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We present a methodology to measure transducers with a dual-added-mass technique in
order to extract the motional impedance ZM(ω) and force factor B` from the total impedance.
This methodology is suitable for determining moving mass and compliance for motional
impedance models that include viscoelasticity and frequency-dependent damping by curve
fitting, and is applicable to classical transducers for which adding mass to the moving parts
is possible without introducing significant artefacts. Furthermore, we discuss techniques to
assess the quality of the results. Finally, the quality of the proposed measurement technique is
verified with an ANOVA Gage R&R measurement system analysis.

0 INTRODUCTION

A traditional, straightforward technique to estimate
loudspeaker parameters is the well-known added-mass ap-
proach. That is, by adding a known mass to the cone, and
comparing the impedance to the unweighted impedance,
sufficient information is obtained to determine the re-
quired electromechanical parameters. In recent decades,
alternative approaches utilizing a laser have been applied:
either Doppler-laser which identifies the velocity [1], or
a triangulation laser which identifies the position of the
loudspeaker cone [2]. The added-mass approach is still
used when a laser is not available, e.g. for hobbyist speaker
builders. In this paper we propose an approach, which
uses two known added masses, and exclusively electri-
cal impedance measurements, to extract the motional
impedance. This new approach has the potential to iden-
tify the motor strength, B`, and moving mass, MMS, with
higher accuracy than the classical added-mass method.
Furthermore, the motional impedance can be analytically
isolated, making the new method particularly well-suited
for curve fitting to a lumped parameter model for identifi-
cation of viscoelastic properties. If sufficient care is taken,
the method has the potential to offer many of the accuracy
benefits of a laser without the cost, or to at least provide
an alternative method to compute a high-precision fit to
electromechanical parameters.

The new technique we present was motivated by the
emergence of modern lumped parameters models that pro-

vide some description of the viscoelastic properties of the
loudspeaker suspension. Looking back on the history of
moving-coil transducers, we see that Olson had already de-
scribed the traditional model of the mechanical side of a
loudspeaker in terms of mass, resistance, and compliance
in his 1940 text Elements of Acoustical Engineering [3].
Much later, in 1978, Brian Elliott presented an AES paper
expressing a realization that the loudspeaker suspension
is made from elastomers and shows signs of viscoelastic
hysteresis [4]. In this work he appears to coin the expres-
sion frequency-dependent damping. The observation of fre-
quency dependent damping in the audio frequency range is
directly related to the presence of viscoelasticity. Another
15 years later, in 1993, Knudsen and Jensen presented their
development of the LOG-model [5] which quantified the
viscoelastic creep effect. A variation of the LOG model was
adopted by Wolfgang Klippel (around 2001) and has since
been a kind of de facto industry standard. In recent years
a number of newer models have appeared. Although a dis-
cussion and comparison of these newer models is beyond
the scope of the present work, we remark that they provided
the motivation for the present analysis. To this end, the new
dual-added-mass method forms the basis for a comprehen-
sive impedance-fitting protocol sophisticated enough to be
applicable to these new lumped parameter models.
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1 A DUAL-ADDED-MASS TECHNIQUE

1.1 Model-free extraction of motional impedance
The measurement of total (electrical) impedance of an

electro-dynamic transducer consists of the blocked electri-
cal plus mechano-acoustic contributions

Z(ω) = ZE + ZM = ZE +
1

iωCMES + g(ω)
. (1)

In this expression, ω = 2π f is the angular frequency of
oscillation and f is the frequency in Hz. In the classical
Thiele/Small approach, g(ω) contains the stiffness LCES

.
=

CMS(B`)2 and damping RES
.
= (B`)2/RMS, but in a gen-

eral formulation this part may also include viscoelastic-
ity. As such g(ω) is a model-independent representation
of the stiffness and damping. The only condition which
must be met in this formulation is that the moving mass
MMS, here represented by the electrical equivalent CMES

.
=

MMS/(B`)2, is fully captured by CMES and does not con-
tribute to g. This implies that radiation impedance (air load)
is assumed to be constant in the frequency range of interest
(see Appendix A.1).

In the dual-added-mass approach, three measurements
of driver impedance are conducted:

1. Z(0) Cone unweighted
2. Z(1) Cone with added mass m1 attached
3. Z(2) Cone with added mass m2 attached

The three measurements are then decomposed according to

Z(0) = Z(0)
M + ZE , (2)

Z(1) = Z(1)
M + ZE , (3)

Z(2) = Z(2)
M + ZE , (4)

where ZE is invariant, and

Z(k)
M =

1
iωCk + g(ω)

. (5)

Instead of three independent Ck-values, we now take ad-
vantage of the fact that we are adding known masses:

C0 = C , (6)
C1 = C + ∆C1 , (7)
C2 = C + ∆C2 . (8)

In terms of added masses, these are:

∆C1 =
m1

(B`)2 and ∆C2 =
m2

(B`)2 (9)

