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Abstract—Linearity is a critical measurement for overall per-
formance of digital-to-analog converters (DAC) in mixed-signal
system-on-chips (SoCs). Device parameters become more difficult
to control due to variations from fabrication process with deep
sub-micron technology. Such parameters also continue to degrade
after fabrication as time elapses. Process variations of DACs
are major source of non-linearity errors and will seriously keep
degrading performance of SoCs. In this paper, we propose a novel
digital post-fabrication variation-tolerant solution to reduce non-
linearity error of on-chip high-resolution DAC by digital signal
processor which is generally available on the SoC. The non-
linearity error will be measured by a high-linear sigma-delta
ADC and the DAC will be adaptively characterized to obtain a
best matching polynomial. Then the non-linearity error can be
corrected using the polynomial through a low-resolution dithering
DAC. Simulation results show that a sigma-delta modulator with
effective number of bits (ENOB) equivalent to a 17-bit ADC. A 6-
bit dithering DAC is sufficient to calibrate a 14-bit high-resolution
on-chip DAC and reduce the maximum non-linearity error from 3
LSB to 0.5 LSB. The proposed solution is technology independent
and can be applied to any digitally controllable mixed-signal
device for various process variation-tolerant applications.

Index Terms—BIST, adaptive non-linearity compensation, self-
calibration, mixed-Signal, DAC, SoC

I. I NTRODUCTION

With rapid advances in the integrated circuit (IC) tech-
nology, feature size in modern semiconductor devices has
been shrinking into nanoscale (65nm and smaller) dimensions.
The underlining motivations are higher performance, reduced
power consumption, and lower overall system cost. However,
nanoscale technologies have given rise to new problems of
increased parameter variation [2], higher leakage, and time-
dependent degradation, all of which are active research areas.

The above issues have influenced testing as well. Advancing
the built-in self-test methods, a recent paper [4] proposes
self-calibration of mixed signal components (DAC and ADC)
on a system-on-chip (SoC) devices. In that particular design,
nonlinearity is corrected by a built-in by self-calibration
scheme before the device is put in the operational mode.
Nonlinearity error was estimated as a third-degree polynomial
with coefficients stored on chip for run time correction.

In nanoscale devices, parameters may change (degrade) with
time and with operating conditions. One such phenomenon
that has received attention is thenegative bias temperature
instability (NBTI) [7]. The parameter changes will require that
any calibration and compensation procedure should be able to
adopt. In this paper, we propose a polynomial error fitting
type of non-linearity compensation where the degree of the
polynomial is self-adaptable. Thus, the system can recalibrate

the the compensation parameters either the idle times or the
restart of the system.

In mixed-signal SoCs, the challenges of nanoscale technolo-
gies [2] more difficult to deal with. Digital components may
require built-in redundancy and reconfiguration, but analog and
mixed-signal components may be correctable through mea-
surement, calibration and correction schemes. Typical mixed-
signal components of a modern SoC include digital-to-analog
(DAC) and analog-to-digital (ADC) converters. In this paper
we discuss the DAC. Similar techniques can be developed for
ADC [4] and are the subject of our ongoing research.

One of the most critical parameters of DAC is output
linearity, which determines the input signal quality for the
analog subsystem on a mixed-signal SoC and may be a
decisive factor for the overall performance. With increasing
demand to integrate high-resolution on-chip DAC with high-
speed digital signal processor (DSP), it becomes more expen-
sive and challenging to test and diagnose such DAC by an
external automatic test equipment (ATE). Several papers [3],
[5], [10] have described histogram-based test architectures
for testing of DAC using low-cost low-resolution converters.
Such approaches require large amount of memory to save
intermediate data and reference values, especially for high-
resolution DACs. Hence, an external ATE is used.

Built-in self-test (BIST) for digital devices has been widely
studied for testing and guaranteeing correctness of digital
components. A similar design-for-test (DFT) methodology can
also be applied to test mixed-signal components [9], which can
test and diagnose them using fault-free digital signal processor
(DSP) circuitry often assumed available on the SoC.

A recent paper [4] presents a self-calibration BIST approach
to measure and fit the on-chip DAC output non-linearity
error with a third-order polynomial. When the third-order
polynomial is found insufficient the device fails the test.

