren_sig : STD_LOGIC;
 SIGNAL cPolcoef_dat_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL cPolcoef_unused_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);

F2. Polynomial coefficient
calculation

University of Stellenbosch

176

-- Misc signals

 SIGNAL ccoef_data_ready_sig : STD_LOGIC;
 SIGNAL cstate3_cnt_sig : unsigned(4 DOWNTO 0);
 SIGNAL cstate4_f_sig : STD_LOGIC;
 SIGNAL cfrst_coef_f_sig : STD_LOGIC;
 SIGNAL cData_temp : STD_LOGIC_VECTOR(45 DOWNTO 0);
 SIGNAL cCoef_finish_f_sig : STD_LOGIC;
 SIGNAL cWait_cnt_max : unsigned(2 DOWNTO 0);
 SIGNAL ccoef_sync_out_sig : STD_LOGIC;
 SIGNAL cInput_buf4_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);--1st interval
 polynomial amplitude
 SIGNAL cInput_buf5_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);--last interval polynomial
 amplitude

-- Latched output (memory) signals

-- Input Buffer signals

 SIGNAL Buf_dat_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL Buf_wren_sig : STD_LOGIC;
 SIGNAL Buf_adr_sig : unsigned(3 DOWNTO 0);
 SIGNAL Buf_out_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);

-- Interpolation matrix signals

 SIGNAL Mat_adr_sig : unsigned(6 DOWNTO 0);

-- Coeficient MAC signals

 SIGNAL MAC_coef_datab_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL MAC_coef_clr_sig : STD_LOGIC;
 SIGNAL MAC_coef_dataa_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL MAC_coef_result_sig : STD_LOGIC_VECTOR(45 DOWNTO 0);

-- Polynomial Coeficient storage buffer

 SIGNAL Polcoef_adr_sig : unsigned(4 DOWNTO 0);
 SIGNAL Polcoef_wren_sig : STD_LOGIC;
 SIGNAL Polcoef_out_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL Polcoef_dat_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL Polcoef_unused_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);

-- Misc signals

 SIGNAL coef_data_ready_sig : STD_LOGIC;
 SIGNAL state3_cnt_sig : unsigned(4 DOWNTO 0);
 SIGNAL state4_f_sig : STD_LOGIC;
 SIGNAL frst_coef_f_sig : STD_LOGIC;
 SIGNAL Data_temp : STD_LOGIC_VECTOR(45 DOWNTO 0);
 SIGNAL Coef_finish_f_sig : STD_LOGIC;
 SIGNAL wait_cnt_max : unsigned(2 DOWNTO 0);
 SIGNAL coef_sync_out_sig : STD_LOGIC;
 SIGNAL Input_buf4_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL Input_buf5_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);

-- Constants

 CONSTANT Mat_cnt_max : integer:=73;
 CONSTANT Buf_cnt_max : integer:=9;
 CONSTANT Zero : integer:=0;

F2. Polynomial coefficient
calculation

University of Stellenbosch

177

BEGIN

input_buf_inst : input_buf PORT MAP (
 address => std_logic_vector(unsigned(Buf_adr_sig(3 downto 0))),
 clock => clk_60Meg_in,
 data => Buf_dat_sig,
 wren => Buf_wren_sig,
 q => Buf_out_sig
);
interpol_mat_inst : interpol_mat PORT MAP (
 address => std_logic_vector(unsigned(Mat_adr_sig(6 downto 0))),
 clock => clk_60Meg_in,
 q => MAC_coef_dataa_sig
);
MAC_coef_inst : MAC_coef PORT MAP (
 dataa => MAC_coef_dataa_sig,
 datab => MAC_coef_datab_sig,
 clock0 => clk_60Meg_in,
 aclr0 => MAC_coef_clr_sig,
 result => MAC_coef_result_sig
);

pol_coef_inst : pol_coef PORT MAP (
 data_a => Polcoef_dat_sig,
 wren_a => Polcoef_wren_sig, -- internal read/write pin to RAM
 address_a => std_logic_vector(unsigned(Polcoef_adr_sig(4 downto 0))),-- internal RAM
 address access
 data_b => Polcoef_unused_sig, -- Unused data output port of RAM
 address_b => Polcoef_adr_in, -- address of RAM externally
 wren_b => Polcoef_wren_in, -- read/write of RAM externally
 clock_a => clk_60Meg_in,
 clock_b => clk_60Meg_in,
 q_a => Polcoef_out_sig, -- Internal output of RAM (output a)
 q_b => Polcoef_out -- External output of RAM (output b)
);

Register_process1:

 PROCESS (clk_60Meg_in,reset_in) IS
 BEGIN
 IF (reset_in = '1') THEN
 -- Interpolation matrix intial assignment
 Mat_adr_sig <= "0000000"; -- First interpolation matrix address
 -- Coeficient MAC initial assignment
 MAC_coef_datab_sig<= "0000000000000000";
 MAC_coef_clr_sig <= '1'; -- MAC function disabled

 -- Input Buffer initial assignments
 Buf_adr_sig <= "0000"; -- Reset Input Buffer address to output zero (0h)
 Buf_dat_sig <= "0000000000000000"; -- Reset Input Buffer data input
 Buf_wren_sig <= '0'; -- Input Buffer in read mode
 -- Misc assignments
 state3_cnt_sig <="00000"; -- state_3 counter
 state4_f_sig <='0';
 frst_coef_f_sig <='0'; -- first coeficient latch flag (state3)
 Data_temp <= "00";
 Coef_finish_f_sig <='0';
 coef_data_ready_sig <='0';
 wait_cnt_max <= "101";
 Input_buf4_sig <= "0000000000000000";
 Input_buf5_sig <= "0000000000000000";
 -- State intial assignment

F2. Polynomial coefficient
calculation

University of Stellenbosch

178

 current_state1 <= state_0;-- Force state machine to reset state

 ELSIF rising_edge(clk_60Meg_in) THEN
 -- Update latches (memory units)
 -- Interpolation matrix register update
 Mat_adr_sig <= cMat_adr_sig;

 -- Coeficient MAC registers update
 MAC_coef_datab_sig <= cMAC_coef_datab_sig;
 MAC_coef_clr_sig <= cMAC_coef_clr_sig;

 -- Input Buffer registers update
 Buf_adr_sig <= cBuf_adr_sig;
 Buf_dat_sig <= cBuf_dat_sig;
 Buf_wren_sig <= cBuf_wren_sig;
 -- Misc registers
 state3_cnt_sig <= cstate3_cnt_sig;
 state4_f_sig <= cstate4_f_sig;
 frst_coef_f_sig <= cfrst_coef_f_sig;
 Data_temp <= cData_temp;
 Coef_finish_f_sig <= cCoef_finish_f_sig;
 coef_data_ready_sig <= ccoef_data_ready_sig;
 wait_cnt_max <= cwait_cnt_max;
 Input_buf4_sig <= cInput_buf4_sig;
 Input_buf4_out <= cInput_buf4_sig;
 Input_buf5_sig <= cInput_buf5_sig;
 Input_buf5_out <= cInput_buf5_sig;
 -- State register
 current_state1 <= next_state1;
 END IF;
 END PROCESS Register_process1;

--
Combinational_process1:
--
 PROCESS(current_state1,Mat_adr_sig,MAC_coef_clr_sig,Input_buf4_sig,Input_buf5_sig,Buf_adr_sig,
 Buf_dat_sig,Buf_wren_sig,pulse_352_in,Buf_out_sig,sample_in,Polcoef_adr_sig,Polcoef_wren_sig,
 MAC_coef_result_sig,MAC_coef_datab_sig,state3_cnt_sig,frst_coef_f_sig,state4_f_sig,
 Polcoef_unused_sig,Data_temp,Coef_finish_f_sig,wait_cnt_max,coef_data_ready_sig) IS

 BEGIN
 CASE (current_state1) IS

 -- Reset state

 When state_0 =>
 cMat_adr_sig <= "1001001"; -- Default interpolation matrix address
 cMAC_coef_clr_sig <= '1'; -- MAC arithmetic disabled
 cMAC_coef_datab_sig <= "0000000000000000"; -- Reset
 cBuf_adr_sig <= "0000";
 -- Reset Input Buffer address to output zero (0h)
 cBuf_dat_sig <= "0000000000000000";
 -- Reset Input Buffer data input
 cBuf_wren_sig <= '0'; -- Input Buffer in read mode
 cstate3_cnt_sig <= "00000";
 cstate4_f_sig <= '0';
 cfrst_coef_f_sig <= '0';
 cData_temp <= Data_temp;
 cCoef_finish_f_sig <= '0';
 ccoef_data_ready_sig <= '0';
 cwait_cnt_max <= "101";
 cInput_buf4_sig <= Input_buf4_sig;
 cInput_buf5_sig <= Input_buf5_sig;

F2. Polynomial coefficient
calculation

University of Stellenbosch

179

 IF (pulse_352_in = '1') THEN -- Has new data arrived
 next_state1 <= state_1; -- Go store data
 ELSE
 next_state1 <= state_0; -- Stay in reset and wait for data
 END IF;

 -- Store Input data

 When state_1 =>

 cMAC_coef_clr_sig <= '0'; -- Set MAC to start arithmetic
 cMAC_coef_datab_sig <= Buf_out_sig;-- Connect input buffer to MAC
 cstate3_cnt_sig <= state3_cnt_sig;
 cstate4_f_sig <= state4_f_sig;
 cfrst_coef_f_sig <= '0';
 cData_temp <= Data_temp;
 cCoef_finish_f_sig <= Coef_finish_f_sig;
 cwait_cnt_max <= wait_cnt_max;
 ccoef_data_ready_sig <= coef_data_ready_sig;
 -- Store input in 1H address space of the input buffer
 cBuf_dat_sig <= sample_in; -- New sample applied to input buffer
 cBuf_wren_sig <= '1'; -- Write new sample to buffer
 cMat_adr_sig <= "0000000"; -- Zero Coeficient address
 cBuf_adr_sig <= "0001"; -- Reset buffer address (1h) to 1st input sample
 cInput_buf4_sig <= Input_buf4_sig;
 cInput_buf5_sig <= Input_buf5_sig;
 next_state1 <= state_3; -- Wait to ensure data has been stored

 -- Matrix multiplication

 When state_2 =>

 cstate3_cnt_sig <= state3_cnt_sig;
 cfrst_coef_f_sig <= frst_coef_f_sig;
 cstate4_f_sig <= state4_f_sig;
 cwait_cnt_max <= wait_cnt_max;
 -- Complete storing coeficient value in two-port RAM
 IF (coef_data_ready_sig ='1') THEN -- coef_data_ready_sig set in state 3 to
 store here
 cMAC_coef_clr_sig <= '1'; -- stop arithmetic
 cCoef_finish_f_sig <= '1';
 cData_temp <= MAC_coef_result_sig; -- Coeficient in
 temporary register
 ccoef_data_ready_sig<= '0'; -- Reset signal
 ELSE
 cMAC_coef_clr_sig <= '0';
 cCoef_finish_f_sig <= '0';
 cData_temp <= Data_temp;
 ccoef_data_ready_sig<= coef_data_ready_sig;

 END IF;

 IF (to_integer(Mat_adr_sig) < Mat_cnt_max) THEN

 IF (to_integer(Mat_adr_sig) >= (Mat_cnt_max - Buf_cnt_max)) THEN
 cMat_adr_sig <= Mat_adr_sig +1;-- Next row of
 matrix coeficients
 cBuf_adr_sig <= "0010"; -- Set input buffer to first
 address
 cBuf_dat_sig <= "0000000000000000";
 cBuf_wren_sig <= '0';
 cMAC_coef_datab_sig <= Buf_out_sig;