With this in mind, it is possible to extract the pure motional
impedance. First the electrical impedance, ZE, which is
unchanged during the added-mass operations, is removed
from the data by calculating the following differences

∆Z1
.
= Z(0) − Z(1)

= Z(0)
M − Z(1)

M =
iω∆C1

(iωC + g)(iωC1 + g)
, (10)

∆Z2
.
= Z(0) − Z(2)

= Z(0)
M − Z(2)

M =
iω∆C2

(iωC + g)(iωC2 + g)
. (11)

In principle, each ∆Z contains no component of electri-
cal impedance, ZE, because it is unchanged between mea-
surements. Therefore each ∆Z contains contributions only
from motional impedance. These formulae depend only on
measurement data and are independent of fitting to a given
compliance model. In terms of the unweighted motional
impedance Z(0)

M (which we write as ZM for brevity) we have

∆Z1 =
iω∆C1Z2

M
1 + iω∆C1ZM

, (12)

∆Z2 =
iω∆C2Z2

M
1 + iω∆C2ZM

. (13)

These can be solved for ∆C1 and ∆C2, respectively, to yield:

iω∆C1 =
∆Z1

Z2
M − ZM∆Z1

, (14)

iω∆C2 =
∆Z2

Z2
M − ZM∆Z2

. (15)

For the dual-added-mass method to be valid, ∆C1 and ∆C2
as defined in Eq. (9) must be independent of frequency. If
this condition is satisfied, we can derive an expression for
the model-free motional impedance:

∆C2

∆C1
=

∆Z2

∆Z1

ZM − ∆Z1

ZM − ∆Z2
= µ , (16)

where µ = m2/m1. Thus, we arrive at the key result;
namely, the model-free motional impedance:

ZM∗ =
(1− µ)∆Z1∆Z2

∆Z2 − µ∆Z1
. (17)

For clarity, we refer to this estimate of the motional
impedance as ZM∗. Although ZM∗ is formally a good ap-
proximation to the true ZM as long as ∆C1 is independent
of ω , in practice the accuracy of ZM∗ is limited to the region
where ∆Z1 and ∆Z2 are not too small. A sample calculation
is in given Fig. 4 and shows that, in reality, ZM∗ is accurate
and should be used only in the vicinity of ω = ωs, where
ωs is the driver resonant frequency. Despite this caveat,
there are two evident advantages to the dual-added-mass
approach. First, it operates entirely on measurement data
without any model assumptions about stiffness or damp-
ing. Second, the mechanical impedance is completely iso-
lated, with ZE removed from the problem. In addition to
ZE, the amplifier’s output impedance (i.e., the generator
impedance Rg), the cable impedance, and the series (cur-
rent sensor) resistor of the measurement equipment are re-
moved from the problem. Note that with this result, we can
estimate the resonant frequency of the mechanical system
as

ωs = argmax
ω

(|ZM∗|) = 2π fs . (18)

In this work, a precise determination of the resonant fre-
quency based purely on data is not necessary insofar as it
will be derivable from motional fit parameters to be de-
termined in the sections that follow. We also remark that
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the resonant frequency as defined in Eq.(18) does not ex-
actly coincide with the location of ImZM∗ = 0 due to the
frequency-dependence of the effective damping (i.e., the
real part of g). Thus there is potential ambiguity with re-
spect to the definition of ωs in viscoelastic systems.

To provide a noticeable shift in the resonant frequency
and thereby detect the viscoelastic properties with suffi-
cient precision, we generally recommend that m2 is close
to the transducer’s moving mass, and that m1 is approxi-
mately half the moving mass. These choices will produce
shifts of about 40% and 20%, respectively, in the resonant
frequency ωs.

1.2 Estimation of B`
Based on Eqs. (9) and (14), B` is calculated as

(B`)2 =
m1

∆C1
= m1 Re

〈
iωZM∗(ZM∗ − ∆Z1)

∆Z1

〉ω2

ω1

, (19)

where the angle brackets denote an average. For each mea-
surement point in frequency, a B` value can be extracted
and hence it is possible to plot a B`(ω) curve. An example
of this curve is shown in Fig. 5. Of course, B` in the model
does not change with frequency, so it remains to select a
suitable frequency range for the average in Eq. (19). We
recommend ω1 = 0.8ωs and ω2 = 1.2ωs, where ωs is de-
termined by Eq. 18. For the average to be meaningful, a flat
area of the B`(ω) curve must be found. Typically, provided
the measurements are good, this occurs in the vicinity of
the free-air resonant frequency of the driver. In this was, B`
may be determined without any model assumptions about
g(ω).

The accurate determination of B` is crucial for success
with the added-mass method, and ensures we can reliably
transform parameters from the mechanical to the electrical
domain.

