Многофункциональный транспорт MultiTrack USB audio class 2.0.

Руководство пользователя.

Данное изделие представляет собой асинхронный USB 2.0 транспорт на основе контроллера CM6632A с адаптированной для многоканальных аудио применений прошивкой.

Драйверы обеспечивают работу транспорта в составе ОС WinXP, Win7, Win8/8.1, Win10 с поддержкой ASIO, Kernel Streaming, DS, WASAPI.

При использовании операционных систем MacOS и Linux с поддержкой устройств UAC 2.0 установка драйверов не требуется.

Основные особенности транспорта:

- низкий уровень собственных помех за счет малого энергопотребления (в несколько раз меньше чем у модулей Amanero и транспортов на основе многоядерных процессоров XMOS);
- помехозащищённость самого устройства улучшена, а помехи и наводки от ПК снижены за счет установки синфазных дросселей в линии данных и цепи питания;
- защита входа USB от разрядов статического электричества и иных всплесков напряжения.

Технические характеристики:

источник питания – порт USB2.0 ПК, потребляемый ток не более 110 мА при использовании установленных на плату генераторов NDK NZ2520S;

выходной I2S порт – 4 линии данных (8 каналов) РСМ, формат данных - I2S, разрядность данных - 16/24 бит, поддерживаемые частоты дискретизации: 44,1 - 192 кГц;

входной I2S порт -1 линия данных (2 канала) PCM, формат данных - I2S, разрядность данных - 16/24 бит, поддерживаемые частоты дискретизации: 44,1-192 к Γ ц;

выход SPDIF - разрядность данных PCM 16/24 бит, поддерживаемые частоты дискретизации: 44,1 - 192 к Γ ц.

Устройство транспорта, подключение и назначение разъемов.

Транспорт MultiTrack выполнен на компактной печатной плате с габаритными размерами 50*60 мм и предназначен для установки на плату ЦАП через стандартный 38-контактный двухрядный разъем с шагом 2,54 мм. Внешний вид транспорта и основные размеры показаны на рис. 1.

В основном режиме работы (с внешним тактированием) генераторы, формирующих сетки частот дискретизации х44,1 и х48 кГц, расположены на плате ЦАП, их сигналы подаются на транспорт напрямую или, для снижения помех от работы ПК, через гальваническую развязку.

Также плата может комплектоваться генераторами в SMD корпусе размером 2,5*2 мм, например серии NDK NZ2520S, запитанными от внутреннего малошумящего источника питания.

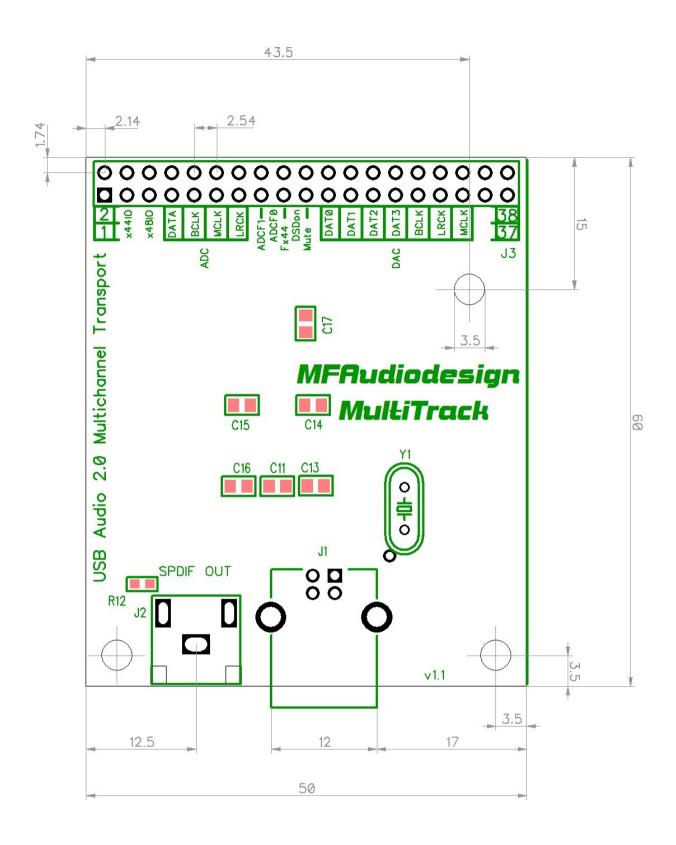


Рисунок 1 – Основные размеры платы транспорта

Назначение контактов основного разъема ЈЗ представлено в таблице 1.

