
Features
• Highly parameterizable drop-in module for

Virtex™, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4,

Spartan™-II, Spartan-IIE, Spartan-3, and Spartan-3E
FPGAs

• High-performance finite impulse response (FIR),
half-band, Hilbert transform, interpolated filters,
polyphase decimator, polyphase interpolator,
half-band decimator and half-band interpolator
implementations

• 2 to 1024 taps

• 1- to 32-bit input data precision

• Signed or unsigned input data

• Signed or unsigned filter coefficients

• 1- to 32-bit coefficient precision

• 1 to 8 channels

• Support for interpolation and decimation factors of
between 1 and 8 inclusive

• Coefficient symmetry exploited
(symmetric/negative-symmetric) to produce
compact implementations

• Serial and parallel filters supported. The user may
specify the degree of parallelism and trade off
FPGA logic resources for sample rate in order to
generate an optimal design

• Data-flow-style core interface and control

• On-line coefficient reload capability

• Incorporates Xilinx Smart-IP™ technology for
maximum performance

• To be used with v7.1i or later of the Xilinx CORE
Generator™ system

General Description
The Xilinx filter core is a highly parameterizable,
area-efficient high-performance FIR filter. Several
highly optimized filters can be generated in the Xilinx
CORE Generator: single-rate, half-band, Hilbert trans-
form and interpolated filters, in addition to polyphase
decimators and interpolators and half-band decima-
tors and interpolators. Structure in the coefficient set is
exploited to produce area-efficient FPGA implementa-
tions. Sufficient arithmetic precision is employed in the
internal data-path to avoid the possibility of overflow.
The filter always presents a full-precision result at its
output port.

The conventional single-rate FIR version of the core
computes the convolution sum defined in Equation 1,
where N is the number of filter coefficients.

The conventional tapped delay line realization of this
inner-product calculation is shown in Figure 1.

Although the figure is a useful conceptualization of the
computation performed by the core, the actual FPGA
realization is quite different. A distributed arithmetic
(DA) realization [1] [2] is employed. This approach
employs no explicit multipliers in the design, only
look-up tables (LUTs), shift registers, and a scaling
accumulator.

0

Distributed Arithmetic FIR Filter
v9.0

DS240 April 28, 2005 0 0 Product Specification

y k() a n()x k n–()

n 0=

N 1–

∑= k 0 1 …, ,= Equation 1
DS240 April 28, 2005 www.xilinx.com 1
Product Specification

© 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and
registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature, application,
or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require for your implemen-
tation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that this imple-
mentation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

2

.

Filter Realization: Distributed Arithmetic

A simplified view of a DA FIR is shown in Figure 2. In its most obvious and direct form, DA-based
computations are bit-serial in nature—serial distributed arithmetic (SDA) FIR. Extensions to the basic
algorithm remove this potential throughput limitation [2]. The advantage of a distributed arithmetic
approach is its efficiency of mechanization. The basic operations required are a sequence of table
look-ups, additions, subtractions and shifts of the input data sequence. All of these functions efficiently
map to FPGAs. Input samples are presented to the input parallel-to-serial shift register (PSC) at the
input signal sample rate. As the new sample is serialized, the bit-wide output is presented to a bit-serial
shift register or time-skew buffer (TSB). The TSB stores the input sample history in a bit-serial format and
is used in forming the required inner-product computation. The TSB is itself constructed using a cas-
cade of shorter bit–serial shift registers. The nodes in the cascade connection of TSBs are used as
address inputs to a look-up table. This LUT stores all possible partial products [2] over the filter coeffi-
cient space.

Several observations provide valuable insight into the operation of a DA FIR filter. In a conventional
multiply-accumulate (MAC)-based FIR realization, the sample throughput is coupled to the filter
length. With a DA architecture, the system sample rate is related to the bit precision of the input data
samples. Each bit of an input sample must be indexed and processed in turn before a new output sam-
ple is available. For B-bit precision input samples, B clock cycles are required to form a new output
sample for a nonsymmetrical filter, and B+1 clock cycles are needed for a symmetrical filter. The rate at
which data bits are indexed occurs at the bit-clock rate. The bit-clock frequency is greater than the filter
sample rate (fs) and is equal to Bfs for a nonsymmetrical filter and (B+1)fs for a symmetrical filter. In a
conventional instruction-set (processor) approach to the problem, the required number of multi-
ply-accumulate operations are implemented using a time-shared or scheduled MAC unit. The filter sam-
ple throughput is inversely proportional to the number of filter taps. As the filter length is increased,
the system sample rate is proportionately decreased. This is not the case with DA-based architectures.
The filter sample rate is decoupled from the filter length. The trade off introduced here is one of silicon

Figure 1: Conventional Tapped-Delay Line FIR Filter Mechanization

Figure Top x-ref 2

Figure 2: Serial Distributed Arithmetic FIR Filter

z-1z-1x(n)

y(n)

z-1 z-1 z-1

a(0) a(1) a(2) a(3) a(4) a(N-1)

subtract on last
bit of DA procesing

sequence

Scaling
Accumulator

y(n)

2-1

Add/Sub

2N

Word
LUT

B
x(n)

Parallel-to-Serial
Converter

B-bit Shift Registers

DA LUT Address
Sequence

Partial
Products

N-1
Shift RegistersPSC

Time Skew Buffer (TSB)
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
area (FPGA logic resources) for time. As the filter length is increased in a DA FIR filter, more logic
resources are consumed, but throughput is maintained.

Figure 3 provides a comparison between a DA FIR architecture and a conventional scheduled
MAC-based approach. The clock rate is assumed to be 120 MHz for both filter architectures. Several
values of input sample precision for the DA FIR are presented. The dependency of the DA filter
throughput on the sample precision is apparent from the plots. For 8-bit precision input samples, the
DA FIR maintains a higher throughput for filter lengths greater than 8 taps. When the sample precision
is increased to 16 bits, the crossover point is 16 taps.

Figure 4 provides a similar comparison but for a dual-MAC architecture.

Figure 3: Throughput (Sample Rate) Comparison of Single-MAC-Based FIR and DA FIR as a Function of
Filter Length. B is the DA FIR Input Sample Precision. The Clock Rate is 120 MHz.

Figure 4: Throughput (Sample Rate) Comparison of Dual-MAC-Based FIR and DA FIR as a Function of
Filter Length. B is the DA FIR Input Sample Precision. The Clock Rate is 120 MHz.

0 50 100 150 200 250
0

10

20

30

40

50

60

FILTER LENGTH

S
A

M
P

L
E

 R
A

T
E

 (
M

H
Z

)
S INGLE M AC
B=8
B=12
B=16

0 50 100 150 200 250
0

20

40

60

80

100

120

FILT ER LENGTH

S
A

M
P

L
E

 R
A

T
E

 (
M

H
Z

)

DUAL M AC
B=8
B=12
B=16
l 28, 2005 www.xilinx.com 3
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

4

Increasing the Speed of Multiplication - Parallel Distributed Arithmetic

In its most obvious and direct form, DA-based computations are bit-serial in nature; each bit of the
samples must be indexed in turn before a new output sample becomes available (SDA FIR). When the
input samples are represented with B bits of precision, B clock cycles are required to complete an
inner-product calculation (for a nonsymmetrical impulse response). Additional speed can be obtained
in several ways. One approach is to partition the input words into M subwords and process these sub-
words in parallel. This method requires M-times as many memory look-up tables and so comes at a cost
of increased storage requirements. Maximum speed is achieved by factoring the input variables into
single-bit subwords. The resulting structure is a fully parallel DA (PDA) FIR filter. With this factoring
a new output sample is computed on each clock cycle. PDA FIR filters provide exceptionally high per-
formance. The Xilinx filter Core provides support for parallel DA FIR implementations. Filters may be
designed that process several bits in a clock period, through to a completely parallel architecture that
processes all the bits of the input data during a single clock period. For example, consider a nonsym-
metrical filter with 12-bit precision input samples. Using a serial DA filter, new output samples are
available every 12 clock periods. If the data samples are processed 2 bits at a time (2-BAAT), a new out-
put sample is ready every 12/2 = 6 clock cycles. With 3-,4-, 6- and 12-BAAT implementations, a new
result is available every 4, 3, 2 and 1 clock cycles, respectively.

Another way to view the problem is in terms of the number of clock cycles L needed to produce a filter
output sample. And indeed, this is how the degree of computation parallelism is presented to the user
on the filter design GUI. So, for example, let’s consider a filter core with a master system clock (and this
is not necessarily the filter sample rate) equal to 150 MHz. Also assume that the input sample precision
is 12 bits and that the impulse response is not symmetrical. For this set of parameters, the valid values
of L (and these are presented on the core GUI) are 12, 6, 4, 3, 2 and 1. The corresponding filter sample
rate (or throughput) for each value of L is 150/12=12.5, 150/6=25, 150/4=37.5, 150/3=50, 150/2=75 and
150/1=150 MHz respectively. If the filter employs a symmetrical impulse response, the valid values of
L are different—and this is associated with the hardware architecture that is employed to exploit the
coefficient symmetry in order to produce the most compact (in terms of FPGA logic resources) realiza-
tion. So for a filter with 12-bit precision input samples and a symmetrical impulse response, the valid
values of L are 13, 7, 5, 4, 3, 2, and 1. Again, using a filter core master clock frequency of 150 MHz, the
sample rate for each value of L is 11.539, 21.429, 30, 37.5, 50, 75, and 150 MHz respectively.

The higher the degree of filter parallelism (fewer number of clock cycles per output sample or smaller
L), the greater the FPGA logic resources required to implement the design. Specifying the number of
clock cycles per output sample is an extremely powerful mechanism that allows the designer to trade
off silicon area with filter throughput.
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Exploiting Filter Symmetry

The impulse response for many filters possesses significant symmetry. This symmetry can be exploited
to minimize arithmetic requirements and produce area-efficient filter realizations.