F2. Polynomial coefficient
calculation

University of Stellenbosch

180

 cInput_buf4_sig <= Input_buf4_sig;
 cInput_buf5_sig <= Input_buf5_sig;
 next_state1 <= state_4;
 ELSE
 cMat_adr_sig <= Mat_adr_sig +1; -- Next row of
 matrix coeficients
 cMAC_coef_datab_sig <= Buf_out_sig;
 cBuf_dat_sig <= "0000000000000000";
 cBuf_wren_sig <= '0';
 IF (to_integer(Buf_adr_sig) < buf_cnt_max) THEN
 -- Write first interval polynomial amplitude to register
 IF (to_integer(Buf_adr_sig) = 6) THEN
 cInput_buf4_sig <= Buf_out_sig;
 ELSE
 cInput_buf4_sig <= Input_buf4_sig;
 END IF;

 -- Write last interval polynomial amplitude to register
 IF (to_integer(Buf_adr_sig) = 7) THEN
 cInput_buf5_sig <= Buf_out_sig;
 ELSE
 cInput_buf5_sig <= Input_buf5_sig;
 END IF;
 -- Increment input buffer address
 cBuf_adr_sig <= Buf_adr_sig + 1;
 next_state1 <= state_2;
 ELSE
 cInput_buf4_sig <= Input_buf4_sig;
 cInput_buf5_sig <= Input_buf5_sig;
 cBuf_adr_sig <= "0000";
 next_state1 <= state_3;
 END IF;
 END IF;
 ELSE
 cMAC_coef_datab_sig <= "0000000000000000";
 cMAC_coef_clr_sig <= '1';
 cMat_adr_sig <= "1001001";
 cBuf_adr_sig <= "0000";
 cBuf_dat_sig <= "0000000000000000";
 cBuf_wren_sig <= '0';
 cfrst_coef_f_sig <= '0';
 cInput_buf4_sig <= Input_buf4_sig;
 cInput_buf5_sig <= Input_buf5_sig;
 next_state1 <= state_0;
 END IF;

 --
 -- Latch polinomial coeficient to output buffer
 --
 When state_3 =>

 cstate4_f_sig <= state4_f_sig;
 cwait_cnt_max <= wait_cnt_max;
 cInput_buf4_sig <= Input_buf4_sig;
 cInput_buf5_sig <= Input_buf5_sig;
 IF (frst_coef_f_sig ='0') THEN
 -- First polynomial coeficient value calculation and storage
 cMAC_coef_datab_sig <= Buf_out_sig;
 cBuf_dat_sig <= "0000000000000000";
 -- Zero input buffer
 cBuf_wren_sig <= '0';
 -- Buffer in read mode
 ccoef_data_ready_sig <= coef_data_ready_sig;

F2. Polynomial coefficient
calculation

University of Stellenbosch

181

 IF (to_integer(state3_cnt_sig) < 7) THEN
 cData_temp <= Data_temp;
 cMAC_coef_clr_sig <= '0';
 cCoef_finish_f_sig <= Coef_finish_f_sig;
 IF (to_integer(state3_cnt_sig) = 0) THEN
 -- Calculate first coefficient
 cBuf_adr_sig <="0001";
 cMat_adr_sig <=Mat_adr_sig;
 ELSE
 -- Time delay for MAC to finish coefficient calculation
 cBuf_adr_sig <="0000";
 cMat_adr_sig <="1001001";
 END IF;
 cstate3_cnt_sig <= state3_cnt_sig+1;
 cfrst_coef_f_sig <= '0';
 next_state1 <= state_3;
 ELSE-- Setup variable for next arithmetic calculations
 cMAC_coef_clr_sig <= '1';
 cBuf_adr_sig <= "0001"; -- Set to 2nd input buffer data
 address
 cMat_adr_sig <= "0000000";-- Set to start address of
 next row multiplication
 cstate3_cnt_sig <= "00000"; -- Reset state3 counter since
 leaving the state
 cfrst_coef_f_sig <= '1'; -- Next entrance to state3 uses
 different path
 cCoef_finish_f_sig <= '1';
 cData_temp <= MAC_coef_result_sig; -- Write
 first coeficient result
 to the output
 next_state1 <= state_2;

 END IF;
 ELSE
 cMAC_coef_datab_sig <= Buf_out_sig;
 cBuf_dat_sig <= "0000000000000000";
 cBuf_wren_sig <= '0';
 cfrst_coef_f_sig <= frst_coef_f_sig;
 cCoef_finish_f_sig <= Coef_finish_f_sig;
 cMat_adr_sig <= Mat_adr_sig;
 cMAC_coef_clr_sig <= '0';
 cData_temp <= Data_temp;
 IF (state3_cnt_sig < wait_cnt_max) THEN
 cstate3_cnt_sig <= state3_cnt_sig + 1;
 ccoef_data_ready_sig <= coef_data_ready_sig;
 IF (to_integer(state3_cnt_sig) = (wait_cnt_max-1)) THEN
 cBuf_adr_sig<= "0000";
 ELSE
 cBuf_adr_sig<= "0000";

 END IF;
 next_state1 <= state_3;
 ELSE
 cstate3_cnt_sig <= "00000";
 cBuf_adr_sig <= "0001";
 ccoef_data_ready_sig <= '1';
 next_state1 <= state_2;
 END IF;
 END IF;

 -- Buffer Shift

 When state_4 =>

F2. Polynomial coefficient
calculation

University of Stellenbosch

182

 cMAC_coef_clr_sig <= '0';
 cstate3_cnt_sig <= state3_cnt_sig;
 cfrst_coef_f_sig <= frst_coef_f_sig;
 cData_temp <= Data_temp;
 ccoef_data_ready_sig<= coef_data_ready_sig;
 cInput_buf4_sig <= Input_buf4_sig;
 cInput_buf5_sig <= Input_buf5_sig;
 IF (to_integer(Buf_adr_sig) < (Buf_cnt_max+2)) THEN
 cwait_cnt_max <= wait_cnt_max;

 IF (state4_f_sig ='0') THEN
 cstate4_f_sig <= '1';
 cMat_adr_sig <= Mat_adr_sig;
 cBuf_adr_sig <= Buf_adr_sig;
 cBuf_wren_sig <= '1';
 cBuf_dat_sig <= Buf_out_sig;
 cMAC_coef_datab_sig <= Buf_out_sig;
 cCoef_finish_f_sig <= '0';
 next_state1 <= state_4;
 ELSE
 cstate4_f_sig <= '0';
 cMat_adr_sig <= Mat_adr_sig + 1;
 cBuf_adr_sig <= Buf_adr_sig + 1;
 cBuf_wren_sig <= '0';
 cBuf_dat_sig <= "0000000000000000";
 cMAC_coef_datab_sig <= "0000000000000000";
 cCoef_finish_f_sig <= Coef_finish_f_sig;
 next_state1 <= state_4;
 END IF;
 ELSE
 cstate4_f_sig <= '1';
 cMat_adr_sig <= "1001001";
 cBuf_adr_sig <= "0000";
 cBuf_wren_sig <= '0';
 cBuf_dat_sig <= "0000000000000000";
 cMAC_coef_datab_sig <= "0000000000000000";
 cwait_cnt_max <= "001";
 cCoef_finish_f_sig <= Coef_finish_f_sig;
 next_state1 <= state_3;
 END IF;
 END CASE;
 END PROCESS Combinational_process1;

Register_process2:

 PROCESS (clk_60Meg_in,reset_in) IS
 BEGIN
 IF (reset_in = '1') THEN
 -- Polynomial coefficient initial assignments
 Polcoef_adr_sig <= "00000";- Reset polcoef output buf address to output zero
 Polcoef_wren_sig <= '0'; -- Set to read mode
 Polcoef_unused_sig <= "000000000000000000000000000000";
 Polcoef_dat_sig <= "000000000000000000000000000000";
 coef_sync_out_sig <= '0'; -- State intial assignment
 current_state2 <= state_0; -- Force state machine to reset state

 ELSIF rising_edge(clk_60Meg_in) THEN
 -- Update latches (memory units)
 -- Polynomial coefficient registers update
 Polcoef_adr_sig <= cPolcoef_adr_sig;
 Polcoef_wren_sig <= cPolcoef_wren_sig;

F2. Polynomial coefficient
calculation

University of Stellenbosch

183

 Polcoef_unused_sig <= cPolcoef_unused_sig;
 Polcoef_dat_sig <= cPolcoef_dat_sig;
 coef_sync_out_sig <= ccoef_sync_out_sig;
 Coef_sync_out <= ccoef_sync_out_sig;
 -- State register
 current_state2 <= next_state2;
 END IF;
 END PROCESS Register_process2;

Combinational_process2:

 PROCESS(current_state2,Polcoef_adr_sig,Polcoef_wren_sig,Polcoef_unused_sig,Polcoef_dat_sig,
 Coef_finish_f_sig,coef_sync_out_sig,Data_temp) IS

 BEGIN
 CASE (current_state2) IS
 --
 -- Start polynomial coeficient store in buffer
 --
 When state_0 =>

 IF (Coef_finish_f_sig ='1') THEN
 cPolcoef_adr_sig <= Polcoef_adr_sig;
 cPolcoef_unused_sig <= Polcoef_unused_sig;
 cPolcoef_wren_sig <= '1';
 cPolcoef_dat_sig <= Data_temp(45 DOWNTO 16);-- top 25 bits of
 result in
 output buffer
 ccoef_sync_out_sig <= coef_sync_out_sig;
 next_state2 <= state_1;
 ELSE
 cPolcoef_adr_sig <= Polcoef_adr_sig;
 cPolcoef_unused_sig <= Polcoef_unused_sig;
 cPolcoef_wren_sig <= Polcoef_wren_sig;
 cPolcoef_dat_sig <= Polcoef_dat_sig;
 ccoef_sync_out_sig <= coef_sync_out_sig;
 next_state2 <= state_0;
 END IF;
 --
 -- Finish polynomial coeficient store in buffer
 --
 When state_1 =>

 cPolcoef_wren_sig <= '0';
 cPolcoef_unused_sig <= Polcoef_unused_sig;
 cPolcoef_dat_sig <= Polcoef_dat_sig;
 IF (to_integer(Polcoef_adr_sig) > 8) THEN
 ccoef_sync_out_sig <= '1';
 IF (to_integer(Polcoef_adr_sig) = 17) THEN
 cPolcoef_adr_sig <= "00000";
 ELSE
 cPolcoef_adr_sig <= Polcoef_adr_sig + 1;
 END IF;
 ELSE
 ccoef_sync_out_sig<= coef_sync_out_sig;
 cPolcoef_adr_sig <= Polcoef_adr_sig + 1;
 END IF;
 next_state2 <= state_0;
 END CASE;
 END PROCESS Combinational_process2;
END ARCHITECTURE coef_calc;

F3. Binary search

University of Stellenbosch

184

F3. Binary search

--
-- Design unit : Binary search
-- File name : binary search.vhd
-- Description : Determines the interval where a crosspoint between a polynomial and saw-tooth
-- : wave exists to a resolution of 9 bits. The polynomial amplitude is calculated
-- : at a specific index determined by the binary search algorithm, when the calculation
-- : is complete the amplitude is compared to the trailing edge sawtooth amplitude.
-- : From this comparison the index value for the next polynomial amplitude calculation is
-- : is determined until a 9-bit accurate crosspoint has been calculated. When this occurs
-- : the two interval amplitudes wherein the crosspoint exists is latched for the next crosspoint
-- : calculation process
-- System : VHDL'93
-- Author : Deon Jacobs
-- : Department of Electrical Engineering
-- : University of Stellenbosch
-- : Deonj@sun.ac.za
-- Revision : Version 1.2 25/08/2005

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY binary_search IS
PORT (
 clk_60Meg_in : IN STD_LOGIC;
 pulse_352_in : IN STD_LOGIC;
 reset_in : IN STD_LOGIC;
 Pol_coef_sync_in : IN STD_LOGIC;
 Pol_coef_in : IN STD_LOGIC_VECTOR(29 DOWNTO 0);
 Start_int_in : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 End_int_in : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 Pol_coef_wren_out : OUT STD_LOGIC;
 Pol_coef_adr_out : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
 Index_out : OUT STD_LOGIC_VECTOR(9 DOWNTO 0);
 Saw_out : OUT STD_LOGIC_VECTOR(24 DOWNTO 0);
 Cross_pnt_sync_out : OUT STD_LOGIC;
 Latch_pol2_out : OUT STD_LOGIC_VECTOR(24 DOWNTO 0);
 Latch_pol1_out : OUT STD_LOGIC_VECTOR(24 DOWNTO 0)
);
END ENTITY binary_search;

