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Outline

• FIR filters
– Structures
– Polyphase FIR filters
– Parallel polyphase FIR
– Decimated FIR

• Implementations of FIR filters
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Canonic and Canonic and NoncanonicNoncanonic
StructuresStructures

• A digital filter structure is said to be 
canonic if the number of delays in the block 
diagram representation is equal to the order 
of the transfer function

• Otherwise, it is a noncanonic structure
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Canonic and Canonic and NoncanonicNoncanonic
StructuresStructures

• The structure shown below is noncanonic as 
it employs two delays to realize a first-order 
difference equation

]1[][]1[][ 101 −++−−= nxpnxpnydny
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Basic FIR Digital Filter Basic FIR Digital Filter 
StructuresStructures

• A causal FIR filter of order N is characterized 
by a transfer function H(z) given by

which is a polynomial in
• In the time-domain the input-output relation 

of the above FIR filter is given by
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Direct Form FIR Digital Filter Direct Form FIR Digital Filter 
StructuresStructures

• An FIR filter of order N is characterized by     
N+1 coefficients and, in general, require 
N+1 multipliers and N two-input adders

• Structures in which the multiplier 
coefficients are precisely the coefficients of 
the transfer function are called direct form
structures 
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Direct Form FIR Digital Filter Direct Form FIR Digital Filter 
StructuresStructures

• A direct form realization of an FIR filter can 
be readily developed from the convolution 
sum description as indicated below for N = 4
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Direct Form FIR Digital Filter Direct Form FIR Digital Filter 
StructuresStructures

• The transpose of the direct form structure 
shown earlier is indicated below

• Both direct form structures are canonic with 
respect to delays
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Cascade Form FIR Digital Cascade Form FIR Digital 
Filter StructuresFilter Structures

• A higher-order FIR transfer function can 
also be realized as a cascade of second-order 
FIR sections and possibly a first-order 
section

• To this end we express H(z) as

where            if N is even, and               if N 
is odd, with
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Cascade Form FIR Digital Cascade Form FIR Digital 
Filter StructuresFilter Structures

• A cascade realization for N = 6 is shown 
below

• Each second-order section in the above 
structure can also be realized in the 
transposed direct form
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LinearLinear--Phase FIR StructuresPhase FIR Structures
• The symmetry (or antisymmetry) property of a 

linear-phase FIR filter can be exploited to 
reduce the number of multipliers into almost 
half of that in the direct form implementations

• Consider a length-7 Type 1 FIR transfer 
function with a symmetric impulse response:

321 3210 −−− +++= zhzhzhhzH ][][][][)(
654 012 −−− +++ zhzhzh ][][][



12
Copyright © 2001, S. K. Mitra

LinearLinear--Phase FIR StructuresPhase FIR Structures
• Rewriting H(z) in the form

we obtain the  realization shown below

)]([)]([)( 516 110 −−− +++= zzhzhzH
342 32 −−− +++ zhzzh ][)]([
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LinearLinear--Phase FIR StructuresPhase FIR Structures

• A similar decomposition can be applied to a 
Type 2 FIR transfer function

• For example, a length-8 Type 2 FIR transfer 
function can be expressed as

• The corresponding realization is shown on 
the next slide

)]([)]([)( 617 110 −−− +++= zzhzhzH

)]([)]([ 4352 32 −−−− ++++ zzhzzh
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LinearLinear--Phase FIR StructuresPhase FIR Structures

• Note: The Type 1 linear-phase structure for a 
length-7 FIR filter requires 4 multipliers, 
whereas a direct form realization requires 7 
multipliers



15
Copyright © 2001, S. K. Mitra

LinearLinear--Phase FIR StructuresPhase FIR Structures

• Note: The Type 2 linear-phase structure for 
a length-8 FIR filter requires 4 multipliers, 
whereas a direct form realization requires 8 
multipliers

• Similar savings occurs in the realization of 
Type 3 and Type 4 linear-phase FIR filters 
with antisymmetric impulse responses
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PolyphasePolyphase FIR StructuresFIR Structures

• The polyphase decomposition of H(z) leads 
to a parallel form structure

• To illustrate this approach, consider a causal 
FIR transfer function H(z) with N = 8: 

4321 43210 −−−− ++++= zhzhzhzhhzH ][][][][][)(
8765 8765 −−−− ++++ zhzhzhzh ][][][][
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PolyphasePolyphase FIR StructuresFIR Structures
• H(z) can be expressed as a sum of two 

terms, with one term containing the even-
indexed coefficients and the other 
containing the odd-indexed coefficients:

)][][][][][()( 8642 86420 −−−− ++++= zhzhzhzhhzH
)][][][][( 7531 7531 −−−− ++++ zhzhzhzh

)][][][][][( 8642 86420 −−−− ++++= zhzhzhzhh
)][][][][( 6421 7531 −−−− ++++ zhzhzhhz
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PolyphasePolyphase FIR StructuresFIR Structures

• By using the notation

we can express H(z) as

321
1 7531 −−− +++= zhzhzhhzE ][][][][)(
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PolyphasePolyphase FIR StructuresFIR Structures

• In a similar manner, by grouping the terms 
in the original expression for H(z), we can 
re-express it in the form

where now
)()()()( 3
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PolyphasePolyphase FIR StructuresFIR Structures

• The decomposition of H(z) in the form

or

is more commonly known as the polyphase
decomposition
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PolyphasePolyphase FIR StructuresFIR Structures

