Сердечники из распыленного железа в импульсных источниках питания

Джим Кокс

Перевод Артема Терейковского, www.ferrite.com.ua

еременная составляющая тока в обмотке дросселя постоянного тока может оказывать существенное влияние как потери в сердечнике, так и на индуктивность вследствие изменения начальной магнитной проницаемости материала. Кривые, представленные на рис. 7 и 8, получены при условии, что амплитудная магнитная индукция не превышает 1 мТл, что обычно соответствует менее 1 % переменной составляющей тока в обмотке. На рис. 3 показана зависимость потерь материала -52 от амплитудной индукции переменного магнитного поля в сердечнике.

Смесь -26 наиболее широко используется при изготовлении дросселей выходных фильтров импульсных источников питания. Тем не менее, при увеличении частоты следует отдать предпочтение материалам -8, -18 и -52 с меньшими потерями.

Большинство дросселей фильтров на выходе импульсных ИВЭП работают при максимальных значениях индукции переменного тока в сердечнике менее 100 мТл; типичное значение составляет 20 мТл. Влияние амплитудной магнитной индукции на проницаемость различных материалов показана на рис. 11. Проницаемость всех материалов увеличивается с ростом переменной индукции более 10 мТл. Наибольший рост отмечен у материалов с высокой начальной проницаемостью -26, -40 и -52.

На рис. 12 показана зависимость изменения начальной магнитной проницаемости материала -26 от уровня пульсаций в обмотке. Зависимости для материалов -40 и -52 очень похожи.

Рассмотрим несколько примеров.

ДРОССЕЛЬ С ПОДМАГНИЧИВАНИЕМ ПОСТОЯННЫМ ТОКОМ

Пример 1.

Требования:

- 45 мкГн при 7.5 А;
- пульсации < 1%.
- Приоритетные условия разработки: стоимость:
- разогрев;
- размер.

Подходящие материалы. В первую очередь рассматриваем смеси -26, -40, 52 как наиболее дешевые, поскольку в задании нет ограничений на изменение индуктивности дросселя при изменении тока в обмотке.

Накапливаемая в дросселе энергия составит:

Выбор размера и формы сердечника. В данном случае вполне подходит материал -52. Выбор кольца T106 позволяет обойтись однослойной обмоткой при перегреве менее 25 °С (рис. 7). (Рассмотрение сердечников типа Е выходит за рамки данной статьи – **прим. переводчика**).

Определение количества витков. Согласно кривым в верхней части рис. 7, для накопления 1266 мкДж в сердечнике T106-52 потребуется около 200 Ампервитков. Следовательно, число витков обмотки составит:

N = 200/7.5 = 27 витков.

По табл. З выбираем однослойную обмотку проводом диаметром 1.15 мм, что обеспечит перегрев менее 25 °С.

Пример 2.

- Требования:
- 45 мкГн при 7.5 А;

- 60 мкГн при 0 А;
- степень насыщения < 25%;
- пульсации < 1%.
- Приоритетные условия разработки: • размер;
- размер;
 разогрев;
- стоимость.
- стоимость

Определяем подходящие материалы. Смеси -8, -18, -28 и -33 имеют наименьшую амплитудную нелинейность проницаемости, поэтому наиболее пригодны из-за ограничения изменения индуктивности в диапазоне рабочих токов.

Накапливаемая в дросселе энергия, как и в примере 1, составит:

Выбор размера и формы сердечника. Анализ кривых для разных материалов показывает, что смесь -8 в качестве материала сердечника (рис. 8) позволит использовать кольцо минимальных размеров. Т94-8 обеспечивает перегрев менее 40 °С при «полной» намотке. Согласно графику в нижней части рис. 8, при накоплении 1266 мкДж сердечник Т94-8 функционирует со степенью насыщения около 15%, что полностью удовлетворяет начальным условиям.

Определение количества витков. Воспользуемся следующей формулой:

$$N = \sqrt{\left[\frac{L}{(A_{L})(\%\mu_{0})}\right]}$$

1

и после подстановки значений получаем:

N =
$$\sqrt{\left[\frac{45000}{(25)(0.85)}\right]}$$
 = 46 витков

Так как для обеспечения перегрева кольца Т94 менее 40 °С требуется «пол-

Продолжение. Начало см. «Chip News Украина», №№ 7, 8, 2005 г.