Figure 5 shows the impulse response for a 9-tap symmetric FIR filter:

Instead of implementing this filter using the architecture shown in Figure 1, the more efficient signal
flow-graph in Figure 6 can be used. In general, the former approach requires N multiplications and
(N-1) additions. In contrast, the architecture in Figure 6 requires only [N/2] multiplications and
approximately N additions. This significant reduction in the computation workload can be exploited to
generate efficient filter hardware implementations.

Coefficient symmetry for an even number of terms can be exploited as shown in Figure 7.

Figure 5: Symmetric FIR - Odd Number of Terms

Figure 6: Exploiting Coefficient Symmetry - Odd Number of Filter Taps

Figure 7: Exploiting Coefficient Symmetry - Even Number of Filter Taps

a3 a5
(=a3)

a2

a1
a0 a4 a6

(=a2)

a7
(=a1)

a8
(=a0)

z-1z-1z-1

z-1 z-1z-1

a3a2a1a0

x(n)

y(n)

a4

z-1

z-1

z-1z-1z-1

z-1 z-1z-1

a3a2a1a0

x(n)

y(n)

a4

z-1

z-1 z-1
l 28, 2005 www.xilinx.com 5
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

6

The impulse response for a negative, or odd, symmetric filter is shown in Figure 8.

This symmetry is easily exploited in a manner similar to that shown in Figure 6 and Figure 7. In this
case, the middle layer of adders are replaced by subtracters as illustrated in Figure 9.

Again, as highlighted above, the symmetry properties can be utilized to produce an efficient hardware
realization.

The example considered here illustrates a filter with an even number of terms; the filter structure for an
odd number of terms is a simple extension of the same principle.

Even though none of the filter classes supported by the filter core use explicit multipliers, the various
symmetries can still be exploited using a distributed arithmetic implementation to produce efficient
FPGA realizations.

The filter compiler interface allows the filter symmetry to be specified. When the impulse response
does exhibit symmetry, the filter logic requirements can be significantly reduced in comparison to an
implementation that does not exploit the impulse response structure. For example, a 100-tap non sym-
metric filter with 12-bit data samples and 12-bit coefficients consumes 519 Virtex logic slices [3]. In con-
trast, a 100-tap symmetric filter is realized with 354 slices. This represents approximately a 30 percent
savings in area.

Figure 8: Negative Symmetric Impulse Response

Figure 9: FIR Architecture Exploiting Negative Symmetry

a3

a5=-a4

a2

a1

a0

a4

a6=-a3

a7=-a2

a8=-a1

a9=-a0

z-1z-1z-1

z-1 z-1z-1

a3a2a1a0

x(n)

y(n)

a4

z-1

z-1 z-1

+ + + + +
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Filter Throughput
The signal sample rate for a filter is a function of the core bit clock frequency, fclk Hz, the input data
sample precision B, the number of channels, the number of clock cycles (L) per output sample, and the
coefficient symmetry. For a single-channel nonsymmetrical FIR filter using L=B clock cycles per output
sample, the filter sample frequency, or sample throughput, is fclk/B Hz. If the filter is symmetrical, the
sample rate is fclk/(B+1) Hz. If the number of clock cycles per output sample is changed to L=1, the
sample throughput is fclk Hz. For L=2, the throughput is fclk/2 Hz.

As a specific example, consider a filter with a core clock frequency equal to 100 MHz, 10-bit input sam-
ples, L=10 and a nonsymmetrical coefficient set. The filter sample rate is 100/10 = 10 MHz. Observe
that this figure is independent of the number of filter taps. If a symmetrical realization had been gener-
ated, the sample throughput would be 100/11 = 9.0909 MHz. For L=1, the sample rate would be 100
MHz (nonsymmetrical FIR). If the input sample precision is changed to 8 bits, with L=8, the filter sam-
ple rate for a nonsymmetrical filter would be 100/8 = 12.5 MHz.

Processing Multiple Channels
In many applications the same filter must be applied to several data streams. A common example is the
simple digital down converter shown in Figure 10. Here a complex base-band signal

is applied to a matched filter M(z). The in-phase and quadrature components are
processed by the same filter.

One candidate solution to this problem is to employ two separate filters. This, however, can be wasteful
of logic resources. A more efficient design can be realized using a filter architecture that shares logic
resources between multiple sample streams. Several filter classes supported by the filter core provide
in-built support for multi-channel processing and can accommodate up to eight independent data
streams. As more channels are processed by a filter core, the sample throughput is commensurately
reduced. For example, if the sample rate (not the core bit clock CLK) for a single-channel filter is fs, a
two-channel version of the same filter processes two sample streams, each with a sample rate of fs/2. A
three-channel version of the filter processes three data streams and supports a sample rate of fs/3 for
each of the streams.

A multi-channel filter implementation is very efficient in logic resources utilization. A filter with two or
more channels can be realized using the same amount of logic resources as a single-channel version of
the same filter. The tradeoff that needs to be addressed when using multi-channel filters is one of sam-
ple rate versus logic requirements. As the number of channels is increased, the logic area remains
approximately constant, but the sample rate for an individual input stream decreases. The number of
channels supported by a filter core is specified in the filter customization GUI. The multirate filters

Figure 10: Digital Down Converter

x n() xI n() jxQ n()+=

M(z)

M(z)

(DDS)

v(n)

xI(n)

xQ(n)

I

Q

DDS = Direct Digital Synthesizer
l 28, 2005 www.xilinx.com 7
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

8

(polyphase decimator, polyphase interpolator, half-band decimator, and half-band interpolator) pro-
vide support for single-channel operation only.

Filter Configurations
The filter compiler supports the following eight classes of filters:

• Conventional single-rate FIR

• Half-band FIR

• Hilbert transform [5]

• Interpolated FIR [4] [6]

• Polyphase decimator

• Polyphase interpolator

• Half-band decimator

• Half-band interpolator

The interpolated FIR should not be confused with an interpolation filter. Interpolated filters are sin-
gle-rate systems employed to produce efficient realizations of narrow-band filters and, with some
minor enhancements, wide-band filters can be accommodated.

The filter categories supported by the DA FIR core are described in separate sections below.

Single-Rate FIR

The basic FIR filter core is a single-rate (input sample rate = output sample rate) finite impulse response
filter. Figure 11 shows the schematic symbol for a single-channel instance of this module. Filter input
data is supplied on the DIN port and filter output samples are presented on the DOUT port. The CLK
signal is the bit-rate clock for the core, and is recognized as being different (higher frequency) to the
input signal sample frequency. The ND, RDY, and RFD signals are filter interface/control signals that
permit a simple and efficient data-flow style interface for supplying input samples and reading output
samples from the filter. The core interface signals are discussed in detail in "Interface, Control, and Tim-
ing" on page 30.

A P-channel filter core is shown in Figure 12. The output ports SEL_I and SEL_O indicate the active
input and output data stream respectively. The SEL_I signal can be used to multiplex several input
sources onto the time-shared input bus DIN. SEL_I is employed as the multiplexer select signal in this
example. In a similar manner, the SEL_O signal may be used to de-multiplex the time-division multi-
plexed filter output bus DOUT. This is useful for generating P separate filter output samples to present
to down-stream processes.

Figure 11: Single-Channel FIR Symbol

DIN[N-1:0]

RST

CLK
RFD

DOUT[R-1:0]

RDY

ND
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Table 1 lists the FIR filter port names and port functional definitions.

Figure 12: Multi-Channel FIR Symbol

Table 1: FIR Core Signal Pinout

Name Direction Description

DIN[N-1:0] Input FILTER INPUT DATA SAMPLE — N-bit wide filter input sample.

CLK Input BIT CLOCK (active rising edge)

ND Input
NEW DATA (active High) — When this signal is asserted, the data sample
presented on the DIN port is loaded into the PSC and an inner-product
computation is started. ND should not be asserted while RFD is low.

RST Input

Synchronous reset (active High). Asserting RST synchronously with CLK
resets the filter internal state machines. It does NOT reset the filter data
memory contents (regressor vector). RST resets the counters that control the
SEL_I and SEL_O output signals. RST is an optional pin.

DOUT[R-1:0] Output

FILTER OUTPUT SAMPLE R-bit-wide output sample bus for the FIR,
half-band and interpolated filters. R depends on the filter parameters (data
precision, coefficient precision, number of taps and coefficient optimization
selection) and is always supplied as a full-precision output port to avoid any
potential for overflow.

RDY Output
FILTER OUTPUT SAMPLE READY (active High) Indicates that a new filter
output sample is available on the DOUT port.

RFD Output
READY FOR DATA — (active High) Indicates when the final bit of the current
data sample is about to be processed and new data may be supplied to the
filter.

SEL_I[ceil(log_2(P
))-1:0]

Output
INPUT CHANNEL SELECT This is a standard binary count generated by the
core that indicates the current filter input channel number. SEL_I is an
optional pin.

SEL_O[ceil(log_2(
P))-1:0]

Output
OUTPUT CHANNEL SELECT This standard binary count generated by the
core indicates the current filter output channel number. SEL_O is an optional
pin.

DOUT_I[N-1:0] Output

FILTER OUTPUT SAMPLE, Hilbert transform — In-phase (I) component. A
Hilbert transform accepts real valued input data and produces a complex
result. This port is the real or in-phase component of the result. Since this
output port is an access point to the center of the filter memory buffer, it
carries the same precision as the input sample data stream, that is, N bits.

DOUT_Q[R-1:0] Output
FILTER OUTPUT SAMPLE, Hilbert transform — quadrature (Q) component.
A Hilbert transform accepts real valued input data and produces a complex
result. This port is the imaginary or quadrature component of the result.

DIN[N-1:0]
ND

CLK RFD

DOUT[R-1:0]

RDY

SEL_I[CEIL(LOG_2(P)-1:0]

SEL_O[CEIL(LOG_2(P)-1:0]
l 28, 2005 www.xilinx.com 9
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

10
Half-Band FIR

The frequency response for a half-band filter is shown in Figure 13.