ARCHITECTURE interval_calc OF binary_search IS

 COMPONENT Int_matrix
 PORT
 (
 address : IN STD_LOGIC_VECTOR (11 DOWNTO 0);
 clock : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (29 DOWNTO 0)
);
 END COMPONENT;

 COMPONENT saw_tooth
 PORT
 (
 address : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 clock : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (24 DOWNTO 0)
);
 END COMPONENT;

F3. Binary search

University of Stellenbosch

185

 COMPONENT Pol_MAC
 PORT
 (
 dataa : IN STD_LOGIC_VECTOR (29 DOWNTO 0);
 datab : IN STD_LOGIC_VECTOR (29 DOWNTO 0);
 clock0 : IN STD_LOGIC := '1';
 aclr0 : IN STD_LOGIC := '0';
 result : OUT STD_LOGIC_VECTOR (59 DOWNTO 0)
);
 END COMPONENT;

-- State machine declerations

--Matrix multiplication
 TYPE State_machine IS (state_0,state_1,state_2,state_3,state_4,state_5);
 SIGNAL current_state, next_state : State_machine;

-- Combinational logic signals

-- Interpolation System Matrix
 SIGNAL cInt_mat_adr_sig : unsigned(13 DOWNTO 0);

-- Polynomial Multiply Accumulate
 SIGNAL cPol_MAC_datab_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL cPol_MAC_dataa_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL cPol_MAC_clr_sig : STD_LOGIC;

-- Polinomial coeficient inputs
 SIGNAL cPol_coef_adr_sig : unsigned(4 DOWNTO 0);

-- Saw-Tooth waveform
 SIGNAL cSaw_adr_sig : unsigned(9 DOWNTO 0);
 SIGNAL cSaw_tooth_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);

-- Misc signals
 SIGNAL cIndex_sig : unsigned(9 DOWNTO 0);
 SIGNAL cIndex_out_sig : unsigned(9 DOWNTO 0);
 SIGNAL cLow_sig : unsigned(9 DOWNTO 0);
 SIGNAL cHigh_sig : unsigned(9 DOWNTO 0);
 SIGNAL cMult_adr_sig : unsigned(3 DOWNTO 0);
 SIGNAL cState0_f_sig : STD_LOGIC;-- Flag determining polynomial coeficient address
 SIGNAL cState2_f_sig : STD_LOGIC;
 SIGNAL cState3_cnt_sig : unsigned(3 DOWNTO 0);
 SIGNAL cState6_f_sig : STD_LOGIC;
 SIGNAL cPol_amp_temp_sig : STD_LOGIC_VECTOR(59 DOWNTO 0);
 SIGNAL cHigh_data_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL cLow_data_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL cComp_f_sig : STD_LOGIC;
 SIGNAL cLatch_pol1_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL cLatch_pol2_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL cStart_int_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL cEnd_int_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL cCrosspnt_start_f_sig : STD_LOGIC;
 SIGNAL cCross_pnt_sync_sig : STD_LOGIC;

-- Latched output (memory) signals

-- Interpolation System Matrix
 SIGNAL Int_mat_adr_sig : unsigned(13 DOWNTO 0);

F3. Binary search

University of Stellenbosch

186

 SIGNAL Int_mat_out_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
-- Polynomial Multiply Accumulate
 SIGNAL Pol_MAC_dataa_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL Pol_MAC_datab_sig : STD_LOGIC_VECTOR(29 DOWNTO 0);
 SIGNAL Pol_MAC_clr_sig : STD_LOGIC;
 SIGNAL Pol_MAC_result_sig : STD_LOGIC_VECTOR(59 DOWNTO 0);

-- Saw-Tooth waveform
 SIGNAL Saw_adr_sig : unsigned(9 DOWNTO 0);
 SIGNAL Saw_out_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL Saw_tooth_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);

-- Polinomial coeficient inputs
 SIGNAL Pol_coef_adr_sig : unsigned(4 DOWNTO 0);

-- Misc signals
 SIGNAL Index_sig : unsigned(9 DOWNTO 0);
 SIGNAL Index_out_sig : unsigned(9 DOWNTO 0);
 SIGNAL Low_sig : unsigned(9 DOWNTO 0);
 SIGNAL High_sig : unsigned(9 DOWNTO 0);
 SIGNAL Mult_adr_sig : unsigned(3 DOWNTO 0);
 SIGNAL State0_f_sig : STD_LOGIC; -- Flag determining polynomial coeficient address
 SIGNAL State2_f_sig : STD_LOGIC;
 SIGNAL State3_cnt_sig : unsigned(3 DOWNTO 0);
 SIGNAL State6_f_sig : STD_LOGIC;
 SIGNAL Pol_amp_temp_sig : STD_LOGIC_VECTOR(59 DOWNTO 0);
 SIGNAL High_data_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL Low_data_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL Comp_f_sig : STD_LOGIC;
 SIGNAL Latch_pol1_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL Latch_pol2_sig : STD_LOGIC_VECTOR(24 DOWNTO 0);
 SIGNAL Start_int_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL End_int_sig : STD_LOGIC_VECTOR(15 DOWNTO 0);
 SIGNAL Crosspnt_start_f_sig : STD_LOGIC;
 SIGNAL Cross_pnt_sync_sig : STD_LOGIC;

-- Constant
 CONSTANT eight_cnst :unsigned(3 DOWNTO 0) :="1000"; -- Constant value 8
 CONSTANT first_mat_coef :STD_LOGIC_VECTOR(29 DOWNTO 0)
 :="000000000000000000001010101111"; -- Constant value 687

BEGIN

Int_matrix_inst : Int_matrix PORT MAP (
 address => std_logic_vector(unsigned(Int_mat_adr_sig(11 DOWNTO 0))),
 clock => clk_60Meg_in,
 q => Int_mat_out_sig
);

saw_tooth_inst : saw_tooth PORT MAP (
 address => std_logic_vector(unsigned(Saw_adr_sig(9 DOWNTO 0))),
 clock => clk_60Meg_in,
 q => Saw_out_sig
);

Pol_MAC_inst : Pol_MAC PORT MAP (
 dataa => Pol_MAC_dataa_sig,
 datab => Pol_MAC_datab_sig,
 clock0 => clk_60Meg_in,
 aclr0 => Pol_MAC_clr_sig,
 result => Pol_MAC_result_sig
);

F3. Binary search

University of Stellenbosch

187

Register_process:

 PROCESS (clk_60Meg_in,reset_in) IS
 BEGIN
 IF (reset_in = '1') THEN
 --Initialize relevant signals

 -- Interpolation System Matrix
 Int_mat_adr_sig <= "00000000000000";

 --Polynomial Multiply Accumulate
 Pol_MAC_dataa_sig <= "000000000000000000000000000000";
 Pol_MAC_datab_sig <= "000000000000000000000000000000";
 Pol_MAC_clr_sig <= '1';

 --Polynomial Coefficient input
 Pol_coef_wren_out <= '0';
 Pol_coef_adr_sig <= "00000";

 -- Saw-Tooth waveform
 Saw_adr_sig <= "0000000000";
 Saw_tooth_sig <= "0000000000000000000000000";

 -- Misc signals
 Index_sig <= "0100000000";
 Index_out_sig <= "0000000000";
 High_sig <= "1000000000";
 Low_sig <= "0000000000";
 Mult_adr_sig <= "0000";
 State0_f_sig <= '0';
 State2_f_sig <= '0';
 State3_cnt_sig <= "0000";
 State6_f_sig <= '0';
 Pol_amp_temp_sig <=
"00";
 High_data_sig <= "0000000000000000000000000";
 Low_data_sig <= "0000000000000000000000000";
 Comp_f_sig <= '0';
 Latch_pol1_sig <= "0000000000000000000000000";
 Latch_pol2_sig <= "0000000000000000000000000";
 Start_int_sig <= "0000000000000000";
 End_int_sig <= "0000000000000000";
 Crosspnt_start_f_sig <= '0';
 Cross_pnt_sync_sig <= '0';

 -- Initial state assignment
 current_state <= state_0;

 ELSIF rising_edge(clk_60Meg_in) THEN

 -- Interpolation System Matrix
 Int_mat_adr_sig <= cInt_mat_adr_sig;

 -- Polynomial Multiply Accumulate
 Pol_MAC_dataa_sig <= cPol_MAC_dataa_sig;
 Pol_MAC_datab_sig <= cPol_MAC_datab_sig;
 Pol_MAC_clr_sig <= cPol_MAC_clr_sig;
 Pol_coef_wren_out <= '0'; -- Always in read mode
 Pol_coef_adr_sig <= cPol_coef_adr_sig;
 Pol_coef_adr_out<= std_logic_vector(unsigned(cPol_coef_adr_sig(4 DOWNTO 0)));

F3. Binary search

University of Stellenbosch

188

 -- Saw-Tooth waveform
 Saw_adr_sig <= cSaw_adr_sig ;-- Address signal for saw_tooth lookup
 table
 Saw_tooth_sig <= cSaw_tooth_sig; -- Signal holding Saw_tooth current ouput
 value
 Saw_out <= cSaw_tooth_sig;
 -- Misc signals
 Index_sig <= cIndex_sig;
 Index_out_sig <= cIndex_out_sig;
 Index_out <= std_logic_vector(unsigned(cIndex_out_sig(9 DOWNTO 0)));
 High_sig <= cHigh_sig;
 Low_sig <= cLow_sig;
 Mult_adr_sig <= cMult_adr_sig;
 State0_f_sig <= cState0_f_sig;
 State2_f_sig <= cState2_f_sig;
 State3_cnt_sig <= cState3_cnt_sig;
 State6_f_sig <= cState6_f_sig;
 Pol_amp_temp_sig <= cPol_amp_temp_sig;
 High_data_sig <= cHigh_data_sig;
 Low_data_sig <= cLow_data_sig;
 Comp_f_sig <= cComp_f_sig;
 Latch_pol1_sig <= cLatch_pol1_sig;
 Latch_pol2_sig <= cLatch_pol2_sig;
 Latch_pol1_out <= cLatch_pol1_sig;
 Latch_pol2_out <= cLatch_pol2_sig;
 Start_int_sig <= cStart_int_sig;
 End_int_sig <= cEnd_int_sig;
 Crosspnt_start_f_sig <= cCrosspnt_start_f_sig;
 Cross_pnt_sync_sig <= cCross_pnt_sync_sig;
 Cross_pnt_sync_out <= cCross_pnt_sync_sig;

 -- Next state assignment
 current_state <= next_state;

 END IF;
 END PROCESS Register_process;

Combinational_process:

 PROCESS(current_state,Crosspnt_start_f_sig,Cross_pnt_sync_sig,pulse_352_in,Start_int_sig,End_int_si
g,End_int_in,Start_int_in,High_data_sig,Low_data_sig,Latch_pol1_sig,Latch_pol2_sig,Pol_coef_sync_in,Mult_ad
r_sig,Pol_coef_in,Index_sig,Index_out_sig,High_sig,Low_sig,Int_mat_adr_sig,Pol_MAC_dataa_sig,Pol_MAC_da
tab_sig,Pol_MAC_result_sig,Int_mat_out_sig,Saw_adr_sig,Pol_coef_adr_sig,State2_f_sig,State3_cnt_sig,Pol_am
p_temp_sig,Comp_f_sig,State6_f_sig,State0_f_sig,Saw_out_sig,Saw_tooth_sig) IS

 -- Procedure updating the necessary signals for next saw_tooth wave comparison
 PROCEDURE Binary_search_signal_update IS

