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Audio povver amp I if ier design 
There is nothing so practical as a really �good theory - LUDWIG BOLTZMANN

by Peter J .  Baxandall B . Sc .(Eng . ) ,  F . I . E . E . ,  F . I . E . R . E .  

A_rt ic les descr ibing particular ampl i f ier 
designs, or advocating speci f ic solut ions 
to des ign problems. abound in the 
l iterature, and it is evident that some 
quite conf l ict ing views exist on certa in 
topics - for example. concerning the 
amount of negative feedback that shou ld 
be used . The present approach is  of a 
fa i rly broad nature , and a ims to elucidate 
and compare va rious fami liar and 
unfamil iar ci rcuit techniques in such a 
way that their advantages and 
disadvantages may be clear ly and 
logical ly appreciated . 

IN EXPLOITING the very great virtues of 
negative feedback, the problems and 
difficulties that arise are largely those 
associated with obta in ing adequate 
stability margins under al l  conditions of, 
operation. In a.c. coupled ampl ifiers. 
there are stability problems at both low 
and high frequencies ,  bu t  the  
elim inat ion of output transformers,  
together w i th  t he adopt ion of d . c .  
coupled c i rc u i t ry i n  most modern 
designs. has virtually removed the low
frequency problems. 

Negative feedback and slew-rate 
limits 
Other things being equal, the larger the 
amount of overal l  negative feedback 
applied to an amplifier, the lower wil l  be 
the distortion. However, other things 
are quite likely not to be equal, since, to 
achieve stability, it is usually necessary 
to i n t roduce e lements  wh i ch  s t a rt 
attenua ting the forward ga in ,  w i t h  
rising frequency. a t  a frequency which 
has to be made lower and lower as the 
amount of overall feedback is increased. 
If u nsu itable techniques are used for 
effect ing this attenuation,  increased 
dist ort ion wi l l  be genera ted i n  t he  
forward path of the amplifier at  high 
frequencies, to an extent which may 
more than offset the advantages of the 
increa sed feedback.  I ndeed, drastic 
high - frequency in ternal overloading 
may occur, and once th is  has happened, 
the overa l l  feedback is powerl ess to 
preserve the wanted output waveform. 

The rud-imentary ampl ifier c i rcu i t  
shown in F ig .  l wi l l  serve to illustrate 
t h e  poin t .  Here t he  capac i tor C 
a t ten tuates the ga in  w i th  r is i n g  
frequency by making Tr2 function as a 
Blum lein integrator. The current ,  1 .

supplied by the first stage includes, in 
addition to a component flowing to Tr , 
base, a component much larger at high 
audio frequencies flowing to C. At such 
frequencies, and with Tr 2 producing a 
large output voltage swing, the current 
demanded by C may severely tax the 
output capability of Tr1 stage, and may, 
in the limit, cause Tr 1 to overload, i .e .  
cut off during part of the cycle. Whether 
or not th i s  w i l l  happen c an  be 
determined quite simply, on a sine-wave 
basis ,  by calculating the current in C ,  
which is, nearly enough , V0• 1 1X, . .  I f  the 
peak value of this current exceeds the 
d . c .  work ing cu rrent  of  Tr 1 • gross 
distortion will occur. Thus the critical 
condi t i on  for the  onset  of such  
distortion i s  

Id,· = \iour X 2 1tfC ( 1 )  

This relationship may be rearranged to 
give a convenient formula for the  
critical sine-wave frequency, fcnr • above 
which gross distortion sets in no matter 
how much overall feedback there is .  
Thus 

f Ide 
cnr

=
� 

out 
(2) 

It i s  customary nowadays ,  in the 
above context , to employ the slew-rate 
concept ,  though it is by no means 
essential to do so. This concept has long 

Fig. I Rudimentary amplifier circu i t  in 
which t he capacitor C gives rise to
slew-rate limiting. 

V,n 
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been familiar to workers in other fields, 
particularly those of servo-mechanisms 
and radar. As app l i ed to ampl ifier  
circuits, the basic relationship is simply 
that. for a capacitor 

dvldt = i /C  (3) 

Thus, with reference to Fig. again, 
suppose the transistor Tr 1 is briefly cut 
off; then a current approximately equal 
to I.J

c 
is left flowing in Re and most of 

this  a l so flows in C ,  produc ing  a 
positive-going rate of change of output 
voltage 

[dv •• ,ldt] ....,, po  .. = /0/C (4) 

This Is called the output s!ew-rate limit
of the  amp l i fier .  or somet imes, i n  
commercial practice, j ust the slew-rate. 
With the single-ended input stage of 
Fig. 1, the slew-rate limit for negative• 
going outputs will be much more rapid 
than the above, because Tr 1 can turn on 
much more current than it can tum off, 
But when a balanced long-tailed-pair 
i nput  stage i s  used, as in most 
i n tegrated -circu i t  operati ona l  
amplifiers, the slew-rate limits in the 
two directions will be approximately 
equal. 

The relationship (4) applies whatever 
the signal waveform may be. If, at any 
instant, the demanded rate of change of 
output voltage exceeds this value. the 
amplifier will fail to follow it properly. 
Thus, if an amplifier has an insufficient 
slew-rate limit, then, every now and 
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then, on fast transients particularly, the 
slew-rate limit will be exceeded by the 
programme waveform. When this 
occurs, the amplifier gain will fall 
drastically, and all components of the 
signal being handled at that moment 
will be chopped, or modulated, by the 
transient. This effect, well known to 
enlightened designers of feedback 
amplifiers for decades, has nowadays, of 
course, become known as transient 
intermodulation distortion or t.i.d. 
(sometimes t.i.m.), as a result of several 
papers by M. Otala. Another, more 
recent, related term, due to W. G. Jung. 
is slewing induced distortion, or 
s.i.d.1.2.J_ 

It is of interest to obtain the 
relationship between the general slew
rate limit formula ( 4) and the conditions 
which apply with sine-wave input. 
Substituting in (2) the value of 1,1,IC 
given by ( 4) yields 

[ dv our/ dt Ima.- po,. 

2'TIVout 

output slew-rate limit (
5
) 

i.e. fcrlt ,., 
211V OMI 

(This result can alternatively be 
obtained by differentiating the output 
voltage waveform, v = Vsin2'11ft, and 
equating the peak instantaneous value 
of the differential coefficient to the 
slew-rate limit.) 

In all the above. the slew-rate limit 
referred to is that of the amplifier ou tpu r 
voltage,' and this is the usual practice -
especially in integrated circuit data 
sheets, where it is simply called the 
slew-rate. Thus, unless otherwise 
stated, slew-rate figures may be 
assumed to apply to the output of an 
amplifier. However, it is sometimes 
convenient to express them with 
respect to the input, which merely 

involves dividing by the amplifier's 
voltage gain. The corresponding 
equation to (5) for the input is 

input slew-rate limit 

"" 
(6) 

2'11Voul 

Consideration of (5) and (6) makes it 
evident that what is invariant is the 
quotient of the slew-rate limit and the 
peak sine-wave voltage at any selected 
point in the system. Hence, more 
generally, 

qVbe 
l=l 0e---W 

The peak voltage Vis normally that for 
full output level. The quality of the 
slew-rate performance of an amplifier 
may thus be expressed by the slew· 
rate-limit figure given in volts per 
micro-second per volt peak of sine-wave 
signal. For example.(,.,., = 20kHz 
corresponds to a figure of 0. 126V /µs per 
volt peak. 

It is of interest to consider what sort 
of output waveform would be expected 
from an amplifier suffering from slew· 
rate limitation. on sine-wave input. 
Suppose initially that the amplifier is 
basically as in Fig. I, having a single
ended input stage which imposes a 
much more severe slew-rate limit for 
positive-going amplifier output voltage 
than for negative-going. Referring to 
Fig. 2(a), the sine-wave represents the 
wanted output waveform. and the 
broken line represents the maximum 
rate of change of output voltage of 
which the amplifier is capable, i.e. it 
represents the output slew-rate limit. 
The actual output therefore follows the 
wanted waveform from A to B, but after 
Bit follows the path BCD before joining 
the wanted waveform again at D. The 
complete output waveform is thus as 
shown in Fig. 2(b). Fig. 3(a) shows some 

Fig. 2 Diagrams illustrating unsymmetrical slew-rate limiting. 

(aJ 

(b) 
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experimental waveforms obtained with 
a circuit having the basic configuration 
of Fig. I. for two different degrees of 
slew-rate limitation overload on sine
wave input. Fig. 3(b) shows the output 
waveform for square-wave input, and is 
a typical result for an amplifier 
exhibiting unsymmetrical slew-rate 
limitation. 

The waveforms of Fig. 4 were 
obtained using a type LM301AN 
integrated circuit operational amplifier 
as a unity-gain inverter. The 301 circuit, 
very broadly speaking, has a similar 
type of configuration to that shown in 
Fig. I. but with a balanced long-tailed
pair input stage arrangement. The 
external stabilizing capacitor C, more 
often called the compensation 
capacitor, had a value of 30pF. It will be 
seen that, as expected, the slew-rate 
limitation is of a nearly symmetrical 
nature. 

OdB 

+5dB 

+10dB 

( a) 

(b) 

Fig. 3 (a) Output voltage wuvef'orms 
from amplifier exhibiting 
unsymmetrical .~lew-rute limiting, for 
three different levels of sine-wave 
input, all ut the same frequency. (b) 
Output voltage waveform for 
square-wave input. The negative-going 
transition.~ are not slew-rate limited. 



WIRELESS WORLO. JANUARY 1978 

A great deal of attention has been 
given to this aspect of amplifier 
behaviour in recent years, and while it is 
certainly important to avoid significant 
distortion of this type, the notion that it 
is a fairly newly-discovered form of 
distortion is quite unjustified. It all boils 
down to the fact that, to avoid 
unwanted intermodulation effects, a 
good amplifier should be able propertly 
to track all normal programme 
waveforms, whether of a sustained-t.one 
or a transient nature, without any 
internal circuits overloading in the 
process - surely an old and familiar 
notion? Indeed, I cannot do better than 
quote Jung, who says "there is nothing 
new, unique, or mysterious about slew
induced or transient intermoduation 
distortion"2• It may be added, however, 
that since some - but certainly not all -
of the earlier transistor amplifiers 
suffered seriously\ from this type of 

Fig. 4 Output voltage from 
integrated-circuit operational amplifier 
for equal-amplitude sine-wave inputs 
at three different frequencies, showing 
slew-rate limiting. Sea !es: 1 VI cm. 
5µ,slcm. 

35kHz 

60 kHz 

distortion, the widespread attention 
that has been given to it is a good 
thing. But removal of significant s.i.d. is 
not a panacea - there are also other 
important causes of distortion. 

As considered above, the slew-rate
limit mechanism sets a fairly sharply 
defined threshold, beyond which there 
is a rapid onset of gross distortion that 
the overall feedback is powerless to 
control. Below this threshold output 
level, which is. of course frequency
dependent, the distortion will be 
negligible only if there is sufficient 
overall feedback. Whether there is 
enough feedback to give this result 
depends on the details of the particular 
design, but in some instances there may 
not be enough. Thus it is of interest to 
consider the distortion mechanisms 
that are operative in the milder situ
ation where drastic overloading does 
not occur. 

Referring to Fig. 1, suppose we decide 
to apply 6dB more overall feedback to 
the amplifier by reducing Rfli. This is 
likely to necessitate doubling the value 
of C, for equally satisfactory stability. 
Thus, while we succeed in doubling the 
feedback loop gain at low frequencies, 
where C has little effect, the loop gain at 
higher frequencies, where C is 
dominant, remains as before. At a given 
high frequency, and a given output 
voltage, Tr1 will have to supply twice 
the current to the doubled value of C, 
and the percentage second-harmonic 
distortion generated in Tr1 will go up by 
a factor of approximately 2•. Since the 
amount of feedback at the high 
frequency involved is the· same as 
before, the amplifier output distortion 
(due to distortion in Tr1) will also be 
doubled. 

Because of the doubling of the C 
value, the critical frequency for slew
rate limitation, above which full output 
ceases to be obtainable without drastic 
overload, is halved - see equation (2). 