The magnitude frequency response is symmetrical about quarter sample frequency π/2 radians. The
sample rate is normalized to 2π radians/sec. The passband and stopband frequencies are positioned
such that

The passband and stopband ripple, and respectively, are equal . These properties are
reflected in the filter impulse response. It can be shown [5] that approximately half of the filter coeffi-
cients are zero for an odd number of taps. This is illustrated in Figure 14 for an 11-tap half-band filter.

Figure 13: Half-Band Filter—Magnitude Frequency Response

Figure 14: Half-Band Filter Impulse Response

1+δp

1−δp
1

δs

−δs
Ωπ

|H(ejΩ)|

PASSBAND

STOPBAND

Ωp Ωs

0.5

π
2

Ω Ωp s= −π

δ p δ s δ δp s=

0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

COEFFICIENT INDEX
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
The interleaved zero values in the coefficient data can be exploited to realize an efficient realization like
that shown in Figure 15.

This same structure can be utilized to generate an efficient DA FPGA implementation. The Half-Band
filter selection in the compiler is intended for this purpose. This filter is available in the Filter Type field
of the user interface. The user must supply the complete list of filter coefficients, including the 0 value
samples, when using the half-band filter. The filter coefficient file format is discussed in greater detail
in the Filter Coefficient Data section.

The half-band filter core has the same port definitions as the single-rate FIR filter.

Hilbert Transform

Hilbert transformers [5] are used in a variety of ways in digital communication systems.

An ideal Hilbert transform provides a phase shift of 90 degrees for positive frequencies and –90 degrees
for negative frequencies. It can be shown [5] that the impulse response corresponding to this frequency
domain characteristic is odd-symmetric and has interleaved zeros as shown in Figure 16.

Both the alternating zero-valued coefficients and the negative symmetry can be utilized to produce an
efficient hardware realization. A Hilbert transformer accepts a real-valued signal and produces a com-
plex (I,Q) output signal. The quadrature (Q) component of the output signal is produced by a FIR filter
with an impulse response like that shown in Figure 16. The in-phase (I) component is the input signal
delayed by an appropriate amount to compensate for the phase delay of the FIR process employed for
generating the Q output. This is easily and efficiently achieved by accessing the center tap of the sample
history delay of the Q channel FIR filter as shown in Figure 17. In this figure, x(n) is the real-valued
input signal and yI(n) and yQ(n) are the in-phase and quadrature outputs, respectively.

Figure 15: Half-Band Filter Impulse Response

Figure 16: Impulse Response of a Hilbert Transformer

x(n)

y(n)

z-1 z-1 z-1

a4

z-1 z-1

a5

z-1 z-1

a8a6

z-1z-1

a2a0

z-1

a10

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

l 28, 2005 www.xilinx.com 11
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

12
Figure 18 shows the architecture for a Hilbert transformer that exploits both the zero-valued and the
negative symmetry characteristics of the impulse response.

The DA equivalent of this architecture is used for realizing the Xilinx Hilbert transformer.

Figure 19 is the symbol for the Hilbert transform core. The DIN port is the filter input signal, and the
ports DOUT_I and DOUT_Q are the I and Q outputs respectively.

The Hilbert transform core has the same data-flow interface and control signals (ND, RDY,RFD) as the
single-rate FIR filter core. The Hilbert transform core also supports multiple channels as shown in
Figure 20.

Figure 17: FIR Filter Realization of a Hilbert Transformer

Figure 18: Hilbert Transformer Exploiting Zero-Valued Filter Coefficients and Negative Symmetry

Figure 19: Hilbert Transform Symbol

x(n)

yQ(n)

z-1 z-1 z-1

a4

z-1 z-1 z-1 z-1

-a2-a4

z-1z-1

a2a0

z-1

-a0

yI(n)

z-1z-2z-2

z-2 z-1z-2

a4a2a0

x(n)

yQ(n)

+ + +

yI(n)

DIN[N-1:0]

RST

CLK
RFD

DOUT_I[N-1:0]

RDY

ND

DOUT_Q[R-1:0]
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Interpolated FIR

An interpolated FIR (IFIR) [4] has a similar architecture to a conventional FIR filter, but with the unit
delay operator replaced by k-1 units of delay. k is referred to as the zero-packing factor. An N-tap IFIR
filter is shown in Figure 21.

This architecture is functionally equivalent to inserting k-1 zeros between the coefficients of a prototype
filter coefficient set.

Interpolated filters are useful for realizing efficient implementations of both narrow-band and
wide-band filters. A filter system based on an IFIR approach requires not only the IFIR but also an
image rejection filter. References [4] and [6] provide the details of how these systems are realized, and
how to design the IFIR and the image rejection filters.

The IFIR filter core takes advantage of the k-1 zeros in the impulse response to realize and area-efficient
FPGA implementation. The FPGA area required by an IFIR filter is not a strong function of the
zero-packing factor.

THE IFIR FILTER IS A SINGLE-RATE STRUCTURE. IT DOES NOT PROVIDE AN EMBEDDED
SAMPLE RATE CHANGE; THE INPUT SAMPLE RATE IS THE SAME AS THE OUTPUT SAMPLE
RATE.

Figure 20: Multi-Channel Hilbert Transform Core

Figure 21: Interpolated FIR (IFIR). The Zero-Packing Factor is k.

DIN[N-1:0]
ND

CLK

RFD

DOUT_I[N-1:0]

RDY

DOUT_Q[R-1:0]

SEL_I[CEIL(LOG_2(P)-1:0]

SEL_O[CEIL(LOG_2(P)-1:0]

z-Dz-Dx(n)

y(n)

z-D z-D z-D

a(0) a(1) a(2) a(3) a(4) a(N-1)

D = k-1
l 28, 2005 www.xilinx.com 13
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

14
Polyphase Decimator

The polyphase decimation filter option implements the computationally efficient M-to-1 polyphase deci-
mating filter shown in Figure 22.

A set of N prototype filter coefficients are mapped to the M polyphase sub-filters
according to Equation 2.

The polyphase segments are accessed by delivering the input samples x(n) to their inputs via an input
commutator which starts at the segment index and decrements to index 0. After the commu-
tator has executed one cycle and delivered M input samples to the filter, a single output is taken as the
summation of the outputs from the polyphase segments. The output sample rate is where

 is sample rate of the input data stream .

We observe that each of the polyphase segments is operating at the low output sample rate (com-
pared to the high input sample rate) and a total of operations are performed per output point.

In the Xilinx decimator, the polyphase segments are realized using distributed arithmetic techniques.
subfilters, all operating in parallel, are employed in the filter architecture. The polyphase decimator

provides support for single-channel operation only.

Figure 22: M-to-1 Polyphase Decimator

h0(n)

h1(n)

hM-3(n)

x(n)

hM-2(n)

hM-1(n)

y(n)

a0 a1 … aN 1–, , ,
h0 n() h1 n() …hM 1– n(), , ,

hi n() a i Mr+()= i 0 1 … M 1–, , ,= r 0 1 … N M– i+, , ,= Equation 3

i M 1–=

′f s

fs
M
-----=′f s

f s x n() n, 0 1 2 …, , ,=

fs ′f s
f s N

M

www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Polyphase Interpolator

The polyphase interpolation filter option implements the computationally efficient 1-to-P interpolation
filter shown in Figure 23.

A set of N prototype filter coefficients are mapped to the polyphase subfilters
according to Equation 3.

Each new input sample engages all of the polyphase segments in parallel. For each input sample
delivered to the filter, output samples, one from each segment, are delivered to the filter output port
as indicated by the commutator in Figure 23.

The output sample rate is where is sample rate of the input data stream
. We observe each of the polyphase segments operating at the low input sample rate

 (compared to the high output sample rate) and a total of operations performed per output
point. Like the polyphase decimator, each filter segment in the interpolator is constructed using distrib-
uted arithmetic techniques. concurrently operating segments are employed in the filter realization.

The polyphase interpolator provides support for single-channel operation only.

Half-Band Decimator
The half-band decimator is a polyphase filter with an embedded 2-to-1 downsampling of the input sig-
nal. The structure is shown in Figure 24.

The filter is very similar to the polyphase decimator described in "Polyphase Decimator" on page 14
with the decimation factor set to M=2. However, there is a subtle difference in the implementation that
makes the half-band decimator a more area efficient 2-to-1 down-sampling filter when the frequency
response reflects a true half-band characteristic.

The frequency and time response of a half-band filter are shown in Figure 13 and Figure 14 respectively.
Observe the alternating zero-valued coefficients in the impulse response.

Figure 23: 1-to-P Polyphase Interpolator

Figure 24: Half-Band Decimation Filter

h0(n)

h1(n)

hP-3(n)
x(n)

hP-2(n)

hP-1(n)

y(n)

a0 a1 … aN 1–, , , P
h0 n() h1 n() … hp 1– n(), , ,

x n()
P

′f s ′ =f f Ps s
f s

x n() n, 0 1 2 …, , ,=
fs ′fs N

P

h0(n)

h1(n)
x(n) y(n)
l 28, 2005 www.xilinx.com 15
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

16
Figure 25 details a 7-tap half-band polyphase filter when the coefficients are allocated to the two
polyphase segments and in Figure 24. Figure 25 (a) is the filter impulse response; note that

. Figure 25 (b) provides a detailed illustration of the polyphase subfilters and shows how
the filter coefficients are allocated to the two polyphase arms. In the bottom arm, the only non-
zero coefficient is the center value of the impulse response Figure 25 (c) shows the optimized archi-
tecture when the redundant multipliers and adders are removed. The final structure has a reduced
computation workload in contrast to a more general 2:1 down-sampling filter. The number of multi-
ply-accumulate (MAC) operations required to compute an output sample has been lowered by a factor
of approximately two.

The arithmetic optimizations described above are exploited in the Xilinx half-band decimating filter to
minimize the logic requirements of the FPGA implementation.

Even though the previous description and associated figures have described the half-band filter in
MAC operations, and the signal flow-graphs indicate explicit multiply operations, as with all of the fil-
ters discussed in this document, the underlying implementation is done using distributed arithmetic
techniques.