 -- Internal process variables
 VARIABLE Index_var : unsigned(9 DOWNTO 0);
 VARIABLE High_var : unsigned(9 DOWNTO 0);
 VARIABLE Low_var : unsigned(9 DOWNTO 0);
 VARIABLE High_data_var : std_logic_vector(24 DOWNTO 0);
 VARIABLE Low_data_var : std_logic_vector(24 DOWNTO 0);

 BEGIN
 -- Update signals and variables according to Saw-tooth comparison
 IF (Comp_f_sig = '1') THEN -- Polynomial larger than saw-tooth
 cLow_sig <= Index_sig; -- Low value = index value
 Low_var := Index_sig; - Test if the low data value is equal to zero
 IF (to_integer(Index_sig) = 0) THEN
 cLow_data_sig <= Start_int_sig(15)&"0"&
 Start_int_in(14 DOWNTO 0)&"00000000";
 -- Start interval amplitude used for low_data

F3. Binary search

University of Stellenbosch

189

 Low_data_var := Start_int_sig(15)&"0"&
 Start_int_in(14 DOWNTO 0)&"00000000";

 ELSE-- Normal data assignment
 cLow_data_sig <= cPol_amp_temp_sig(59)&
 cPol_amp_temp_sig(32 DOWNTO 9);
 -- Low data = polynomial amplitude
 Low_data_var := cPol_amp_temp_sig(59)&
 cPol_amp_temp_sig(32 DOWNTO 9);
 END IF;
 cHigh_sig <= High_sig;
 High_var := High_sig;
 cHigh_data_sig <= High_data_sig;

 -- High data stays the same
 High_data_var := High_data_sig;

 -- Current saw-tooth value output
 cSaw_tooth_sig <= Saw_out_sig; -- Output saw-tooth is current saw-tooth
 amplitude
 -- Current index output value
 cIndex_out_sig <= Index_sig;
 ELSE
 -- Polynomial smaller than saw-tooth
 cHigh_sig <= Index_sig; -- High value = index value
 High_var := Index_sig; -- Test if the high data value is equal to 512
 IF (to_integer(Index_sig) = 512) THEN
 cHigh_data_sig <= End_int_sig(15)&"0"&
 End_int_sig(14 DOWNTO 0)&"00000000";
 High_data_var := End_int_sig(15)&"0"&
 End_int_sig(14 DOWNTO 0)&"00000000";
 ELSE-- Normal data assignment
 cHigh_data_sig <= cPol_amp_temp_sig(59)&
 cPol_amp_temp_sig(32 DOWNTO 9);
 -- High data = polynomial amplitude
 High_data_var := cPol_amp_temp_sig(59)&
 cPol_amp_temp_sig(32 DOWNTO 9);
 END IF;
 cLow_sig <= Low_sig;
 Low_var := Low_sig;
 cLow_data_sig <= Low_data_sig;

 -- Low data stays the same
 Low_data_var := Low_data_sig;
 -- Current saw-tooth value output
 cSaw_tooth_sig <= Saw_tooth_sig;-- Output saw-tooth amplitude stays the same
 -- Current index output value
 cIndex_out_sig <= Index_out_sig;
 END IF;
 -- Test to see if the pol coef address needs resetting

 IF (to_integer(Pol_coef_adr_sig) = 9) THEN
 cPol_coef_adr_sig <= "00000";
 ELSIF(to_integer(Pol_coef_adr_sig) = 18) THEN
 cPol_coef_adr_sig <= "01001";
 ELSE
 cPol_coef_adr_sig <= Pol_coef_adr_sig;
 END IF;

 -- Test for binary search completion
 IF (to_integer(High_var - Low_var) = 1) THEN

 cLatch_pol1_sig <= Low_data_var;
 cLatch_pol2_sig <= High_data_var;
 cIndex_sig <= Index_sig;

F3. Binary search

University of Stellenbosch

190

 next_state <= state_0;
 ELSE
 cLatch_pol1_sig <= Latch_pol1_sig;
 cLatch_pol2_sig <= Latch_pol2_sig;
 cIndex_sig <= Low_var + shift_right((High_var - Low_var),1); -- Update
 index
 next_state <= state_5;
 END IF;

 END PROCEDURE Binary_search_signal_update;

 BEGIN
 CASE (current_state) IS

 -- Reset state

 When state_0 =>

 cInt_mat_adr_sig <= "00000000000000";

 cPol_MAC_dataa_sig <= "000000000000000000000000000000";
 cPol_MAC_datab_sig <= "000000000000000000000000000000";
 cPol_MAC_clr_sig <= '1'; -- MAC disabled
 cSaw_adr_sig <= "0000000000"; -- Reset value of Saw-tooth
 lookup table address
 cIndex_sig <= "0100000000"; -- Initial index value of 256
 cIndex_out_sig <= Index_out_sig;
 cHigh_sig <= "1000000000"; -- Initial high value of 512
 cLow_sig <= "0000000000"; -- Initial low value of 0
 cMult_adr_sig <= "0000"; -- address signal for
 polynomial amplitude calculation
 cState2_f_sig <= '0';
 cState3_cnt_sig <= "0000";
 cState6_f_sig <= State6_f_sig;
 cPol_amp_temp_sig <= Pol_amp_temp_sig;
 cHigh_data_sig <= High_data_sig;
 cLow_data_sig <= Low_data_sig;
 cComp_f_sig <= '0';
 cSaw_tooth_sig <= Saw_tooth_sig;
 cLatch_pol1_sig <= Latch_pol1_sig;
 cLatch_pol2_sig <= Latch_pol2_sig;

 IF ((pulse_352_in = '1')and(Pol_coef_sync_in='1')) THEN

 IF (State0_f_sig = '0') THEN
 -- Use first half of polynomial coeficients in ping-pong buffer
 cState0_f_sig <= '1';
 cPol_coef_adr_sig <= "00000";
 ELSE
 -- Use second half of pol coef in ping-pong buffer
 cState0_f_sig <= '0';
 cPol_coef_adr_sig <= "01001";
 END IF;
 -- 2nd 352_8kHz pulse set Crosspoint sync signal to start Crosspoint
 derivation
 IF (Crosspnt_start_f_sig = '0') THEN
 cCrosspnt_start_f_sig <= '1';
 cCross_pnt_sync_sig <= '0';
 ELSE
 cCrosspnt_start_f_sig <= Crosspnt_start_f_sig;
 cCross_pnt_sync_sig <= '1';
 END IF;
 -- Assign input start and end interval amplitudes to internal signals
 cEnd_int_sig <= End_int_in;
 cStart_int_sig <= Start_int_in;

F3. Binary search

University of Stellenbosch

191

 next_state <= state_1;

ELSE
 -- Stay in reset and wait for next 352kHz pulse
 cEnd_int_sig <= End_int_sig;
 cStart_int_sig <= Start_int_sig;
 cCrosspnt_start_f_sig <= Crosspnt_start_f_sig;
 cCross_pnt_sync_sig <= Cross_pnt_sync_sig;
 cPol_coef_adr_sig <= "00000";
 cState0_f_sig <= State0_f_sig;
 next_state <= state_0;
 END IF;

 -- First entrance - New binary search

 When state_1 =>

 cIndex_sig <= Index_sig;
 cIndex_out_sig <= Index_out_sig;
 cHigh_sig <= High_sig;
 cLow_sig <= Low_sig;
 cSaw_adr_sig <= Saw_adr_sig;
 cMult_adr_sig <= Mult_adr_sig;
 cState0_f_sig <= State0_f_sig;
 cState2_f_sig <= State2_f_sig;
 cState3_cnt_sig <= State3_cnt_sig;
 cState6_f_sig <= State6_f_sig;
 cInt_mat_adr_sig<= "00011111111000"; -- Middle index value
 cPol_MAC_dataa_sig <= Pol_MAC_dataa_sig;
 cPol_MAC_datab_sig <= Pol_MAC_datab_sig;
 cPol_MAC_clr_sig <= '1';
 -- MAC disabled
 cPol_coef_adr_sig <= Pol_coef_adr_sig + 1;-- Polynomial coeficient
 address increase
 cPol_amp_temp_sig <= Pol_amp_temp_sig;
 cHigh_data_sig <= High_data_sig;
 cLow_data_sig <= Low_data_sig;
 cComp_f_sig <= Comp_f_sig;
 cSaw_tooth_sig <= Saw_tooth_sig;
 cLatch_pol1_sig <= Latch_pol1_sig;
 cLatch_pol2_sig <= Latch_pol2_sig;
 cEnd_int_sig <= End_int_sig;
 cStart_int_sig <= Start_int_sig;
 cCrosspnt_start_f_sig <= Crosspnt_start_f_sig;
 cCross_pnt_sync_sig <= Cross_pnt_sync_sig;
 next_state <= state_2;

 -- Calculation of polynomial amplitude

 When state_2 =>

 cIndex_sig <= Index_sig;
 cIndex_out_sig <= Index_out_sig;
 cHigh_sig <= High_sig;
 cLow_sig <= Low_sig;
 cSaw_adr_sig <= Index_sig;-- Get Saw-tooth amplitude at Index address
 cState0_f_sig <= State0_f_sig;
 cState3_cnt_sig <= State3_cnt_sig;
 cState6_f_sig <= State6_f_sig;
 cPol_amp_temp_sig <= Pol_amp_temp_sig;
 cHigh_data_sig <= High_data_sig;
 cLow_data_sig <= Low_data_sig;
 cComp_f_sig <= Comp_f_sig;

F3. Binary search

University of Stellenbosch

192

 cSaw_tooth_sig <= Saw_tooth_sig;
 cLatch_pol1_sig <= Latch_pol1_sig;
 cLatch_pol2_sig <= Latch_pol2_sig;
 cEnd_int_sig <= End_int_sig;
 cStart_int_sig <= Start_int_sig;
 cCrosspnt_start_f_sig <= Crosspnt_start_f_sig;
 cCross_pnt_sync_sig <= Cross_pnt_sync_sig;

 IF (State2_f_sig = '0') THEN -- First entrance to state_2 from prior state
 cMult_adr_sig <= Mult_adr_sig;
 cPol_MAC_dataa_sig <= "000000000000000000000000000000";
 cPol_MAC_datab_sig <= "000000000000000000000000000000";
 cPol_MAC_clr_sig <= '0';
 --MAC enabled
 cPol_coef_adr_sig <= Pol_coef_adr_sig+1;
 cInt_mat_adr_sig <= Int_mat_adr_sig+1;
 cState2_f_sig <= '1';
 next_state <= state_2;
 ELSE
 IF (to_integer(Mult_adr_sig) < 7) THEN
 IF (to_integer(Mult_adr_sig) = 0) THEN -- First coeficient
 calculation
 cPol_MAC_dataa_sig <= first_mat_coef;
 cInt_mat_adr_sig <= Int_mat_adr_sig + 1;
 cPol_coef_adr_sig <= Pol_coef_adr_sig + 1;

 ELSIF (to_integer(Mult_adr_sig) = 6) THEN

 cPol_MAC_dataa_sig <= Int_mat_out_sig;
 cInt_mat_adr_sig <= Int_mat_adr_sig;
 cPol_coef_adr_sig <= Pol_coef_adr_sig;
 ELSE
 cPol_MAC_dataa_sig <= Int_mat_out_sig;
 cInt_mat_adr_sig <= Int_mat_adr_sig + 1;
 cPol_coef_adr_sig <= Pol_coef_adr_sig + 1;
 END IF;
 cPol_MAC_datab_sig <= Pol_coef_in;
 cPol_MAC_clr_sig <= '0';
 cMult_adr_sig <= Mult_adr_sig +1;
 cState2_f_sig <= State2_f_sig;
 next_state <= state_2;

 ELSE
 cInt_mat_adr_sig <= Int_mat_adr_sig;
 cPol_MAC_dataa_sig <= Int_mat_out_sig;
 cPol_MAC_datab_sig <= Pol_coef_in;
 cPol_MAC_clr_sig <= '0'; -- MAC still enabled
 cMult_adr_sig <= "0000"; -- Restore Multiply address
 counter
 cPol_coef_adr_sig <= Pol_coef_adr_sig;
 cState2_f_sig <= '0'; -- Reset flag: next entrance to this
 state occurs from call from another state
 next_state <= state_3;