🔳 ИНЖЕНЕРНАЯ МИКРОЭЛЕКТРОНИКА

		Тороидал	ьные сердечн	ики: односло	ойная обмотко	2		
Постоянный ток, Ø провода Типоразмер	1.0 А 0.32 мм	2.5 А 0.511 мм	5.0 А 0.813 мм	7.5 А 1.02 мм	10 А 1.45 мм	15 А 1.83 мм	20 А 2.30 мм	30 А 2.91 мм
T50-52	94 мкГн	30.7 мкГн	10.2 мкГн	5.0 мкГн	2.8 мкГн	1.3 мкГн	0.7 мкГн	0.2 мкГн
	<i>59 витков</i>	<i>37 витков</i>	<i>22 витка</i>	1 <i>6 витков</i>	1 <i>2 витков</i>	<i>8 витков</i>	<i>6 витков</i>	<i>3 витка</i>
T68-52A	250 мкГн	81.6 мкГн	27.6 мкГн	16.7 мкГн	8.3 мкГн	4.4 мкГн	2.1 мкГн	0.8 мкГн
	<i>74 витка</i>	<i>46 витков</i>	<i>28 витков</i>	<i>21 виток</i>	1 <i>6 витков</i>	1 <i>2 витков</i>	<i>8 витков</i>	<i>5 витков</i>
T90-52	680 мкГн	224 мкГн	74.0 мкГн	40.9 мкГн	23.6 мкГн	13 мкГн	7.3 мкГн	3.7 мкГн
	1 <i>15 витков</i>	<i>72 витка</i>	<i>44 витка</i>	<i>34 витка</i>	<i>26 витков</i>	<i>20 витков</i>	1 <i>5 витков</i>	11 <i>витков</i>
T106-52	1.08 мГн	362 мкГн	124 мкГн	69.3 мкГн	39.0 мкГн	21.3 мкГн	11.4 мкГн	5.8 мкГн
	1 <i>18 витков</i>	<i>74 витка</i>	<i>46 витков</i>	<i>36 витков</i>	<i>27 витков</i>	<i>21 виток</i>	<i>15 витков</i>	11 <i>витков</i>
T131-52	1.66 мГн	550 мкГн	188 мкГн	107 мкГн	63 мкГн	33.3 мкГн	18.8 мкГн	9.2 мкГн
	<i>134 витка</i>	<i>85 витков</i>	<i>52 витка</i>	<i>41 виток</i>	<i>32 витка</i>	<i>24 витка</i>	<i>18 витков</i>	<i>13 витков</i>
T157-52	3.32 мГн	1.09 мГн	380 мкГн	213 мкГн	127 мкГн	69.3 мкГн	40.1 мкГн	21.5 мкГн
	<i>204 витка</i>	1 <i>29 витков</i>	<i>81 виток</i>	<i>64 витка</i>	50 <i>витков</i>	<i>39 витков</i>	<i>30 витков</i>	<i>23 витка</i>
T184-52	5.4 мГн	1.79 мГн	624 мкГн	345 мкГн	210 мкГн	114 мкГн	65 мкГн	34 мкГн
	202 витка	1 <i>29 витков</i>	<i>81 виток</i>	<i>63 витка</i>	<i>50 витков</i>	<i>38 витков</i>	29 <i>витков</i>	<i>22 витка</i>
T250-52	14.8 мГн	4.96 мГн	1.72 мГн	978 мкГн	591 мкГн	332 мкГн	195 мкГн	102 мкГн
	<i>270 витков</i>	1 <i>72 витка</i>	108 <i>витков</i>	<i>86 витков</i>	<i>67 витков</i>	<i>59 витков</i>	<i>41 виток</i>	<i>31 виток</i>
T400-52	26.1 мГн	8.69 мГн	3.1 мГн	1.76 мГн	1.05 мГн	590 мкГн	347 мкГн	190 мкГн
	<i>494 витка</i>	<i>317 витков</i>	160 витков	1 <i>57 витков</i>	1 <i>26 витков</i>	1 <i>00 витков</i>	<i>78 витков</i>	<i>61 виток</i>
			ь саший машаа 1	% TOMOODOTVOV	neperpend 10 °C		ODL B OFMOTKO	

Примечание: данная таблица предполагает уровень пульсаций менее 1%, температуру перегрева 40 °С вследствие потерь в обмотке и сердечнике. Значительные пульсации приведут к повышению температуры перегрева и индуктивности дросселя.