Figure 25: 7-Tap Half-Band Decimation Filter; the High Density of Zero-Valued Filter Coefficients is
Exploited in the FPGA Realization to Produce a Minimal Area Implementation

h n0 () h n1()
a a1 50= =

h n1(),
a3.

a0

a2

a1=0

a3
a4

a5=0 a6

(a) Impulse Response

x(n)
y(n)

(b) Polyphase Partition

z-1z-1 z-1

a0 a2 a4 a6

z-1z-1

a1=0 a3 a5=0

x(n)
y(n)

z-1z-1 z-1

a0 a2 a4 a6

z-1

a3

(c) Reduced Complexity (Hardware Optimized) Realization
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Half-Band Interpolator

Just as the half-band decimator is an optimized version of the more general polyphase decimation filter,
the half-band interpolator is a special case of a polyphase interpolator. The half-band interpolator is
shown in Figure 26.

The coefficient set for a true half-band interpolator is identical to that of a half-band decimator with the
same specifications. The large number of zero entries in the impulse response is exploited in exactly the
same manner as with the half-band decimator to produce hardware-optimized half-band interpolators.
The process is presented in Figure 27. Figure 27(a) is the impulse response, Figure 27(b) shows the
polyphase partition, and Figure 27(c) is the optimized architecture that has taken full advantage of the
0 entries in the coefficient data.

Like the polyphase decimator and interpolator, the half-band interpolator supports only single-channel
input data streams.

Small Non-Zero Even Terms in a Half-Band Filter Impulse Response

Certain filter design software may result in small non-zero values for the odd terms in the half-band fil-
ter impulse response. In this situation, it may be useful to force these values to 0 and re-evaluate the fre-
quency response to assess if it is still acceptable for the intended application. If the odd terms are not
identically zero, the hardware optimizations described above are not possible. If the small nonzero
value terms cannot be ignored, the general polyphase decimator or interpolator described in
"Polyphase Decimator" on page 14 and "Polyphase Interpolator" on page 15, respectively using a rate
change of two, are more appropriate.

Figure 26: Half-Band Interpolation Filter

h0(n)

h1(n)
x(n) y(n)
l 28, 2005 www.xilinx.com 17
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

18
On-Line Coefficient Reload
All of the filters provide an interface for loading new coefficient data. While the new coefficient values
are being loaded, and some internal data structures are subsequently initialized, the filter ceases to pro-
cess input samples. The coefficient reload time is a function of the filter length and type.

A high-level view of the reloadable DA FIR architecture is shown in Figure 28. Observe that the DA
LUT build engine, in addition to resources to store the new coefficient vector (coefficient buffer), is inte-
grated with the FIR filter engine.

Figure 27: 7-Tap Half-Band Interpolation Filter; the High Density of Zero-Valued Filter Coefficients is
Exploited in the FPGA Realization to Produce a Minimal Area Implementation

a0

a2

a1=0

a3
a4

a5=0 a6

(a) Impulse Response

z-1z-1

x(n)

y(n)

z-1

a0 a2 a4 a6

z-1z-1

a1=0 a3 a5=0

0

1
The first output is taken from the
port 0, then port 1.

z-1z-1

x(n)

y(n)

z-1

a0 a2 a4 a6

z-1

a3

0

1
The first output is taken from the
port 0, then port 1.

(b) Polyphase Partition

(c) Reduced Complexity (Hardware Optimized) Realization
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Figure 29 is the symbol for a single-rate FIR supporting coefficient reload. The signals that support the
reload operation are LD_DIN, COEF_LD and LD_WE. The LD_DIN port is used to supply the new vec-
tor of coefficients to the core. COEF_LD is asserted to initiate a load operation and LD_WE is a write
enable signal for the internal coefficient buffer.

When a coefficient load operation is initiated, the new vector of coefficients is first written to an internal
buffer—the coefficient buffer. Once the load operation has completed, the DA LUT build-engine is
automatically started. The build-engine uses the values in the coefficient buffer to reinitialize the DA
LUT.

Figure 30 shows the timing for a coefficient reload operation. COEF_LD is asserted to start the proce-
dure. The new vector of coefficients is then written to the internal memory buffer synchronously with
the core master clock CLK. LD_WE may be used to control the flow of coefficient data from the external
coefficient source—for example, a microprocessor—to the core. LD_WE performs a clock-enable func-
tion for the load process.

Figure 28: High-Level View of DA FIR with Reloadable Coefficients

Figure 29: Single-Rate FIR Filter with Coefficient Reload Functionality

DA FIR
Filter

DA LUT
Build

Engine

Coefficient
Buffer

Memory

Block
Memory

CLK
ND

DIN

RDY
RFD

DOUT

LD_DIN

COEF_LD
LD_WE

CLK

ND

DIN

RDY
RFD

DOUT

LD_DIN

COEF_LD

LD_WE
l 28, 2005 www.xilinx.com 19
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

20
Asserting COEF_LD forces RFD to the inactive state (Low), indicating that the core cannot accept any
new input samples. Note that during the reload operation the filter inner-product engine is suspended.
Once the new coefficients have been loaded and the DA LUT build engine has constructed the new par-
tial-product lookup tables, RFD is asserted indicating the core is ready to accept new input samples and
resume normal operation. The filter sample history buffer (regressor vector) is cleared when a new
coefficient vector is loaded.

Asserting COEF_LD also forces RDY to the inactive state (Low). COEF_LD may be reasserted again at
any point during an update procedure (even once the DA LUT build-engine is running) to start a new
coefficient configuration.

The number of clock cycles required to load a coefficient vector is a function of several variables,
including the filter length and filter type. Table 2 presents the reload time (in clock cycles) for each filter
class.

Coefficient Reload—Typical Use Model

The typical sequence of events that engage the coefficient reload are:

1. Pulse COEF_LD for a single clock cycle to initiate a coefficient load operation.
2. Supply a length N vector new coefficient data on the LD_DIN port. The coefficients can be written

to the internal buffer at a rate of one value per clock cycle. The coefficient source may use LD_WE to
control the rate at which coefficients are delivered. This is useful for systems in which the coefficient
source may not be able to accommodate the core bit clock; remember, the coefficients are written to
the internal buffer synchronously with the core master clock signal CLK.

3. Wait until RFD is asserted, indicating the filter may now be put back on-line, and process input
samples with the new coefficient vector.

Figure 30: Coefficient Reload Timing

RDY

COEF_LD

CLK

RFD

LD_DIN a(0) a(n-1)a(1) a(2) a(3) a(4) a(5) a(n-2)

LD_WE
 New coefficient vector now buffered internally

DA LUT Build Engine
initializes DA LUT during
this interval. RDF Is�
asserted to indicate the
filter may go online with
the new coefficients.
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Table 2: Coefficient Reload Times as a Function of Filter Type

Filter Type Latency L1

Single-Rate FIR 2,3

Halfband

Hilbert Transform

Interpolated

Interpolation
Decimation4

Decimating
Halfband
Interpolating
Halfband

1. Latency equations calculate number of cycles between the last coefficient written into block memory and RFD
being asserted.

2. is the symbol for rounding down to the nearest integer (for example,)

3. is the effective number of taps:

- for Non Symmetric and Negative Symmetric filters,

- for Symmetric filters :

- is the Sample Rate Change (and are temporary variables).

3 64 18
4

NL ⎛ + ⎞⎢ ⎥= × +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

1 4
2 64 18

4

N

L

⎛ ⎞⎢ + ⎥⎢ ⎥ +⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥= × +
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

1 3
2 64 18

4

N

L

⎛ ⎞⎢ + ⎥⎢ ⎥ +⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥= × +
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

3 64 18
4

NL ⎛ + ⎞⎢ ⎥= × +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

()64 18L S= × + 4
4
NY N R
R

⎢ ⎥= − ×⎢ ⎥⎣ ⎦

if 0Y = , then
4
NS =

if 0 Y R< < , then
4
NS R Y
R

⎛ ⎞⎢ ⎥= × +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

if and Y R Y N≥ ≠ , then 1
4
NS R
R

⎛ ⎞⎢ ⎥= + ×⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
if Y N= , then S R=

1 3
2 64 82

4

N

L

⎛ ⎞⎢ + ⎥⎢ ⎥ +⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥= × +
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

x x 3.2 3=

N

N Number of Taps=

N Number of Taps 1+
2

--=

R S Y
l 28, 2005 www.xilinx.com 21
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

22
CORE Generator Parameters
A filter core is customized using a configuration wizard. The wizard screens are shown in Figure 31
through Figure 33.

Figure 31: Filter Parameterization Screen—Page 1
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Figure 32: Parameterization Screen—Page 2

Figure 33: Filter Parameterization Screen—Page 3
l 28, 2005 www.xilinx.com 23
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

24
The user-supplied parameters are:

• Component Name: The user-defined filter component name

• Filter Type: Eight filter types are supported:

- Single-rate FIR

- Half-band FIR

- Hilbert transform

- Interpolated FIR

- Polyphase decimator

- Polyphase interpolator

- Half-band decimator

- Half-band interpolator.

• Number of Channels: The number of channels processed by the filter. One to eight channels can be
accommodated by a single filter core. The polyphase decimator and polyphase interpolator provide
single-channel support only.

• Zero Packing Factor: This field is applicable to the interpolated filter only. The zero packing factor
specifies the number of 0s inserted between the coefficient data supplied by the user in the .coe
(filter coefficient file). This is an integer value between 2 and 8 inclusive. A zero packing factor of k
inserts k-1 0s between the supplied coefficient values.

• Sample Rate Change: This field is applicable to the polyphase decimator and interpolator
structures. When the decimator is selected, the Sample Rate Change value defines the decimation
factor. For the interpolation filter, it defines the up-sampling factor. Sample rate changes of between
1 to 8 inclusive are supported for both up-sampling and down-sampling.

• Number of Taps: The number of filter taps. For a symmetric impulse response (either even or odd
symmetric) the number of filters taps is between 2 and 1024 inclusive. For a nonsymmetrical
coefficient set the range is 2 to 1024 inclusive.