 END IF;
 END IF;
 --

-- Wait until polinomial amplitude has been calculated & Saw-Tooth comparison with
 --Polynomial amplitude

 --
 When state_3 =>

 cIndex_sig <= Index_sig;
 cIndex_out_sig <= Index_out_sig;
 cHigh_sig <= High_sig;
 cLow_sig <= Low_sig;

F3. Binary search

University of Stellenbosch

193

 cSaw_adr_sig <= Saw_adr_sig;
 cMult_adr_sig <= Mult_adr_sig;
 cState0_f_sig <= State0_f_sig;
 cState2_f_sig <= State2_f_sig;
 cState6_f_sig <= State6_f_sig;
 cHigh_data_sig <= High_data_sig;
 cLow_data_sig <= Low_data_sig;
 cSaw_tooth_sig <= Saw_tooth_sig;
 cLatch_pol1_sig <= Latch_pol1_sig;
 cLatch_pol2_sig <= Latch_pol2_sig;
 cEnd_int_sig <= End_int_sig;
 cStart_int_sig <= Start_int_sig;
 cCrosspnt_start_f_sig <= Crosspnt_start_f_sig;
 cCross_pnt_sync_sig <= Cross_pnt_sync_sig;

 IF (to_integer(State3_cnt_sig) = 5) THEN -- Latch MAC result to
 Pol_amp_temp_sig
 cState3_cnt_sig <= State3_cnt_sig + 1;
 cPol_MAC_dataa_sig<= "000000000000000000000000000000";
 cPol_MAC_datab_sig<= "000000000000000000000000000000";
 cPol_MAC_clr_sig <= '0'; -- MAC enabled changed to disabled
 cInt_mat_adr_sig <= Int_mat_adr_sig;
 cPol_coef_adr_sig <= Pol_coef_adr_sig;
 cPol_amp_temp_sig <= Pol_MAC_result_sig; -- Pol temp assignment
 cComp_f_sig <= Comp_f_sig;
 next_state <= state_3;

 ELSIF (to_integer(State3_cnt_sig) = 6) THEN-- Compare Calculated polynomial
 output to saw-tooth
 cState3_cnt_sig <= "0000";
 cPol_MAC_dataa_sig <= "000000000000000000000000000000";
 cPol_MAC_datab_sig <= "000000000000000000000000000000";
 cPol_MAC_clr_sig <= '1';
 cInt_mat_adr_sig <= Int_mat_adr_sig;
 cPol_coef_adr_sig <= Pol_coef_adr_sig+1;
 cPol_amp_temp_sig <= Pol_amp_temp_sig;

 IF (to_integer(signed(Pol_amp_temp_sig(59)&
 Pol_amp_temp_sig(32 DOWNTO 9))) >
 to_integer(signed(Saw_out_sig))) THEN

 cComp_f_sig <='1';
 ELSE
 cComp_f_sig <='0';
 END IF;
 next_state <= state_4; -- Go back to reset, later to
 interval update
 ELSIF (to_integer(State3_cnt_sig) = 0) THEN -- Last multiplication for
 polynomial amplitude result
 cState3_cnt_sig <= State3_cnt_sig + 1;
 cPol_MAC_dataa_sig <= Int_mat_out_sig;
 cPol_MAC_datab_sig <= Pol_coef_in;
 cPol_MAC_clr_sig <= '0';
 cPol_coef_adr_sig <= Pol_coef_adr_sig;
 cInt_mat_adr_sig <= Int_mat_adr_sig;
 cPol_amp_temp_sig <= Pol_amp_temp_sig;
 cComp_f_sig <= Comp_f_sig;
 next_state <= state_3;

 ELSE -- Wait until polynomial amplitude calculation has completed
 cState3_cnt_sig <= State3_cnt_sig + 1;
 cPol_MAC_dataa_sig<= "000000000000000000000000000000";
 cPol_MAC_datab_sig<= "000000000000000000000000000000";
 cPol_MAC_clr_sig <= '0';
 cPol_coef_adr_sig <= Pol_coef_adr_sig;
 cInt_mat_adr_sig <= Int_mat_adr_sig;

F3. Binary search

University of Stellenbosch

194

 cPol_amp_temp_sig <= Pol_amp_temp_sig;
 cComp_f_sig <= Comp_f_sig;
 next_state <= state_3;

 END IF;
 --
 -- Assign new low & high signals according to comparison
 --
 When state_4 =>

 cSaw_adr_sig <= Saw_adr_sig;
 cMult_adr_sig <= Mult_adr_sig;
 cState0_f_sig <= State0_f_sig;
 cState2_f_sig <= State2_f_sig;
 cState3_cnt_sig <= State3_cnt_sig;
 cState6_f_sig <= State6_f_sig;
 cInt_mat_adr_sig <= Int_mat_adr_sig;
 cPol_MAC_dataa_sig <= Pol_MAC_dataa_sig;

 cPol_MAC_datab_sig <= Pol_MAC_datab_sig;
 cPol_MAC_clr_sig <= '1'; -- MAC disabled
 cPol_amp_temp_sig <= Pol_amp_temp_sig;
 cComp_f_sig <= Comp_f_sig;
 cEnd_int_sig <= End_int_sig;
 cStart_int_sig <= Start_int_sig;
 cCrosspnt_start_f_sig <= Crosspnt_start_f_sig;
 cCross_pnt_sync_sig <= Cross_pnt_sync_sig;
 Binary_search_signal_update; -- Procedure handling assignment
 of low & high signals

 -- Update Index Matrix Address

 When state_5 =>
 cHigh_sig <= High_sig;
 cLow_sig <= Low_sig;
 cMult_adr_sig <= Mult_adr_sig;
 cState0_f_sig <= State0_f_sig;
 cState2_f_sig <= State2_f_sig;
 cState3_cnt_sig <= State3_cnt_sig;
 cPol_MAC_dataa_sig <= Pol_MAC_dataa_sig;
 cPol_MAC_datab_sig <= Pol_MAC_datab_sig;
 cPol_MAC_clr_sig <= '1'; -- MAC disabled
 cPol_amp_temp_sig <= Pol_amp_temp_sig;
 cComp_f_sig <= Comp_f_sig;
 cSaw_adr_sig <= Saw_adr_sig;
 cSaw_tooth_sig <= Saw_tooth_sig;
 cHigh_data_sig <= High_data_sig;
 cLow_data_sig <= Low_data_sig;
 cLatch_pol1_sig <= Latch_pol1_sig;
 cLatch_pol2_sig <= Latch_pol2_sig;
 cState6_f_sig <= '0';
 cIndex_sig <= Index_sig;
 cIndex_out_sig <= Index_out_sig;
 cPol_coef_adr_sig <= Pol_coef_adr_sig+1;
 cInt_mat_adr_sig <= Index_sig*eight_cnst-eight_cnst; -- Update matrix
 address
 cEnd_int_sig <= End_int_sig;
 cStart_int_sig <= Start_int_sig;
 cCrosspnt_start_f_sig <= Crosspnt_start_f_sig;
 cCross_pnt_sync_sig <= Cross_pnt_sync_sig;
 next_state <= state_2;

 END CASE;
 END PROCESS Combinational_process;
END ARCHITECTURE interval_calc;

F4. Crosspoint calculation

University of Stellenbosch

195

F4. Crosspoint calculation
--
-- Design unit : Crosspoint derivation
-- File name : crosspoint.vhd
-- Description : Calculation of the interval crosspoint between a saw-tooth and polynomial signal
-- System : VHDL'93
-- Author : Deon Jacobs
-- : Department of Electrical Engineering
-- : University of Stellenbosch
-- : Deonj@sun.ac.za
-- Revision : Version 1.0 26/09/2005

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY crosspoint IS
PORT (
 clk_60Meg_in : IN STD_LOGIC;
 pulse_352_in : IN STD_LOGIC;
 reset_in : IN STD_LOGIC;
 sync_in : IN STD_LOGIC;
 Index512_in : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
 Saw_tooth_in : IN STD_LOGIC_VECTOR(24 DOWNTO 0);
 Pol_amp1_in : IN STD_LOGIC_VECTOR(24 DOWNTO 0);
 Pol_amp2_in : IN STD_LOGIC_VECTOR(24 DOWNTO 0);
 PWM_out : OUT STD_LOGIC_VECTOR(23 DOWNTO 0)

);
END ENTITY crosspoint;

ARCHITECTURE derivation OF crosspoint IS

 -- State decleration
 TYPE State_machine IS (state_0,state_1,state_2,state_3,state_4);
 SIGNAL current_state, next_state : State_machine;

 -- Combinational process signals
 SIGNAL cIndex512_sig : signed(9 DOWNTO 0);
 SIGNAL cIndexNew_sig : signed(16 DOWNTO 0);
 SIGNAL cLow_sig : signed(16 DOWNTO 0);
 SIGNAL cHigh_sig : signed(16 DOWNTO 0);
 SIGNAL cSaw_tooth_sig : signed(24 DOWNTO 0);
 SIGNAL cSaw_amp_sig : signed(24 DOWNTO 0);
 SIGNAL cPol_amp_sig : signed(41 DOWNTO 0);
 SIGNAL cPol_amp1_sig : signed(24 DOWNTO 0);
 SIGNAL cPol_amp2_sig : signed(24 DOWNTO 0);
 SIGNAL cPol_amp_div_sig : signed(24 DOWNTO 0);
 SIGNAL cGrad_f_sig : STD_LOGIC;
 SIGNAL cPWM_frac_sig : signed(16 DOWNTO 0);
 SIGNAL cPWM_sig : signed(23 DOWNTO 0);

 -- Memory process signals
 SIGNAL Index512_sig : signed(9 DOWNTO 0);-- Index value from previous binary search
 SIGNAL IndexNew_sig : signed(16 DOWNTO 0);-- Index value for current binary search
 SIGNAL Low_sig : signed(16 DOWNTO 0);-- Low value for binary search procedure
 SIGNAL High_sig : signed(16 DOWNTO 0);-- High value for binary search procedure
 SIGNAL Saw_tooth_sig : signed(24 DOWNTO 0);-- 1st amplitude coordinate of saw-tooth signal
 SIGNAL Saw_amp_sig : signed(24 DOWNTO 0);-- Calculated saw-tooth wave amplitude at
 index value
 SIGNAL Pol_amp_sig : signed(41 DOWNTO 0);-- Polynomial amplitude result through Linear
 interpolation

F4. Crosspoint calculation

University of Stellenbosch

196

 SIGNAL Pol_amp1_sig : signed(24 DOWNTO 0); -- 1st amplitude coordinate of polynomial signal
 SIGNAL Pol_amp2_sig : signed(24 DOWNTO 0);-- 2nd amplitude cordinate of polynomial signal
 SIGNAL Pol_amp_div_sig: signed(24 DOWNTO 0);-- Difference between 2nd & 1st polynomial
 amplitudes
 SIGNAL Grad_f_sig : STD_LOGIC; -- Indicates if polynomial gradient is positive or
 negative
 SIGNAL PWM_frac_sig : signed(16 DOWNTO 0); -- Fractional value of 24-bit PWM output
 Signal
 SIGNAL PWM_sig : signed(23 DOWNTO 0);-- Signal holding complete 24-bit PWM
 output signal

BEGIN

Register_process:

 PROCESS (clk_60Meg_in,reset_in) IS
 BEGIN
 IF (reset_in = '1') THEN
 Index512_sig <= "0000000000";
 IndexNew_sig <= "00000000000000000";
 Low_sig <= "00000000000000000";
 High_sig <= "00000000000000000";
 Saw_tooth_sig <= "0000000000000000000000000";
 Saw_amp_sig <= "0000000000000000000000000";
 Pol_amp_sig <= "00";
 Pol_amp1_sig <= "0000000000000000000000000";
 Pol_amp2_sig <= "0000000000000000000000000";
 Pol_amp_div_sig<= "0000000000000000000000000";
 Grad_f_sig <= '0';
 PWM_frac_sig <= "00000000000000000";
 PWM_sig <= "000000000000000000000000";
 current_state <= state_0;

