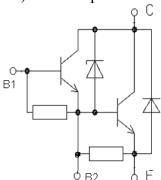
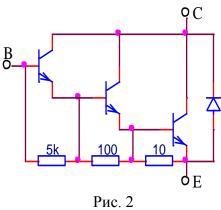
Вашему вниманию предлагается информация о живых разработках по RET-технологии

1. **VL029**, собранный в четырех выводной корпус, с дополнительным выводом базы выходного транзистора, по схеме (рис. 1) и с электрическими параметрами, приведенными в таблице 1.




Рис.1

Транзистор по схеме Дарлингтона, предназначен для работы на индуктивную нагрузку в схемах зажигания автомобилей.

Таблица 1 Основные параметры.

Наименование параметра, режим измерения, единица измерения	Букв.обозн.	Норма
Максимально-допустимые режимы		
1.Максимально-допустимое напряжение коллектор-эмиттер (I_B =0), В	$U_{K \ni MAX}$	350
2.Максимально-допустимое напряжение эмиттер-база, В	$U_{ eg BMAX}$	5
3. Максимально-допустимый ток коллектора, А	$I_{K MAX}$	15
4. Максимально-допустимый импульсный ток коллектора, А	$I_{K,HMAX}$	30
5.Максимально-допустимый ток базы, А	$I_{\text{B MAX}}$	1
6.Максимально-допустимый импульсный ток базы, А	$I_{\mathrm{F},\mathrm{M}\mathrm{MAX}}$	5
7. Максимально-допустимая постоянная мощность коллектора при тем-	$P_{K MAX}$	155
пературе корпуса от минус 60 до 25 °C, с теплоотводом, Вт		
8.Максимально-допустимый ток диода, А	I _{Д ПР}	10
9.Максимальная рабочая температура, °С	$t_{ m KMAX}$	125
10.Минимальная рабочая температура, °С	t _{K MIN}	60
11.Предельно-допустимая температура перехода, °С	$t_{\Pi\;MAX}$	175
Электрические параметры при t=25 °C		
1.Обраный ток коллектор-эмиттер, U_{K9} =350 B, не более, мкА	$I_{K \ni O}$	100
2.Обраный ток эмиттер-база, $U_{E9}=5$ B, не более, мА	$I_{ m 2EO}$	20
3. Граничное напряжение, $I_K = 100$ мA, в диапазоне, В	$U_{K \ni O} \Gamma P$	$350 \div 520$
4. Напряжение насыщения коллектор-эмиттер, не более, В		
$I_{K} = 8 \text{ A } I_{B} = 0.1 \text{ A}$	$U_{K\ni HAC}$	1.8
$I_{K}=10 \text{ A } I_{B}=0.25 \text{ A}$		1.8
$I_{K}=12 \text{ A } I_{B}=0.3 \text{ A}$		2.0
5. Напряжение насыщения база-эмиттер, не более, В	$U_{ extsf{b} ext{3}HAC}$	
$I_{K} = 8 \text{ A } I_{b} = 0.1 \text{ A}$		2.2
$I_{K} = 10 \text{ A } I_{B} = 0.25 \text{ A}$		2.5
$I_{K} = 12 \text{ A } I_{b} = 0.3 \text{ A}$		2.7
6.Статический коэффициент передачи тока в схеме с общим эмитте-		
ром, I _K =5 A U _{KЭ} =10 B, не менее	H_{219}	300
7.Прямое падение на диоде, $I_{\text{Д}}$ =10 A, не более, В	$ m U_{ m J\Pi P}$	2.5

2. **VL030**, собранный в корпус D2PAK, по схеме (рис. 2) и с электрическими параметрами, приведенными в таблице 2.

Тройной транзистор по схеме Дарлингтона, предназначен для работы в схемах накачки мощных полупроводниковых лазеров и для управления электродвигателями.

Таблица 2. Основные параметры.

гаолица 2. Основные параметры.		
Наименование параметра, режим измерения, единица измерения	Букв.обозн.	Норма
Максимально-допустимые режимы		
1.Максимально-допустимое напряжение коллектор-эмиттер (I_B =0), В	$U_{K\ni MAX}$	350
2.Максимально-допустимое напряжение коллектор-эмиттер при	$U_{K\ni MAX}$	500
R _{БЭ} =1 кОм, В		
3. Максимально-допустимое напряжение эмиттер-база, В	$U_{ eg BMAX}$	5
4. Максимально-допустимый ток коллектора, А	I _{K MAX}	20
5. Максимально-допустимый импульсный ток коллектора, А	$I_{K,U \text{ MAX}}$	40
6.Максимально-допустимый ток базы, А	$I_{\rm 6MAX}$	1
7. Максимально-допустимый импульсный ток базы, А	$I_{\rm B,, MMAX}$	2
8. Максимально-допустимая постоянная мощность коллектора при тем-	P _{K MAX}	155
пературе корпуса от минус 60 до 25 °C, с теплоотводом, Вт		
9. Максимальная рабочая температура, °C	t _{K MAX}	125
10.Минимальная рабочая температура, °С	t _{K MIN}	60
11.Предельно-допустимая температура перехода, °C	$t_{\Pi \; \mathrm{MAX}}$	175
Электрические параметры при t=25 °C		
1.Обратный ток коллектора при U_{K9} =500B, R_{B9} =1 кОм, мкА	$I_{K\ni R}$	100
2.Обраный ток эмиттер-база, $U_{69}=5$ B, не более, мА	$I_{ m OBO}$	1
3.Граничное напряжение, I _К =100мА, в диапазоне, В	U _{КЭО ГР}	350
4.Напряжение насыщения коллектор-эмиттер, $I_K = 10 \text{ A } I_B = 0.01 \text{ A}$,	$U_{K\ni HAC}$	2.5
не более, В		
5.Напряжение насыщения база-эмиттер, $I_K = 10 \text{ A } I_B = 0.01 \text{ A}$, не более, В	U _{БЭНАС}	2.7
6.Статический коэффициент передачи тока в схеме с ОЭ, $I_K=10 \text{ A}$	Н _{21Э}	10000
$U_{K9}=10 B$, не менее		
7.Прямое падение на диоде, $I_{\text{Д}}$ =10 A, не более, В	$ m U_{ m J\Pi P}$	2.5