II. PROPOSEDBIST SCHEME FORDAC

In this paper, we propose a novel DSP-based post-
fabrication BIST and self-calibration scheme shown in Fig-
ure 1. The non-linearity error of DAC is estimates as a poly-
nomial whose degree is dynamically selected. A measuring
ADC (m-ADC), consisting of a sigma-delta modulator and a
digital low-pass filter, and a low-resolution dithering DAC(d-
DAC) are added. Testing procedure would run every time the
SoC powers up, or during idle periods, or on special interrupts.
The first step is the conventional BIST of all digital circuitry
including the DSP. The second step is the self-test and self-
calibration of mixed-signal components using the fault-free
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Fig. 1. Proposed BIST and self-calibration scheme of DAC.

digital components. A analog loopback is established between
DAC and ADC/m-ADC and the on-chip DAC is tested with
ramp codes generated as test patterns by the DSP. The m-ADC
measures non-linearity errors, which are analyzed using an
adaptive polynomial algorithm fitting a series of polynomials
to select the minimum degree for a good fit. The coefficients
of the selected polynomial are used by d-DAC to generate
analog correction signals for the DAC output. The coefficients
can also be considered as characteristics of the DAC and used
to determine if DAC is faulty by comparing them with pre-
defined reference values. After the correction, non-linearity
errors are removed from DAC outputs. Meanwhile, m-ADC
and d-DAC conduct a self-test procedure to diagnose any
potential catastrophic fault by the same test patterns. Finally,
the calibrated outputs are again examined by m-ADC using
same ramp codes to verify the correctness of the DAC outputs.

After the testing phase, m-ADC and analog loopback are
disabled while d-DAC continues to generate correction signal
for each input code to maintain linear outputs from the on-
chip DAC during the normal operation. The calibrated DAC
can also be used in an extended test mode to generate a highly
linear analog test signal to diagnose other mixed-signal devices
like on-chip ADC and mixer.

The proposed self-calibration technique runs before normal
operation every time the system starts up. In case the char-
acteristics of the on-chip DAC vary as a function of time
and render the previous calibration inadequate, the adaptive
degree of polynomial algorithm can be reapplied. This would
typically require an interrupt or restart of the system. Alter-
natively, recalibration can be automatically scheduled during
idle periods.

Similar techniques may be developed for various mixed-
signal devices with digital controls.

III. A DAPTIVE SELF-CALIBRATION TEST OFDAC

We assume that the DSP and other digital circuitry has been
tested and is fault-free. Before actual testing of on-chip DAC
under test, a loopback as shown in Figure 1 is established. The
DSP sends a series of random numbers through its output port
and checks the input port for response. This step will detect
any interconnect faults at DSP input/output.
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Fig. 2. Testing and characterization of DAC.

A. Test of Measuring ADC

Next, an analog loopback, shown in 1, between DAC output
and ADC/m-ADC input port is established, as is also shown
in Figure 2, to transmit DAC outputs back to ADC/m-ADC
for measurement. Now, a series of consecutive ramp codes are
generated and sent to DAC as both on-chip ADC and m-ADC
measure DAC outputs. We chose a first-order 1-bit sigma-delta
modulator based ADC as m-ADC because of its flexibility
and highly linear outputs. A sigma-delta modulator can have
very high resolution and linearity with high oversampling
ratio (OSR). A suitable OSR can be selected to obtain the
effective number of bits (ENOB) for various requirements
and applications, of course, at the cost of sampling time. The
digital outputs from two ADCs are collected and compared
against digital test codes by DSP. Because among DAC, ADC
and m-ADC any could be faulty, any serious inconsistency
or significant difference among these three digital numbers
would indicate fault in any of the components, barring some
highly improbable cases of identical errors in all three. On
a mismatch, the chip is marked as faulty. A predefined fault-
tolerance factor (α) is specified to determine the inconsistency.
The factorα also defines the maximum correction capability
of the proposed self-calibration test scheme for DAC.

B. Best Matching Polynomial Fitting Algorithm

If the inconsistency among test code and ADC responses
is smaller than the fault-tolerance factor, the on-chip DAC-



under-test (DUT) is considered fixable. Such inconsistencies
between test code (k) and m-DAC response (k̂) is actually the
digitized and combined integral non-linearity (INL) errors of
both DUT and m-DAC.

INLk =
νk −ν0

LSB
− k = k̂− k (1)

where νk is N-bit DUT output and the least significant bit
(LSB) is the minimal unit voltage value for the DUT. For
example, given reference voltageVre f , LSB of 14-bit DAC is

VLSB =
Vre f

214 (2)

Because m-ADC is based on sigma-delta modulator and has
high linearity with large OSR, the INL error of m-ADC can
be ignored and thuŝk− k can be considered as the INL error
of sole DUT for given codek. An adaptive polynomial fitting
algorithm is employed to fit the non-linearity errors (INLk for
each codek) of DUT to obtain the best-matching minimum
degree polynomial for non-linearity characteristics of DUT
outputs.