 ELSIF (rising_edge(clk_60Meg_in)) THEN

 -- Assignment of internal signals
 Index512_sig <= cIndex512_sig;
 IndexNew_sig <= cIndexNew_sig;
 Low_sig <= cLow_sig;
 High_sig <= cHigh_sig;
 Saw_tooth_sig <= cSaw_tooth_sig;
 Saw_amp_sig <= cSaw_amp_sig;
 Pol_amp_sig <= cPol_amp_sig;
 Pol_amp1_sig <= cPol_amp1_sig;
 Pol_amp2_sig <= cPol_amp2_sig;
 Pol_amp_div_sig<= cPol_amp_div_sig;
 Grad_f_sig <= cGrad_f_sig;
 PWM_frac_sig <= cPWM_frac_sig;
 PWM_sig <= cPWM_sig;

 -- Assignment of output signals
 PWM_out <= std_logic_vector(cPWM_sig(23 DOWNTO 0));
 current_state <= next_state;

 END IF;
 END PROCESS Register_process;

--
Combinational_process:
--
 PROCESS(current_state,pulse_352_in,sync_in,PWM_sig,PWM_frac_sig,Grad_f_sig,Index512_in,
 Saw_tooth_in,Pol_amp1_in,Pol_amp2_in,Index512_sig,Saw_tooth_sig,Pol_amp1_sig,Pol_amp2_sig,
 Pol_amp_div_sig,IndexNew_sig,High_sig,Low_sig,Pol_amp_sig,Saw_amp_sig) IS

F4. Crosspoint calculation

University of Stellenbosch

197

 PROCEDURE Binary_search IS

 VARIABLE Low_var : signed(16 DOWNTO 0);
 VARIABLE High_var : signed(16 DOWNTO 0);

 BEGIN
 -- Comparison of polynomial amplitude with saw-tooth amplitude
 IF (to_integer(signed(Pol_amp_sig(41 DOWNTO 15))) >
 to_integer(signed(Saw_amp_sig))) THEN

 IF (Grad_f_sig = '1') THEN

 cLow_sig <= IndexNew_sig;
 Low_var := IndexNew_sig;
 cHigh_sig <= High_sig;
 High_var := High_sig;
 ELSE
 cLow_sig <= Low_sig;
 Low_var := Low_sig;
 cHigh_sig <= IndexNew_sig;
 High_var := IndexNew_sig;
 END IF;
 ELSE
 IF (Grad_f_sig = '1') THEN

 cLow_sig <= Low_sig;
 Low_var := Low_sig;
 cHigh_sig <= IndexNew_sig;
 High_var := IndexNew_sig;
 ELSE
 cLow_sig <= IndexNew_sig;
 Low_var := IndexNew_sig;
 cHigh_sig <= High_sig;
 High_var := High_sig;
 END IF;
 END IF;
 -- Determine if binary search has completed
 IF (to_integer(High_var - Low_var) = 1) THEN
 cIndexNew_sig <= IndexNew_sig;
 cPWM_frac_sig <= Low_var;-- PWM_fraction equal to lower index value
 next_state <= state_4;
 ELSE
 -- has not completed update index value
 cIndexNew_sig <= Low_var + shift_right((High_var - Low_var),1); -- Update
 index
 cPWM_frac_sig <= PWM_frac_sig;
 next_state <= state_2;
 END IF;

 END PROCEDURE Binary_search;

 BEGIN
 CASE (current_state) IS

 -- Reset state & Latch relevant input signals

 When state_0 =>

 IF ((pulse_352_in = '1')and(sync_in = '1')) THEN

 cIndex512_sig <= signed(Index512_in(9 DOWNTO 0)); -- Cast
 from std_logic_vector to signed
 cIndexNew_sig <= IndexNew_sig;
 cLow_sig <= Low_sig;
 cHigh_sig <= High_sig;

F4. Crosspoint calculation

University of Stellenbosch

198

 cSaw_tooth_sig <= signed(Saw_tooth_in(24 DOWNTO 0));

 cSaw_amp_sig <= Saw_amp_sig;
 cPol_amp_sig <= Pol_amp_sig;
 cPol_amp1_sig <= signed(Pol_amp1_in(24 DOWNTO 0));

 cPol_amp2_sig <= signed(Pol_amp2_in(24 DOWNTO 0));

 cPol_amp_div_sig<= Pol_amp_div_sig;
 cGrad_f_sig <= Grad_f_sig;
 cPWM_frac_sig <= PWM_frac_sig;
 cPWM_sig <= PWM_sig;
 next_state <= state_1;
 ELSE

 cIndex512_sig <= "0000000000";
 cIndexNew_sig <= "00000000000000000";
 cLow_sig <= "00000000000000000";
 cHigh_sig <= "00000000000000000";
 cSaw_tooth_sig <= "0000000000000000000000000";
 cSaw_amp_sig <= "0000000000000000000000000";
 cPol_amp_sig <=
 "00";
 cPol_amp1_sig <= "0000000000000000000000000";
 cPol_amp2_sig <= "0000000000000000000000000";
 cPol_amp_div_sig<= "0000000000000000000000000";
 cGrad_f_sig <= '0';
 cPWM_frac_sig <= "00000000000000000";
 cPWM_sig <= PWM_sig;
 next_state <= state_0;
 END IF;

 --
 -- Linear interpolation gradient determination & Initial signal assignments for binary
 -- search

 When state_1 =>

 cIndex512_sig <= Index512_sig;
 cIndexNew_sig <= "00100000000000000";-- Initial index assignment:
 2^15/2=16384
 cLow_sig <= "00000000000000000";-- Low assignment : 0
 cHigh_sig <= "01000000000000000";-- High assignment: 32384
 cSaw_tooth_sig <= Saw_tooth_sig;
 cSaw_amp_sig <= Saw_amp_sig;
 cPol_amp_sig <= Pol_amp_sig;
 cPol_amp1_sig <= Pol_amp1_sig;
 cPol_amp2_sig <= Pol_amp2_sig;
 cPol_amp_div_sig<= (Pol_amp2_sig - Pol_amp1_sig); -- Difference calculation
 giving gradient
 cGrad_f_sig <= Grad_f_sig;
 cPWM_frac_sig <= PWM_frac_sig;
 cPWM_sig <= PWM_sig;
 next_state <= state_2;

 -- Equation calculation

 When state_2 =>

 cIndex512_sig <= Index512_sig;
 cIndexNew_sig <= IndexNew_sig;
 cLow_sig <= Low_sig;
 cHigh_sig <= High_sig;
 cSaw_tooth_sig <= Saw_tooth_sig;

F4. Crosspoint calculation

University of Stellenbosch

199

 -- Straight line amplitude approximation of polynomial
 IF (Pol_amp1_sig(24) = '1') THEN
 cPol_amp_sig <= (Pol_amp_div_sig*IndexNew_sig)+
 ("11"&Pol_amp1_sig&"000000000000000");
 cGrad_f_sig <= '1';
 ELSE
 cPol_amp_sig <= (Pol_amp_div_sig*IndexNew_sig)+
 ("00"&Pol_amp1_sig&"000000000000000");
 cGrad_f_sig <= '0';
 END IF;
 -- Straight line amplitude calculation of saw-tooth signal
 cSaw_amp_sig <= IndexNew_sig + Saw_tooth_sig;
 cPWM_frac_sig <= PWM_frac_sig;
 cPol_amp1_sig <= Pol_amp1_sig;
 cPol_amp2_sig <= Pol_amp2_sig;
 cPol_amp_div_sig <= Pol_amp_div_sig;
 cPWM_sig <= PWM_sig;
 next_state <= state_3;

 -- Binary search

 When state_3 =>

 cIndex512_sig <= Index512_sig;
 cSaw_tooth_sig <= Saw_tooth_sig;
 cPol_amp_sig <= Pol_amp_sig;
 cSaw_amp_sig <= Saw_amp_sig;
 cPol_amp1_sig <= Pol_amp1_sig;
 cPol_amp2_sig <= Pol_amp2_sig;
 cPol_amp_div_sig <= Pol_amp_div_sig;
 cGrad_f_sig <= Grad_f_sig;
 cPWM_sig <= PWM_sig;
 -- Call binary search procedure
 Binary_search;

 -- PWM-width calculation

 When state_4 =>

 cIndex512_sig <= Index512_sig;
 cIndexNew_sig <= IndexNew_sig;
 cLow_sig <= Low_sig;
 cHigh_sig <= High_sig;
 cSaw_tooth_sig <= Saw_tooth_sig;
 cSaw_amp_sig <= Saw_amp_sig;
 cPol_amp_sig <= Pol_amp_sig;
 cPol_amp1_sig <= Pol_amp1_sig;
 cPol_amp2_sig <= Pol_amp2_sig;
 cPol_amp_div_sig<= Pol_amp_div_sig;
 cGrad_f_sig <= Grad_f_sig;
 cPWM_frac_sig <= PWM_frac_sig;
 cPWM_sig <= (Index512_sig&"00000000000000")+
 ("000000000"&PWM_frac_sig(15 DOWNTO 1)); -- PWM width
 calculation
 next_state <= state_0;

 END CASE;
 END PROCESS Combinational_process;
END ARCHITECTURE derivation;

F5. Noise shaping

University of Stellenbosch

200

F5. Noise shaping
--
-- Design unit : Noise shaper
-- File name : Noise shaper.vhd
-- Description: This module excecutes the noise shaper filter. The function of
-- : this filter is to attenuate the requantized noise present in
-- : the audio band by moving it into the supersonic band.
-- System : VHDL'93
-- Author : Deon Jacobs
-- : Department of Electrical Engineering
-- : University of Stellenbosch
-- : Deonj@sun.ac.za
-- Revision : Version 1.0 10/10/2005

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY noise_shaper IS
PORT(clk60Meg_in : IN STD_LOGIC;
 Reset_in : IN STD_LOGIC;
 pulse352_in : IN STD_LOGIC;
 PWM_in : IN STD_LOGIC_VECTOR(23 DOWNTO 0);
 PWM_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);
END ENTITY noise_shaper;

ARCHITECTURE filter OF noise_shaper IS

 COMPONENT MAC_shaper
 PORT
 (
 dataa : IN STD_LOGIC_VECTOR (13 DOWNTO 0);
 datab : IN STD_LOGIC_VECTOR (30 DOWNTO 0);
 clock0 : IN STD_LOGIC := '1';
 aclr0 : IN STD_LOGIC := '0';
 result : OUT STD_LOGIC_VECTOR (44 DOWNTO 0)
);
 END COMPONENT;

 COMPONENT buf_shaper
 PORT
 (
 address : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 clock : IN STD_LOGIC ;
 data : IN STD_LOGIC_VECTOR (13 DOWNTO 0);
 wren : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (13 DOWNTO 0)
);
 END COMPONENT;

 COMPONENT Coef_shaper
 PORT
 (
 address : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 clock : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (30 DOWNTO 0)
);
 END COMPONENT;

F5. Noise shaping

University of Stellenbosch

201

-- State Machine declerations

TYPE State_machine IS (state_0,state_1,state_2,state_3);
SIGNAL current_state, next_state : State_machine;

--Combinational signals

-- MAC shaper
 SIGNAL cMAC_dataa_sig : STD_LOGIC_VECTOR(13 DOWNTO 0);
 SIGNAL cMAC_clr_sig : STD_LOGIC;

-- Buffer shaper
 SIGNAL cBuf_adr_sig : unsigned(3 DOWNTO 0);
 SIGNAL cBuf_dat_sig : STD_LOGIC_VECTOR(13 DOWNTO 0);
 SIGNAL cBuf_wren_sig : STD_LOGIC;