ная» намотка, воспользуемся табл. 9. Рекомендуемый диаметр провода составляет 1.29 мм.

Для быстрого определения диаметра провода и количества витков в зависимости от требуемой индуктивности и максимального значения постоянного тока в обмотке для сердечников из смеси -52 служит табл. 8.

ДРОССЕЛИ ПЕРЕМЕННОГО ТОКА

В последнее время все более высокие требования предъявляются к минимизации гармоник тока, потребляемого ИВЭП от сети 220/380В. С этой целью в состав даже относительно маломощных источников питания включают активные корректоры коэффициента мощности (ККМ).

Структурная схема типичного ККМ приведена на рис. 17.

Корректор коэффициента мощности отличается от обычного импульсного преобразователя тем, что на его входе присутствует выпрямленное, но несглаженное сетевое напряжение. Задача управляющей логики ККМ (на рисунке не показана) – обеспечить такой цикл пе-

Рассматриваемый ниже подход предполагает синусоидальную форму входного напряжения, постоянное выходное напряжение и фиксированную частоту преобразования ККМ и не зависит от схемы управления ККМ.

Амплитудное значение индукции в сердечнике определяется исходя из формы напряжения на дросселе по формуле:

где E – пиковое значение напряжения на дросселе (Вольт), ΔT – интервал времени (сек), N – число витков обмотки, A – сечение сердечника, (см²).

Максимального значение \ddot{B}_{max} достигается при

 $V_{i} = V_{o}/2$

где $V_{\rm i}$ – мгновенное значение входного напряжения, $V_{\rm o}$ – постоянное выходное напряжение.

Зависимость отношения \hat{B}/\hat{B} max от фазы входного напряжения при разных отношениях V_i/V_o показана на рис. 18.

При фиксированной частоте преобразования потери в сердечнике пропорциональны \hat{B}^n , где значение n находится в диапазоне 1.65...3.00 для большинства порошковых материалов, включая распыленное железо. Отношение среднего значения потерь к максимальному (при $V_i = V_o/2$) в течение полупериода питающего напряжения для n = 2.0, 2.5 и 3.0 показано на рис. 19.

Из рисунка видно, что отношение средних потерь к максимальным достигает наибольшего значения при отношении амплитудного значения входного напряжения к постоянному выходному около 0.61, при этом отношение потерь незначительно изменяется от 0.672 при n = 3 до 0.725 при n = 2.

Поскольку большинство ККМ функционируют при отношении потерь, близком к максимальному, при разработке рекомендуется использовать эмпирическое правило, согласно которому при «наихудшем случае» среднее значение потерь составляет 70% значения, вычис-

ИСТОЧНИКИ ПИТАНИЯ

CHIP NEWS YKPANHA

	appe v ph				ANUMO	odu nd	dii nHos		опионо		DU												
							۳	н «врнг	αмотка	(заполн	ение вн	утренне	ыо диал	иетра 5	5%)								
Диаме	гр провода,	ww	0.32	0.404	0.511	0.643	0.813	0.912	1.02	1.15	1.29	1.45	1.63	1.83	2.05	2.3	2.6	Ампер при тем	о-витки перату	be	Общ рассеив	as demas	
Уд. сог	ротивление	, MOM/cm	2.13	1.34	0.842	0.53	0.33	0.264	0.21	0.166	0.132	0.104	0.0828	0.0651	0.0521	0.0413	0.0328	нагрев потерь і	а из-за в обмот	IKe I	и темпе нагре	ратур. ва	۵
Тип	Средняя длина см/вит.	Плщадь поверх., см²								Чио	сло витк	OB						10°C 2	25°C 40	0°C 1(°C 25°	C 40°	U
T80 T90	2.8 3.64	15.5 22.4	525 648	343 424	218 269	141 174	89 110	71 88	57 70	45 56	36 45	29 36	23 28	18 22	14 18	11	9 11	150 2 170 3	260 3 300 4	340 0.1 100 0.1	246 0.73 356 1.0	1.3 7 1.8	~ [∞]
T94 T106	3.44 4.49	22 31	672 696	440 455	272 289	180 187	114	91 95	73 75	58 60	4 4 6 8 1	37 38	30 30	23 24	18 19	14 15	11	180	320 4 330 4	120 0.120	35 1.0 192 1.4	5 1.8 2.5	500
1124	3.95	33.3	1080	/0/	449	290	184	14/	/ /	93	(/	60	4/	3/	30	23	19	260 4	460 6	0.0	29 1.5	3 2./	6
* Ta6	 8 является 	дополнени	ем табл.	4 (cm. Nº	7 «Chip I	Vews Ykp	аина», 2()05 г.).															