• Impulse Response: Indicates structure present in the coefficient set. The user may specify a
symmetric, negative (odd)-symmetric or nonsymmetric impulse response.

• Coefficient Width: The bit precision of the filter coefficients. This is an integer value between 1 and
32 inclusive.

• Coefficient Data Type: The coefficient data can be specified as either signed or unsigned. When the
signed option is selected, conventional two’s complement representation is assumed.

• .COE File Name: Coefficient file name. This is the file of filter coefficients. The file has a .coe
extension and the file format is described in "Filter Coefficient Data" on page 38.

• Coefficient Reload: When the Fixed radio button on the Coefficient Reload panel is selected, the
filter Core is generated without a coefficient reload interface. When the Reloadable button is
selected, a coefficient reload interface is provided on the Core.

• Optimize Coefficients: The look-up tables employed in the filter mechanization can be optimized
to minimize the amount of FPGA logic fabric employed by the core. The optimization is data (filter
coefficient set) dependent.

• Load Coefficients: The filter coefficients are supplied in a coefficient or coe file. This is an ASCII file
with a “.coe” extension. The file format is described in "Filter Coefficient Data" on page 38.
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Activating this tab presents a browser window that lets the user select a coefficient file.

• Show Coefficients: Selecting this tab displays the filter coefficient data.

• Input Data Width: The precision (in bits) of the filter input data samples. The input sample
precision is an integer value between 1 and 32 inclusive.

• Input Data Type: The filter input data can be specified as either signed or unsigned. The signed
option employs conventional two’s complement arithmetic.

• Output Options: The filter output bus can be registered or unregistered. When the registered
output option is selected, the filter output bus DOUT is maintained at the core output between
successive assertions of RDY. In the unregistered mode, the output sample is valid only when RDY
is active. At other times, the port changes on successive clock cycles.

• Implementation Option: Selecting the Serial option generates an SDA FIR filter. This is a fully serial
DA FIR filter. In this case, if a nonsymmetric impulse response is specified, B (B is the bit precision
of the input data) clock cycles are required to generate a new output sample (B clock cycles per
output point). If a symmetric impulse response is employed, B+1 clock cycles are required per
output point.

If the Parallel filter is specified, a fully parallel PDA filter is produced. The fully parallel filter
produces a new output sample on every clock edge. Choosing the Clock Cycles/Output Sample
option allows the degree of filter parallelism to be specified using the associated pull-down menu.
The menu presents the valid set of values (L) that can be selected to specify the number of cycles per
output sample. For example, selecting L=3 for a polyphase decimator results in a filter where each
internal DA sub-filter generates a new output sample every three clock cycles irrespective of the
filter input sample precision.

For all of the polyphase decimation filters, including the half-band decimator, the Clock
Cycles/Output Sample value refers to the individual filters that are employed to construct the
multirate structure.

• Information: This field reports the filter latency (the number of clock cycles between presenting an
input data sample and the corresponding filter output sample) and the number of clock cycles per
sample. The filter latency is also available in the component instantiation file. This file has a
base-name that is the same as the filter component name, with a .vho extension for a VHDL design
flow or a .veo extension for a Verilog flow. For example, if the filter component name is my_filt, and
a VHDL flow has been selected, the instantiation file is named my_fir.vho. If a Verilog flow had
been selected this file would be called my_fir.veo.

The information field also reports the number of cycles that the coefficient reload process requires.
l 28, 2005 www.xilinx.com 25
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

26
XCO File Parameters
The parameters supplied via the filter customization wizard are captured and logged to the .xco file.
The full name of this file is the Component Name with an .xco file extension. Table 3 defines the .xco file
parameter names and range specifications.

Table 3: XCO File Parameter Names, Definitions, and Range Specifications

Parameter Name Definition Range

BusFormat

Controls the notation
employed for identifying
buses in the output edif
netlist file.

{BusFormatAngleBracket | BusFormatParen}

SimulationOutputPro
ducts

Core HDL simulation
selection—either VHDL or
Verilog.

{VHDL | VERILOG}

XilinxFamily
The FPGA target device
family.

{Virtex | Virtexe | Spartan2 | Virtex2 | Virtex2p | Spartan3}

DesignFlow HDL flow specifier. {VHDL | VERILOG}

FlowVendor
Design flow vendor
information.

{Other | Synplicity | Exemplar | Synopsis | Foundation |
ISE | Innoveda}

coefficient_file
File of filter coefficient
values.

Any valid file name for the user’s operating system
consisting of the letters a…z, 0…9 and “_.”

coefficient_data_type

The filter coefficient data
type. When the type signed
is selected, conventional 2’s
complement arithmetic is
employed.

{signed | unsigned}

number_of_taps The number of filter taps. [2,…,1024]

register_output

When true, an output
register is inserted at the
output of the filter datapath.
In this case, the filter output
remains valid during
successive transitions of
the filter output port(s).
When this parameter is
false, the filter output is not
registered and the output
sample is valid only during
the clock cycle demarcated
by the RDY control signal.

{true | false}

optimize_coefficients

When true, logic
optimization is performed
on the filter look-up tables.
Selecting optimization
results in the most compact
(minimum FPGA logic
resources) implementation.
If this parameter is false, no
logic optimization is
performed.

{true | false}
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
component_name
Textbox that defines the
filter component name.

Any valid file name for the user’s operating system
consisting of the letters a…z, 0…9 and “_.”

zero_packing_factor

This field is applicable to
interpolated filters only and
controls the number of 0s
inserted between the
user-supplied coefficient
values. A value of 2 results
in a single 0 valued entry
between the user
coefficients; a value of 3
inserts 2 0s between the
user coefficients, and so on.
For all filters other than the
interpolated filter, this
parameter should be 1.

[1,…,8]

impulse_response

This parameter allows the
user to identify structure in
the filter coefficient data.
Coefficient vectors that are
identified (explicitly by the
user) as being structured
(symmetric or negative
symmetric) result in
minimal size hardware
implementations.

{non_symmetric | symmetric | negative_symmetric}

sample_rate_change

This parameter specifies
the sample rate change
embedded in the filter. For
all single-rate filters, the
rate change is considered
to be 1.

[1,…,8]

number_of_channels

The number of channels
supported by the filter. All
multirate filters support only
a single channel.

[1,…,8]

clock_cycles_per_out
put

Number of clock cycles
required to generate a filter
output sample. In the
context of any of the
multirate filters, this value is
associated with the
subfilters (polyphase
segments) and not the final
output result.

The valid set of values for this parameter is a function of
several other parameters, including input_data_width
and impulse_response. This value is a minimum of 1,
corresponding to a full parallel implementation in which a
new output sample is available on every clock edge, to a
maximum of input_data_width+1.

number_of_taps The number of filter taps. [2,3,…,1024]

filter_type The filter type specifier.
{single_rate_fir | halfband | hilbert_transform |
interpolated | interpolation | decimation |
decimating_halfband | halfband_interpolating}

Table 3: XCO File Parameter Names, Definitions, and Range Specifications (Continued)

Parameter Name Definition Range
l 28, 2005 www.xilinx.com 27
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

28
coefficient_width
Number of bits used to
represent the filter
coefficient values.

[1,2,…,32]

input_data_width
Number of bits used to
represent the filter input
samples.

[1,2,…,32]

implementation_optio
n

This field defines the
degree of filter parallelism.

{clock_cycles_per_output_sample | parallel | serial}

input_data_type

The filter input sample data
type. When the type signed
is selected, conventional 2’s
complement arithmetic is
employed.

{signed | unsigned}

coefficient_reload

This parameter controls the
presence (or not) of a
coefficient reload interface.
When defined as
stop_during_reload, the
interface is included. When
defined as
fixed_coefficients, no
coefficient reload feature is
present.

{stop_during_reload | fixed_coefficients}

reset
Indicates if a synchronous
reset input (RST) is
included.

{true | false}

Table 3: XCO File Parameter Names, Definitions, and Range Specifications (Continued)

Parameter Name Definition Range
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Figure 34 is an example .xco file. The “#” character at the start of the first five lines in the example iden-
tify in-line comments.

Xilinx CORE Generator 5.1i; Cores Update # 2
Username = chrisd
COREGenPath = C:\Xilinx\coregen
ProjectPath = C:\ip_portfolio\DA_FIR\datasheet\eip2\xilinx
ExpandedProjectPath = C:\ip_portfolio\DA_FIR\datasheet\eip2\xilinx
OverwriteFiles = False
Core name: rrc
Number of Primitives in design: 4189
Number of CLBs used in design cannot be determined when there is no RPMed logic
Number of Slices used in design cannot be determined when there is no RPMed
logic
Number of LUT sites used in design: 1360
Number of LUTs used in design: 1191
Number of REG used in design: 1680
Number of SRL16s used in design: 169
Number of Distributed RAM primitives used in design: 0
Number of Block Memories used in design: 0
Number of Dedicated Multipliers used in design: 0
Number of HU_SETs used: 0

SET BusFormat = BusFormatParen
SET SimulationOutputProducts = VHDL
SET XilinxFamily = Virtex2
SET OutputOption = DesignFlow
SET DesignFlow = VHDL
SET FlowVendor = Synplicity
SET FormalVerification = None
SELECT Distributed_Arithmetic_FIR_Filter Virtex2 Xilinx,_Inc. 7.0
CSET implementation_option = Serial
CSET optimize_coefficients = true
CSET zero_packing_factor = 1
CSET input_data_type = Signed
CSET number_of_channels = 1
CSET register_output = true
CSET component_name = rrc
CSET sample_rate_change = 8
CSET coefficient_reload = Fixed_Coefficients
CSET reset = false
CSET filter_type = Interpolation
CSET input_data_width = 10
CSET impulse_response = Non_Symmetric
CSET clock_cycles_per_output_sample = 10
CSET coefficient_data_type = Signed
CSET coefficient_file =
C:\ip_portfolio\DA_FIR\datasheet\eip2\xilinx\rrc_interp.coe
CSET number_of_taps = 129
CSET coefficient_width = 14
GENERATE

Figure 34: Example .xco File
l 28, 2005 www.xilinx.com 29
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

30
Interface, Control, and Timing
All of the filter classes employ a data-flow style interface for supplying input samples to the core and
for reading the filter output port. ND (New Data), RFD (Read For Data) and RDY (Ready) are used to
co-ordinate I/O operations. In addition, for multi-channel filters, SEL_I and SEL_O indicate the active
input and output stream respectively.