1.3 Estimation of MMS

In this section we will describe a method to deduce the
moving mass MMS, along with other motional fit parame-
ters, from motional data (ZM∗) j. For this we need to choose
a specific lumped-parameter model. In what follows, all fit-
ting results will be based on the LOG compliance model
[5] for the motional impedance

g(ω)
.
=

1
R0

+
σ(ω)

iωL0
, (20)

where σ is a complex factor that describes viscoelastic
creep and frequency-dependent damping

σ =
1

1− β ln(iω)
. (21)

Note that the traditional Thiele-Small form is obtained by
setting β = 0 so that σ = 1. If, for a moment, we consider
that the value of β is known, then we can write a linear
equation for the motional parameters,

1
ZM∗

= iω a + b +
iσ(ω)

ω
c , (22)

where for brevity we have defined a = CMES, b = 1/R0
and c = −1/L0. This simple form implies that we can ob-
tain a coefficient solution by linear least squares. To do
this, we define the error functional (the squared norm of
the residual)

εβ (a,b,c)
.
= ∑

j

[(
b− σI(ω)

ω j
c− ReYj

)2

(23)

+

(
ω ja +

σR(ω j)

ω j
c− ImYj

)2
]
, (24)

where

Yj
.
=

1
(ZM∗) j

(25)

is the motional admittance. Here, σR = Reσ and σI =
Imσ . The summation variable j denotes a suitable sub-
domain of the frequency range. For the analysis in the
present paper, we choose values of j for which 0.8ωs <
ω j < 1.2ωs. Taking the partial derivatives of ε with respect
to a, b and c yields the following linear equations for the
minimum norm of the residual:

∑
j

ω
2
j 0 ∑

j
σR(ω j)

0 ∑
j

1 −∑
j

σI(ω j)

ω j

∑
j

σR(ω j) −∑
j

σI(ω j)

ω j
∑

j

σ2
R + σ2

I

ω2
j




a0

b0

c0



=



∑
j

ω j ImYj

∑
j

ReYj

∑
j

σR ImYj − σI ReYj

ω j


(26)

More precisely, εβ [a0(β ),b0(β ),c0(β )] represents the
minimum residual at fixed β . A further 1-dimensional
minimization of εβ over β is required to find the true
minimum. Let us denote the result of this final minimiza-
tion as β0, which can be obtained using any standard 1D
minimization scheme. Then, the moving mass is given by
MMS = (B`)2a0(β0). This fitting process also determines
the effective resistance R0 and compliance L0, as well as
the creep parameter β .

To be clear, we repeat that for a given β , the inputs to
Eq. (26) are Yj and the frequencies ω j, whereas the outputs
are CMES, R0 and L0. We use β for viscoelasticity expressed
using a natural logarithm, but this may be easily converted
to classical λ values utilizing the base-10 LOG representa-
tion as detailed in Appendix A.4.

1.4 Equivalent RES and LCES

It is of some interest to determine equivalent values for
RES and LCES in the LOG model that can be compared with
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traditional Thiele-Small parameters. Although the corre-
spondence is not unique, a simple method approach is to
set

g(ωs)
.
=

1
RES

+
1

iωsLCES
. (27)

Then, some algebra shows that

1
LCES

=
1
L0

1− β ln(ωs)

(1− β lnωs)2 + (πβ/2)2 , (28)

1
RES

=
1

R0
+

1
ωsL0

πβ/2
(1− β lnωs)2 + (πβ/2)2 . (29)

1.5 Mass consistency check
We propose a type of consistency check that can provide

a critical assessment of the data quality. First, using the
model-free impedance ZM∗, we can check for mass consis-
tency using

m∗1 = Re
[
(B`)2

iω
∆Z1

ZM∗(ZM∗ − ∆Z1)

]
. (30)

The right-hand side will be independent of ω if Eq. (1) is
valid. Also, since we have fitted ZM to a specific model to
determine MMS, it is possible to utilize this fit to calculate
mass consistency for the added masses m1 and m2:

mfit
1 = Re

[
(B`)2

iω
∆Z1

Zfit
M(Zfit

M − ∆Z1)

]
, (31)

mfit
2 = Re

[
(B`)2

iω
∆Z2

Zfit
M(Zfit

M − ∆Z2)

]
. (32)

The right-hand sides will be independent of ω if g(ω) is a
good model of the stiffness and damping. The results may
be compared (e.g. plotted) relative to the nominal masses;
that is, can plot mfit

1 /m1 and mfit
2 /m2 and comparee with

m∗1/m1 to assess a frequency range around ωs where the
data is good. An example of this mass consistency check is
shown in Fig. 8.

2 EXAMPLE TRANSDUCER ANALYSIS

To illustrate the complete procedure for determination
of the motor strength B` and moving mass MMS, we carry
out the analysis for a SEAS L16RNX (H1488-08) mid-
woofer. This driver, shown in Fig. 1, has an aluminium
cone and dust cap, making it a robust choice for repeated
added-mass measurements. Moreover, the motional param-
eters are broadly representative of mid-size transducers.
All free-air measurement data is collected with the driver
mounted into a stand, which can be purchased with the
Klippel Distortion Analyzer equipment, to secure it firmly
in place. According to preliminary linear parameter mea-
surements (LPM) on a Klippel DA1 system, the L16RNX
has MMS ' 15.3g and B` ' 7.14Tm.