Quite frequently a long-tailed pair, or 
differential input stage, will be used in 
place of the single transistor Tr1_ shown 
ii:t Fig. l, and then, if well balanced, the 
dominant distortion introduced will be 
third-harmonic, the percentage distor
tion being proportional to the square of 
the output current 5• (This is a charac
teristic of any device, e.g. a tape re
corder, in which cube-law curvature is 
dominant.) Thus, with the low
frequency overall feedback increased 

• The percentage second-harmonic distor
tion produced by an ideal voltage-driven 
transistor, having a characteristic 1 = l 0 

exp q V 0.1 ll T, approximately 25 x ( 111 dJ, 
where "f is ttie-peak value of the signal-
current fluctuation and l de is the d.c. 
working current. Another convenient fact 
is that, at any working current, the per
centage second-harmonic distortion is 
equal to the peak value, in millivolts, of the 
signal vnltage applied between base and 
emitter0 • 

15 

by 6d8, and with C doubled as before, 
the third-harmonic distortion generated 
in the input stage will be up by a factor 
of 4 at high frequencies, as also will be 
the amplifier's output distortion due to 
this cause. 

We thus have the situation that in
creasing the amount of low-frequency 
overall feedback, with corresponding 
adjustment of the stabilizing capacitor 
value. increases that part of the high
frequency output distortion which is 
due to smooth-curvature non-linearity 
distortion in the input stage. In many 
cases. below the true slew-rate
limitation overload point, this will be 
the main cause of distortion at high 
frequencies. However, with suitably 
modified circuit designs, io be described 
later. the input stage distortion may be 
fairly negligible. 

It is interesting to consider how the 
above non-overloading type of distor
tion would be expected to vary with 
frequency. A long-tailed-pair input 
stage will first be assumed. Since, at 
high frequencies. the current supplied 
by the input stage is proportional to 
frequency. the percentage third
harmonic distortion generated within 
the stage is proportional to the square of 
the frequency. But because the overall
feedback loop gain is halved for each 
doubling of frequency, the distortion at 
the output of the amplifier, due to this 
mechanism, is proportional to the cube 
of the frequency. The percentage 
output distortion is thus proportional to 
V ou/f, as established by Jung. The cor
responding result for a single-ended 
input stage, as in Fig. I, is that the 
percentage output distortion, now 
mainly second-harmonic, is propor
tional to V0 ",f. This is because in any 
device in which square-law curvature is 
dominant, the percentage distortion is 
directly proportional to the output cur
rent or voltage. 

It will thus be seen that a character
istic feature of distortion of the type 
discussed above, which occurs before 
the onset of true slew-rate-limitation 
overload, is that it increases quite 
rapidly with frequency. Fig. 5 shows the 
ideal cube-law relationship deduced 
above for the balanced input stage case. 
With a single-ended input stage, though 
the rise in distortion with frequency is 
more gradual, the magnitude of the 
distortion is liable to be much greater 5, 

Jung cans the input-stage-originated 
distortion that occurs before the onset 
of true slew-rate limitation "Category I -
slewing induced distortion", the gross 
distortion that occurs at higher levels 
being "Category II s.i.d." It is important 
not to let this terminology disguise the 
fact that Category I s.i.d. is, after all, 
just straightforward input-stage 
smooth-curvature non-linearity distor
tion, which may become significant at 
high frequencies because of the in
creased current demanded from the 
input stage and the reduced amount of 
overall feedback in action. 
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Though, as shown in Fig. 5, the high
frequency distortion due to the input 
stage rises rapidly with the measuring 
frequency applied, it should not be 
imagined that the harmonics generated 
at any one measuring frequency are 
boosted according to their order, in any 
comparable manner. Consider first the 
effects that would occur with the over
all feedback disconnected. Referring 
again to Fig. I, the harmonics in the 
current fed by the input stage to the Tr 2 
stage will be attenuated in this stage in 
proportion to their order, because of the 
integrating action of the capacitor C. 
Thus, with the feedback loop open, the 
harmonics in the amplifier output vol
tage, due to input stage distortion, 
would fall off in amplitude with in
creasing order at a rate 20dB/decade 
(6d.B/octave) more rapid than that ap
plying directly to their generation in the 
input stage. However, with the overall 
feedback loop closed, and because the 
amount of feedback at high frequencies 
falls off at 20clB/decade with increasing 
frequency - assuming C is the only 
cause of loop gain attenuation - the 
final output distortion spectrum will 
have the same relative amplitudes of 
fundamental and harmonics as for the 
input stage by itself. With a long-tailed
pair input stage, and assuming the 
circuit not to be operating too close to 
the slew-rate limit point, the dominant 
harmonic will be the third, the higher 
order harmonics decaying rapidly with 
increasing order. Thus the type of dis
tortion generated is relatively inno
cuous compared with the worst forms 
of cross-over distortion. The important 
thing is simply to arrange the design so 
that the magnitude of the distortion 
does not become too high. 

Slew-rates of pro1ramme 
waveforms 
Gramophone records are frequently 
used as the programme source when 
subjective judgements of the perfor
mance of audio equipment are being 
made, so that it is of interest to know 
the order of slew-rate to be expected at 
the output of a high-grade RIAA equ
alized amplifier. This tan easily be 
determined using a very simple dif
ferentiator circuit such as that shown in 
Fig. 6. This circuit is fed from the output 
of the power amplifier, and, with the 
values shown, gives an instantaneous 
output of I volt when the input slew
rate is IV lµs. The objection may well be 
raised that the slew-rate limit may 
degrade the true slew-rate of the source, 
i.e. the pickup, but whether or not this is 
the case may be discovered by replacing 
the pickup by an oscillator and thus 
determining the slew-rate limit of the 
amplifier system. With good equipment, 
this will be found to be much higher 
than the slew-rate obtained with re
cords. 

The experimental procedure adopted 
was as follows. First a frequency test 
record was used to check that the sys
tem had a flat frequency response, 

Fig. 5 Theoretical variation of 
third-harmonic distortion with 
frequency for amplifier with 
long-tailed-pair input stage, when 
operatint below the slew-rate limit. 

1000p 

o----i:-------o 
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Po~ ampltfie-r 
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Fig. 6 Simple differentiator circuit 
used in tests. The output is l V for 
an input rate of change of l V lµs. 

within ::!:: ldB, up to 12kHz. Then a suit
able music record was selected, and the 
system gain was adjusted so that the 
input to the Fig. 6 circuit occasionally 
reached peak values of ± l0V, but not 
more. The c.r.o. was then transferred to 
the differentiator output, the record 
replayed, and the maximum output 
voltage excursion from the differen
tiator during the replay was deter
mined. The test was done with a wide 
variety of records, including one of the 
Sheffield direct-cut discs. The largest 
instantaneous outputs from the dif
ferentiator were caused by occasional 
dust clicks, and went up to over 0.40V, 
but on the music they never exceeded 
about 0.14V. The latter corresponds to a 
slew-rate of 0.14V Jµs, which is the peak 
instantaneous slew-rate of a sine-wave 
with amplitude ± l0V and frequency 
approximately 2.2kHz. 

The implication of the above is that 
an amplifier with f~rit = 2.2kHz, i.e. 
capable of giving full output on sine
waves up to 2.2kHz, without suffering 
from slew-rate limitation, and with suf
ficient freedom from ordinary non
linearity distortion, will reproduce such 
records entirely satisfactorily. I can 
almost hear some readers saying "this is 
ridiculous - it's well established that 
amplifiers must be free from slew-rate 
limiting, at full output level, up to at 
least 20kHz"! But has this, or anything 
approaching it, in fact, been properly 
established? I do not think so. But be
cause of such doubts, it is worth ap
proaching the matter from a different 
angle, as follows. 

The maximum instantaneous re• 
corded velocities on records occur over 
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the band extending from about 700Hz 
to, perhaps, 8kHz, and are normally in 
the region of 30cm/s6. Suppose the gain 
of an RIAA equalized replay system is 
adjusted so that a lkHz sine-wave re
cording with 30cm/s peak instant
aneous velocity gives an output voltage 
of IOV peak. Since for a sine-wave vol
tage with peak value ~.t,, the peak rate of 
change of voltage is v x 2'11(, the peak 
rate of change of voltage for a lkHz 
sine-wave of peak value l0V is 
0.063V lµs. It is probably fairly unusual 
for a peak velocity of 30cm Is to be 
recorded at a frequency as high as 8kHz, 
but if this did happen, then, ignoring for 
the moment the effect of the RIAA 
equalization, the output slew rate 
would be 8 x 0.063, i.e. 0.50V Jµs. How
ever, at SkHz, the RIAA equalization 
introduces a loss of l l.7dB ( x 3.85) re
lative to the response at lkHz, so the 
figure of 0.50V /p.s is reduced to ap
proximately 0.l3V /µs. This, it will be 
seen, ties up surprisingly well with the 
experimentally determined figure, 
mentioned above, of 0.14V /µs. 

The Fig. 6 differentiator was also used 
with a master tape recording of violin 
music with piano accompaniment, 
thought to be of unusually good fidelity. 
When adjusted to give a peak replay 
voltage of lOV as before, the peak in
stantaneous differentiator output vol
tage observed was 0.083V, so that the 
peak slew-rate was 0.083V 1115. A lOV 
peak sine-wave of l.3kHz has this same 
slew rate. 

Similar tests done with programme 
from an f.m. tuner yielded generally 
equivalent results as far as the actual 
audio waveform was concerned, but 
with the complication that, on stereo 
transmissions, owing to imperfect filt
ering in the tuner, the (L-R) sidebands 
greatly increased the peak dvldt value 
at the differentiator output, a figure of 
about 0.4V lflS being obtained with the 
audio level at ± l0V as before. By using 
the IOkHz filter in the audio control 
unit, the f.m. multiplex waveform was 
almost eliminated, the peak slew-rate of 
the remaining audio waveform being 
about 0.15V lµs. It is clear that without 
the filter, the minimum acceptable 
slew-rate limit in the audio amplifier 
would be determined largely by the 
amount of f.m. multiplex waveform 
present in the tuner output, since un
pleasant intermodulation effects can 
occur if the amplifier is unable properly 
to follow this waveform. The amount of 
multiplex waveform in the output ef 
f.m. tuners varies a great deal from one 
make to another. 

The above quite low slew-rates will 
seem less surprising when it is 
remembered that the success of the 
pre-emphasis and de-emphasis schemes 
universally used in both recording and 
f.m. broadcasting systems is dependent 
largely on the fact that the high-

. frequency components of all normal 
audio waveforms are of much smaller 
amplitude than the lower frequency 
components. 



WIRELESS WORLD, JANUARY 19 78 

Necessary amplifier slew-rate limit 
Provided an amplifier is not overloaded, 
and provided it has sufficient feedback 
to make the distortion when not slew
rate limiting adequately low, there is 
certainly no absolute necessity for the 
slew-rate limit of the amplifier to be any 
larger than the maximum rate of 
change, or slew-rate, of the waveforms 
handled by it. This point needs emphas
ising, for reading Jung's interesting ar
ticles can easily make one jump to the 
conclusion that there is a fundamental 
need for the amplifier slew-rate limit to 
exceed the maximum rate of change of 
the programme waveform by a large 
factor. That this cannot possibly be true 
may be seen by imagining, or actually 
making, an amplifier with the same 
broad configuration as in Fig. I, but in 
which Tr1 is replaced not by a simple 
long-tailed-pair, but by a more complex 
circuit having a large amount of inter
nal feedback. Then the distortion of the 
part of the amplifier that precedes C will 
remain extremely low right up to the 
slew-rate-limit overload point. Such an 
amplifier will fail to satisfy Jung's "new 
slew-rate criterion" by a very large 
factor, and yet, provided the distortion 
in the output stage etc. is sufficiently 

low, it will give no subjectively detect
able quality degradation on any normal 
programme material. 

With an ordinary long-tailed-pair in
put stage, the distortion introduced by it 
will be mainly third-harmonic, with the 
higher-order harmonics well subdued, 
provided the amplifier slew-rate limit is 
made higher than the maximum slew
rate of the programme by a reasonable 
factor, say two or three times. The 
distortion will then be of much the same 
character as that introduced by a good 
tape recorder, but will be of appreciable 
magnitude only at high audio frequen
cies. Provided the distortion is held 
down to a reasonably low magnitude -
well under that of a recording system, to 
be on the safe side - by sufficient over
all feedback, it will not be subjectively 
detectable. D 
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Audio· povver amplifier design - 2 
Negative-feedback concepts 

The best result of mathematics is to be able to do without it - ouvrn HEAVISIDE 

by Peter J. Baxandall, B. Sc.(Eng), F. I.E. E .. F. I.E. R E. 