Nomenclature

In the timing diagrams supplied in this section, the notation, and to denote the filter input
and output samples respectively. In some diagrams, for space reasons, the variable name (or) has
been omitted and the diagram is annotated only with the index value

Timing: Single-Channel and Multi-Channel Filters

The timing for a single-channel filter, with L clock cycles per output sample and a registered output
port, is shown in Figure 35. The ND input signal is used for loading a new input sample into the filter.
It is effectively used internally as a clock enable, and the actual sample load operation occurs on the ris-
ing of the clock (CLK). When the core is ready to accept a new input sample, the RFD signal is asserted.
When a new output sample is available, RDY is asserted for a single clock period. When the registered
output option is selected, the output sample remains valid between successive assertions of RDY.

Figure 35: Single-Channel FIR fIlter Timing. L Clock Cycles Per Output Sample, Registered Output

x n() y n()
x y

n.

CLK

ND

RFD

1 L-3 L-2 L-1 0 10L-1L-2
PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT

new filter output sample

y(n) y(n+1)

new filter output sample

interval depends on filter latency (1)

INPUT SAMPLE LOADED ON THIS CLOCK EDGE

i i+1 i i+1

�

 The latency is reported on the filter GUI1.
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Figure 36 shows the timing for a single-channel filter with an unregistered output port. The input tim-
ing is the same as for the registered output example, but now the filter result is valid for only a single
clock period and is framed by RDY.

In the two previous examples, the host system supplied input samples at the highest frequency possi-
ble (every L clock tick). This does not have to be the case. Data samples can be supplied at a lower rate
without disturbing the operation of the filter, as shown in Figure 37.

In this example, despite the filter being designed to specify L clock cycles per output sample, new data
is supplied to the filter every L+2 clock periods. Observe that RFD is still asserted on the Lth clock cycle
of a data sample epoch, but the host system supplies a new input sample only two clock cycles later.
RFD remains active until the new input sample has been accepted by the filter core. This occurs syn-
chronously with the positive going edge of the clock and with ND acting as an active High clock enable.

Figure 36: Single-Channel FIR Filter Timing. L Clock Cycles Per Output Sample, Unregistered Output

Figure 37: Single-Channel FIR Filter Timing. L Clock Cycles Per Output Sample, Registered Output. Input
Samples Supplied Every L+2 Clock Periods.

CLK

ND

RFD

PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT

new filter output samplenew filter output sample

interval depends on filter latency

VALID VALID

1 L-3 L-2 L-1 0 10L-1L-2 i i+1 i i+1

(1)

The1. latency is reported on the filter GUI

CLK

ND

RFD

PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT y(n) y(n+1)

new filter output sample

interval depends on filter latency (1)

1 L-3 L-2 L-1 0 10 i i+1 i i+1

 The latency is reported on the filter GUI1.
l 28, 2005 www.xilinx.com 31
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

32
As a specific example of the filter interface timing, consider a non symmetric single-channel FIR filter
with 10-bit precision input samples and a full serial realization (L=10). The timing diagram is shown in
Figure 38. Ten clock cycles are needed to process each new input sample.

A symmetrical filter with B-bit precision input samples requires, in general, B+1 clock periods for a full
serial (SDA) implementation. Figure 39 shows the timing for a single-channel symmetrical FIR employ-
ing 10-bit input samples. In this case, eleven clock cycles (L=11) are required to process each new piece
of data.

The previous two figures illustrate the timing for full serial or SDA filter implementations with sym-
metrical and non symmetrical coefficient data. The Core Generator filter core supports various types of
parallel filter realizations. The greater the degree of filter parallelism employed, the higher the filter
sample rate. Filter parallelism is specified in terms of the number of clock cycles (L) required to com-
pute an output sample. This value is accessed via the filter core GUI when the Multi clock cycles per out-
put sample is selected in the Implementation Option field. The associated drop-down menu indicates valid
options for L. The valid options for L depend on the filter parameters, symmetrical/non symmetrical
coefficient data and precision of the input samples. For example, for an input sample precision B=10
and using a non symmetrical impulse response, the valid values for L are {1, 2, 3, 4, 5, 10}. For B=10 and
a symmetrical impulse response L={1, 2, 3, 4, 6, 11}.

Figure 38: Single-Channel FIR Filter Timing. Full Serial Implementation, 10-bit Input Samples, Registered
Output. For L=10, there are 10 Clock Periods Between Successive Output Samples.

Figure 39: Single-Channel FIR Filter Timing. Full Serial Implementation, 10-bit Input Samples, Symmetrical
Impulse Response, Registered Output. 11 Clock Periods are Required to Process Each New Input Sample.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN VALID VALID VALID

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

y(n+1)y(n)

0 1 2

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN VALID VALID VALID

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

y(n+1)y(n)
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Figure 40, Figure 41, and Figure 42 illustrate the timing diagrams for a filter with B=10 bit precision
input samples, with L=2, 4, and, 6, respectively.

Figure 43 illustrates the filter timing for a fully parallel DA (PDA) FIR filter. Observe that after the ini-
tial start-up latency a new output sample is available on every clock edge. The number of clock cycles
in the start-up latency period is a function of the filter parameters. This value is reported in the filter
design GUI in addition to the associated .vho (or .veo, refer to "XCO File Parameters" on page 26) file.

Figure 40: Single-Channel FIR Filter Timing. PDA FIR With B=10-Bit Input Samples, L=2 Clock Cycles Per
Output Sample, Registered Output. There are Two Clock Periods Between Successive Output Samples.

Figure 41: Single-Channel FIR Filter Timing. PDA FIR With B=10-Bit Input Samples, L=4 Clock Cycles Per
Output Sample, Registered Output. There are Four Clock Periods Between Successive Output Samples.

Figure 42: Single-Channel FIR Filter Timing. PDA FIR With B=10-Bit Input Samples, L=6 Clock Cycles Per
Output Sample, Registered Output. There are Six Clock Periods Between Successive Output Samples.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

y(n+1)y(n)

0 1 01

x(n+2)x(n+1) x(n+3) x(n+4) x(n+5) x(n+6) x(n+7) x(n+8) x(n+9) x(n+10) x(n+11)

y(n+2) y(n+3) y(n+4) y(n+5) y(n+6) y(n+7) y(n+8) y(n+9) y(n+10)

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

y(n+1)y(n)

0 1 23

x(n+1) x(n+2) x(n+3) x(n+4) x(n+5)

y(n+2) y(n+3) y(n+4)
interval depends
on filter latency

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1

y(n)

2 3 45

x(n+1) x(n+2) x(n+3)

y(n+1) y(n+2)
interval depends
on filter latency
l 28, 2005 www.xilinx.com 33
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

34
The figure shows ND valid on every clock edge, so a new input sample is delivered to the filter on each
clock edge. Of course, ND may be removed for an arbitrary number of clock cycles in order to tempo-
rarily suspend the filter operation. No internal state information is lost when this is done, and the filter
resumes normal operation when ND is reapplied (placed in the active again).

Figure 44 and Figure 45 demonstrate the timing for a multi-channel filter. Multi-channel filters provide
two additional output ports, SEL_I and SEL_O, that indicate the active input and output channel
respectively. Figure 44 illustrates a filter with an unregistered output. Figure 45 shows the timing for
registered output samples.

Figure 43: Fully Parallel Implementation. Single-Channel Filter. With a Fully Parallel Implementation, a New
Output Sample is Available on Each Clock Edge (After the Start-Up Latency), Independent of the Filter

Length or the Bit Precision of the Input Data Samples.

Figure 44: Multi-Channel FIR Filter Timing. Nonsymmetrical Impulse Response, B-Bit Input Samples,
Unregistered Output.

RDY

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+12)x(n+2) x(n+3) x(n+4) x(n+5) x(n+6) x(n+7) x(n+8) x(n+9) x(n+10) x(n+11) x(n+13) x(n+14) x(n+15) x(n+16) x(n+17) x(n+18) x(n+19) x(n+20) x(n+21) x(n+22)

y(n+5)y(n) y(n+1) y(n+2) y(n+3) y(n+4) y(n+6) y(n+7) y(n+8) y(n+9)

interval depends
on filter latency

RDY

PSC
DATA
OUT

SEL_I CHAN 0 CHAN 1 CHAN 2 CHAN 0CHAN N-1

ND

CLK

SEL_O CHAN 0 CHAN 1 CHAN 2 CHAN N-1

INTERVAL DEPENDS ON FILTER PARAMETERS

DOUT

RFD

B0 B1 BB-1 B0 B1 BB-1 B0 B1 BB-1 B0 B1 BB-1 B0 B1 BB-1

DIN VALID VALID VALID VALID VALID VALID

VALID VALID VALID VALID VALID VALID
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Polyphase Decimator Timing

Figure 46 demonstrates the timing for a polyphase decimator with and 8 clock cycles per
output point (Clock Cycles/Output Sample=8). Remember, for all of the multirate filter structures, the
number of clock cycles per output point specification (Clock Cycles/Output Sample) refers to the individ-
ual filter segments that comprise the filter, and is not directly associated with the filter output port
DOUT. Observe that in this case, the filter is always able to accept input samples, as indicated by
RFD=1. New output samples become available after M, in this case 4, input samples have been deliv-
ered to the filter. New output samples are produced in response to each new block of 4 input values.
Delivering the final value in each M-tuple causes a new inner product calculation to commence. The
resulting output sample becomes available a number of clock cycles k after the final sample in the
M-tuple is delivered. The exact value of k is a function of the filter parameterization. It is tightly cou-
pled to the input sample bit precision, the value specified for the Clock Cycles/Output Sample parameter,
in addition to the number of internal pipeline stages and the data buffering depth in the filter. It is
always recommended to use the output control signal RDY to coordinate all processes that are data
sinks for the filter output port DOUT.

