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if 

(x, -[-g grad, T(x)) = 0. 
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(a) 
Proof: Consider the p.d.e. 

_ dq,-) = (Q,f(X)) = 0, q = grad, T(x). 
Let 

w = k, 4. 

01) 

Then 

P, 41 = (x7 - [$7) + (Q, f(x)) 

= (x, -[$]~grad,T(x)) = 0. (“I 

Hence, h and + are in involution and, according to Theorem 3, h 
is constant along solutions of (19). Again 

will also be constant. 

ACKNOWLEDGMENT 

The suthor would like to thank Profs. L. 
R. G. Stefanek for their kind interest. 

V. Boffi, D. Heim, and 

MANOEL SOBRAL, JR. 

Engineering Division 
University of Michigan 
Dearborn, Mich. 48128 

REFERENCES 

[l] J. D. Schoeffler. “The synthesis of minimum sensitivity networks,” IEEE 
Trans. Circzlit Theory, vol. CT-11, pp. 271-276, June 1964. 

[2] D. A. CaLhan, “Computer generation of equivalent networks.” 1964 IEEE 
Intematl. Conu. Rec., pt. 1, pp. 330-337. 

[3] R. W. Newcomb, “The noncompleteness of continuously equivalent networks,” 
IEEE Trans. Circuit Theory (Correspondence). vol. CT-13. pp. 207-208, 
June 1966. 

[4] M. L. Blostein, “Generation of minimum sensitivity networks,” IEEE Trans. 
Circuit Theory (Correspondence), vol. CT-14, pp. 87-88. March 1967. 

[5] J. V. Leeds, Jr., and G. I. Ugron, “Simplified multiple parameter sensitivity 
calculation and continuously equivalent networks,” IEEE Trans. Circuzt 
Theorg. vol. CT-14, pp. 188-191, June 1967. 

[6] E. S. Kuh and C. G. Lau, “Sensitivity invariants of continuously equivalent 
networks.” IEEE Trans. Circuit Theory, vol. CT-15. pp. 175-177, September 
1968. 

[7] For instance, C. CarathBodory, Calculus of Variations and Partial Differential 
Equations of the First Order, vol. 1. San Francisco: Holden Day. 1965. 

[8] F. D. Murnaghan, Differential Equation (in Portuguese). Brazil: Centro 
TQcnico de Aeronautica, S. Jo&z dos Campos, S. P., 1955. 

Network Transfer Functions Using the Concept 
of Frequency-Dependent Negative Resistance 

A positive immittance converter-type network (PIC) can be 
used to realize a frequency-dependent driving-point resistance 
(FDNR) and it has been suggested that the voltage transfer function 
of a passive LCR network can be realized by making use of the 
concept of a FDNR element [l]. The purpose of this correspondence 
is to prove that a general passive LCR network can be transformed 
to a topologically similar network, containing resistors, capacitors, 
and FDNR elements, which has the same voltage transfer function 
as the original LCR network. Furthermore, it is shown that the 
FDNR networks are particularly suitable for the realization of 
high-order low-pass ladder filters. 

A one-port FDNR element is defined by its admittance, given 
by 

(b) 
Fig. 1. (a) The FDNR element notation. (b) Equivalent LCR and DCR elliptic 

ladder filter networks. 

y(s) = s2D 
where D is a positive, real constant. The parameter D will be shown 
adjacent to the symbol given in Fig. l(a) in order to denote the 
FDNR element. We define a DCR network as a network that can 
be considered as consisting of FDNR elements, resistors, and capaci- 
tors. The time description of the behavior of the FDNR element, 
in terms of the element current i and voltage c, is 

Now consider the transformation from a passive LCR network 
to an equivalent DCR network, where this DCR network is obtained 
by scaling the admittance levels of the LCR elements by the param- 
eter s. Thus, if the admittance of the general LCR network branch 
is given by 

Ym(s) = G + SC + $ 

where G, C, and L are the branch conductance, capacitance, and 
inductance, respectively, then the admittance of the general QCR 
network branch is defined as 

Y,,,(s) = sYm(s) = sG + s’C + ; (4) 

where the equivalent DCR network branch will contain a capacitance 
G, resistance L, and FDNR element C. 

Now if the LCR network is considered as a two-port with trans- 
mission matrix parameters A, B, C, and D, then it follows that, 
since A and D are immittance ratios, the equivalent DCR network 
will have identical A and D parameters to the LCR network. Also, 
since B and D have the dimensions of impedance and admittance, 
respectively, the admittance scaling implied by (4) will modify 
these parameters to B/s and C’s, respectively. Thus, it is concluded 
that the voltage transfer function A and current transfer function B 
are not altered as a result of the transformation from a LCR network 
to the equivalent DCR network. 

LOW-PASS LADDER FILTER REALIZATIONS USING FDNR ELEMENTS 

The realization of low-pass ladder filter voltage transfer functions 
is a useful practical application of the above transformation. Con- 
sider the general elliptic low-pass LCR prototype filter and the 
equivalent DCR filter as shown in Fig. l(b). In this example, the 
DCR filter has capacitive terminations and the D elements each 
share a common terminal at ground potential. The FDNR realiaa, 
tions that have so far been suggested are most easily designed with 
one terminal grounded and therefore lend themselves to the realiza- 
tion of low-pass ladder DCR filters. 