Consider an order-p fitting polynomial:

y = b0 +b1 · x+b2 · x
2 + · · ·+(p−1) · xp−1 + p · xp (3)

whereb0, b1, b2, ...,bp−1, bp are polynomial coefficients. Best-
matching polynomial gives minimum mean-square error. To
obtain the best-matching polynomial, we apply fitting to data
for successively increasing degrees of polynomials. Although
a higher order polynomial may have better fitting and lower er-
ror, it takes more time to calculate the coefficients, will require
more memory to store and will need more complex digital
circuitry for calculation. Thus, a higher order polynomialwill
require more gates and delay than a lower order one. Too high
an order also brings metastability to system and negatively
affects product reliability. Therefore, make trade-off between
fitting accuracy and fitting time/hardware overhead. To make
at-speed DAC correction possible, the maximum path delay
of digital polynomial calculation circuitry must not exceed
DAC conversion delay. So for given process and DAC design,
maximum available order of polynomial shall be specified as
well as fault-tolerance factor.

Accuracy of matching polynomial can be determined as the
root mean square (RMS) error between measured INL errors
and the polynomial values:

∆νk = νk − (ν0 + k ·LSB) (4)

yrms =

√

√

√

√

1
2N

2N−1

∑
k=0

(∆νk − y(k))2 (5)

for N-bit DAC-under-test. In the proposed BIST procedure, a
low-order polynomial fitting algorithm is used at first and then
high-order ones, until the RMS errors drops below a specified
threshold. For each polynomial, two steps are executed: coef-
ficients extraction and polynomial evaluation. In coefficients
extraction step, a series of consecutive ramp codes are gener-
ated as test patterns to DUT, then the sigma-delta modulator
will measure DUT responses and DSP will collect both test

patterns and DUT responses to calculate current polynomial
coefficients for INL errors. In polynomial evaluation step,
another series of consecutive ramp codes will be generated
to evaluate the polynomial with calculated coefficients and
obtain its RMS value for ramp codes. Thus the fitting accuracy
of current polynomial to INL errors of DUT outputs can be
defined as the RMS value. In real implementation, polynomial
evaluation step of previous polynomial may be combined with
coefficients extraction of next polynomial because these two
steps will be using different hardware at the same time with
possible race issue. The coefficients may also indicate if DUT
is correctable by comparing to pre-defined values.

1) Zero-order polynomial: First of all, Zero-order polyno-
mial will be tried, which is just mean value of all non-linearity
errors ofN-bit DAC in fact.

y = b0 (6)

b0 =
1

2N

∫ 2N−1

−2N−1
νkdk =

1
n

∫ n/2

−n/2
νkdk (7)

where n = 2N is the total number of input codes forN-bit
DAC-under-test.

This polynomial is actually a constant value fitting for every
input code. It has the least hardware overhead and delay for
polynomial evaluation but may have the most fitting error.

2) First-order polynomial: The responses for input ramp
codes is divided into two equal-length sections and two sums
of these two sections can be obtained by

S0 =
∫ 0

−2N−1
νkdk =

∫ 0

−n/2
νkdk =

n
2

b0−
n2

8
b1 (8)

S1 =
∫ 2N−1

0
νkdk =

∫ n/2

0
νkdk =

n
2

b0 +
n2

8
b1 (9)

Then we define two syndromes for the first-order polynomial

B0 = S1 +S0 = nb0 (10)

B1 = S1−S0 =
n2

4
b1 (11)

Therefore the first-order polynomial and two coefficients can
be obtained by

y = b0 +b1 · x (12)

b0 =
1
n

B0 (13)

b1 =
4
n2 B1 (14)

3) Second-order polynomial: The responses is divided into
three equal-length sections for second-order polynomial.Each
of three sections are accumulated up to obtain three sums

S0 =
∫ −n/6

−n/2
νkdk =

n
3

b0−
n2

9
b1 +

13n3

324
b2 (15)

S1 =

∫ n/6

−n/6
νkdk =

n
3

b0 +
n3

324
b2 (16)

S2 =
∫ n/2

n/6
νkdk =

n
3

b0 +
n2

9
b1 +

13n3

324
b2 (17)



Then we define three syndromes for the second-order polyno-
mial

B0 = S2−26S1 +S0 = −8nb0 (18)

B1 = S2−S0 =
2n2

9
b1 (19)

B2 = S2−2S1 +S0 =
2n3

27
b2 (20)