In the January issue the concept. and 
possible consequences, of slew-rate 
limitation were discussed. with particular 
reference to one cause, in which the first 
stage of an amplifier is unable to supply 
the current demanded by the 
collector-to-base feed back-sta bil Iza 1I0n 
capacitor in the second stage With 
suitably modified circuit designs such 
effects may be made insignificant. Before 
specific circuits are discussed in later 
articles. the present article will deal with 
some basic ideas about negative 
feedback and transfer funct10ns. 

Feedback terms: definitions 

1-ig. 1 represents the general case or an 
amplifier with overall feedback. The + 
and - signs against the symbols for 
voltages indicate the polarities that 
exist when the instantaneous values are 
called positive. V 0 u/V;n is the gain with 
feedback, or closed-loop gain. A is the 
forward gain, or open-loop gain. From 
the diagram it is evident that 

(~V out+ V;n)A = Vour 

(l:.xcept at middle frequencies. the + 
sign must be taken to mean addition 
taking account of phase angle.) 
From the above 

V.,u,(l - Ali) = AV,., 

A 
or V ourlV,n • (1) 

I-A~ 

·1 his formula may be regarded as the 
universal t'eedback formula. and is just 
as relevant to positive-feedback appli
cations such as Q-multipliers and some 
active filters as it is to negative
fredback amplifiers . At medium 
frequencies, where it will be assumed 
there are no unwanted phase shifts, A 
should be taken as a simple negative 
number if the amplifier phase inverts, 
Ii should be taken as negative if the 
output from the j:I network is subtracted 
from V,n instead of being added as 
shown. For a negative-feedback 
amplifier Ali will be negative at medium 
frequencies. 

Sometimes the denominator of ( I J is 
given as 1 + AJ1, and then only the 
magnitudes and not the signs of A and ll 
are to be inserted in the formula. The 
t'orm~la is specifically a negative
feedback formula, and the correspon
ding formula for positive feedback then 

has a denominator 1 - Ajt This is surely 
an unnecessary complication, which 
can lead to confusion in some applica
tions where it is not i m mediately 
obvious whether the feedback is to be 
treated as positive or negative. 

The loop gain is the gain right round 
the feedback loop, and is A11 in Fig. I. 
·1 his concept is simple enough in the 
ideal context of Fig. 1, but in many 
practical circuits some care must be 
taken when calculating or measuring 
the loop gain. f-or example, how do we 
calculate the loop gain in l-'ig. 2'? If the 
loop is broken by removing the connec
tion between P and (j, and a test voltage 
V, is applied between P earth, then this 
would produce. at the junction of 1<1 ;ind 
I< ,. with lr1 removed. a voltage of V,fi. 
This voltage is effectively applied to the 
emitter of Tr1 m senes with a resistance 
of R1R1 f (R,_R~). wh1chap!)earsin series 
with I I g..,, reducing the eHect i ve 
mutual conductance of the stage . 
Alternatively we may calculate the 
value of Rl and I/ g.., in parallel, and use 
this value in place of R, for calculating 
the actual feedback voltage appearing 
at the emitter due to the test voltage V,. 
In obtaining the relevant output voltage 

a 
+ 

;- v' Voltage 

V;n _t_ 
gain ... 

oo,t,-{ - e 

7+ r 
13Vout=AjlV 

r 

from Tr,, knowing its collector current, 
it is necessary to add a load resistor 
between Q and earth of the same value 
as that previously provided by the feed
back network. 

Fig. 3 illustrates the meaning of the 
terms series, shunt, current and voltage 
feedback . It will be seen that the con• 
vention is that 'series' and 'shunt' relate 
to the way the feedback is injected into 
the input circuit, whereas ·voltage' and 
'current' relate to the manner in which 
the feedback is derived in the output 
circuit. Voltage feedback causes the 
load to be fed as from a generator whose 
internal impedance, or output imped
ance as it is often called, tends to zero as 
the amount of feedback is increased, 
whereas current feed:.Jack causes the 
output impedance to tend to infinity 
with increasing feedback. 

I- ig. 4 shows how a combination of 
voltage and current negative feedback 
may be used to produce an amplifier 
with a prescribed value of resistive 
output impedance, such as might be 
required. for example, when feeding 
into a telephone line. This technique is 
less wasteful of available output power 
capability than is the alternative of 

I) 

Load 

e 

Fig I . Bu.~ic f'eedbach-amplif'ier circuit. 

Fig. 2. Circuit relating to discussion 
of loop gain. Biasing details ure 
omitted for clarity. 

V,n 

l 

Tr, 
9m, 

--------... ----v+ 

Vo~t 

l 



l 
Snunt 11olloge !~dbaci\ 

v..., 

l 
Ser••S c.urrent teedl)ock Shunt curre11t leedbac• 

Fig. 3. Four different types of negative feedback . 

l 
0AI assumed inl in,tel 

(b) 

Fig. 4. (a) Feedback circuit with. combined voltage and cummt feedback; 
(b) equivalent circuit as seen by load. 

using an amplifier with simple voltage 
or current feedback, in association with 
a resistor equal in value to the required 
output impedance. 

Considering Fig. 4(a), and assuming 
the ideal case of an infinite-gain 
amplifier, it is evident that 

Ii v1o<u1 + r I1oo,1 = v,n 

which gives 

or 
V,,/1-1 

I1ood=---
r/ 1-1 + Z1, ... d 

(2) 

This shows that the equivalent cjrcuit 
must be as in fig. 4(b). By arranging for 
the voltage drop across r to provide 
positive Instead of negative t"eedback, a 
negative resistive output impedance 
may be obtained. 

Amplifiers are often said to have x 
decibels of negative feedback at a 
specified frequency, and such a state
ment is open to more than one possible 
interpretation. It is sometimes taken to 
mean that 20log iolloop gain I= x, but 
the normal and preferred meaning is 
that the amount of negative feedback is 
such as to reduce the amplifier gain by x 
dB, due precautions being taken to 
maintain equal loading conditions be" 
fore and after closing the loop. as 
already explained. A little thought in 
relation to equation (1) will show that 
these two definitions of the amount of 
negative feedback are not precisely 
equivalent, and diner quite significantly 
when the amount of feedback is small. 
With the pret'erred definition, feedback 
is negative at a given t"requency if it 
reduces the gain and pos.itive it it in
creases the gain. f_.requently a practical 
negative-t'eedback amplifier will exhibit 
a peak in Its frequency response at high 
frequencies, near the unity-loop-gain 
frequency. In the region of the peak, the 
gain may be higher with feedback on 

WIRELESS WORLO, MARCH 19 ?8 

than without it, so that the intended 
negative feedback has here become 
positive feedback. 

It is sometimes said that feedback is 
negative if the real component of the 
feedback voltage, 13 V0 u,, is in antiphase 
with V',n Fig. I, V' itself being taken as 
purely real, and that feedback is positive 
if the real component of 13 vou, is in phase 
with V'. This, however, is a popular. 
misconception, and is quite inconsistent 
with the distinction between positive 
and negative feedback given above - as 
will become evident from the discussion 
of phase relationships later in this 
series. 

Stability considerations 

The subJeCt of stability in feedback 
systems is a vast one, on which many 
learned and highly mathematical 
treatises have been written. The most 
famous are probably those of H . 
Nyquist 1 and H. W. Bode', both of Belt 
Telephone Laboratories. Though old, 
these contributions deal with the fun
damentals of the subject thoroughly 
and in depth, and are still regarded as 
absolutely sound. Many electronic en
gineers such as myself, particularly 
those lacking any formal training in 
feedback theory, are liable to feel rather 
oveiwhelmed by the amount and com
plexity of the available literature, and 
concepts such as complex frequency, 
poles and z:eros, contour integration, 
the Heaviside operator, Laplace trans
forms and signal-flow graphs seem like 
insurmountable barriers to some 
people. However, I believe that the vital 
thing is to acquire sufficient theoretical 
understanding to be able to appreciate 
vividly the reasons for the various 
effects that occur, and what the avail
able possibilities are for modifying the 
circuit design as first conceived to give 
optimum performance. The amount of 
detailed theoretical background 
necessary to achieve this is in fact sur
prisingly small - though some of the 
mathematical enthusiasts will probably 
deny this! 

There are several reasons why it is 
unnecessary for a good amplil'ier de
signer to know as much mathematical 
feedback theory as is sometimes sup
posed. Firstly, much of the fundamental 
analysis was originally done to (ind out 
what the stability criteria were, and 
how they could be expressed in forms 
convenient for engineers to use. This 
having been done, and being well esta
blished, the engineer can use the results 
without needing to be able to prove 
them . Secondly, provided there is a 
proper qualitative understanding of the 
problem. the precise optimum values of 
some components are often best deter
mined experimentally. '!his is largely 
because, al the quite high frequencies 
involved - which may extend up to 
several MHz - some degree of 
approximalion to the true transistor 
behaviour would inevitably have to be 
adopted in a purely theoretical, perhaps 
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computer-aided, design approach. Some 
people may say that arriving at opti
mum values for some components by 
trial and error does not constitute a 
respectable modern design technique, 
but I cannot agree with this outlook. 
One way to regard such a trial-and
error approach is to say that one is using 
the actual amplifier circuit itself as an 
analogue computer - changes are made 
to the circuit values and the results are 
displayed in analogue form on an 
oscilloscope. If carried out in an intel
ligent manner, this seems to me to be a 
much more direct, economica·I and 
generally sensible technique than that 
of forming ·a mathematical model of the 
circuit for processing by a digital com
puter, but I recognise that what is best 
done depends a good deal on the back
ground and preferences of the designer. 

In some quarters there is a belief that 
the circuit designer himself should 
spend his time in an office with paper 
and a computer, and leave the practical 
work to others, but I do not think that 
this philosophy is the most effective 
one. Experimental work is very stimu
lating - some unexpected effect is 
observed, and in a flash one may see 
that a modification to the circuit would 
be an improvement. This can often be 
tried immediately, and may lead to pro
longed thought and further ideas. At 
some point a theoretical analysis may 
be called for, followed by more ex
perimenting. It is this continuous 
alternation of experimental and theoreti
cal activity that leads, in my experience, 
to the evolution of novel and improved 
designs. Of course, an almost inevitable 
result of such activity is often that what 
started off as a neat experimental board 
tends to have become a somewhat un
tidy bird's nest at a later stage. How
ever, I think most amplifiers having any 
real originality of design have probably 
evolved through such a stage before 
reaching that of an elegant printed
circuit board. 

A very real danger is that if an engin
eer becomes too absorbed in advanced 
mathematical techniques. he may fail to 
give enough attention to other more 
down-to-earth, but very important, 
aspects of the overall design work. In a 
contribution some years ago:i, I said 
"whilst it is virtuous to be able to ana
lyse -a circuit, it may be even be more 
virtuous to be able to see that a detailed 
analysis is unnecessary, or to invent a 
better circuit whose behaviour is more 
easily predicted." 

The aim in what follows will be to 
present the minimum theoretical back
ground which is thought to be 
necessary for anyone undertaking to 
design the feedback sta bi lizati on 
aspects of an audio amplifier with 
understanding and in a properly 
optimized manner. Little more 'than the 
j-notation4 will be employed. However, 
some.readers will doubtless wish for a 
rather broader background of theory, 
since much published literature on 

amplifier design uses the concepts of 
complex frequency. poles and zeros etc. 
At a fairly elementary level, the excel
lent series of articles by "Cathode Ray" 
(M. G. Scroggie) in this journal in 1962 
may be recommended5· ti. 1 K. A more 
advanced and complete treatment of 
feedback theory and practice will be 
found in a very good book "Amplifying 
Devices and Low-Pass Amplifier De
sign" by Cherry and Hooper". Though 
they do not hesitate to use determinants 
etc. when thought to be appropriate, a 
true engineering outlook is evident and 
the book contains much very en
lightened practical advice on design 
aspects. 

In a.c. coupled amplifiers, stability 
problems arise at both low and high 
frequencies. Only the high-frequency 
problems will be considered here, i.e. all 
circuits will be treated as d.c. coupled 
amplifiers, but the principles discussed 
are very easily adapted, in common
sense ways, to the low-frequency situa
tion when necessary. 

Some simple notions about transfer 
functions will first be considered, be
cause understanding these helps one to 
appreciate better how the whole 
negative-feedback story fits together. A 
transfer function for a feedback 
amplifier, or any other circuit, is simply 
an equation giving V0 u, as a function of 
V;". It is normally assumed that the 
amplifier is free from non-linearity 
distortion, but apart from this reserva
tion, the transfer function contains all 
the necessary information about the 
frequency response, phase response, 
transient response and stability margins 
of the amplifier. The snag is that. except. 
in quite simple cases, deriving and sim
plifying the transfer function for a 
feedback amplifier is exasperatingly 
tedious, even for those with a natural 
aptitude for such things, which I cer
tainly do not have! The Nyquist dia
gram, and Bode amplitude and phase 
plots considered later, represent a 
vastly more convenient and practicable 
approach for most amplifier design 
purposes. 