Fig. 1. SEAS L16RNX (H1488-08) mid-woofer mounted in
stand.

The equipment used for collection of impedance data
is a Smith & Larson Woofer Tester Pro (WTPro), which
employs a 0.5Ω reference resistor in combination with an
external amplifier to measure impedance at desirable volt-
age/power levels. Here, a Benchmark AHB2 amplifier is
used, which has excellent signal-to-noise ratio and band-
width, low output impedance, and is suitable for labora-
tory use (with advanced overload protection). The WTPro
is calibrated and the calibration saved to a PC. This calibra-
tion was performed once at the beginning of the test period
which ran from 30 November 2016 until 11 February 2017.

Fig. 2. SEAS L16RNX (H1488-08) mid-woofer mounted in
stand with added mass m1.
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Fig. 3. SEAS L16RNX (H1488-08) mid-woofer mounted in
stand with added mass m2.

The setup used in the WTPro is a steady-state sine
wave signal, which is stepped 384 times in the frequency
range 10Hz ≤ f ≤ 20kHz, giving a sufficiently high res-
olution (about 35 points per octave) even for weakly-
damped drivers. The output was chosen to be approxi-
mately 242mV (the WTPro monitors and shows the Volt-
age range of 237mV to 247mV within the measured fre-
quency range). Our understanding is that this small vari-
ation in voltage is corrected for and thus does not affect
the accuracy of Z(ω). Note that, into a 6Ω load, this volt-
age setting is equivalent to approximately 10mW. Choos-
ing a suitable drive level for the measurements is typically
a trade-off between good signal-to-noise ratio (which fa-
vors high voltage) and low nonlinearity (which favors low
voltage). By selecting 242mV, we achieve a good trade-
off between the two and the data appears to be both low-
noise 1 and free of significant nonlinear effects. Although
the dual-added-mass method could be used for scanning at
higher power levels, such an analysis is beyond the scope
of the present paper.

2.1 Calculation of ZM∗
The added masses were kept in line with the Klippel

estimate of MMS by choosing m2 ' 16.048g and m1 '
8.017g. These were carefully measured a posteriori on
a precision scale with 1mg resolution. These choices are
consistent with our guidelines of m2 ' MMS and m1 '
MMS/2. The masses are mounted in 4 pieces (representing
m2, as shown in Fig. 3) so that diagonally one can remove a
pair and then remeasure with 2 pieces (representing m1, as
shown in Fig. 2). This procedure keeps the overall moving
mass in balance to prevent rocking modes. The masses are

1We have verified that the tester is capable of maintaining a
good S/N below 100mV

further kept within about 1% of each other, and the loca-
tion of each mass on the cone registered individually. The
masses are attached onto the cone near the dust cap for
close proximity to the voice coil and to minimize the dy-
namic load on the cone (i.e., to minimize bending). The
care one must take in doing added-mass measurements is
well known in the industry and certainly applies for the
present dual-added-mass method. In particular, it is im-
portant to avoid moving the cone excessively so that the
viscoelastic suspension is not stretched between the three
impedance measurements. Doing so would adversely af-
fect the compliance, especially at low frequency, due to the
memory effect. This is most important for drivers with a
highly viscoelastic suspension (such as the Vifa P17WJ00-
08) and less important for those with less viscoelastic sus-
pension (like the present L16RNX).

Measurements with 385 data points were resampled with
spline interpolation so that a total of 1200 data points were
available for processing and to ensure all plotted curves
are smooth. The method for resampling is described briefly
in Appendix A.2. Thus, we measure Z(2) (with m2), then
Z(1) (with m1), and finally the unweighted driver to obtain
Z(0). With these measurements, we compute ∆Z1 and ∆Z2.
Then, using Eq. (17), we compute the model-free estimate
ZM∗ for the motional impedance. The three measurements
together with the calculated ZM∗ are illustrated in Fig. 4.
From Eq. (18), we find fs = 45.5Hz.

10 20 50 100 200 500 1k
f (Hz)

0

5

10

15

20

25

30

|Z
|(

Ω
)

Z(0)

Z(1)

Z(2)

ZM∗

Fig. 4. Impedance measurements Z(0), Z(1), and Z(2), and the de-
rived motional impedance ZM∗. Only the magnitudes are plotted.
Notice that ZM is formulated such that it corresponds to the free-
air measurement, Z(0).

2.2 Calculation of B`
Next, with the computed data for ZM∗, we use Eq. (19)

to estimate B`. For the purpose of averaging, we set ω1 =
0.8ωs and ω2 = 1.2ωs, where ωs = 2π fs. The computed
average, B` ' 7.007, is illustrated with a horizontal black
line in Fig. 5 superimposed on the frequency-dependent
function B`(ω). The shaded area indicates the averaging
region. A more detailed view of the same data is given in
Fig. 6.
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Fig. 5. Estimate of B` via average over fitting range (shaded)
0.8 fs ≤ f ≤ 1.2 fs, where fs = 45.5Hz. The horizontal black line
denotes the average value B` = 7.007.
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Fig. 6. Zoomed-in view of previous figure. As before, the shaded
area indicates the averaging window used to compute B`.