Therefore the second-order polynomial and three coefficients
can be obtained by

y = b0 +b1 · x+b2 · x
2 (21)

b0 = −
1
8n

B0 (22)

b1 =
9

2n2 B1 (23)

b2 =
27
2n3 B2 (24)

4) Third-order polynomial: The response is divided into
four equal-length sections for third-order polynomial, asdis-
cussed in [8], [6]. The sum of each section is

S0 =

∫ −n/4

−n/2
νkdk =

n
4

b0−
3n2

32
b1 +

7n3

192
b2−

15n4

1024
b3 (25)

S1 =
∫ 0

−n/4
νkdk =

n
4

b0−
n2

32
b1 +

n3

192
b2−

n4

1024
b3 (26)

S2 =
∫ n/4

0
νkdk =

n
4

b0 +
n2

32
b1 +

n3

192
b2 +

n4

1024
b3 (27)

S2 =
∫ n/2

n/4
νkdk =

n
4

b0 +
3n2

32
b1 +

7n3

192
b2 +

15n4

1024
b3 (28)

Then we can define four syndromes as below (also same as
in [8])

B0 = S3 +S2 +S1 +S0 = nb0 +
n3

12
b2 (29)

B1 = S3 +S2−S1−S0 =
n2

4
b1 +

n4

32
b3 (30)

B2 = S3−S2−S1 +S0 =
n3

16
b2 (31)

B3 = S3−3S2 +3S1−S0 =
3n4

128
b3 (32)

Therefor the third-order polynomial and four coefficients can
be obtained by

y = b0 +b1 · x+b2 · x
2 +b3 · x

3 (33)

b0 =
1
n
(B0−

4
3

B2) (34)

b1 =
4
n2 (B1−

4
3

B3) (35)

b2 =
16
n3 B2 (36)

b3 =
128
3n4 B3 (37)

5) Nth-order polynomial: Repeat the procedure above and
we can obtainN +1 syndromes by dividing output responses
into N +1 equal-length sections. And thenN +1 coefficients
for Nth-order polynomial can be calculated from these syn-
dromes. In theory high-order polynomial may result in better
fitting results. However, higher-order polynomial may have
much greater penalty upon hardware overhead and delay,
especially for high-order multiply computation. We observed
that N=3 is sufficient in most cases so there is no need to
explore higher-order polynomial fitting equations.

C. DUT Calibration by Dithering DAC
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Fig. 3. DUT calibration by dithering DAC (d-DAC) and best matching
polynomial.

After the order and polynomials of best matching fitting
polynomial are determined, they will be compared to pre-
defined values. INL errors of DUT is correctable only if the
polynomial coefficients are within the specified range; other-
wise DUT will be marked as faulty by DSP. For correctable
DUT, the fitting polynomial and its coefficients will be saved
into memory cells and retrieved by polynomial evaluation
circuit to generate correcting codes.

A low-resolution low-cost dithering DAC (d-DAC) will
convert such correcting codes into correcting analog signals
to remove non-linearity errors from DUT output, as shown in
Figure. 3. Low-resolution d-DAC is simple to design and man-
ufacture cost if low while converting speed is high. Higher-
resolution d-DAC may generate more accurate correcting
signals if total delay of polynomial evaluation circuit andd-
DAC is less than converting time of DUT and such hardware
overhead is acceptable. The reference voltage of d-DAC is
defined by the resolution of DUT and fault-tolerant factor.

Vre f ,d−DAC = ±
2α

2
·LSB

= ±
2α

2
·
2Vre f

2N = ±2α−N ·Vre f (38)

LSBd−DAC =
2Vre f ,d−DAC

2N′

= 21+α−N−N′
·Vre f (39)

for N-bit DAC-under-test with reference voltageVre f ,N′-bit d-
DAC, and fault-tolerant factorα.

In most case, it is sufficient to chooseα equal to 3 and to
use 6-bit d-DAC for DUT correction. Thus for given 14-bit



DAC-under-test, the reference voltage and LSB of d-DAC are

Vre f ,d−DAC = ±
Vre f

211 (40)

LSBd−DAC =
Vre f

216 (41)

D. Resolution of Measuring ADC

A sigma-delta modulator-based measuring ADC (m-ADC)
is employed to measure DUT outputs, as shown in Figure. 2.
This m-ADC consists of a first-order 1-bit sigma-delta mod-
ulator and a digital low-pass filter (LPF). The measurements
will compare to corresponding ramp test codes to obtain non-
linearity errors for polynomial fitting. So required minimal
resolution of the sigma-delta modulator depends on the reso-
lution of DUT and d-DAC as well as fault-tolerant factor.