However, it is always theoretically 
possible simply to use the j-notation to 
calculate the currents and voltages 
everywhere in the amplifier circuit due 
to V;n and V .,..,, and thus to form the 

R1 

l. 
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transfer-function equation. Purely as an 
illustration of the ideas involved, con
sider the simple and somewhat idealized 
circuit of Fig. 5. Using the j-notation 
gives the current in C2 as jw V ou,C2• The 
current in ~ in the direction shown is 
V .,..,1 ~- The current in R3 is the sum of 
these currents, enabling one to calcu
late V". Continuing on these lines leads 
to the result: 

Vin= - V.,..,R;"IR 1(1 + jwC~3 + R3/R4 
+ jwC1R2 (1 + jwC2R3 + R3/ R4) + 

jwCiR1 + R2I ~ + R1 I R4] (3) 

This as it stands is not much use, for one 
cannot easily see the physical 
significance of it. The vital thing when 
deriving transfer functions is to con
tinue until they have been got into a 
nice tidy, recognisable form. By collec
ting terms and rearranging, equation (3) 

.can be got into the form: 

V"" 1IV;" = K x------
+ jwT1 - (iT2~ 

K in this is given by: 

K= 

(4) 

(5) 

T1 and Ti are time constants. each given 
by a somewhat cumbersome expression 
with several terms in. One can, 
moreover, very usefully go a stage 
further than (4), and get it into the form: 

V,,.,,IV;n"" K X-------- (6) 
I + (I /Q)jwT- w2T2 

Here T is obviously equal to T1 of equa
tion (4), and we also must have (1 /Q)T 
= T1, giving Q = T!Ti, i.e.: 

(7) 

Now the phy!>' ti significance of (6) is 
instantly api:,- nt if one knows how to 
'"read" it. Q is the Q of a tuned circuit 
arranged as in Fig. 6(a). having a 
resonance frequency given by wu • I/ T. 

Sometimes transfer functions such as 

Vout 

l 
Fig. 5. Circuit relating to discussion of transfer functions. 
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(6) are given in the form: 

V.,.. 1!V,~ = K x-------- (8) 
l + (l/Q)pT + plP 

Comparing (6) and (8) it is evident that 
p = jw. Though it is perfectly all right, in 
a sine-wave context, to regard p simply 
as a convenient abbreviation for jw, its 
full significance is much deeper, for it is 
Heaviside's operator and means d/ dt. 
Equations such as (8) are thus appli
cable not only under sine-wave condi
tions, but also for any other kind of 
input waveform. Mathematical techni
ques are available whereby, given the 
amplifier transfer function, the output 
waveform resulting from a voltage step 
or other transient input may be calcu
lated. But in view of the ease with which 
such responses may be obtained using 
an oscilloscope, the actual need for such 
mathematical techniques seldom if ever 
arises in normal amplifier design work, 

Circuit Tran,tior tunclion 

R 
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in my experience. Sometimes when the 
transient response of an .e~erimental 
amplifier circuit is under consideration, 
it is convenient to make up a little 
simulator circuit, in which all time
constants have been increased by a 
factor of, say, a thousand compared 
with the real circuit. The idealized res
ponse can thus be obtained, and the 
relationship between this and the res
ponse of the original circuit may shed 
light' on the significance of stray 
capacitance or other overlooked effects 
in the latter. The ready availability of 
type 741 operational amplifiers makes it 
very quick and easy to do such tests. 

Heaviside's operational calculus 
tends to be somewhat out of favour 
nowadays, but a very strong case in its 
favour is presented by two authors from 
the BBC Research Department in 
reference 10 . It is argued that the tech
nique gives a much better physical in
sight into the nature of the problem 
being investigated than do the altern• 
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ative mathematical techniques avail
able. 

For amplifier designers, the import
ant things to appreciate about transfer 
functions may be summarized as fol
lows: 
(a) Any linear network or amplifier has 
a transfer function. 
(b) However complex the network or 
amplifier may be, the denominator of 
the transfer function - if you're clever 
enough - can be got into the form of a 
number of factors, which may be either 
quadratic ones as in equation (8), or 
simpJer ones of the form (I+ pT). 
( c) If any of the quadratic factprs in the 
denominator have negative Q, i.e. 
negative damping, the system will be 
unstable. 
(d) The numerator can take various 
forms according to whether the system 
has a low-pass, band-pass or high-pass 
type of response, and whether there are 
notches in the frequency response or 
not. 

Frequency response Phase re,pc,nH Step resPQnie 

J0 o•~ ~v, ~ e ,o 
' 

Wo --9-0• 
0 

10Wo 

~ ·~~ ~ 
1 wo o• Ok 

,ow,, 

' 
o•~ fv, 

t ra nsi t iona I lag 2 

0 
w,c.!. 

T1 

/, Y--o'~ 

2 

tr ans,tionat 1 .. ad 
0 

t.i1•..!... 
T1 

~- -90° /:·-~ ,-c 

,o,,,1/ +go' OL 
o• 

+V;--

-QO' o-
!tat T 

Wo•t -'180' 
-V;• 



WIRELESS WORLD, MARCH 1978 

Vin ·! 

( e) Any required response characteristic 
whatever can be obtained from a com
bination of suitably-designed feedback 
amplifiers, without the need for any 
inductors, this being the basis of the 
whole subject of active filters. 11 

Though it is seldom sensible to try to 
derive the overall transfer function of a 
complete feedback amplifier, except in 
the relatively simple cases which 
usually apply in active-filter design, it is 
quite important to be able to derive the 
transfer functions of parts of the circuit 
ofa feedback amplifier, for this is really 
the basis of most practical design work 
on such amplifiers. The table gives some 
simple networks familiar to most 
readers, together with their transfer 
functions and frequency, phase and 
step-input responses. The relevance of 
the all-pass case G will become evident 
later. Though the transfer functions 
may be worked out using the j-notation, 
and p substituted for jw at the end, it is 
really more convenient to work with p 
from the beginning. Thus the imped
ance of a capacitor is l /pC and the 
impedance of an inductor is pL. Sup
pose, for example, we have R and C in 
parallel. The total impedance is given by 

z = RX(llpC) 
R+(l!pC) 

Multiplying top and bottom by pC gives 

z R 
"" l+pCR (9) 

This is therefore the ratio V0 ",t I,n for the 
network, and as would be expected it 
has the same form of transfer function 
as network A in the table. 

A simple illustration of the practical 
utility of thinking of transfer functions 
in terms of p rather than jw arises if one 
considers the problem of determining 
the output waveform to be expected 
from network B in the table when the 
input waveform is a linear voltage 
sweep, or ramp. One simply "operates 
upon" the input waveform with bits of 
the transfer function in turn, chosen in 
the order that makes things easiest. 
Thus the ramp waveform multiplied by 
pT, i.e. differentiated, gives a step 
waveform. The step multiplied by 
1/(1 + pD gives an exponential output 
waveform as shown at the top right-

41 

Vo.,t Kx 1 
V;n = 1+(1/0)pT+p2T2 

dB O 1----+-::;;;.,::--~-----1 
--3dS 

Vout 
-51-------l---'-''----+----'-----I 

-10,L------4----+--...-i 

_,..J-----1------1-----'l 
0-01fc 

(a) 

Fig. 6.(a) Circuit giving same response 
as Fig. 5; (b) and (c) show the frequency 
response and the step response 
respectively for two values of Q. 
Q = 1 I y2 gives second order 
Butterworth response. 

hand corner of the table. A particularly 
lucid and easy-to-understand paper 
dealing with topics such as this was 
written just after the war by Professor 
f-". C. Williams1

'. Though the practical 
circuits are, of course, all valve ones, the 
lengthy discussion of the overall design 
philosophy is highly relevant to 
present-day problems. The aim was to 
evolve reliable circuits of precision per
formance, suitable for trouble-free pro
duction, using the minimum of mathe
matics. Acknowledgement is made to A. 
D. Blumlein for having provided much 
of the early inspiration for this work. 
Some of these pulse circuit ideas are of 
greater interest to audio engineers than 
in the past, even in the non-digital field, 
because of the increased attention now 
being given to transient response and 
impulse measuring techniques. 

In planning the feedback stabilization 
details for most audio amplifiers, the 
normal practice is to think in terms of 
the rate at which the loop gain is atte
nuated with rising frequency, bearing in 
mind all along that the transient be
haviour is closely related to this. The 
relevant techniques will be discussed in 
the next article. 

Corrections to January 1978 article 

In Fig. I, a resistor should be inserted in series 
with Tr. emitter. The arrow in Tr 1 

collector lead should be labelled "Ide·" In 
equ11.tion (6), the denominator should be 
"2-r.-v';n"· The equation just below equation (6) 
is completely wrong and should be: 
slew-rate limit 2 f. 0- :i: "Ii crit (7) 

In Fig. 3(a), the top wavetorm was inadver
tently cut off at the botlOm and should be a 
complete sinewave. Apologies for the bad 
reproduction of these waveforms. In the 
fourth line of the footnote on page 55, the 
word '"is" should be inserted before 
"'approximately". On page 56, first column. 14 
lmes from the bottom, the word "amplifier" 
should be inserted between .. the" and "slew
rate". 

0·1f0 fo 
FreQUe'l'lcy 

(b) 
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Audio povver amplifier design - 3 
Nyquist and Bode diagrams 

"Design methods suitable for a variety of applications can never be 
reduced entirely to a set of rules,, - H. W. Bode 

by PeterJ. Baxandall, B.Sc.(Eng.), F.I.E.E·. , F.I.E.R.E. 

In the March issue it was explained that. 
assuming negligible non-linearity 
distortion, the closed•loop transfer 
function for a feedback amplifier gives 
full information about the frequency 
response, phase response, and transient 
response. In principle, therefore, all 
theoretical design work could be done by 
choosing the circuit configuration and 
values 10 yield a desired transfer 
function. However, this is such a tedious 
and inflexible approach for most amplifier 
design purposes that other tecllniques 
are much preferred . 

Ai,THOUGH the Nyquist Diagram 
is seldom -- -actually drawn by 
amplifier designers, it is the best star• 
ting point one can make to gain an 
understanding of the preferred techni• 
ques used in amplifier design. For 
clarity, Fig. l(a) has been included even 
though it is a repeat of Fig. I in the 
March issue. Figure l(b) shows a phasor 
diagram for this circuit, drawn in the 
conventional manner and, for sim
plicity, the 13•network is assumed to give 
attenuation but no phase shift. Figure 
l(c) gives the phasor diagram for the 
circuit, drawn in accordance with the 
neater and generally much preferable 
scheme advocated by M. G. Scroggie1, 

in which points on the phasor diagram 
are lettered to correspond to points on 
the circuit diagram, neither arrow heads 
nor voltage symbols then being req
uired. With either scheme, if one likes, 
the whole phasor diagram may be envi
saged as rotating, conventionally anti-· 
clockwise. Then the vertical distances 
between the ends of the phasors 
represent instantaneous voltage values. 
Therefore, at the instant of time de
picted by the angular position of the 
diagram shown in Fig. l(c), points band_ 
c are positive with respect to e. The 
lengths of the phasors, of course, 
represent the corresponding peak, or, if 
preferred, r.m.s. voltage values. The 
more I use the Scroggie method of 
drawing phasor diagrams. the more I 
like it, and my only regret is that, 
through sheer inertia, I did not change 
over to it far sooner. 