The DCR prototype network may be denormalized to a particular 
frequency ~0 and a specific impedance level as follows: 

R = R,K; D=g 
0 Manuscript received November 7, 1968. 
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Fig. 2. (a) A prototype DCR elliptic lsddel I filter nel ;work. (b) A practical circuit realization of the elliptic ladder filter network 

(b) 

i 
I - - - - theoretical 

; . 0 measured 
c 

, 

-159pF 

Fig. 3. Measured and ideal voltage transfer function of the elliptic ladder filter. 

where the subscript n indicates the element value before denormali- Thus, the denormalized element values, calculated from Fig. 2(a) 
zation and the constant K denormalizes to the required impedance are as follows: 
levels. For example, the DCR filter given in Fig. 2(a) is denormalized 
so that L, = 141 Q2; L, = 25.2 3; L, = 194 0; 

and 

f,,=z=lkHz 

1 
-T-z- = -100 D 

L, = 75 Q L, = 108 0; 

G. = 1.44/.~F; G, = 1.44 /.LF; 

’ X 0.71 X lo-*. 

.giving 

wo J% 

K = 1.106 X 100 = 110.6. 

The complete DCR filter network is given in Fig. 2(b), where the D 
elements are realized using the network that is analysed in [2]. 
The 22-kfi resistor in Fig. 2(b) is used to provide input bias current 
to the p A702C amplifiers and will appear in the corresponding LCR 
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filter as a large nonideal shunt inductor. This’ will cause the low- 
frequency response of the filter to fall off to zero. 

The measured and ideal voltage transfer functions are given 
in Fig. 3, where it may be seen that the measured transfer function 
is in good agreement with theory. It has been shown that the par- 
ticular PII/PIC network used in this realization is particularly 
useful at high frequencies because it exhibits a large & factor. Further 
experimental work has demonstrated that very high-order ladder 
filters can be constructed using this technique with cutoff frequencies 
up to 250 kHz with pA702C amplifiers. It should be noted that a 
general high-order elliptic low-pass LC filter, consisting of N floating 
inductors, requires (N - 1) operational amplifiers if it is realized 
using this method. Furthermore, comments made elsewhere [3], [4] 
concerning network sensitivity also apply to this type of realiza- 
tion, and the overall sensitivity is comparable to other methods 
employing PIPS and PIG’s [5]-[S]. 

To summarize, a class of DCR networks has been suggested, 
which is obtained by direct transformation from LCR networks, 
and it has been shown that the transformation is particularly useful 
for realizing active ladder filters in which the LCR version contains 
floating inductors. Work is continuing with the applications of 
impedance conversion networks to the realization of active filters, 
oscillators, modulators, and mixers. The results of this work will 
be published as they become available. 
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Chebyshev Rational Functions and 
Ladder RC Networks 

In working with optimum RC phase-shift problems [l], [2], the 
author has come across a class of functions that can be used in a 
new approach to the study of RC ladder networks. The aim of this 
correspondence is to introduce these functions, and then use these 
functions 1) to evaluate the zero positions of the ABCD parameters 
of a geometric progression ladder RC network, and 2) to study the 
asymptotic behavior of these zero locations as the number of sections 
in the network increases. 

I. THE ABCD PARAMETERS OF A GEOMETRIC PROGRESSION 

LADDER RC NETWORK AND THEIR ZERO POSITIONS 

1) Consider the n-section RC ladder network of Fig. 1, the resist- 
ance and capacitance distributions of which are defined by 

R,,, = aRi, irl , . . ..%-I (1) 

R,C, = T, i = 1 ... ,?&. f (2) 

Manuscript received October 9, 1968; revised December 21, 1968. 
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Fig. 1. The geometric progression RC ladder network. 

Application of Kirchoff’s current law at node i yields the following 
second-order linear difference equation 

i=l 
> 

. . ..n-1 (3) 
the solution of which is given by 

Vi = u~‘~[M cash (n - 1)41 + N sinh (n - i)q&], 

i = O,l, .*. ,n (4) 
where 

6 cash 4, = 2 

M, N are two constant multipliers independent of the index i, and 
P is the complex frequency. 

By applying various terminating conditions to (4), the ABCD 
parameters of the general progression network can be derived in 
the following form [3], [4]. 

In analyzing the transient response of the ladder network, it is 
often desirable to know the exact zero positions of A(P). Since the 
expression (6) for A(P) comprises two separate terms, both of which 
are oscillatory in nature, these zero positions are numerically difficult 
to evaluate. In the following, a more tractable expression will be 
sought for the determination of these zero positions. 

2) Consider the following rational functions in P. 

cos, 4 = ’ + +(b + &> 1 3(&T - t&J 
cosh+ 2 = cto + t,>P + 2tat@o 

(49 - L>P 
These two functions are akin to the hyperbolic cosine functions 

used, in filter network synthesis [5], [6]. In the same way, it can be 
shown that cash (j+, + k&} is a rational function in P provided 
j and k are integers, and that the function oscillates between +l and 
- 1 (j + k) times, with a k-order pole at the origin. The “passband”’ 

1 In accordance with the terminology used in filter synthesis theory. 