Figure 47 illustrates the timing for a 4-to-1 polyphase decimator with similar parameters to the filter
considered in Figure 46, but in this case the number of Clock Cycles/Output Sample is L=4. Observe that
even though the input sample precision (B=8) is the same as in the filter demonstrated in Figure 46,
samples can be presented to filter every 4 clock cycles, in contrast to every 8 clock periods in the previ-

Figure 45: Multi-Channel FIR Filter Timing. Nonsymmetrical Impulse Response, B-Bit Input Samples,
Registered Output.

Figure 46: Polyphase Decimator Timing; 8-Bit Precision Input Samples, Down-sampling Factor M=4, L=8.

RDY

PSC
DATA
OUT

SEL_I CHAN 0 CHAN 1 CHAN 2 CHAN 0CHAN N-1

ND

CLK

SEL_O CHAN 0 CHAN 1 CHAN 2 CHAN N-1

INTERVAL DEPENDS ON FILTER PARAMETERS

DOUT y0,n y1,n y2,n yN-1,n y0,n+1

RFD

B0 B1 BB-1 B0 B1 BB-1 B0 B1 BB-1 B0 B1 BB-1 B0 B1 BB-1

DIN VALID VALID VALID VALID VALID VALID

CHAN 0

M B= =4 8,

ND

CLK

RFD

DIN 0 1 2 3 4 5 6 7 8 9 10 11

First Input Sample Delivered to Filter

CLOCK
CYCLE # 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7

Interval Depends on Filter Parameters

RDY

DOUT y(0) y(1)

First Output Available
l 28, 2005 www.xilinx.com 35
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

36
ous example. The filter supports double the input sample rate and, therefore, twice the bandwidth, of
the filter with L=8.

Polyphase Decimator: Burst Input Mode

Internal buffering in the polyphase decimator allows the user to burst samples into the DIN port. This
is illustrated in Figure 48 for a down-sampling factor M=4, 12-bit input samples, and L=12. This figure
shows the timing for the filter starting from rest; that is, no data has been previously applied to the
input port. Notice in this case that a total of 8 samples may be written to the filter before the device
removes RFD.

Once the filter has moved out of this start-up state, input samples must obey the timing diagram shown
in Figure 49. Only four samples can be supplied in each data burst:

Figure 47: Polyphase Decimator Timing. 8-Bit Precision Input Samples, Down-sampling Factor M=4, L=4.

Figure 48: Polyphase Decimator Timing. 12-bit Precision Input Samples, Down-sampling Factor M=4,
L=12. Burst Input Data Operation. Diagram Shows the Timing When the Filter is Started from Rest; that is,

No Data Has Previously Been Applied to the Input Port.

ND

CLK

RFD

DIN 0 1 2 3 4 5 6 7 8 9 10 11

First Input Sample Delivered to Filter

CLOCK
CYCLE #

Interval Depends on Filter Parameters

RDY

DOUT y(0) y(1)

First Output Available

0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32

RDY

ND

CLK

DOUT

RFD

DIN x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

y(0)
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
As with the Clock Cycles/Output Sample parameter for the single-rate filters, this parameter can be used
with all the multirate filters to tradeoff performance with silicon area.

Polyphase Interpolator Timing

Figure 50 shows the timing for a polyphase interpolator that supports a sample rate change of P=4,
eight-bit precision input samples (B=8) and 8 clock-cycles-per-output-point. Again, as with the
polyphase decimator, the number of clock cycles specified per output point is associated with the indi-
vidual subfilters in the polyphase structure. In this example, each subfilter produces a new output sam-
ple every 8 clock cycles. The 4 polyphase segments are actually operating concurrently so, in fact,
internal to the filter, 4 new output samples are available every 8 clock cycles. When the new block of
output samples is available, the samples are sequenced to the filter output port DOUT using an internal
multiplexor. The multiplexor select signal is referenced to the filter master clock signal CLK. As shown
in Figure 50, the vector of P output samples is validated by the core output control signal RDY.

Figure 51 shows the timing for an interpolator with similar parameters to the example demonstrated in
Figure 50, but in this case a value of L=4 has been used. This means that each polyphase segment pro-
duces a new output sample every 4 clock cycles. In addition, all 4 outputs become available (internally)

Figure 49: Polyphase Decimator Timing. 12-Bit Precision Input Samples, Down-sampling Factor M=4,
L=12. Burst Input Data Operation. Diagram Shows Timing After the Filter Has Moved Out of the Start-up

Timing Shown in Figure 48.

Figure 50: Polyphase Interpolator Timing. 8-Bit Precision Input Samples, Up-sampling Factor P=4, L=8.

RDY

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+2) x(n+3) x(n+4) x(n+5) x(n+6)

NEW OUTPUT

x(n+7)

NEW OUTPUT

RDY

CLOCK
CYCLE #

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+2) x(n+3)

interval depends on filter latency - Which is a
 Function of the Filter Parameters

y(n) y(n+1) y(n+2) y(n+3)

50 76 50 76 50 76 50 76

y(n+4) y(n+5) y(n+6) y(n+7)

4 4 4 4

y(n+8) y(n+9) y(n+10) y(n+11)
l 28, 2005 www.xilinx.com 37
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

38
in parallel. Observe that after the initial startup latency a new interpolant is available at the filter output
port DOUT on each successive rising edge of the clock.

Filter Coefficient Data
The filter coefficients are supplied to the filter compiler using a coefficient file with a .coe extension. This
is an ASCII text file with a single-line header that defines the radix of the number representation used
for the coefficient data, followed by the coefficient values themselves. This is shown in Figure 52 for an
N-tap filter.

The filter coefficients must be supplied as integers in either base-10, base-16 or base-2 representation.
This corresponds to coefficient_radix=10, coefficient_radix=16 and coefficient_radix=2 respectively.

The coefficient values may also be placed on a single line as shown in Figure 53.

The coefficient file format for each of the filter classes supported by the core are discussed below.

FIR

The coefficient file for the single-rate FIR filter is straightforward and consists of a one-line header fol-
lowed by the filter coefficient data. For example, the filter coefficient file for an 8-tap filter using a
base-10 representation for the coefficient values is shown in Figure 54:

Figure 51: Polyphase Interpolator Timing. 8-Bit Precision Input Samples, Up-sampling Factor P=4, L=4.

radix=coefficient_radix;
coefdata=
a(0),
a(1),
a(2),
….
a(N-1);

Figure 52: Filter Coefficient File Format

radix=coefficient_radix;
coefdata=a(0),a(1),a(2),….,a(N-1);

Figure 53: Filter Coefficient File Format—Coefficient Data on a Single Line

radix=10;
coefdata=20,-256,200,255,255,200,-256,20;

Figure 54: Filter Coefficient File—8-Tap Filter, Base-10 Coefficient Values

RDY

CLOCK
CYCLE #

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+2) x(n+3)

interval depends on filter latency - Which is a
 Function of the Filter Parameters

y(n) y(n+1) y(n+2) y(n+3) y(n+4) y(n+5) y(n+6) y(n+7) y(n+8) y(n+9) y(n+10) y(n+11)

30 21 30 21 30 21 30 21 30 21 30 21

x(n+4) x(n+5)

y(n+12)y(n+13) y(n+14)
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Irrespective of the filter possessing positive or negative symmetry, the coefficient file should contain
the complete set of coefficient values. The filter coefficient file for the non symmetric impulse response
shown in Figure 55 is presented in Figure 56.

The coefficient file for the negative-symmetric filter characterized by the impulse response in Figure 57
is shown in Figure 58.

Figure 55: Nonsymmetric Impulse Response

radix=10;
coefdata=255,200,-180,80,220,180,100,-48,40;

Figure 56: Coefficient File for the Non symmetric Impulse Response in Figure 55

Figure 57: Symmetric Impulse Response

radix=10;
coefdata=30,-40,80,-100,-200,200,100,-80,40,-30;

Figure 58: Coefficient File for the Symmetric Impulse Response in Figure 57

255

200

-180

80

220

180
100

-48

40

200

-200

-100

10080

-40

30

-80

40

-30
l 28, 2005 www.xilinx.com 39
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

40
Half-Band Filter

As described in a previous section, every second filter coefficient for a half-band filter with an odd
number of terms is zero. When specifying the filter coefficient data for this filter class, the zero value
entries must be included in the coefficient file. For example, the filter coefficient file that specifies the
filter impulse response in Figure 59 is shown in Figure 60.

The filter coefficient set is parsed by the filter compiler. If either the alternating zero entries are absent
or the coefficient set is not even-symmetric, this is flagged as an error and the filter is not generated. A
dialog box is presented to indicate the nature of the problem under these circumstances.

Technically, the zero-valued entries for a half-band filter can occur at the filter impulse response
extremities as shown in Figure 61. However, observe that these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-valued
coefficients form the first and last entry of the impulse response, the filter length is reported as an
invalid value. The number of taps N for a half-band filter must obey N = 3 + 4n, where n=0,1,2,3,…. For
example, a half-band filter may have 11,15,19 and 23 taps, but not 9, 13, 17 or 21 taps.

Figure 59: 11-Tap Half-band Filter Impulse Response

radix=10;
coefdata=220,0,-375,0,1283,2047,1283,0,-375,0,220;

Figure 60: Coefficient File for the Half-band Filter Impulse Response Shown in Figure 59

Figure Top x-ref 4

Figure 61: 9-Tap Half-band Filter Impulse Response

2047

1283 1283

0

-375

0
220

0

-375

220
0

a3

2047

1283 1283

0

-375

0 0

-375

0

www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Hilbert Transform

The impulse response for a 10-term approximation to a Hilbert transformer is shown in Figure 62. The
odd-symmetry and zero-valued coefficients are both exploited to generate an efficient FPGA realiza-
tion. The coefficient data file for the Hilbert transform must contain the zero-valued entries. For exam-
ple, the .coe file corresponding to Figure 62 is shown in Figure 63.