Both of the phasor diagrams shown 
represent the conditions in the circuit of 
Fig. l(a) at one frequency only, and the 

·Nyquist diagram can be regarded as 

being derived from a set of such phasor 
diagrams covering all frequencies. 
These are drawn on the convenient· 
basis that V' has the same value for all of 
them, being represented by ea in dia• 
gram Fig. l(d). (Usually only the vol• 
tage at c is included in the diagram, bis 
left out.) Therefore, as the frequency is 
varied, a succession of voltage phasor 
diagrams, as shown ln Fig. l(d), is 
obtained. In this example, for simplicity, 
the amplifier is assumed to be d.c. 
coupled, so that at zero frequency the 
feedback voltage l3V0 ut• or Af3V', is 
exactly in antiphase with the voltage v. 
The locus of c, shown as a broken line in 
Fig. l(d), is essentially the Nyquist dia• 
gram. Normally, however, the quant
ities plotted in a Nyquist diagram are 
not voltages, but gains, and are 
obtained by dividing all the quantities in 

f3 
n-if',work 

(bl 

(d ) 

D 

the phasor diagrams shown in Figs. 
l(b), (c) and (d) by V'. The Nyquist 
diagram in its normal form therefore 
appears as shown in Fig. l(e), and is an 
Argand diagram showing how the loop 
gain A'3 varies in amplitude and phase 
as the frequency is varied. Nevertheless, 
for some purposes, it is more convenient 
to think in terms of voltage phasor 
diagrams. 

At low frequencies, especially when 
the loop gain is much larger than de
picted here, the feedback voltage ~Vou1, 

represented, for example, by ec1, is 
nearly equal In magnitude to the signal 
input vol_tage c1 a, so that the gain or the 

Fig. I. Basic feedback-amplifier circuit, 
with voltage-phasor diagrams and 
Nyquist diagram. 
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Fig. 3. -Diagrami, illustrating Nyquist's criterion. 
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amplifier, Youtl Y1n, approximates 
closely to 1113•. Consider now the 
phasor relationship existing at 
a much higher frequency, 
when the tip of the Aj3 phaser 
has swung round to the region of the 
Nyquist diagram (in Fig. l(e)) which is 
close to the point (I, 0). The details may 
be shown more clearly by redrawing 
just the relevant parts of the diagram to 

. a larger scale. This has been done on a 
voltage basis in Fig. 2(a) and 2(b), but 
with the corresponding dimensionless, 
or gain, quantities shown in brackets. 
Also, both the conventional and the 
Scroggie representations have been 
combined, to suit all readers! In Fig. 2(a) 
it is seen that the f3Vou1 phasor is now 
much longer than the Y1n phasor, 
making the amplifier gain with feed
back much greater than l/j3. At even 
higher frequencies, as shown in Fig. 
2(b), j3Y001 has become much less than 
Y1n, so that the gain of the complete 
amplifier is now much less than 1/(3. 
From this it is evident that the closed
loop frequency response will be of the 
form shown in Fig. 2(c), and that if the 
Nyquist diagram goes very close to the 
point (I; ·o), the peak "in the frequency 
response will be of large magnitude. To 
obtain such a frequency response with 
purely passive elements, an arrange
ment such as that shown in Fig. 2(d) 
would be required, and it is obvious that 
this circuit, if supplied with a voltage 
step input, will ring if the Q-value is 
high enough. The frequency and step 
responses for two values of Q are shown 
in Figs. 2(e) and 2(f) respectively. 

Since the frequency response of an 
amplifier whose Nyquist diagram 
passes close to the point (1, O) is broadly 
similar to that of a passive circuit such 
as that shown in Fig. 2(d), it seems 
reasonable to expect, on these grounds 
alone, that the amplifier, like the passive 
circuit, will exhibit very ringy behavi
our if the peak in its frequency response 
is of large magnitude - and this is, 
indeed, the case. 

It is evident from the above simple 
phaser diagram considerations that if 
the Nyquist diagram passes through the 
point (I, 0), the required value of V;n for 
a finite output at that frequency be
comes vanishingly small. Oscillation 
will then occur. A difficult question to 
answer, however, is whether oscillation 
can occur under any other conditions. 

· Nyquist, in his famous paper of 1932-2, 
looked very deeply into this problem, 
and enunciated his stability criterion, 
which is now universally accepted as 
being correct. 

Nyquist's criterion 
Nyquist's criterion states that if a 
Nyquist diagram, as already described, 
is plotted for all frequencies from zero 
to infinity, together with its image in the 
real axis, as shown in Fig. 3(a), the 

• Referring to Fig. l(b), Voui/ V, 0 •AV'!(l
Ajl)V'•(i/f3)X A,8/(1-A,8), showing that the 
gain becomes approximately l/,8. when 
IA.Bl>>L 
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amplifier will be stable onJy if the point 
(1, 0) lies outside the enclosed figure so 
fonned. 

The example shown in Fig. 3(a} 
relates, as before, to a d.c .-coupled 
amplifier. The angle labelled "excess 
phase lag" refers to the phase lag that 
builds up with rising frequency due to 
shunt capacitances, transistor phase 
lags etc. The word "excess" is often 
inserted here to make it clear that the 
angle referred to does not include the 
180° phase angle which is inherent in 
the fact that the feedback is negative at 
zero frequency. The frequencies 
marked on the Nyquist diagram are 
intended to be fairly typical of those 
which might apply to an audio 
amplifier. Though the Nyquist criterion, 
as stated, calls for frequencies from zero 
to infinity, it is clearly neither feasible· 
nor necessary to cover such a range in 
practice. It is possible to be caught out, 
however, if measurements are stopped 
at too low a frequency, for a Nyquist 
diagram expected to continue shrinking 
with rising frequency as it passes the 
point (1, 0) can occasionally come back 
away from the origin again in a manner 
such as to jeopardise stability. This is 
especially liable to happen when trans
formers are employed, due to complex 
resonances involving leakage induct
ances and winding capacitances. 

When complete Nyquist diagrams are 
plotted, it is usually more convenient to 
adopt a linear scale of decibels radially, 
to accommodate the wide range of loop 
gain magnitudes involved. Sometimes, 
however, only the part of the diagram 
fairly near the point (l, 0) need be 
plotted, and a linear scale may then
suffice. 

When the loop gain of a feedback 
amplifier is changed without altering 
any of the time-constants - for 
example, by a simple alteration in the 
value of the overall ~ - the obvious way 
to represent this would be to alter the 
size of the Nyquist diagram, leaving the 
point (1, 0) fixed. However, a much 
easier and quicker procedure is to leave 
the diagram as it is and shift the position 
of the point ( 1, 0), effectively altering 
the scale of the diagram. Usually there 
is no need to draw the image of the 
Nyquist diagram in the real axis, as 
shown in Fig. 3(a), because it is nor
mally obvious whether the point (I, 0) 
would lie within the complete figure 
thus formed, without needing to see the 
broken-line part. 

Conditional stability 
It is possible to have an amplifier whose 
Nyquist diagram is something like that 
shown in Fig. 3(b). With the loop gain 
adjusted so that the unity-loop-gain 
point (I, 0) is in the space between P and 
Q, the amplifier will be stable, for the 
diagram does not encircle th~ point. An 
increase in loop gain, represented by 
moving the point (I, 0) to the left, will 
result in the onset of oscillation once the 
point ( I , 0) reaches P. A decrease in loop 
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Fig. 4. Circuit : fordemonstrating 
conditional stability, together with 
calcilated Nyquist diagram und Bode 
loopgain and phase diagrams. 
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gain, represented by moving the point 
( 1, 0) to the right , will also cause 
oscillation (at a different frequency) by 
the time the point ( 1, 0) reaches Q. If the 
reduction in loop gain is sufficient to 
move the point (1, 0) beyond R, stability 
will again be achieved. 

When operated with the point (1, 0) 
between P and Q, the amplifier is said to 
be conditionally stable. In this state, it 
should be noted that. at the frequencies 
corresponding to the points Q and R, 
there is zero phase shift round the loop 
and a loop gain greater than unity - and 
yet oscillation does not occur. A con
ditionally stable amplifier may thus be 
defined as one in which reducing the 
loop gain causes it to oscillate. An 
amplifier which remains stable for all 
values of loop gain setting between the 
normal one and zero is said to be abso
lutely stable1. It is important to dis
tinguish between the term "conditio
nally stable", as defined above. and a 
quite different usage of the same term 
as applied to an amplifier which is stable 
only if the load impedance satisfies 
certain conditions. The converse term 
in this latter case is "unconditionally 
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stable", meaning that the amplifier 
remains stable with any passive load 
impedance whatever connected. 

Amplifiers having conditional 
stability in the sense of a reduction in 
loop gain causing oscillation, are nor
mally to be avoided, and I have never 
come across a case of one being inten
tionally used for an engineering appli
cation. Their interest lies rather in the 
light that they throw on one's under
standing of the full significance and 
correctness of Nyquist's criterion. 

It is quite easy to make up a simple 
circuit exhibiting conditional stability, 
and Fig. 4(a) shows a suitable recipe. 
This circuit can be made the basis of an 
excellent and convincing lecture de
monstration. With the potentiometer 
slider at the left, giving low loop gain, 
the amplifier is absolutely stable, and 
gives a fairly well damped square-wave 
response with, say, a 5Hz input square 
wave. As the slider is moved to the right, 
increasing the loop gain, the response . 
becomes more and more ringy, going 
into continuous oscillation at just over 
lOOHz with sufficient gain increase. 
Turning the gain up further produces . 



.. 
violent oscillation of increasing 
~uency, as the point (1, 0) is moved 
across from P1 to P2 in the calculated 
Nyquist diagram shown in Fig. 4(b). As 
P2 is reached, the sustained osclllatJon 
becomes gentle only, with a frequency 
of just over 800Hz. Increasing the loop 
gain still more gives stability once 
again, but this time it is conditional 
stability. The more the gain ls turned up, 
the better the damping of the square• 
wave response becomes, an appropriate 
square•wave frequency under these 
conditions being about lOOHz. For de• 
monstration purposes, the output may · 
be reproduced on a loudspeaker. The 
rather unusual gain control arrange• · 
ment adopted enables the gain to be 
adjuated over a very wide range (about 
68d8) without the control becoming too 
"touchy". It is the same arnngement as 
that used in the BBC Outside•Broadcast 
amplifier, type OBA/94 , and such 
schemes, which combine passive and 
feedback gain control using a single 
potentiometer, have many applications. 
With a c.r.o. fed from the point shown in 
Fig. 4(a), it is the forward gain of the 
demonstration circuit that is controlled, 
the overaU 13.vatue remalning constant. 
Only a small output level can be pro• 
duced when the potentiometer slider ts 
over to the left, and a c.r.o. sensitivity of 
50mV/cm will be found appropriate. An 
alternative is to feed the c.r.o. from the 
potentiometer slider, which enables a 
high output level to be obtained at all 
potentiometer settings. Now, however, 
both the forward gain and the overall 
~•value of the demonstration circuit are 
being varied, 10 that the signal gain in 
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the non-oscillating states is dependent 
on the potentiometer setting. 

In the valve era, a strona argument 
against the use of conditionally stable 
amplifters wu that the gradual rise in , 
mutual conductances di.Irina warm-up 
caused oscillation to occur before the 
final conditionally-stable state- ·wu 
reached. As mentioned on page 163 of 
reference 3, such oscillation, once it 
.llarted, wu liable to persist indefinitely, 
because of the reduced effective sta1e 
gains under overload conditions. It is · 
interesting to note that the demonatra-

. tion model in Fig. 4 shows no tendencies 
of this kind if overloaded while in the . 
conditionally-stable state. The ·only ad
vantage that can be gained by adopting 
a conditionally•atable design is that it 
permits a much more rapid attenuation 
of loop gain with rising frequency than 
could otherwise be permitted, so that 
more feedback can be kept in operation 
up to a hi1her frequency, with a areater 
consequent reduction in distortion. 
Since extremely low distortion can 
readily be obtained in more straightfor
ward ways, it is probably best to forget 
about such possibilities. 