The minimal effective number of bits (ENOB) of sigma-
delta modulator can be obtained by

N̂ = log2
Vre f

LSBd−DAC

= N +N′−α −1 (42)

And signal-to-noise ratio (SNR) of m-ADC can be estimated
as

SNRdB = 10log

(

RMSsignal

RMSnoise

)

= 6.02N̂ +1.76 (43)

The relationship between SNR and oversampling ratio
(OSR) of first-order sigma-delta modulator is [1]

OSR =
fs/2
f0

=
fs

2 f0
(44)

SNR =
3

8π2 OSR3 (45)

SNRdB = 10log10SNR

= 30log10OSR−14.2 (46)

where f0 is maximum frequency of measured analog signals
and fs is sampling clock frequency of sigma-delta modulator.

Thus OSR of sigma-delta modulator can also be determined
from (42) (43) and (46)

OSR = 10
SNRdB+14.2

30 (47)

= 10
6.02N+N′−α+10

30 (48)

For a given 14-bit on-chip DAC and 6-bit d-DAC, assuming
fault-tolerant factor is 3, minimal OSR can be calculated using
(48)

OSR = 10
6.0214+6−3+10

30 = 5555

IV. SIMULATION RESULTS

We use Matlab to simulate the proposed adaptive self-
calibration approach. INL errors of a 14-bit DAC-under-test
is shown in Figure.4 and we try various order polynomials to
fit the INL errors, as shown in Table I,II,III and IV.
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Fig. 4. INL errors of a 14-bit on-chip DAC-under-test.

TABLE I
ZERO-ORDER POLYNOMIAL FIT FORINL OF FIGURE 4.

Sums Syndromes Coefficients

S0 = 1.9901×104 N/A b0 = 1.2147

TABLE II
FIRST-ORDER POLYNOMIAL FIT FORINL OF FIGURE 4.

Sums Syndromes Coefficients

S0 = 2.054×104 B0 = 1.9901×104 b0 = 1.2147
S1 = −645.4238 B1 = −2.1192×104 b1 = −3.1578×10−4

TABLE III
SECOND-ORDER POLYNOMIAL FIT FORINL OF FIGURE 4.

Sums Syndromes Coefficients

S0 = 1.3676×104 B0 = −2.2853×105 b0 = 1.7435
S1 = 9.2011×103 B1 = −1.6649×104 b1 = −2.7910×10−4

S2 = −2.9731×103 B2 = −7.6993×103 b2 = −2.3633×10−8

TABLE IV
THIRD-ORDER POLYNOMIAL FIT FORINL OF FIGURE 4.

Sums Syndromes Coefficients

S0 = 9.0857×103 B0 = 1.9901×104 b0 = 1.7672
S1 = 1.1461×104 B1 = −2.1192×104 b1 = −6.5577×10−4

S2 = 1.8845×103 B2 = −6.7893×103 b2 = −2.4699×10−8

S3 = −2.5300×103 B3 = 1.7112×103 b3 = 1.0132×10−11

Figure 5 compares fitting curves of those three polynomials
and RMS errors of each order polynomials can also be
calculated: 1.5188 for zero-order, 0.9643 for first-order,0.8407
for second-order, and 0.0907 for third-order. It can be observed
that third-order polynomial is the best match polynomial to
fitting on-chip DAC in this case. It is possible that fourth-
order polynomial may have better matching results but due to
significant increase on hardware overhead and delay, fourth-
order polynomial is not suitable in this case.

The d-DAC correcting outputs is shown in Figure 6 and final
corrected INL error is shown in Figure 7. INL error is signifi-
cantly reduced by our adaptive self-calibration technique, from
±4LSB down to only±0.4LSB.
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Fig. 5. Fitting results from different order polynomials.
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Fig. 6. Correcting signals converted by a 6-bit d-DAC using third-order
fitting polynomial.

V. CONCLUSION

A DSP-based adaptive self-calibration BIST scheme is
proposed in this paper to test and diagnose on-chip DAC with
best-matching polynomial fitting algorithm. A sigma-delta
modulator-based measuring ADC is used to measure on-chip
DAC outputs. The native non-linearity error of sigma-delta
modulator are ignored by selecting sufficient oversampling
ratio (OSR). The order and coefficients of best-matching
polynomial can be calculated to retrieve non-linearity errors
as output correcting code. A low-resolution dither DAC is
employed to convert digital correcting code to analog cor-
recting signals for DAC output. This BIST scheme will be
executed every time when SoC starts up to get up-to-date
characteristics of on-chip DAC. The adaptive self-calibration
approach has been verified by simulation and shows significant
improvements of linearity to noisy on-chip DAC outputs.
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