Уровни сигналов LVCMOS 3.3 В.

Таблица 1 – Описание выводов разъема Ј3

№	Название	Тип	Описание	
1	nc	-	Не используется	
3	x44.1IO	In/out	Вход тактовой частоты (х44,1 кГц) при внешнем тактировании.	
			Выход при использовании генератора на плате 1)	
5	x48IO	In/out	Вход тактовой частоты (х48 кГц) при внешнем тактировании.	
			Выход при использовании генератора на плате 1)	
7	ADC_DATA_IN	in	Данные от АЦП	
9	ADC_SCLK_OUT	out	Сигнал SCLK (BCLK) тактирования АЦП 4)	
11	ADC_MCLK_OUT	out	Выход актуальной частоты МСЬК для АЦП 5)	
13	ADC_LRCK_OUT	out	Сигнал LRCK тактирования АЦП	
15	ADCF1	out	Флаг конфигурирования АЦ Π^{3})	
16	ADCF0	out	Флаг конфигурирования АЦ Π^{3})	
17	Fx44	out	Флаг актуальной частоты дискретизации ЦАП.	
			Лог. 1 – x44,1 Кгц, 0 – x48 кГц ²⁾	
18	DSDon	out	При исп. альтернативной прошивки лог. 1 – DSD поток данных, 0 -	
			PCM	
19	MUTE	out	Сигнал Play/Mute ЦАП. Лог. 1 – Play, 0 - Mute	
21	DAC_DATA0/DSDL	out	Линия данных 0. Каналы 1 и 2 ЦАП.	
			Выход данных ЛК в режиме DSD при исп. альтернативной прошивки	
23	DAC_DATA1/DSDR	out	Линия данных 1. Каналы 3 и 4 ЦАП.	
			Выход данных ПК в режиме DSD при исп. альтернативной прошивки	
25	DAC_DATA2_OUT	out	Линия данных 2. Каналы 5 и 6 ЦАП	
27	DAC_DATA3_OUT	out	Линия данных 3. Каналы 7 и 8 ЦАП	
29	DAC_SCLK/	out	Сигнал SCLK (BCLK) тактирования ЦАП 4)	
	DSD_SCLK		Сигнал DSD SCLK в режиме DSD при исп. альтернативной	
			прошивки	
31	DAC LRCK OUT	out	Сигнал LRCK тактирования ЦАП	
33	DAC MCLK OUT	out	Выход актуальной частоты МСЬК для ЦАП 5)	
37	+3.3V OUT	Power out	Выход для питания гальванической развязки / флаг подключения	
	_	_	транспорта к ПК. Ток нагрузки не более 100 мА.	
2,4,6,8,10,12,14,20,22,	GND	Power gnd	Общий провод устройства	
24,26,28,30,32,34,35,			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
36, 38				
, - =	L	1	1	

¹⁾ Основная версия прошивки поддерживает генераторы с частотой 22,5792 / 24,576 МГц, второй вариант – 45,1584 / 49,152 МГц. **Внимание!** При использовании внешних генераторов и задействовании каналов ввода с АЦП и вывода данных на ЦАП в разных частотных сетках требуется одновременная подача тактовых сигналов обоих частотных сеток!

³⁾ Сигналы предназначены для конфигурирования некоторых м/с АЦП, например CS5381, AK5394.

Fs	ADCF0	ADCF1
44.1, 48 кГц	0	0
88.2, 96 кГц	1	0
176.4. 192 кГи	0	1

²⁾ Флаг актуальной частоты дискретизации может быть использован для отключения неиспользуемого в данный момент генератора, индикации и реализации иных алгоритмов работы конечного устройства.

⁴⁾ SCLK (BCLK) = 64Fs.

⁵⁾ MCLK = 256Fs, если Fs: 44.1 – 96 кГц. MCLK = 128Fs, если Fs: 176.4 – 192 кГц.