Gain and phase curves 
During design work on feedback 
amplifiers, most engineen, rather than 
using Nyquist diagrams, think in terms 
of curves of pin mapitude and phue, 
against frequency. The dia1rams 
drawn, which often use straight-line 
approximatlons to the true curve,, are 

. sometimes called Bode diagrams'. Fig. 5 
shows simple examples which may be 
compared with the curves shown in the 
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Fi •• 5. Diagrams showing how straightline approximations to the gain and 
phase characteristics of simple networks muy be easily and quickly drawn. 
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table in Part 2. Frequently, it is suf. 
ftdent to draw only the gain diagrams, 
for provided the networks involved are 
so-called rn.inirnum•phase•ahift net• 
worb, definite relatfonshipa exist bet
ween the 1ain and phase characteris
tics'_ Then, provided the loop-gain cha
-racteristic ii designed to meet certain 
requirements, discussed below, the 
phue characteristic will automatically 
be IUch that stability is usu.red. In this 
context, it is obviously necessary to 
have a very clear conception of just 
what does, and what does not, con• 
stitute a minimum•phase•shlft (m.p.s.) 
network. It hu sometimes been said 
that all the circuits used in ordinary 
ampllfters are of the m.p.s. type, but this 
is not necessarily always true. Any 
circuit in which there is more than one 

. signal path from Input to output, is 
liable not to have m.p.s. characteriatica; 
that is, it is liable to produce more phase 
shift than necessary for the given gain 
characteristic. Such a non•m.p.s. net
work is always equivalent to a m.p.s. 
network in cucade with an all•pass 
network, the latter producing phase 
shift only, without gain variation. A 
simple example of such a non-m.p.s. 
circuit, which frequently occurs in 
amplifiers, is shown in Fig. 6(a). At the 
frequencies of present interest, the col• 
Jector resistor Re exerts negligible 
shunting effect and may be Ignored. At 
very high frequencies, where C may be 
regarded as a short•Clrcuit, 
Vout•l1n X (11&.J-

At lower frequencies the circuit 
operates as a Blumlein integrator and 
gives V 0111 • -l1n x (l/pC). where p • jw. 
The general relationship is therefore: 

or 

{ 
I I 

vou,•111, ---) 
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V I;"( 1) 
ovt• &n 1-pT 

1 
where T-Cx-

Bm 

Now, (2) may be written: 

Iin 1-pT 
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&m pT 
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The significance of this may be more 
vividly seen if it is expressed in the form: 

1111 1 + pT 1-pT 
-X--X--
im pT I +pT 
~~ 

A B 

(3) 

Part A of Equation 3 represents the 
response of the network shown in Fig. 
6(b), which is relatively innocuous from 
a feedback-stability point of view. Part 
B, however, represents an all•pass cha
racteristic (as shown at the bottom of 
the table on page 44 of the March 
article), and introduces extra phase lag 
without affecting the magnitude of the 

. loop gain. Frequently, however, these 
complications do not significantly 
affect the stability of ~n amplifier, be· 
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cauae they come in at frequencies well 
above the unity-loop~gajn frequency. 
For example, with C• lOOpF and a col
lector current of 5mA. giving an Ideal i'm 
value of 200mA/V, the frequency at 
which the a.II-pus tenn gtves 90° phase 
lag is, in ideal theory, 320MH2:. 
Sometimes, however, a resistor of, say, 
1000 is included in the transistor emitter 
lead - maybe as part of a curreht
llmlting scheme - giving much-reduced 
i'm• This, in association with a higher C 
value, say 470pF, gives an ideal 
theoretical all-pass 90° frequency of 
3.2MHz, so that the all-pass tern, · will 
give 10° lag at about 300kHz - not 
necessarily negligible. · 

Under overload conditions, the· tran
sistor in Fig. 8(a) may be temporarily 
cut off. Then, the only path from input 
to output is that via C, and the intended 
phase inversion of the stage is com
pletely lost. With a large amount of 
overall feedback, which then becomes 
positive, momentary trigger-action, or 
high-frequency oscillation, may occur. 
Unravelling subtle effects such as this -
and there are many others - can at 
times make development work on feed
back amplifiers a difficult and deman
ding exercise. 

From the above discussion it will be 
appreciated that, for most audio 
amplifier design purposes, it is safe to 
assume that the networks involved are 
of the minimum-phase-shift variety, but 
the possibility of things being otherwise 
should not be entirely forgotten. 

Assuming m.p.s. networks, a high
frequency attenuation rate of 20d8/ 
decade (&dB/octave), if continued over. 
a wide frequency band, say two decades 
or more, will cause the excess phase lag 
to reach nearly 90°. A sustained atte
nuation rate of 40dB/decade will give 
nearly 180° lag, and will bring the 
Nyquist diagram in almost horizontaJly 
from the right, so that, with sufficient 
loop gain, it will' pass very close to the 
point (l, 0). This will give a large peak in 
the frequency response and a very ringy 
step response. 

In the above context it Is usual to 
refer to the stability margins of an 
amplifier - the gain margin and the 
phase margin, as shown in Fig. 7. The 
gain margin is a measure of how much 
more feedback could be applied without 
oscillation occurring, and the phase 
margin shows how much extra internal 
phase lag would be necessary, at the 
frequency of unity loop gain, to reach 
the oscillation point. 

The magnitudes of the stability mar
gins that should be left in a practical 
amplifier design are dependent on a 
number of considerations, as follows: 

(a) The margins, as designed, 
should be "comfortable", to ensure 
that likely production vartations do 
not lead to trouble. 

'(b) The margins should eatlsl'y (a) 
under all conditions of amplifier 
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Flg.8. (a) Circuit not having 
minimum-phase shift (m.p.s.) 
characteristics. (b) Circuit having 
same amplitu.de response as (a), 
but giving less phase lag at high · 
frequencies. 

Fla. 7. Diagram ilfustn.iting the 
definition of gain margin and 
phase margin. 
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loading which it is considered 
necessary to take into account. 

(c) Adequate margins, as in (a) and 
'(b), should be maintained at all 
signal levels, not just under small
signal conditions.· 

,(d) In many television, radar and 
c.r.o. amplifier designs, a step res
ponse with little or no overshoot ls 
vital, but this is not normally the 
case with audio amplifiers - ex
cept, perhaps, to satisfy the de
mands of some reviewers and their 
public! Although a highly ringy 
step response justifiably arouses 
one's general suspicions about an 
audio amplifier design, a high-Q 
ring at 150kHZ; say, will neverthe
less not, in itself, have the slightest 
deleterious effect on the e<iund 
reproduction. 

The argument against designing for 
excessive stability margins is thAt any 
audio amplifier so designed could easily 
be made to have less non-linearity 
distortion by altering the design to have 
more high-frequency feedback and 
smaller stability margins. However, 
with modern fast, silicon planar tran
sistors, it is possible to obtain a superb 
performance, with regard to hi1h
frequency distortion, even when the 
stability margins are made quite large, 
giving impressive-looking square.wave 
response. The present-day tendency is 
todo this. 

A long time ago Bode1 suggested that 
for purposes such as low-distortion 
audio amplifiers, a 30° phase margin is a 
sensible choice, and argued that a good 
philosophy, when practicable, Is to hold 
the loop gain at its full value up to some 
chosen high frequency {1 , such as 
l0kHz, and then attenuate it as rapidly 
as possible, consistent with not ex
ceeding 150° excess phase lag. In this 
way, with good design in other respects. 
the loop gain may be reduced to well 
below unity before unpredictable phase 
lags, due to the complex behaviour of 
transformers etc., become significant. 
He also showed that the ideal loop gain 
attenuation law to achieve a constant 
150° phase lag above (1 is as shown in 
Fig. 8(a) . 

If the steep rate of gain attenuation 
above f1 were maintained for too long 
before reaching the 33d8tdecade 
asymptotic rate, the corresponding 
phase curve would dip below -150°, but 
recover to -150° asymptotically at very 
high frequencies. In addition, this effect, 
if pronounced, would result in an 
amplifier having conditional stability If 
the loop gain were set high enough. A 
comparable state of affairs is shown In 
Figs. 4(c) and 4(d). 

A characteristic of an amplifier with 
"Bode ideal" loop gain attenuation, 
assuming a flat 13-network, is that the 
magnitude of the high-frequency res
ponse peak (6dB), and the 1hape of the· 



.. 
step response, are independent of the 
loop-gain setting over a wide range .. 
due to the constant 30° phase margin. 
This ls only true if the loop gain is set 
high enough for the point (1, 0) to be 
weJI to the left of the point Pin FiK, 8( c). 
I have recently set up an experimental 
amplifier circuit in which the loop gain 
is attenuated accurately at 33dB/ 
decade, with a minimum-phase-shift 
network, over a frequency range of 
1000:l. With the loop gain set to make 
the high-frequency peak occur some
where in the central region of this 
frequency range, the peak is indeed of 
6dB magnitude, as would be predicted 
from the Nyquist diagram geometry -
see Figs. 8(c) and 2(a). It is also in
teresting to note that the step response, 
whose shape is almost perfectly inde
pendent of loop-gain setting over a wide 
range, is nearly indistinguishable from 
the Q= 2 waveform of Fig. 2(f). There is 
no absolutely fixed theoretical relation
ship between the phase margin and the 
shape of the closed-loop step response, 
even when pis constant. Nevertheless, 
with reasonably "tame" Nyquist dia
grams. as illustrated in this article, a 30° 
phase margin will always give an 
approximation to a single-mode ring 
with an effective Q-value in the region 
of 2 . 

.. A feature perhaps particularly desirable in 
the valve era, since mutual conductances 
tended to fall off with valve ageing. 
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Corrections 
Figures 2(e) and 2(f) should have app
eared in the March issue as Figs. 6(b) 
and 6(c). Unfortunately, the dB scaling 
was produced incorrectly in Fig. 6(b), 
and Fig. 6(c) was inadvertently omitted. 

It was stated on page 43 of the March 
issue that the closed-loop transfer 
function of an amplifier contains infor• 
mation about the stability margins. E. F. 
Good has pointed out that this state
ment is not strictly correct, for the 
stability margins are purely functions of 
Aj3, whereas the transfer function gives 
the value of A/(I-A/3) only, i.e. (I/ 
/3) x Al3/(l-Al3). Al3, and hence the 
stability margins as normally specified, 
are therefore deducible only if the value 
of ff is known as well as that of the 
whole transfer function. D 
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Audio polNer amp-lifier design - 4 
More on feedback stability 

by PetwJ. Baxandall. B.Sc.(Eng). F.1.E.E., F.LE .R.E. 

The May article ended by discussing 
Bode's ideal loop-gain attenuation 
characteristic, which maintains full loop 
gain up to a certain frequency and then 
attenuates the gain as rapdily as possible 
consistently with not exceeding an excess 
phase shift of 1 5~ . This ideal 
characteristic cannot normally be realized 
in practice, and the present article deals 
with some more realistic techniques. 

THE 33d8/decade (IOdB/octave) attenu
ation rate of Bode's Ideal characteristic, 
which must be produced by minimum
phase-shift networks, is assumed to 
continue to indefinitely high frequen
cies. In practical multistage amplifiers 
this cannot be achieved, for the attenu
ation rate at very high frequencies is 
determined by unavoidable shunt 
capacitances and by transistor charac
teristics. Thus in the absence of circuit 
elements added for controlling the 
loop-gain attenuation, it will typically 
be as shown by curve l in Fig. I. With 
suitable elements added within the for. 
ward path of the amplifier circuit, a 
close approximation to the Bode Ideal 
characteristic may be obtained up to a 
certain high frequency, but above this 
frequency, as shown by the full-line 
curve 2, the response inevitably follows 
curve 1. However, provided the 33dB/ 
decade slope is continued for a suf
ficient number of dB, marked x, below 
unit loop gain, the resultant phase mar
gin will not be very significantly 
reduced below 30°. Bode showed that in 
these practical cirumstances, the de
sired 30° margin can be retained, 
together with the advantage of starting 
the loop-gain attattenuation at a 
somewhat higher frequency, by adop
ting the characteristic shown in curve 3. 
The flat portion between P and Q delays 
the onset of further phase lag until the 
loop again is well below unity. This and 
related topics are discussed in much 
greater detail in Bode's book1• It should 
be noted that the definitions or phase 
and gain margins used by Bode are 
different from those illustrated in Fig. 7 
of my May 1978 article. Bode takes the 
phase margin as applying at a loop gain 
whicl1 is below unity by the quoted 
gain•margln figure, usually 9d8. The 
definition I have given is also in wide-

spread use2·J.4 and seems more con
venient for practical purposes. 

It is very rare in the practical design 
of feedback amplifiers, either for audio 
or for other purposes, for any great 
effort to be made to follow accurately 
the Bode or other similar precepts for 
achieving full feedback up to the maxi
mum possible frequency. Designs of this 
type tend to be complex and expensive, 
containing LCR networks to give the 
rapid drop in loop gain below the point 
A in Fig. I, and the flat between points P 
and Q, together with staggered tran
sitional-lag networks to give a close 
approximation to the 33d8/decade· 
slope. Such designs have sometimes 
been used in critical Post Office repeater 
amplifier circuits. 

The simplest stabilization technique 
is always to put in one dominant lag to 
attenuate the loop gain at 20dB/decade 
(6d.Btoctave), starting from a corner 
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Fig. I. Bode simple and modified 
loop-gain-attenuation characteristics. 
See text. 