2.3 Calculation of MMS
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ZM∗

Z
(0)
M

Fig. 7. Comparison of ZM∗ with fit function Z(0)
M . Fit parameters

were computed using the least-squares minimization of Eq. (26)
over the shaded region.

Solving the linear system in Eq. (26), based on the Knud-
sen LOG model as defined in Eqs. (20) and (21), we find
MMS ' 15.05g. The solution of the system of linear equa-
tions also yields β ' 0.059 with R0 ' 32.20Ω and L0 '

60.24 mH. According to the conversion formula, these (ap-
proximately) correspond to traditional Thiele-Small values
of RES ' 23.2Ω and LCES ' 40.8mH. A comparison be-
tween the fit ZM and the original model-free function ZM∗
is shown in Fig. 7. The fit is exceptional in the shaded fit
region. Outside the fit region, it may appear as though the
fit is poor, but a more reasonable interpretation is that the
quality of ZM∗ – as we have emphasized repeatedly – di-
minishes rapidly away from the vicinity of resonance.

2.4 Mass consistency
We can examine the quality of the present results us-

ing the mass-consistency test described in Sec. 1.5. Figure
8 show a calculation of the model-free mass ratio m∗1/m1
as well as the model-dependent mass ratios. The latter are
computed using Zfit

M as fit to the LOG model. In all cases we
get a broad range of consistency in the vicinity of fs. As we
have remarked previously, the validity of ZM∗ is limited to
a narrow frequency range around fs, and this corroborated
by Figure 8. The plot is also strong evidence for the LOG
model fit to ZM being more accurate than ZM∗ far from res-
onance. More specifically, the fit consistency is very good
over a wide region (up to at least 100Hz). On the other
hand, below fs, the mass consistency is not quite so good.
We speculate that this is caused by the term iωCk in Eq. (5)
becoming progressively smaller in the low-frequency range
and thus more sensitive to errors in compliance.
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Fig. 8. Mass consistency.

3 MEASUREMENT SYSTEM ANALYSIS

A classical method to evaluate the quality of a measure-
ment procedure, such as the dual-added-mass method sug-
gested in this paper, is to conduct a measurement system
analysis (MSA). Typically, this is in the form of a Gage
R&R statistical analysis (for example ANOVA) to evaluate
the precision (not accuracy) of the measurement procedure.
First, sources of variation must be identified (e.g., SWIPE):

• Standard
• Workpiece (Part variation)
• Instrument (Gage)
• Person/Procedure (Appraiser)
• Environment
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Standard could be equipment calibration, or compatibility
between device under test (DUT) and instrument, and so
on. We don’t track or evaluate this. Workpiece requires that
we measure more than one driver. We don’t track this. In-
strument and appraiser are what we can track here, since
we have 4 appraisers and a total of 20 measurements. Fi-
nally, Environment, which could include atmospheric vari-
ation, or vibration, or quality of the measurement stand, is
not tracked. For details, see page 17 of Ref. [6].

In the present MSA, we decided to not strictly follow
standard procedures and instead measure only one driver
(i.e., one part). This decision reflects our interest in the
quality of the suggested method in regard to repeatability
and reproducibility, rather than in component variation (as
in production setups). The chosen H1488-08 (L16RNX)
driver is both robust and handy. By robust, we mean that
one can apply m1 and m2 repeatedly without significant
damage to the driver. In fact, during testing, the aluminum
cone was dented slightly without affecting measurements.
In contrast, Blu-Tack applied to a paper-cone woofer can
more easily damage the cone by tearing the fibers. Also, the
suspension is such that CMS changed only slightly during
the measurement procedure. By handy, we simply mean
the driver is small and light enough to easily mount and un-
mount from the measurement rack. For this reason, the L16
may represent a best case scenario when it comes to stabil-
ity in the MSA. We believe this is the appropriate first step.
Performing a worst-case scenario MSA, although it may
illustrate the robustness of the measurement procedure, is
more challenging as the analysis becomes dominated by
quirks and challenging features of the driver. We also re-
mark that the driver suspension properties may change over
time as reapplying the masses stretches the suspension and
thereby changes CMS. However, this does not influence our
estimation of B` and MMS.

Four people were asked to perform five measurements
each, so that the driver was measured 21 times in to-
tal. For the most part, one or occasionally two measure-
ments were performed each day, and the equipment was
turned off and disconnected between each measurement.
The added masses were remeasured following each mea-
surement. Sometimes, but not always, they would be re-
freshed with new Blu-Tack. Because the masses are mea-
sured each time, the statistical analysis reflects the true sta-
tistical variation. A single, complete measurement (that in-
cludes three impedance sweeps with mass recording) takes
about 40-60 minutes. Those who wish to employ the pre-
sented dual-added-mass technique are encouraged to per-
form a Gage R&R analysis with their own equipment to
verify the measurement setup. This section presents the re-
sults as performed at SEAS Fabrikker AS in Norway using
available in-house equipment.