-- Coeficient shaper
 SIGNAL cCoef_adr_sig : unsigned(3 DOWNTO 0);

-- Misc
 SIGNAL cState1_f_sig : STD_LOGIC;
 SIGNAL cState2_f_sig : STD_LOGIC;
 SIGNAL cState3_cnt_sig : unsigned(2 DOWNTO 0);
 SIGNAL cNshaper_filtout_sig : unsigned(23 DOWNTO 0);
 SIGNAL cPWM_out_sig : STD_LOGIC_VECTOR(9 DOWNTO 0);

-- Memory (latched) signals

-- MAC shaper
 SIGNAL MAC_dataa_sig : STD_LOGIC_VECTOR(13 DOWNTO 0);
 SIGNAL MAC_datab_sig : STD_LOGIC_VECTOR(30 DOWNTO 0);
 SIGNAL MAC_clr_sig : STD_LOGIC;
 SIGNAL MAC_result_sig : STD_LOGIC_VECTOR(44 DOWNTO 0);

-- Buffer shaper
 SIGNAL Buf_adr_sig : unsigned(3 DOWNTO 0);
 SIGNAL Buf_dat_sig : STD_LOGIC_VECTOR(13 DOWNTO 0);
 SIGNAL Buf_wren_sig : STD_LOGIC;
 SIGNAL Buf_out_sig : STD_LOGIC_VECTOR(13 DOWNTO 0);

-- Coeficient shaper
 SIGNAL Coef_adr_sig : unsigned(3 DOWNTO 0);

-- Misc
 SIGNAL State1_f_sig : STD_LOGIC;
 SIGNAL State2_f_sig : STD_LOGIC;
 SIGNAL State3_cnt_sig : unsigned(2 DOWNTO 0);
 SIGNAL Nshaper_filtout_sig : unsigned(23 DOWNTO 0);
 SIGNAL PWM_out_sig : STD_LOGIC_VECTOR(9 DOWNTO 0);

-- Constants

 CONSTANT Buf_adr_max : integer := 13;

F5. Noise shaping

University of Stellenbosch

202

BEGIN

MAC_shaper_inst : MAC_shaper PORT MAP (
 dataa => MAC_dataa_sig,
 datab => MAC_datab_sig,
 clock0 => clk60Meg_in,
 aclr0 => MAC_clr_sig,
 result => MAC_result_sig
);

buf_shaper_inst : buf_shaper PORT MAP (
 address => std_logic_vector(unsigned(Buf_adr_sig(3 DOWNTO 0))),
 clock => clk60Meg_in,
 data => Buf_dat_sig,
 wren => Buf_wren_sig,
 q => Buf_out_sig
);

Coef_shaper_inst : Coef_shaper PORT MAP (
 address => std_logic_vector(unsigned(Coef_adr_sig(3 DOWNTO 0))),
 clock => clk60Meg_in,
 q => MAC_datab_sig
);

Register_process:

PROCESS (clk60Meg_in,Reset_in) IS
BEGIN
 IF (reset_in = '1') THEN

 --MAC
 MAC_clr_sig <='1'; -- MAC cleared
 --Buf
 Buf_adr_sig <="0000";
 Buf_dat_sig <="00000000000000";
 Buf_wren_sig <='0'; -- Buffer in read mode
 --Coef
 Coef_adr_sig <="0000";
 --Misc
 State1_f_sig <='0';
 State2_f_sig <='0';
 State3_cnt_sig <="000";
 Nshaper_filtout_sig <="000000000000000000000000";
 PWM_out_sig <="0000000000";
 --State
 current_state <= state_0;

 ELSIF rising_edge(clk60Meg_in) THEN

 --MAC
 MAC_dataa_sig <=cMAC_dataa_sig;
 MAC_clr_sig <=cMAC_clr_sig;
 --Buf
 Buf_dat_sig <=cBuf_dat_sig;
 Buf_adr_sig <=cBuf_adr_sig;
 Buf_wren_sig <=cBuf_wren_sig;
 --Coef
 Coef_adr_sig <=cCoef_adr_sig;
 --Misc
 State1_f_sig <=cState1_f_sig;
 State2_f_sig <=cState2_f_sig;
 State3_cnt_sig <=cState3_cnt_sig;
 Nshaper_filtout_sig <=cNshaper_filtout_sig;
 PWM_out_sig <=cPWM_out_sig;
 PWM_out <=cPWM_out_sig&"000000";

F5. Noise shaping

University of Stellenbosch

203

 --State
 current_state <= next_state;

 END IF;
END PROCESS Register_process;

Combinational_process:

PROCESS(current_state,PWM_in,pulse352_in,MAC_dataa_sig,MAC_clr_sig,Buf_dat_sig,Buf_adr_sig,
Buf_wren_sig,Coef_adr_sig,Buf_out_sig,State1_f_sig,State2_f_sig,State3_cnt_sig,Nshaper_filtout_sig,
MAC_result_sig,PWM_out_sig) IS

 PROCEDURE Noise_shaper_Quantization IS

 VARIABLE PWM_input_and_NShaper_output : unsigned(23 DOWNTO 0);

 BEGIN
 -- Addition of noise shaper output and 24-bit PWM_input
 IF (Nshaper_filtout_sig(23) = '1') THEN
 PWM_input_and_NShaper_output := unsigned(PWM_in(23 DOWNTO 0)) –
 ("0"&Nshaper_filtout_sig(22 DOWNTO 0));
 ELSE
 PWM_input_and_NShaper_output := unsigned(PWM_in(23 DOWNTO 0)) +
 Nshaper_filtout_sig;
 END IF;
 -- Quantization of PWM_input_and_NShaper_output variable
 cPWM_out_sig <= std_logic_vector(
 unsigned(PWM_input_and_NShaper_output(23 DOWNTO 14)));
 -- Quantized 10-bit PWM output
 -- Quantization error
 cBuf_dat_sig <= std_logic_vector(
 unsigned(PWM_input_and_NShaper_output(13 DOWNTO 0)));
 -- Quantization noise for filter input

 END PROCEDURE Noise_shaper_Quantization;

 BEGIN
 CASE (current_state) IS

 -- Reset State

 When state_0 =>

 --Mac
 cMAC_dataa_sig <= "00000000000000";
 cMAC_clr_sig <='1';
 --Buf
 cBuf_adr_sig <="0000";
 cBuf_dat_sig <="00000000000000";
 cBuf_wren_sig <='0';
 --Coef
 cCoef_adr_sig <="0000";
 --Misc
 cState1_f_sig <= '0';
 cState2_f_sig <= '0';
 cState3_cnt_sig <= "000";
 cNshaper_filtout_sig <= Nshaper_filtout_sig;
 cPWM_out_sig <= PWM_out_sig;
 -- Noise shaping filter start decision
 IF (pulse352_in ='1') THEN
 next_state <= state_1;
 ELSE
 next_state <= state_0;
 END IF;

F5. Noise shaping

University of Stellenbosch

204

 --
 -- PWM quatization and storage within buffer
 --
 When state_1 =>

 cMAC_dataa_sig <= Buf_out_sig;
 cBuf_adr_sig <= "0001"; -- Data value written to first buffer address value: 1h
 --Misc
 cState1_f_sig <='1';
 cState2_f_sig <='0';
 cState3_cnt_sig <="000";
 -- Coef
 cCoef_adr_sig <= "0000"; -- First coefficient address
 cNshaper_filtout_sig <= Nshaper_filtout_sig;
 IF (State1_f_sig = '0') THEN

 -- Mac
 cMAC_clr_sig <='1'; -- Keep MAC cleared
 -- Buf
 Noise_shaper_Quantization;
 cBuf_wren_sig <= '1'; -- Write new data value to the noise shaper input buffer
 -- State
 next_state <= state_1;
 ELSE
 -- Mac
 cMAC_clr_sig <='0';
 -- Buf
 cBuf_dat_sig <= "00000000000000";
 cPWM_out_sig <= PWM_out_sig;
 cBuf_wren_sig <= '0'; -- Write new data value to the noise shaper input buffer
 -- State
 next_state <= state_2;
 END IF;

 -- Filter calculation and Buffer shift

 When state_2 =>

 cMAC_clr_sig <='0'; -- MAC arithmetic enabled
 cState1_f_sig <='0';
 cState3_cnt_sig <="000";
 cNshaper_filtout_sig <=Nshaper_filtout_sig;
 cPWM_out_sig <=PWM_out_sig;
 IF (to_integer(Buf_adr_sig) < Buf_adr_max+2) THEN
 IF (State2_f_sig ='0') THEN
 cMAC_dataa_sig<= Buf_out_sig; -- Current buffer output
 filtered at next clock edge
 cBuf_dat_sig <= Buf_out_sig; -- Buffer output connected
 to buffer input for buffer shift
 cBuf_wren_sig <= '1'; -- Overwrite current buffer value with
 previous buffer value
 cBuf_adr_sig <= Buf_adr_sig; -- Keep current buffer address
 cCoef_adr_sig <= Coef_adr_sig; -- Keep current buffer address
 cState2_f_sig <= '1'; -- Reset flag for next data storage
 next_state <= state_2;
 ELSE
 -- Give opportunity for storing previous value at current adddress
 -- and update buffer and filter coefficient lookup table address
 cMAC_dataa_sig<= "00000000000000"; -- No new input data to noise shaping
 filter
 cBuf_dat_sig <= "00000000000000"; -- " "
 cBuf_wren_sig <= '0'; -- Write new data value to the noise
 shaper input buffer
 cBuf_adr_sig <= Buf_adr_sig +1;

F5. Noise shaping

University of Stellenbosch

205

 cCoef_adr_sig <= Coef_adr_sig +1;
 cState2_f_sig <= '0'; -- Reset flag for next data storage
 next_state <= state_2;
 END IF;
 ELSE -- filtering finished
 cMAC_dataa_sig<= "00000000000000";
 cBuf_dat_sig <= "00000000000000"; -- Clear input signal of buffer after data store
 cBuf_wren_sig <= '0'; -- Write new data value to the noise shaper input buffer
 cBuf_adr_sig <= "0000"; -- Reset buffer address
 cCoef_adr_sig <= "0000"; -- Reset Filter coefficient lookup table
 cState2_f_sig <= '0'; -- Reset flag for next data storage
 next_state <= state_3;
 END IF;

 -- Wait state until MAC arithmetic finished and assign noise shaping filter output to register

 When state_3 =>

 cMAC_clr_sig <='0'; -- MAC arithmetic enabled
 cState1_f_sig <='0';
 cMAC_dataa_sig <= "00000000000000";
 cBuf_dat_sig <= "00000000000000"; -- Clear input signal of buffer after data store
 cBuf_wren_sig <= '0'; -- Write new data value to the noise shaper input buffer
 cBuf_adr_sig <= "0000";
 cCoef_adr_sig <= "0000"; -- First coefficient address
 cState2_f_sig <= '0'; -- Reset flag for next data storage
 cPWM_out_sig <=PWM_out_sig;
 IF (to_integer(State3_cnt_sig) < 5) THEN
 IF (to_integer(State3_cnt_sig) = 4) THEN -- Time to assign filter output to Noise
 shaper filter signal
 IF (MAC_result_sig(44) = '1') THEN -- Negative MAC result
 cNshaper_filtout_sig <="1000000000"&
 (unsigned(not(MAC_result_sig(43 DOWNTO 0)))+1);
 --Top 14 bits of MAC result assigned as lower 14 bits
 ELSE --to be added to PWM input, MAC_result(44) is a sign bit
 -- Positive MAC result

 cNshaper_filtout_sig <="0000000000"&
 (unsigned(MAC_result_sig(43 DOWNTO 30)));
 END IF;
 ELSE -- Not time yet to assign Noise shaper filter signal (MAC not finished)

 cNshaper_filtout_sig <= Nshaper_filtout_sig;
 END IF;
 State3_cnt_sig <= State3_cnt_sig +1;
 next_state <= state_3;
 ELSE
 -- Assignment complete, wait for next 24-bit PWM signal
 cNshaper_filtout_sig <= Nshaper_filtout_sig;
 cState3_cnt_sig <="000";
 next_state <= state_0;
 END IF;
 END CASE current_state;
END PROCESS Combinational_process;
END ARCHITECTURE filter;