Practical oppr0><1 mat,on 
lo Booe mocM,~ ideal 
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- 6o~---l---t',-d-•c-a-de_l_----~~~-

. Fig. 2. Dominant lag loop-gain
attenuation characteristics compared 
w/th Bode modified ideal See text. 

frequency which is sufficiently low to 
ensure that the loop gain is reduced to 
unity before the other Jags inevitably 
present at high frequencies have pro
duced too much further phase lag. In a 
multistage amplifier, the dominant lag 
is most straightforwardly , intro, 
duced simply by putting a sufficiently 
large capacitor across the first stage 
collector load. This will produce a loop 
gain characteristic such as that tepre
sented by curve A in Fig. 2. The techni
que is in all respects sub-optimum, and 
it is important to note that the curve 
remains below curve C, obtained with
out any stabilizing elements, even at 
very high frequencies. This is the in
evitable result of using any type of 
shunt stabilizing network, in the for
ward path of the amplifier. whose 
impedance becomes that of a capacitor 
at very high frequencies. The ultimate 
high-frequency asymptote position is 
lowered by m decibels, as shown in Fig. 
2, where: 

m = 20 log total shunt capacitance 
original shunt capacitance 

The introduction of any network 
which acts as a three-terminal 
potential-divider at very high frequen
cies will have a similar effect. 

Clearly, if we wish to attenuate the 
loop gain in a simple 20dB/decade 
manner, starting at the highest possible 
frequency, a characteristic such as that 
represented by curve Bin Fig. 2 must be 
aimed at. The simplest way to achieve 
this is to put a series combination of C 
and R across the first stage collector 
load. The transitional lag introduced by 
these elements is arranged to "flatten 
out" in the frequency region where the 
other lags come in, thus maintaining a 
fairly uniform rate of loop gain attenu
ation. 

So far a single overall feedback loop 
has been assumed, with stabilization by 
means of added passive Joop-gain
attenuating circuits within the forward 
path of the amplifier. Most modern 
amplifiers, however, incorporate local 
feedback loops as well as the main 
overall loop. Nyquist's criterion. in the 
simple form already given, is applicable 
to such multiple-loop amplifers only 1f 
the circuit remains stable when the 
overall feedback loop is broken. How-
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ever, it is possible, for example, to make 
amplifiers in which internal positive 
·feedback is employed to enhance the 
gain of part of the forward path, and 
such amplifiers may be unstable when 
the overall feedback loop is brokeq. An , · 
extension of Nyquist's criterion to cover 
such cases is described in Bede's book 1, 

but in many years of circuit design work 
involving diverse applications of feed
back, I have never had to maki: use of 
this more elaborate criterion. This is 
because: 

(a) Nearly all practical multiple-loop 
feedback systems employ only 
quite tame and stable local feed
back loops. 

(b) Even if the amplifier is unstable 
with the overall loop broken at the 
~-network, it is sometimes possible 
to break the loop at a different 
place, within the amplifier's for
ward path, leaving a stable system. 

Thus, in all normal circumstances, 
one merely uses the closed-loop res
ponse of each internal local-feedback 
''sub-amplifier" as an element con
tributing to the total forward-path res
ponse of the complete amplifier, 

Input 

NFB 

NF'B 

1 ( b) 

Fig. 3. Stabilizing arrangements in the 
.feedback arm of an amplifier. In 
non-audio amplifiers a low value 
capacitor C, in (a), can be added to 
improve the phase margin and give a 
better damped step response. In audio 
amplifiers C may be much larger, 
giving a substantial reduction in the 
bandwidth of the amplifier above 
audio frequencies .. A1Tangement (b) is 
a double-phase-advance network. 

arranging matters so that the ordinary 
Nyquist stability criterion is satisfied for 
the overall loop. 

The advantages of using local feed
back; rather than purely passive net• 
works, to tailor the internal responses of 
a feed-back amplifier, are often very 
great. One reason is that the local feed• 
back, if applied in enlightened ways, can 
be exploited, like overall feedback, to 
reduce non-linearity distortion. An
other reason is that local feedback 
provides a means for modifying the 
input and output impedances of in
dividual stages so that they may be 
connected together with little interac
tion5·6. These matters will be considered 
in greater detail in later articles. 

Stabilizing elements in the 
feedback arm 
It has been implied so far that ~ is 
frequency-independent and that all 
modification of the loop-gain
attenuation characteristic to secure 
good stability is done in the forward 
path of the amplifier. There are usually 
advantages, however, in including one 
or more stabilizing elements in the 
feedback ann, but just what constitutes 
an optimum design depends upon many 

t 
I 

Fig 4. Typical total step response for 
an audio amplifier having an 
arrangement as in Fig. 3 (a), with a 
substantial value of C, and a small 
stability margin. 

Fig. S. Nyquist diagram illustrating 
that, for points on the curve in the · 
region of (1, 0), the phasor OP becomes 
much longer than the phasor PQ, 
so that the gain with feedback 
considerably exceeds 11 f:I and as the 
frequency increases the gain rises to a 
peak value and then falls off. 

11 
factors, and particularly upon the 
application for which the amplifier ls 
being designed. 

In feedback amplifiers for some non
audio purposes, the aim is to achieve the 
widest possible bandwidth of flat res• 
ponse, and in such cases the ~-arm must 
have a flat response up to about the 
unity-loop"..gain frequency. Even then it 
is often advantageous to add a capacitor 
of quite small value across the feedback 
resistor as shown in Fig. 3(a), sufficient 
to cause a little phase advance around 
the unity-loop-gain frequency and a 
reduction in the rate of attenuation of 
loop gain at frequencies above this. This 
will improve the phase margin and give. 
a better-damped step response. 

In an audio amplifier, on the other 
hand, if other conditions permit, there is 
no reason why C in Fig.3(a) should not 
be made much larger, giving a substan• 
tial reduction in the bandwidth of the 
amplifier above audio frequencies. The 
use of a more complex double-phase
advance network as show in Fig. 3(b) is 
also a possibility. In general, if the very 
lowest distortion up to the highest pos
sible frequency is the requirement, the 
forward gain should be attenuated as 
little as possible and the required 
gradualness of loop-gain attenuation 
achieved as far as can be managed by 
arranging for the value of p to increase 
with rising frequency. Such designs are 
liable to have a very high frequency of 
unity loop gain, however, and it is 
necessary to take particular care over 
layout and the effects of tolerances in 
transistor parameters. 

A feature of audio amplifiers 
stabilized on the Fig. 3(a) basis, with a 
substantial value of C, is that the step 
response becomes quite rounded. If, at 
th~ same time, the stability margins are 
rather small, th~ total step response is 
liable to be of the type shown in Fig. 4. 

Very often the rapidly-increasing rate 
of attenuation of the forward gain at 
very high fr.equencies, wit'1 an accom
panying large phase lag, prevents the 
possibility of carrying the technique of 
stabilization by manipulating the 13-
network very far, but from a distortion 
point of view it has everything in its 
favour. 

Circles of constant gain rise 
The gain of a feedback amplifier is: 

which may be written as: 

=_(}/~) X --- ... (l) 

Consider now the part of a Nyquist 
diagram shown in Fig. 5. It is clear that 
for points on the Nyquist curve in the 
region of the point (I, 0 ), the A/3 phasor 
OP becomes much longer than the 
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(I-Af3) phasor PQ, so that, from (I), the 
gain with feedback then considerably 
exceeds 1113, Thus as the frequency 
increases and the. point P moves down 
from the top of the Nyquist curve, the 
gain rises to a peak value and then falls 
off. 

One may draw a se[ of curves on such 
a Nyquist diagram, each curve being for 
a constant ratio of OP to PQ. The 
simplest of these is a straight line 
through the point (1/2, 0), and if P lies 
anywhere on this line, OP=PQ and the 
gain with feedback is then exactly 1113. 

Consider now the curve for OP = 2PQ, 
i.e. a 6dB gain rise above 1/13. To deter
mine this curve is a typical school 
geometry problem-"what is the locus 
of a point P such that OP= 2PQ every
where on the curve?" . The locus turns 
out to be a circle, centre {4/3, 0) and 
radius 2/3. For other ratios of OP to PQ, 
the locii are all circles of various radii 
and centre positions, as shown in Fig. 6. 
Note that the radial scale in· this dia
gram is a linear one, not a decibel scale 
as sometimes used. This is quite satis
factory since only a small part of the 
complete Nyquist diagram has to be 
drawn. 

Given the loop gain and phase infor• 
mation for an amplifier, the relevant 
part of its Nyquist diagram may be 
quickly sketched in on Fig. 6, and the 
magnitude of the high-frequency peak 
thereby deduced. For the Nyquist dia
gram shown in broken line as an 
example, the closed-loop response will 
be +3dB with respect to l/jl at f1, will 
reach a maximum of +9dB at f2 , and 
will be -6dB at f 3, etc. If the B-network 
does not have a flat response at these 
frequen,cies, due allowance r>1usl be 
made for this in deducing the overall 
closed-loop response, since the diagram 
only gives response variations with 
respect to 1/~. 

Mere inspection of the Fig. 6 circles 
gives one a pretty shrewd idea of the 
sort of phase margins to aim at for 
various types of amplifier application, 
bearing in mind that the step response is 
in practice fairly closely related to the 
degree of high-frequency response 
peaking - see Fig. 2 of the May 1978 
article. 

Maximum phase shift for 
transitional-lag circuit 

In controlling the rate of attenuation of 
loop gain in feedback amplifiers, 
frequent use is made of transitional-lag 
circuits having one or other of the con
figurations shown in Fig. 7. The circuits 
are, of course, equivalent, since the 
combination of R1 and 11,. in Fig. 7(a) 
may be replaced by a voltage source 
I;nR 1 acting In series with R 1• The 
circuits give no phase lag at zero or 
Infinite frequencies , but contribute a 
phase lag Which reaches a maximum 
value at the geometric mean of the two 
corner frequencies given in the table on 
page 44 of the March 1978 issue. the 
larger ttte tatio of R1 to R2 the larger is 

Fig, 6. Nyquist diagram with 
circles of constant gain change with 
respect to I/fl. 

¥out 

lb) 

Flg.1, Transitional lag circuits. Both 
circuits are equivalent and give 110 

phase lag at zero or infinite 
frequencies, but contribute a phase lag 
which reaches a maximum value at the 
geometric mean of the two 'comer' 
frequencies. See text. 

the step in attenuation between very 
low and very high frequencies and the 
more nearly does the maximum phase 
lag approach 90° . Fig. 8 gives the 
relationship between the step mag
nitude in decibels and the maximum 
phase shift. and has been found useful 
for some design purposes. The graph 
may also be applied to the correspon
ding phase-lead networks sometimes 
used in the low-frequency stabilization 
of a.c.-coupled amplifiers. 

Amplifier with ottly two lags 
A particularly simple case is that of an 
amplifier having only two significant 
lags, of time-consitants T1 and T,. In the 
forward path, and a frequehcy-
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Fig. 8. Characteristic for simple 
transitional lag or lead circuits. 

independent !}-network. If the low
frequency loop gain is large, then, to 
avoid a large high-frequency peak in the 
closed-loop response, T1 and T2 must be 
made very unequal, so that most of the 
loop-gain attenuation is done by the 
larger time constant without too much 
additional phase lag from the smaller 
one. A set of universal curves for this 
situation, calculated many years ago 
a·nd recently reche<:ked, Is given in Fig. 
9. Knowing the low-frequency loop 
gain, the required raticl of time con
stants to give a specified magnitude of 
high-frequency peak in the re!ponse 
may be immediately obtained. As with 
Fig. 8, this data may also be applied to 
the corresponding low-frequency pro
blem In an amplifier having two a.t.: 
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coupling time constants in the forward 
path. 

Addition of small time constants 
In many practical cases where a feed
back amplifier is stabilized by the 
dominant Jag technique, there will be 
one large lag plus several significant 
smaller lags. These smaller lags can 
often be satisfactorily considered as 
approximately equivalent to one lag of 
time constant equal to the sum of the 
individual small time constants. Some 
calculations relating to this are pre
sented in graphical form in Fig. 10. It 
will be seen that provided the total lag 
introduced by the small time constants 
does not exceecl about 40°, there is no 
great error in the calculated phase angle 
if they are taken as equivalent to a 
single lag of time constant equal to their 
sum. This procedure is very satisfactory 
for amplifiers having large phase mar
gins such as 50°, and is a useful guide to 
approximate values, as a basis for ex
perimentation, even when smaller 
phase margins are used. In this way the 
infonnation of Fig. 9 may be used to· 
some extent even when there are 
actually more than two time constants. 
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Flg.9. Curves relating to amplifier with 
only two lags, or leads, in forward path, 
and a frequency ~independent 
~-network. 
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Audio polNer a111plifier design - 5 
Negative feedback and non-linearity distortion 

Why does the low note contain the sound of the high note? - ARISTOTLE 

by PeterJ. Baxandall, B.Sc. (Eng), F.LE.E .. F.I .E.R.E . 