от нормализованного входного напряжения

ленного при V_i = V_o/2. Амплитудная индукция в сердечнике определяется как: меца k, x и y подбираются для наилуч-

$$\hat{B} = \frac{10^8 \,\text{Vo}}{8 \,\text{NAf}} \,,$$

где f – частота переключения преобразователя.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПРЕДЕЛЕНИЯ ПОТЕРЬ

роизводители магнитных материалов обычно приводят уравнение Штейнмеца для определения потерь в сердечниках:

 $P_{cepg} = k f^{x} \Delta B^{y}$

В этой формуле потери выражаются в мВт/см³, частота в кГц, индукция в сер-

дечнике – в Тесла. Коэффициенты Штейнмеца k, x и y подбираются для наилучшего соответствия результатам измерений. К сожалению, использование этого уравнения дает корректный результат только в ограниченных диапазонах рабочей частоты и плотности магнитного потока в сердечнике. Поэтому производители обычно указывают несколько наборов коэффициентов для соответствующих диапазонов. Однако, как показано в [1], это может привести к значительным несоответствиям при определении потерь на границах диапазонов.

Совокупные потери в сердечнике равны сумме потерь на перемагничивание и потерь на вихревые токи. Потери на вихревые токи пропорциональны квадрату амплитудного значения магнитного потока и квадрату рабочей часто-

🔳 ИНЖЕНЕРНАЯ МИКРОЭЛЕКТРОНИКА

ИСТОЧНИКИ ПИТАНИЯ

ты. Потери на перемагничивание зависят от частоты линейно, но соотношение между составляющими потерь изменяется в зависимости от плотности магнитного потока и материала сердечника.

Бозорт в работе [2] доказал, что потери на перемагничивание для распыленного железа пропорциональны В³ при очень малых значениях индукции и В^{1.6} при больших значениях В. При изменении индукции экспонента плавно меняется в диапазоне 1.6...3. Эти изменения экспоненты определяются реакцией стенок магнитных доменов материала на изменение внешнего магнитного поля. При слабых магнитных полях стенки доменов постепенно смещаются, но остаются «привязанными» к различным дефектам и неоднородностям кристаллической решетки. С ростом напряженности поля возрастает энергия домена и происходит скачкообразное преодоление дефекта решетки. В сильных магнитных полях материал достигает насыщения; диполи ориентируются вдоль силовых линий поля и дальнейшего роста намагниченности не происхолит

Если считать, что потери на перемагничивание ограничены тремя прямыми линиями, как показано в верхней части рис. 20), тогда кривая потерь определяется как обратное значение суммы обратных величин уравнений, описывающих данные прямые:

$$P_{h} = \frac{f}{\frac{a}{B^{3}} + \frac{b}{B^{2.3}} + \frac{c}{B^{1.65}}}$$

Потери на вихревые токи:

 $P_{a} = d f^{2} B^{2}$.

Совокупные потери в сердечнике:

$$P_{core} = \frac{f}{\frac{\alpha}{B^3} + \frac{b}{B^{2.3}} + \frac{c}{B^{1.65}}} + df^2 B^2.$$

Модель, описываемая этим уравнением, известна как модель Оливера. Для максимальных значений индукции выбрано значение экспоненты 1.65 вместо 1.6 как наиболее точно подходящее для распыленного железа. Значения экспонент для минимальных и промежуточных значений индукции также оптимальны для всех типов распыленного железа, производимого фирмой Micrometals, изменяются только значения коэффициентов a, b и c.

В нижней части рис. 20 приведены кривые потерь на перемагничивание, вихревые токи и совокупных потерь смеси -52 на частоте 100 кГц.

Сравнение результатов измерений потерь на примере кольца Т106-52 с ве-

Таблица 10. Коэффициен	нты для уравно	ения Оливера		
Материал	a	b	С	d
Micrometals -52	1.0*10-6	6.94*10-5	5.27*10-4	6.9

Q=

личинами, полученными при помощи уравнений Штейнмеца и Оливера в диапазоне от 60 Гц до 500 кГц, показало, что средняя погрешность модели Оливера не превышает 4.9%, в то время как средняя погрешность при использовании модели Штейнмеца достигает 20%. При расчетах в уравнение Оливера подставлялись коэффициенты из табл. 10.