3.1 MSA Results
A list of all 21 measurements is shown in Table 1, includ-

ing date of measurement, added-mass values, and com-
puted B` and MMS.

ID Date m1 m2 B` MMS
Y-M-D (g) (g) (Tm) (g)

A 16-11-30 8.017 16.048 7.007 15.05
A 17-01-20 8.910 17.865 7.065 15.18
B 17-01-26 8.909 17.868 7.047 15.18
B 17-01-30 8.904 17.865 6.999 15.00
B 17-02-01 8.960 17.862 6.999 14.97
C 17-02-01 8.419 17.862 6.679 13.06
A 17-02-01 9.028 18.028 7.025 15.11
A 17-02-02 9.032 18.032 6.998 14.97
B 17-02-02 9.029 18.028 7.075 15.22
B 17-02-03 9.032 18.033 6.878 14.46
D 17-02-03 9.030 18.029 7.035 14.94
C 17-02-03 8.999 18.032 7.037 15.11
C 17-02-04 9.011 17.999 7.071 15.23
D 17-02-06 8.986 17.982 6.928 14.53
C 17-02-06 8.998 17.998 7.031 15.13
D 17-02-07 9.011 18.018 7.069 15.29
C 17-02-07 8.992 17.991 7.032 15.17
D 17-02-08 9.006 18.018 7.020 15.20
C 17-02-08 8.993 17.997 7.047 15.26
A 17-02-10 8.990 17.999 7.025 15.21
A 17-02-11 8.992 18.000 7.026 15.19

Table 1. Overview of measurements for the MSA, sorted by
date and time. Here, A-D refer to the four different individuals
who carried out independent driver testing, with m1 and m2 the
added-mass values applied by the tester. Above, B` is the model-
independent value of the force factor inferred from the data, and
MMS is the moving mass computed by fitting ZM∗ to the LOG
compliance model. The measurements marked with grey back-
ground were erroneous and discarded from further analysis.

Based on a series of diagnostics, three measurements
were identified as flawed and subsequently rejected. The
reasons for each rejection are outlined in more detail in Ap-
pendix A.3. Regarding the dates for each operator’s trial,
we remark that the measurements are not performed in a
streamlined way but in a somewhat random manner which
is the recommended procedure for Gage R&R. Figure 9
shows the correlation between B` and MMS for the remain-
ing 18 measurements in the MSA. In Fig. 9, we can see
that the measurements are bounded by 6.99Tm < B` <
7.08Tm and 14.9g < MMS < 15.3g. This leads us to con-
clude the proposed measurement technique is capable of
detecting B` precisely with a tolerance of about ±0.5%,
and MMS with a tolerance of about ±1%. Because MMS is
computed using the formula MMS = (B`)2CMES, this pro-
duces a correlation between errors; that is, the errors δB`
and δCMES will propagate to δMMS according to

δMMS

MMS
∼ 2

δB`
B`

+
δCMES

CMES
. (33)

And indeed, the trendline in Fig. 9 gives a slope of 1.45
which is close to the theoretical value of 2 in Eq. 33. In
fact, plotting the trendline for CMES versus B` in Fig. 10
shows a much weaker, negative correlation. Substituting
δCMES/CMES = −0.55δB`/B` into Eq. (33) is consistent
with the correlation (slope 1.45) seen in Fig. 9. For this
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Fig. 9. Raw (B`,MMS) data plotted against linear trend-line
showing significant correlation. When CMES is plotted as a func-
tion of B` there is no evident correlation. The mean values here
are B` = 7.034Tm and MMS = 15.13g.
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Fig. 10. Raw (B`,CMES) data plotted against linear trend-line
showing weaker correlation. The mean values here are B` =
7.034Tm and CMES = 0.306mF.

reason, we conclude that any error in B` is amplified in the
calculation of MMS.

In this MSA we decide to study the statistical distribu-
tion of B` since this is the key parameter for the measure-
ment procedure. To this end, it is illustrative to reexamine
the data series with measurement index sorted by data (see
Fig. 11) and by appraiser (see Fig. 12). To study the ac-
curacy of the method and how well it complies with a nor-
mal distribution, a bias study is performed. A plot of the B`
dataset histogram is shown in Fig. 13. The tentative conclu-
sion is that the distribution is non-normal, but nevertheless
we will proceed with the statistical analysis.