F6. PWM generator

University of Stellenbosch

206

F6. PWM generator

--
-- Design unit : Pulse width modulation unit
-- File name : PWM_gen.vhd
-- Description : File generates a pulse width signal from a 16 bit data input,
-- : the data input is compared to a saw-tooth wave having a gradient
-- : of 1. The switching frequency of the PWM signal is at 352.8Khz.
-- : The resolution of the PWM signal is 8-bits, and the method of PWM is
-- : leading edge Uniform Pulse width modulation
-- System : VHDL'93
-- Author : Deon Jacobs
-- : Department of Electrical Engineering
-- : University of Stellenbosch
-- : Deonj@sun.ac.za
-- Revision : Version 1.3 21/08/2005

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY make_pwm_352 IS
PORT(pwm_width_data_in : in std_logic_vector(15 downto 0);
 clk_90_3Meg : in std_logic;
 data_ready : in std_logic;
 PWM_out : out std_logic
);
END ENTITY make_pwm_352;

ARCHITECTURE Compare OF make_pwm_352 IS

 TYPE PWM_state_machine IS (setup_1,cycles_high_2,cycles_low_3);
 SIGNAL present_state,next_state : PWM_state_machine;

 -- Pulse duration execution process constants
 CONSTANT pulse_resolution : integer:=256;

 -- Data_ready_detect process Signals
 SIGNAL dr_detect_f_sig : std_logic; -- Flag Set when data is detected

 -- PWM calculate logic signals
 SIGNAL cpwm_calc_f_sig : std_logic; -- Flag set when PWM is calculated
 SIGNAL cClk_cycles_high_sig : unsigned(7 downto 0); -- Clock instances PWM signal is high
 SIGNAL cClk_cycles_low_sig : unsigned(7 downto 0); -- Clock instances PWM signal is low
 SIGNAL cPWM_sig : std_logic; -- PWM ouput
 SIGNAL cWhen_flag_f_sig : std_logic; -- Indicates when cpwm_calc_f_sig needs to be toggled
 SIGNAL cCnt_cycles_high_sig : unsigned(7 downto 0); -- Counter for PWM high clocks
 SIGNAL cCnt_cycles_low_sig : unsigned(7 downto 0); -- Counter for PWM low clocks
 SIGNAL cLEDS_sig : std_logic_vector(2 downto 0);

 -- PWM generate latch signals
 SIGNAL pwm_calc_f_sig : std_logic; -- Flag set when PWM is calculated
 SIGNAL Clk_cycles_high_sig : unsigned(7 downto 0); -- Clock instances PWM signal is high
 SIGNAL Clk_cycles_low_sig : unsigned(7 downto 0); -- Clock instances PWM signal is low
 SIGNAL clk_inst_sig : std_logic_vector(7 downto 0); -- Signal holding PWM clock width in
 # of clk-cycles
 SIGNAL PWM_out_sig : std_logic; -- PWM ouput
 SIGNAL When_flag_f_sig : std_logic; -- Indicates when cpwm_calc_f_sig needs to be toggled
 SIGNAL Cnt_cycles_high_sig : unsigned(7 downto 0); -- Counter for PWM high clocks
 SIGNAL Cnt_cycles_low_sig : unsigned(7 downto 0); -- Counter for PWM low clocks
 SIGNAL LEDS_sig : std_logic_vector(2 downto 0);

F6. PWM generator

University of Stellenbosch

207

BEGIN

Data_ready_detect:

 PROCESS (clk_90_3Meg) IS
 BEGIN
 IF rising_edge(clk_90_3Meg) THEN
 IF (data_ready = '1') THEN
 IF ((pwm_calc_f_sig = '0') and (dr_detect_f_sig = '0')) THEN
 dr_detect_f_sig <= '1';
 clk_inst_sig <= pwm_width_data_in(15 DOWNTO 8);

 ELSIF ((pwm_calc_f_sig = '1') and (dr_detect_f_sig = '1')) THEN
 dr_detect_f_sig <= '0';
 clk_inst_sig <= pwm_width_data_in(15 DOWNTO 8);
 ELSE
 dr_detect_f_sig <= dr_detect_f_sig;
 clk_inst_sig <= clk_inst_sig;
 END IF;
 END IF;
 END IF;
 END PROCESS Data_ready_detect;

PWM_gen_latch:

 PROCESS (clk_90_3Meg) IS
 BEGIN
 IF rising_edge(clk_90_3Meg) THEN

 -- Internal signals
 present_state <= next_state; -- Latch new state result
 PWM_out_sig <= cPWM_sig; -- Latch new PWM output
 pwm_calc_f_sig <= cpwm_calc_f_sig; -- Latch PWM process sync flag
 Clk_cycles_high_sig <= cClk_cycles_high_sig;
 Clk_cycles_low_sig <= cClk_cycles_low_sig;
 When_flag_f_sig <= cWhen_flag_f_sig;
 Cnt_cycles_high_sig <= cCnt_cycles_high_sig;
 Cnt_cycles_low_sig <= cCnt_cycles_low_sig;
 LEDS_sig <= cLEDS_sig;
 -- Output registers
 --clk_inst_out <= clk_inst_sig;
 PWM_out <= PWM_out_sig;
 --Clk_cycles_high_out <= std_logic_vector(Clk_cycles_high_sig(7 downto 0));
 --Clk_cycles_low_out <= std_logic_vector(Clk_cycles_low_sig(7 downto 0));
 --Cnt_cycles_high_out <= std_logic_vector(Cnt_cycles_high_sig(7 downto 0));
 --LEDS_out <= LEDS_sig;
 END IF;
 END PROCESS PWM_gen_latch;

PWM_gen_logic:

 PROCESS(present_state,When_flag_f_sig,Cnt_cycles_low_sig,Cnt_cycles_high_sig,dr_detect_f_sig,
 PWM_out_sig,pwm_calc_f_sig,clk_inst_sig,Clk_cycles_high_sig,Clk_cycles_low_sig) IS

 PROCEDURE State_setup IS -- Sets up variables to execute PWM
 BEGIN
 cpwm_calc_f_sig <= pwm_calc_f_sig;
 cClk_cycles_high_sig <= to_unsigned(to_integer(unsigned(clk_inst_sig)),8);
 -- Assign # of high clk cycles
 cClk_cycles_low_sig <= pulse_resolution - Clk_cycles_high_sig; -- Assign # of low
 clk cycles

F6. PWM generator

University of Stellenbosch

208

 IF (to_integer(Clk_cycles_high_sig) > 0) THEN
 cPWM_sig <='1';
 cCnt_cycles_high_sig <="00000001";
 cCnt_cycles_low_sig <=Cnt_cycles_low_sig;
 next_state <= cycles_high_2;
 ELSE -- Clk_cycles_high = 0

 cPWM_sig <='1';
 cCnt_cycles_low_sig <="00000001";
 cCnt_cycles_high_sig <=Cnt_cycles_high_sig;
 next_state <= cycles_low_3;
 END IF;
 END PROCEDURE State_setup;

 BEGIN
 CASE (Present_state) IS
 WHEN setup_1 =>
 cLEDS_sig <= "001";
 IF ((pwm_calc_f_sig = '0') and (dr_detect_f_sig = '1')) THEN
 cWhen_flag_f_sig <='1'; -- pwm_calc_f_sig = 1 (later)
 State_setup;
 ELSIF ((pwm_calc_f_sig = '1') and (dr_detect_f_sig = '0')) THEN
 cWhen_flag_f_sig <='0'; -- pwm_calc_f_sig = 0 (later)
 State_setup;
 ELSE
 cpwm_calc_f_sig <=pwm_calc_f_sig;
 cClk_cycles_high_sig <=Clk_cycles_high_sig;
 cClk_cycles_low_sig <=Clk_cycles_low_sig;
 cCnt_cycles_high_sig <=Cnt_cycles_high_sig;
 cCnt_cycles_low_sig <=Cnt_cycles_low_sig;
 cPWM_sig <=PWM_out_sig;
 cWhen_flag_f_sig <=When_flag_f_sig;
 next_state <=Setup_1;
 END IF;

 WHEN cycles_high_2 =>

 cLEDS_sig <= "010";
 cClk_cycles_low_sig <= Clk_cycles_low_sig;
 cClk_cycles_high_sig <= Clk_cycles_high_sig;
 cWhen_flag_f_sig <= When_flag_f_sig;

 IF (to_integer(Cnt_cycles_high_sig) <= to_integer(Clk_cycles_high_sig)) THEN

 cPWM_sig <= '1';
 cCnt_cycles_high_sig <= Cnt_cycles_high_sig + 1;
 cCnt_cycles_low_sig <= Cnt_cycles_low_sig;
 IF (to_integer(Cnt_cycles_high_sig) = (pulse_resolution-1)) THEN
 cpwm_calc_f_sig<= pwm_calc_f_sig;
 next_state <= setup_1;
 ELSE
 cpwm_calc_f_sig<= pwm_calc_f_sig;

 IF (to_integer(Cnt_cycles_high_sig) = 50) THEN
 IF (When_flag_f_sig = '1') THEN
 cpwm_calc_f_sig <= '1';
 ELSE
 cpwm_calc_f_sig <= '0';
 END IF;
 ELSE
 cpwm_calc_f_sig <= pwm_calc_f_sig;
 END IF;
 next_state<= cycles_high_2;
 END IF;
 ELSE

F6. PWM generator

University of Stellenbosch

209

 cPWM_sig <= '0';
 cCnt_cycles_high_sig <= Cnt_cycles_high_sig;
 IF (to_integer(Clk_cycles_low_sig) = 1) THEN
 cCnt_cycles_low_sig <= Clk_cycles_low_sig;
 IF (When_flag_f_sig = '1') THEN
 cpwm_calc_f_sig <= '1';
 ELSE
 cpwm_calc_f_sig <= '0';
 END IF;
 next_state <= setup_1;
 ELSE
 cpwm_calc_f_sig <=pwm_calc_f_sig;
 cCnt_cycles_low_sig <= "00000001";
 next_state <= cycles_low_3;
 END IF;
 END IF;
 WHEN cycles_low_3 =>

 cLEDS_sig <= "100";
 cPWM_sig <= '0';
 cClk_cycles_high_sig <=Clk_cycles_high_sig;
 cClk_cycles_low_sig <=Clk_cycles_low_sig;
 cWhen_flag_f_sig <=When_flag_f_sig;
 cCnt_cycles_high_sig <=Cnt_cycles_high_sig;

 IF (to_integer(Cnt_cycles_low_sig) < to_integer(Clk_cycles_low_sig-1)) THEN
 IF (to_integer(Cnt_cycles_low_sig) = 50) THEN
 IF (When_flag_f_sig = '1') THEN
 cpwm_calc_f_sig <= '1';
 ELSE
 cpwm_calc_f_sig <= '0';
 END IF;
 ELSE
 cpwm_calc_f_sig <= pwm_calc_f_sig;
 END IF;
 cCnt_cycles_low_sig <= Cnt_cycles_low_sig + 1;
 next_state <= cycles_low_3;
 ELSE
 cpwm_calc_f_sig <= pwm_calc_f_sig;
 cCnt_cycles_low_sig <= Cnt_cycles_low_sig;
 next_state <= setup_1;
 END IF;
 END CASE;
 END PROCESS PWM_gen_logic;
END ARCHITECTURE Compare;

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Chapter 1 - Introduction
	Chapter 2 - Premodulation Processing
	Chapter 3 - Interpolation
	Chapter 4 - Pulse Width Modulation
	Chapter 5 - Noise Shaping
	Chapter 6 - Firmware Implementation
	Chapter 7 - Measurements and Results
	Chapter 8 - Conclusions
	References and Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