In practice, some optimization methods used for designing a Hilbert transform may lead to the pres-
ence of small even-numbered coefficients. If the Hilbert Transform filter class is used in the filter com-
piler, these terms must be forced to zero by the user.

Just like the half-band filter, the zero-valued entries for a Hilbert transformer can occur at the filter
impulse response extremities. However, these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-valued
coefficients form the first and last entry of the impulse response, the filter length is reported as an
invalid value. The number of taps N for a Hilbert transformer must obey N = 3 + 4n, where n=0,1,2,3,….
For example, a Hilbert transform filter may have 11,15,19 and 23 taps, but not 9, 13, 17 or 21 taps.

Interpolated Filter

A previous section explained that an IFIR filter is similar to a conventional FIR, but with the unit delay
operator replaced by k-1 units of delay. k is referred to as the zero-packing factor. One way to realize this
substitution is by the insertion of k-1 zeros between the coefficient values of a prototype filter. When
specifying an IFIR architecture, the full set of prototype coefficients are supplied in the coefficient file,
without the zeros implied by the zero-packing factor. The zero-packing factor is defined through the fil-
ter user interface. For example, consider the filter coefficient data in the .coe file shown in Figure 64.

Figure 62: Hilbert Transform - Impulse Response

radix=10;
coefdata=-819,0,-1365,0,-4096,0,4096,0,1365,0,819;

Figure 63: Coefficient File for the Hilbert Transformer with the Impulse Response Shown in Figure 62

radix=10;
coefdata=-200,1200,2047,1200,-200;

Figure 64: Prototype Coefficient Data for IFIR Example

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

l 28, 2005 www.xilinx.com 41
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

42
If a zero-packing factor of k=2 is specified, the equivalent filter impulse response is shown in Figure 65.

If the zero-packing factor is changed to k=3, the impulse response is as shown in Figure 66.

These examples have utilized a symmetrical prototype impulse response, this is not a restriction of the
filter core. The prototype filter coefficient set can be symmetrical, nonsymmetrical, or negative-sym-
metric.

Core Resource Utilization
The logic utilization for a filter is a function of the filter length, coefficient precision, coefficient symme-
try, and input data precision. Table 4 through Table 9 provide logic resource requirements for a number
of filter configurations.

Figure 65: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 64 with a
Zero-Packing Factor k=2

Figure 66: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 64 with a
Zero-Packing Factor k=3

Table 4: Virtex Logic Slice Utilization for Several FIR Filter Configurations: 10-Bit Filter Coefficients; Filter
Coefficient Optimization Off; Single-Channel; Signed Input; Signed Coefficients; Unregistered Output

Filter Length Symmetry
Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

4
Symmetrical 31 34 41 43 66

Nonsymmetrical 29 33 36 43 67

8
Symmetrical 36 38 44 49 72

Nonsymmetrical 45 50 53 60 82

32
Symmetrical 103 108 113 117 157

Nonsymmetrical 141 146 151 154 196

2047

-200

12001200

0 00 0

-200

2047

0 00 0

-200

1200 1200

-200

00 0 0
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
80
Symmetrical 247 251 255 261 332

Nonsymmetrical 363 369 373 376 454

128
Symmetrical 370 377 380 358 493

Nonsymmetrical 532 536 537 543 646

256 Symmetrical 731 747 740 749 940

Table 5: Virtex Logic Slice Utilization for Several Filter FIR Filter Configurations: 12-Bit Filter Coefficients;
Filter Coefficient Optimization Off; Single-Channel; Signed Input; Signed Coefficients; Unregistered
Output

Filter Length Symmetry
Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

4
Symmetrical 34 35 41 47 69

Nonsymmetrical 30 35 39 45 66

8
Symmetrical 36 41 45 52 75

Nonsymmetrical 50 53 56 62 87

32
Symmetrical 111 114 118 125 166

Nonsymmetrical 160 161 168 173 214

80
Symmetrical 268 273 277 279 353

Nonsymmetrical 408 414 413 424 498

128
Symmetrical 402 415 417 421 521

Nonsymmetrical 595 601 599 607 718

256 Symmetrical 797 806 819 810 1003

Table 6: Virtex Logic Slice Utilization for Several Half-band Filter Configurations. 14-Bit Filter
Coefficients; Filter Coefficient Optimization Off; Single-Channel; Signed Input; Signed Coefficients;
Unregistered Output

Filter Length Symmetry
Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

7 Symmetrical 38 42 47 53 77

31 Symmetrical 84 96 100 104 147

79 Symmetrical 171 194 203 206 274

Table 4: Virtex Logic Slice Utilization for Several FIR Filter Configurations: 10-Bit Filter Coefficients; Filter
Coefficient Optimization Off; Single-Channel; Signed Input; Signed Coefficients; Unregistered Output

Filter Length Symmetry
Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit
l 28, 2005 www.xilinx.com 43
ecification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

44
Table 7: Virtex Logic Slice Utilization for Several Hilbert Transformer Configurations: 14-Bit Filter
Coefficients; Filter Coefficient Optimization Off; Single-Channel; Signed Input; Signed Coefficients;
Unregistered Output

Filter
Length

Symmetry
Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

7
Odd-Symmetri

c
41 49 57 66 99

31
Odd-Symmetri

c
75 88 96 104 157

79
Odd-Symmetri

c
158 187 198 204 289

Table 8: Virtex Logic Slice Utilization for Several Interpolated Filter Configurations: 16-Bit Filter
Coefficients; Filter Coefficient Optimization Off; Single-Channel; Signed Input; Signed Coefficients;
Unregistered Output. Zero Packing Factor Is 4.

Filter
Length

Symmetry
Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

8

Symmetrical 44 54 63 69 107

Nonsymmetrica
l

56 66 71 84 122

32

Symmetrical 146 170 198 201 303

Nonsymmetrica
l

189 214 239 264 366

80

Symmetrical 359 410 474 477 705

Nonsymmetrica
l

488 550 609 668 897

Table 9: Virtex Logic Slice Utilization for Several PDA FIR Filter Configurations: 12-Bit Filter Coefficients
and Input Data; 60-Taps; Filter Coefficient Optimization Off; Single-Channel; Signed Input; Signed
Coefficients; Unregistered Output; Nonsymmetrical Impulse Response. Filter Master Clock Frequency Is
150 MHz.

Number of Clock Cycles per Output
Sample

Slice Count Filter Sample Rate1 (MHz)

1.The filter sample rate is not at all dependent on the number of filter taps.

1 3072 150

2 1571 75

3 994 50

4 802 37.5

6 551 25

12 268 12.5
www.xilinx.com DS240 April 28, 2005
Product Specification

http://www.xilinx.com

Distributed Arithmetic FIR Filter v9.0

DS240 Apri
Product Sp
Ordering Information
This core may be downloaded from the Xilinx IP Center for use with the Xilinx CORE Generator system
v7.1i and later. The CORE Generator system is bundled with the Xilinx Foundation series software
packages, at no additional charge.

To order Xilinx software, please visit the Xilinx Xpresso Cafe or contact your local Xilinx sales representa-

tive.

Information on additional Xilinx LogiCORE modules is available on the Xilinx IP Center.

References
1. Peled and B. Liu, “A New Hardware Realization of Digital Filters,” IEEE Trans. on Acoust., Speech,

Signal Processing, vol. ASSP-22, pp. 456-462, Dec. 1974.
2. S. A. White, ``Applications of Distributed Arithmetic to Digital Signal Processing,” IEEE ASSP

Magazine, Vol. 6(3), pp. 4-19, July 1989.
3. Xilinx Inc., Xilinx Product Guide, Xilinx Inc., San Jose California, 1999.
4. P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Englewood Cliffs, New Jersey,

1993.
5. M. E. Frerking, Digital Signal Processing in Communication Systems, Van Nostrand Reinhold, New

York, 1994.
6. C. H. Dick, “Implementing Area Optimized Narrow-Band FIR Filters Using Xilinx FPGAs,” SPIE

International Symposium on Voice, Video and Data Communications—Configurable Computing:
Technology an Applications Stream, Boston, Massachusetts USA, pp. 227-238, Nov 1-6, 1998. Also
available at: http://www.xilinx.com/products/logicore/coredocs.htm

Revision History
The following table shows the revision history for this document.

Date Version Revision

03/07/03 1.1 Conversion to new template.

5/21/04 1.2 Updated to support Xilinx software v6.2i and Virtex-4 FPGAs.

4/28/05 1.3 Updated document to add support for Spartan-3E FPGA and Xilinx software v7.1i.
l 28, 2005 www.xilinx.com 45
ecification

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Intellectual+Property
http://www.xilinx.com/xlnx/xebiz/onlinestore.jsp?sGlobalNavPick=PURCHASE
http://www.xilinx.com/company/contact.htm
http://www.xilinx.com/company/contact.htm
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Intellectual+Property

	Distributed Arithmetic FIR Filter v9.0
	Features
	General Description
	Filter Realization: Distributed Arithmetic
	Increasing the Speed of Multiplication - Parallel Distributed Arithmetic
	Exploiting Filter Symmetry

	Filter Throughput
	Processing Multiple Channels
	Filter Configurations
	Single-Rate FIR
	Half-Band FIR
	Hilbert Transform
	Interpolated FIR
	Polyphase Decimator
	Polyphase Interpolator

	Half-Band Decimator
	Half-Band Interpolator
	Small Non-Zero Even Terms in a Half-Band Filter Impulse Response

	On-Line Coefficient Reload
	Coefficient Reload—Typical Use Model

	CORE Generator Parameters
	XCO File Parameters
	Interface, Control, and Timing
	Nomenclature
	Timing: Single-Channel and Multi-Channel Filters
	Polyphase Decimator Timing
	Polyphase Decimator: Burst Input Mode
	Polyphase Interpolator Timing

	Filter Coefficient Data
	FIR
	Half-Band Filter
	Hilbert Transform
	Interpolated Filter

	Core Resource Utilization
	Ordering Information
	References
	Revision History