3.2 ANOVA Gage R&R
Having outlined the data collection method and provided

a justification for rejection of outliers, we are now in a po-
sition to continue with a formal ANOVA Gage R&R treat-
ment. Here, ANOVA means Analysis of Variance and is
a more sophisticated technique than the so-called Average
and Range method. The ANOVA – or more specifically,
the one-way ANOVA – requires more calculation but esti-
mates the variances and their interactions in a statistically
sound manner. First we define the sum of squared differ-
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Fig. 11. B` as a function of measurement index sorted by date.
Average B` and 1-σ bounds, as determined by unbiased (total)
sample standard deviation.
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Fig. 12. B` as a function of measurement index sorted by ap-
praiser. Average and bounds same as for previous figure.
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Fig. 13. Bias histogram of the complete 18-point dataset for B`.
This result shows significant deviation from a normal distribution.
The results show deviation from the point closest to the mean
(index 16 of the previous figure).

ences (SS) for the appraiser (A), the equipment (E), and
the total (T):

SSA
.
=

NA

∑
k=1

rk(xk − x)2 , (34)
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SSE
.
=

NA

∑
k=1

rk

∑
j=1

(x jk − xk)
2 , (35)

SST =
NA

∑
k=1

rk

∑
j=1

(x jk − x)2 = SSA + SSE . (36)

Above, NA is the number of appraisers (4 people), rk is
number of repetitions for the kth appraiser, x jk is the jth

measurement for appraiser k, xk is the mean for appraiser
k, and x is the grand mean. Referring to Table 1, we see that

{r1,r2,r3,r4} = {6,4,5,3} , (37)

N .
=

NA

∑
k=1

rk = 18 . (38)

We can also define the mean square (MS) values MSx =
SSx/DFx, where DF refers to the degrees of freedom. Thus,

DFA = NA − 1 = 3 , (39)
DFE = N − NA = 14 , (40)
DFT = N − 1 = 17 . (41)

The numerical values of these quantities are summarised in
Table 2, below.

Source DFx SSx (%) MSx (%)
Appraiser 3 0.1246 0.04153
Equipment 14 0.9247 0.06605
Total 17 1.0493 -

Table 2. ANOVA table summarizing degrees of freedom (DF),
sum of squared differences (SS) and mean square (MS) values.

The ANOVA method assumes that there are two separate
normal distributions: a single appraiser will sample from a
normal distribution with mean xk with deviation σE caused
by the equipment, whereas the appraiser means are them-
selves distributed normally with mean x and deviation σA
caused by the differences in appraisals. Based on the above
findings, we may calculate equipment variation (EV) – a
measure of repeatability – using a 3σ (or 99.7%) confi-
dence interval (sometimes, other factors are applied)

EV = 3σE ∼ 3
√

MSE = 0.07710 . (42)

Normally, the appraiser variation AV = 3σA – a mea-
sure of reproducibility – is estimated to be proportional to√

MSA −MSE . Since MSA < MSE , we conclude that AV
is insignificant, or at least it cannot be estimated by the
ANOVA method. The resulting measurement system R&R
is

GRR ∼ EV = 0.07710 , (43)

and we conclude that the variation in the proposed method-
ology does not stem from people and procedure (appraiser)
but from the equipment error. Since EV and GRR are re-
lated to the standard deviations and have the same units
as the measured data (B` in Tm), the values are directly
comparable. We have a nominal value of B` = 7.03Tm
and a 3σ confidence interval of 0.07, i.e. ±1.0%. Hence
the method shown here is valid for measuring B` with high
precision and statistical confidence.

4 CONCLUSION

In this paper we have described a dual-added-mass
method to estimate the force factor B`, the mechanical pa-
rameters MMS, CMS, RMS as well as the creep parameter
β . The method is more robust and accurate than the usual
single-added-mass approach insofar as the blocked electri-
cal impedance can be completely filtered out of the total
impedance and the subsequent analysis carried out on the
motional impedance only. To quantify the accuracy of the
new method, we have carried out an ANOVA MSA analy-
sis using four appraisers, with the result that B` can be es-
timated to ±1% accuracy with a 99% confidence interval
using the WTPro measurement system together with suf-
ficiently accurate determination of added masses (added
masses were known with ±0.1% accuracy). The results
show a B` which deviates from Klippel LPM by 1.6% and
from the official datasheet by 2.4%.

It seems that the data found by the Klippel LPM mea-
surement is optimistic about B` since even the highest B`
value in our measurement is lower than the Klippel LPM
measurement, but please also notice the difference between
our average value and the Klippel LPM is less than 2%, so
it is not a big disagreement. We emphasize that the present
MSA does not clarify the absolute accuracy of the mea-
surements, only the precision between the measurements.
To determine the accuracy of a measurement, the equip-
ment must be calibrated with traceability to an accredited
laboratory.
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A.1 Variation of effective mass with frequency
Radiation impedance

In addition to the contribution of the suspension compo-
nents to the motional impedance, the coupling of the di-
aphragm to the surrounding air results in a non-negligible
radiation impedance. The precise form of this impedance
is a very complicated function of the baffle and cone geom-
etry, and thus no simple formula is available. However, at
low frequency, and assuming the motion to be pistonic, the
radiation impedance is dominantly reactive and to a good
approximation behaves like an effective mass

Zrad ∼ iωMrad , (1)