• In the general case, an L-branch polyphase
decomposition of an FIR transfer function of 
order N is of the form

where

with h[n]=0 for n > N

)()( L
m

L
m

m zEzzH ∑ −
=

−= 1
0

∑
+

=

−+=
LN

n

m
m zmLnhzE

/)(
][)(

1

0



22
Copyright © 2001, S. K. Mitra

PolyphasePolyphase FIR StructuresFIR Structures
• Figures below show the 4-branch, 3-

branch, and 2-branch polyphase
realization of a transfer function H(z)

• Note: The expression for the polyphase
components           are different in each case)(zEm
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PolyphasePolyphase FIR StructuresFIR Structures

• The subfilters in the polyphase
realization of an FIR transfer function are  
also FIR filters and can be realized using 
any methods described so far

• However, to obtain a canonic realization of 
the overall structure, the delays in all 
subfilters must be shared

)( L
m zE
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PolyphasePolyphase FIR StructuresFIR Structures
• Figure below shows a canonic realization of 

a length-9 FIR transfer function obtained 
using delay sharing
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FIR Filter Structures Based on FIR Filter Structures Based on 
PolyphasePolyphase DecompositionDecomposition

• We shall demonstrate later that a parallel 
realization of an FIR transfer function H(z) 
based on the polyphase decomposition can 
often result in computationally efficient 
multirate structures

• Consider the M-branch Type I polyphase
decomposition of H(z):
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FIR Filter Structures Based on FIR Filter Structures Based on 
PolyphasePolyphase DecompositionDecomposition

• A direct realization of H(z) based on the 
Type I polyphase decomposition is shown 
below
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FIR Filter Structures Based on FIR Filter Structures Based on 
PolyphasePolyphase DecompositionDecomposition

• The transpose of the Type I polyphase FIR 
filter structure is indicated below
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Computationally Efficient Computationally Efficient 
DecimatorsDecimators

• Consider first the single-stage factor-of-M
decimator structure shown below

• We realize the lowpass filter H(z) using the 
Type I polyphase structure as shown on the 
next slide

M][nx )(zH ][nyv[n]
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Computationally Efficient Computationally Efficient 
DecimatorsDecimators

• Using the cascade equivalence #1 we arrive 
at the computationally efficient decimator 
structure shown below on the right

Decimator structure based on Type I polyphase decomposition

y[n] y[n]x[n]x[n]

][nv
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Computationally Efficient Computationally Efficient 
DecimatorsDecimators

• To illustrate the computational efficiency of 
the modified decimator structure, assume
H(z) to be a length-N structure and the input 
sampling period to be T = 1

• Now the decimator output y[n] in the 
original structure is obtained by down-
sampling the filter output v[n] by a factor of
M
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Computationally Efficient Computationally Efficient 
DecimatorsDecimators

• It is thus necessary to compute v[n] at

• Computational requirements are therefore N
multiplications and             additions per 
output sample being computed

• However, as n increases, stored signals in 
the delay registers change

...,2,,0,,2,... MMMMn −−=

)1( −N
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Computationally Efficient Computationally Efficient 
DecimatorsDecimators

• Hence, all computations need to be 
completed in one sampling period, and for 
the following             sampling periods the 
arithmetic units remain idle

• The modified decimator structure also 
requires N multiplications and             
additions per output sample being computed

)1( −N

)1( −M
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Computationally Efficient Computationally Efficient 
Decimators and InterpolatorsDecimators and Interpolators

• However, here the arithmetic units are 
operative at all instants of the output 
sampling period which is 1/M times that of 
the input sampling period

• Similar savings are also obtained in the case 
of the interpolator structure developed using 
the polyphase decomposition
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Computationally Efficient Computationally Efficient 
InterpolatorsInterpolators

• Figures below show the computationally 
efficient interpolator structures

Interpolator based on 
Type I polyphase decomposition
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Computationally Efficient Computationally Efficient 
Decimators and InterpolatorsDecimators and Interpolators

• More efficient interpolator and decimator 
structures can be realized by exploiting the 
symmetry of filter coefficients in the case of 
linear-phase filters H(z)

• Consider for example the realization of a
factor-of-3 (M = 3) decimator using a
length-12 Type 1 linear-phase FIR lowpass
filter
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Computationally Efficient Computationally Efficient 
Decimators and InterpolatorsDecimators and Interpolators

• The corresponding transfer function is

• A conventional polyphase decomposition of
H(z) yields the following subfilters:

54321 ]5[]4[]3[]2[]1[]0[)( −−−−− +++++= zhzhzhzhzhhzH
109876 ]0[]1[]2[]3[]4[]5[ 11−−−−−− ++++++ zhzhzhzhzhzh

321
0 ]2[]5[]3[]0[)( −−− +++= zhzhzhhzE

321
1 ]1[]4[]4[]1[)( −−− +++= zhzhzhhzE

321
2 ]0[]3[]5[]2[)( −−− +++= zhzhzhhzE
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Computationally Efficient Computationally Efficient 
Decimators and InterpolatorsDecimators and Interpolators

• Note that           still has a symmetric 
impulse response, whereas            is the 
mirror image of

• These relations can be made use of in 
developing a computationally efficient 
realization using only 6 multipliers and 11 
two-input adders as shown on the next slide

)(1 zE
)(0 zE

)(2 zE
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Computationally Efficient Computationally Efficient 
Decimators and InterpolatorsDecimators and Interpolators

• Factor-of-3 decimator with a linear-phase 
decimation filter
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