Наибольшую погрешность модель Штейнмеца дает при малых значениях индукции и потерь в сердечнике, поскольку изначально была оптимизирована для потерь, превышающих 10 мВт/см³.

Будучи более точной, модель Оливера позволяет определить взнос каждой составляющей в совокупные потери и корректно рассчитывать индуктивные элементы, работающие в предельных режимах.

Как видно из рис. 20, отношение между составляющими потерь меняется в зависимости от индукции в сердечнике на заданной частоте. Характерно, что при минимальных значениях индукции преобладают потери на вихревые токи. Имея возможность экстраполировать вплоть до очень малых значений индукции, мы можем определить точные значения коэффициентов модели Оливера. Для этого нам потребуется измерить коэффициент Q при помощи прецизионного LCR-измерителя. Реальные потери в сердечнике вычисляются из следующего уравнения:

$$V_{_{BX}}I_{_{BX}}$$

(Потери в обмотке) + (Потери в сердечнике)

Если измерения коэффициента Q произведены при достаточно высоких частотах и низких значениях индукции, при которых преобладают потери на вихревые токи, можно определить значение коэффициента d модели Оливера.

Воспользуемся сердечником T106-52 с обмоткой из 100 витков. Индукция в сердечнике ограничена на уровне 0.01 мТл, сопротивление обмотки переменному току на частоте 100 кГц составляет 0.74 Ом. При V_{вх} = 29 мВ, I_{вх} = 0.049 мА и Q = 45.5 потери в сердечнике составляют 2.99*10⁻⁸ Вт. Пересчитав потери в удельное значение в мВт/см³, получаем коэффициент d, равный 6.9. Примечательно, что при этих значениях индукции и частоты потери на вихревые токи составляют до 99% совокупных потерь смеси -52.

Остальные коэффициенты могут быть получены по принципу наилучшего соответствия из результатов точных измерений на низких частотах.

Другое преимущество модели Оливера заключается в том, что для всех значений рабочих частот и индукции в сердечнике используется один и тот же набор коэффициентов.

Хотя модель Оливера разработана специально для распыленного железа, подобная методика применима для других магнитодиэлектриков, таких, как альсифер (Kool Mu, SuperMSS), молипремаллой (MPP), и для ферритов. В каждом случае следует уточнить формулу определения потерь на перемагничивание для наиболее полного соответствия свойствам конкретного материала.

ОСНОВНЫЕ ПРАВИЛА РАЗРАБОТЧИКА

- Температура окружающей среды накладывает ограничения на допустимый перегрев сердечника. Начните проект при одинаковых значениях потерь в обмотке и сердечнике. Постарайтесь закончить его так, чтобы расчетные потери в сердечнике оказались меньше потерь в обмотке, поскольку отвести тепло от обмотки значительно легче, чем от сердечника.
- Используйте предлагаемую фирмой Micrometals бесплатную программу для расчета индуктивных элементов (см. www.micrometals.com). Она поможет оценить продолжительность безопасного функционирования сердечника в заданных условиях, учитывающих явление термического старения, описанного выше.
- Если устройство позволяет использовать вентилятор для отвода тепла, постарайтесь устанавливать вентилятор с постоянной скоростью вращения. В большинстве случаев потери в сердечнике не зависят от мощности на выходе импульсного источника питания.

РЕЗЮМЕ

🗋 аспыленное железо в течение нескольких десятилетий используется в радиоэлектронной аппаратуре промышленного и бытового назначения. Чаще всего сердечники из распыленного железа применяются в дросселях фильтров с большими токами смещения/подмагничивания, дросселях электронных балластов ламп дневного света, помехоподавляющих дросселях, дросселях корректоров коэффициента мощности (ККМ) и DC-DC преобразователей, работающих в непрерывном режиме. Распыленное железо является самым дешевым из порошковых материалов с высокой индукцией насыщения, благодаря чему его применение во многих случаях оказывается экономически более эффективным, чем применение молипермаллоя (МРР), альсифера (KoolMu, SuperMSS) или материала HiFlux.

Литература:

[1] Ridley, R and Art Nace. «Modeling Ferrite Core Losses». Switching Power Magazine. Winter 2002: 8-9.

[2] Bozorth, Richard M., Ferromagnetism. Princeton: D. Van Nostrand Company, Inc. 1951.