For a typical driver measurement setup, the effective mass
is minimized if the driver is unbaffled and radiates in a
dipolar fashion. In this case, Mrad = 8a3ρ/3 [7], where a
is the effective radius of the radiator and ρ is the density of
air. On the contrary, the effective mass is maximized if the
driver is fully baffled (mounted on a baffle of infinite area),
for which Mrad = 16a3ρ/3 [7]. Consider the example of
a driver of radius 5.75cm like the H1488-08 (L16RNX).
This corresponds to an unbaffled mass of 0.61g at 20◦C.
Note that the frequency-dependent correction to the low-
frequency limit of the effective mass is indeed small; for
the 5.75cm driver, the correction factor for the effective
mass (i.e., for the reactive contribution) in an infinite baffle
(rather than for the unbaffled case which is more compli-
cated) is

Zrad ∼ iωMrad

[
1− 4

15
(ka)2

]
. (2)

Here, we can write ω = csk where cs is the speed of sound,
and k is the wavenumber. At 185Hz, well above the range
where the moving mass dominates the impedance, the
correction term (in square brackets) amounts to only a
1% reduction in the air load. Because, at low frequencies,
the air load is only 4% of the total moving mass, the
frequency dependence of Zrad changes the moving mass
by only 0.04%. Thus, in what follows, we will consider
the effect of the radiation impedance to be constant and
lumped together with the physical moving mass, MMS, of
the diaphragm.

Effective diaphragm area
A large excursion level could influence how much of the

suspension is included in the moving mass and thus the
effective diaphragm area [8]. For the measurements in this

paper, input voltage is kept low in order to minimize the
nonlinear effects from excursion.

A.2 Resampling data
Measurement data may occur either linearly-spaced or

logarithmically-spaced (log-spaced) in frequency, and the
number of datapoints may be different than what is de-
sired for the fitting procedure. In this appendix we present a
resampling method which converts arbitrary measurement
data into a specified number of with log-spaced data points.
This procedure is convenient for modifying measurement
data in many different situations (not just the present one).
In this paper the resampling algorithm is applied to the raw
impedance measurement data, and ensures that there is suf-
ficient resolution around the resonant frequency of a trans-
ducer.

Input is in frequency, magnitude, phase (FMP) format,
and we wish to resample from n points to N points

{ωi,Ai,φi}n
i=1 −→

{
ω̂ j, Â j, φ̂ j

}N
j=1 (3)

Let us assume the desired points for resampling are loga-
rithmically spaced on the interval [ωmin,ωmax], such that

ω̂ j = ωmin

(
ωmax

ωmin

) j−1
N−1

. (4)

Noting that the complex impedance is related to amplitude
and phase via Z = Aexp(iφ), we introduce the new func-
tions Ci

.
= cos(φi) and Si

.
= sin(φi).

Â j = spline [{Ai} , ω̂ j] (5)
Ĉ j = spline [{Ci} , ω̂ j] (6)
Ŝ j = spline [{Si} , ω̂ j] (7)
φ̂ j = atan2 [Si,Ci] (8)

Here, spline refers to any suitable spline interpolation
routine, and atan2 refers to the two-argument arctangent
function that appears in most modern programming lan-
guages. Unlike φ , the functions C and S are continuous.
Thus, splitting the phase into two components ensures no
problems when the phase crosses zero or when it wraps at
±180 degrees.

A.3 Rejected measurements
Three measurements were rejected based on the appear-

ance of the ω-dependence of the B` and mass-consistency
curves. These three cases looked qualitatively different
than the other measurements and, in particular, behaved
poorly at low frequency. Specifically, the B` curves were
abnormal, as shown in Fig. 14, and more importantly there
was no identifiable region of mass consistency, as shown in
Fig. 15.
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Fig. 14. Discarded data based on abnormally bad low-frequency
behaviour. Compare with Fig. 5
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Fig. 15. Discarded data based on abnormally bad low-frequency
behaviour and poor mass consistency. Compare with Fig. 8

The first measurement by C, dated 2017-02-01, was
most clearly flawed case. Further tests indicated that the
masses were attached near the surround, which means they
are not fixed to the voice coil. This results in a dynamic
contribution so that a flat B` around fs could not be identi-
fied.

A.4 Equivalent forms of the LOG model
It is possible to recast the expression for the LOG com-

pliance in terms of logarithmic functions of arbitrary base
and frequency normalization. Consider a LOG representa-
tion with frequency normalization ω0, base b. Setting this
equal to the LOG representation used in this paper gives

C0

[
1− λ logb

(
iω
ω0

)]
= C [1− β ln(iω)] . (9)

The equality is exact, and some algebra shows that

C0 = C (1− β lnω0) , (10)

λ =
β lnb

1− β lnω0
. (11)

For example, if we choose b = 10 and ω0 = ωs as in
Eq. (5) of Ref. [9], then

C0 = C (1− β lnωs) and λ =
β ln10

1− β lnωs
. (12)

In the original paper by Knudsen and Jensen [5], ω0 = 1
and b = 10, so that the conversion requires

C0 = C and λ = β ln10 . (13)
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