The July article in the present series 
concluded the treatment of the basic 
techniques for achieving feedback-loop 
stability . Attention will now be given to 
the effects of negative feedback on 
non-linearity distortion, and it will be 
shown that some of the ideas involved 
are more subtle than is sometimes 
appre<:iated . 

THE following treatment, which has 
gradually become clarified and ex• 
tended in scope over a period of many 
years, will, it is hoped, enable the reader 
to see what the answers to questions 
such as the following should be: 
(a) Is it a valid criticism of the use of 
large amounts of negative feedback 
that it converts moderate amounts of 
low-order harmonic and intermodula
tion distortion into a multitude .of 
small-amplitude distortion products of 
high order, which may be subjectively 
more significant? 
(b) Is it always desirable to design a 
feedback audio amplifier to have a 
nearly-level audio-frequency response 
before feedback is applied? 
(c) Does plenty of feedback at medium 
audio frequencies, assuming there are 
.no slew-rate or other overload effects, 
necessarily ensure that two or more 
signal components near the top of the 
audio band will give rise to negligible 
intermodulation products at medium 
frequencies? 
(d) Is it important for an audio amplifier 
to give low distortion when signals at 
frequencies lying outside the audio 
band are fed into it? 

Obviously, in many amplifier circuits, 
owing to the presence of capacitors or 
transformers, or because of insufficient 
bandwidth in transistors, frequency
dependent effects will have to be in
voked when considering distortion 
mechanisms. In some practical audio 
circuits, however, such effects may be 
negligible. The following treatment will 
initially assume no significant 
frequency-dependence, and will provide 
a foundation of theoretical under
standing which may later be extended 
to include the influence of frequency. 

Amplifier with parabolic transfer 
characteristic 
Consider the basic feedback amplifier 
configuration shown in Fig. J. The volt
age symbols represent instantaneous 
voltages, and each polarity marked is 

that which exists when the correspond
ing symbol has an instantaneously 
oositive value. For the feedback to be 
negative, either A or ~ must be negative. 
(For a defence of the sign convention 
adopted, see page 41 of the March 1978 
issue.) For present purposes it will be 
convenient to take A as being positive, 
so that p will be negative. 

The simplest form of non-linearity to 
consider is that in which the transfer 
characteristic of the amplifying device, 
i.e. the graph. of instantaneous output 
voltage (or current) against instant
aneous input voltage (or current), de
parts from being a straight line only 
because of the presence of a square-law 
term in the corresponding equation•. 
Thus, referring to Fig. I, let 

v""1=Av' +a (Av'i (1) 
The graph of this equation is the 
transfer characteristic shown in Fig. 2. 
Plotted on this convenient basis, with 
equal scales on the two axes, the 45° 
broken line represents the slope at the 
origin, the actual characteristic depart
ing from the ideal straight line by the 
amount a (Av') 2 as shown. Because 
equation (1) is a quadratic equation, 
representing a parabola (of which only 
part is drawn in Fig. 2), the graph is 
sometimes called a quadratic transfer 
characteristic. 

If there is no feedback in the Fig. I 
circuit (fl=O), v' becomes equal to v1,. 

and the complete circuit then has a 
transfer characteristic equation as in (l) 
but with V;n written for v'. Suppose now 
that vin is a sine-wave signal given by 

v in = \/ ,nsin wt (2) 

S~bstituting this for v' in equation (I) 
gives 

A . 2 ,i, _2_. 

Vou1 =AV ,,,smwt + oA V '" o1m 2wt (3) 

(No feedback) 

The first term represents the wanted 
fundamental output, the other term 

• It is tempting to call this equation the 'transfer 
function', bu\ this usa11,e !• better avoided because 
the term has an almost universally accepted 
meaning in a somewhat different conto,xt , as 
explained in the March 1978 article. It is thus better 
10 refer simply to 'the equation of the transfer 
characteristic'. · 

representing the second-harmonic 
distortion because 

sin 2wt = 1h-1hcos2wt (4) 

This elementary trigonometry formula 
may be illustrated graphically as in Fig. 
3. (I trust that those readers highly 
familiar with such elementary ideas will 
bear with me until more interesting 
topics are reached - I have assumed 
that some readers will welcome a rather 
slow .and basic approach.) 
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V -r 
Fl1, I Basic feedback-amplifier con
figuration. 

"'out 

, 

.,~oc(A-v')2 
'-r•' 

,,.,/~ 

Av ' 

Fig. 2 Simple parabolic, or quadratic, 
transfer characteristic. o. is a constant 
determining the degree of non-linearity, 
and A and V' are as in Fig. J. 
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Fl&, 3 Wavefonns illustrating a basic 
trigonometry fonnula. 
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If (<4) is substituted for sin2wt in (3), it 
will be seen that the magnitude of the 
second-harmonic output voltage com
ponent is given by 

_v2nc1=½«A~ vi,,2 (s> 
(No feedback) 

The magnitude of the fundamental out
put is given by 

◊fMnd""A ◊;n 
(No feedback) 

(6) 

Dividing (5) by (6) and multiplying by 
100 gives the percentage second
harmonic distortion as 

" %2nd..,½oA V;nX 100 (7) 
(No feedback) 

Thu~ from (5) and (7), the absolute 
magnitude of the second-harmonic 
output voltage is proportional to the 
square of the input (or fundamental 
output) voltage, whereas the percent
age second-harmonic distortion is lin
early proportional to the input voltage 
itself. This is a property of any circuit or 
device in which square-law distortion is 
dominant. (It may here be mentioned 
that a statement such as "the distortion 
is proportional t.o the square of the 
output voltage" is really quite 
ambiguous, for "the distortion" can be 
taken to mean either "the distortion 
voltage" or "the percentage distortion". 
This ambiguity often appears in the 
literature and sometimes causes very 
real confusion. A plea is therefore made 
to authors to say what they mean!) 

The problem now to be considered is 
the effect on distortion of making B 
finite in Fig. l, i.e. applying negative 
feedback, still assuming a parabolic 
transfer characteristic for the basic 
amplifier . This problem may be 
approached from several different 
angles, and, as is often the case, adop
ting more than one viewpoint is helpful 
in providing a more complete 
understanding of the principles in
volved. 

First of all it is possible to construct, 
point by point, a graph of v 0 u, against v;~ 
with feedback operative. and to show 
that it is much more nearly linear than 
without feedback. To do this, a particu
lar value of v' is taken, and from equa
tion (l), assuming A (the gain for very 
small signals) is known, Vour is calcu
lated. Then PvoMt is determined. Finally, 
with due care over signs, v;" is obtained 
from the relationship 

(8) 

A little thought will show that as the 
magnitude of A or ~ is increased, the 
resultant transfer characteristic be
comes more and more nearly a perfect 
str:aight line. With very large A or p, v,n 
becomes enormously greater than v', 
and the overall gain is then. given very 
nearl.yby 

Fig. 4 Ideal parabolic characteristic for 
f.e.t. 

Vou1lv;n=-l/P (9) 

(Infinite feedback) 

The change from a parabolic transfer 
characteristic to a straight line as the 
loop gain is increased from zero to 
infinity is a smooth and gradual process. 
All the intermediate transfer character
istics are absolutely smooth curves. 
quite free from any suggestion of kinks 
or other blemishes. But is each one still a 
parabola, of lesser curvature? 
_ The answer to the above very 
important question is "no'', and an in
dication that this must be so can be 
obtained without actually working out 
the equation of the new transfer cha
racteristic. Start with 13 = 0 (no feed
back). With a sine-wave input at 
frequency f, the output will contain 
components at f and 2f. As soon as ~ is 
m.ade finite, some of the 2f component 
will be let through into the input circuit, 
so that the basic amplifier will now be 
receiving inputs at f and 2f. 

Now any device with a parabolic, or 
quadratic, transfer characteristic, when 
fed with two inputs at different 
frequencies, generates intermodulation 
products at the sum and difference 
frequencies - and the sum frequency in 
the present case is 3f. (This arises from 
the fact that (sinw 1t + sini.: 2t)

2 gives a 
term 2sinw 1tsinw 2t which is equal to 
cos(w,-w,)t - cos(w, + ..:Jt.) 
Thus, while the amplifier without 
negative feedback gives nothing but 
second-harmonic distortion on a single 
sine-wave input, as soon as a little feed
back is applied, a third-harmonic output 
appears. This is not the end of the story, 
however, for this third harmonic, like 
the second harmonic, gets fed via the 
Ii-network into the input circuit, where 
sum and difference products are again 
generated. This time the sum products 
are at f + 3f, which gives a fourth har
monic, and 2f + 3f, which gives a fifth 
harmonic. Clearly there is theoretically 
no end to this process - every new 
harmonic considered, when fed back, 
gives rise to harmonics of yet higher 
order. Before too hastily condemning 

WIRElfSS WORLD. DECEMBER 1978 

feedback, however, it is wise to consider 
the magnitude of these effects, and also 
to question whether assuming a purely 
parabolic transfer characteristic is suf
ficiently closely related to the behaviour 
of practical devices to be of much value. 
Maybe they already produce compar
able amounts of high-order harmonics 
before feedback is applied? It is evident 
that a fully satisfactory understanding 
of the problem can best be reached by a 
combination of theory and experiment. 

Before presenting experimen ta! 
results for comparison, the theory of 
feedback over an ideal parabolic device 
will be pursued· further, to obtain the 
actual magnitudes of the various har
monics generated. The full analysis is 
somewhat tedious, but an outline of the 
approach adopted is as follows. The aim 
is to obtain an expression for the 
closed-loop transfer characteristic in 
the form of a power series 

(IO) 

A 

Then V;n= V;nsinwt is p.it in this and the 
resultant harmonic magnitudes are 
obtained. To obtain the power series, 
the starting point is equation (8), the 
value of v' there given being substituted 
in equation (1). This produces a quad
ratic equation relating v ;n and v 0"1 which 
can be solved to give v 0 .. 1 as a direct 
function of V;,,. The function, however, 
contains a square-root sign and is not in 
itself a power series. The binomial 
theorem is then used to obtain the 
wanted power series. Substituting 
v,n = V;,,sinwt in this series gives terms in 
sinwt, sin 2wt, sin 3wt etc. As illustrated in 
Fig. 3, sin 2wt produces second harmonic 
a?d elementary extension of this prin: 
c1ple shows that the sin 3wt term pro
duces third harmonic. t and so on. The 
various harmonic amplitudes are thus 
obtained as functions of the peak input 
voltage, V,,,. More conveniently, how
ever, for practical purposes, the har
monic magnitudes are expressed as 
functions of V ou~ on a percentage basis. 
This is preferable, because in assessing 
the performance of a feedback 
amplifier, one is interested in the per
centages of the various harmonics pre
sent at known output levels .- and how 
these vary with the amount of negative 
feedback used. The results of the ana
lysis are given in Table l. a is the 
"distortion constant" of equation (I), A 
is the amplifier forward gain for very 
small signal levels, and ~ is the feedback 
factor. 
It is instructive to plot curves from the 
Table 1 formulae and to see how they 
compare with curves based on meas
urements using an approximately 

r. srme third-harmonic is also produced by the 
sm ...,, term, but in view of the much smaller 
magnitude of this contribution ekcept at signal 
levels approaching the overload point , it may 
reasonably be neglected. The output level used in 
lhc tests is just low enough to avoid serious errors 
from this cause. 
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Table I. Theoretic distortion formulae for feedback amplifier with parabolic forward transfer 
characteristic. 

Hannonk Per<?enta1e of 
number fundamental 

51Ja~ OU ! 

2 ---
1-A/l 

50:A ~ I"-:ly .,,,.2 
3 -

(l-A/l) 

4 
62.50A 'p 1113¢ 0. ,' 

(I-A(!) ' 

5 
87.50•A "p~.-. ~ •••• --

(I-A~)• 

131.25A ~\,~""' 
! 

6 ·- ----- -,---
(l-A~) 

quadratic device such as an f.e.t. Now it 
wm be noticed that the product a◊ oub 

raised to various powers, occurs 
throughout the formulae, and a value 
for this must be decided upon before a 
set of curves, such as those shown in 
Fig . 7, can be drawn . A convenient 
procedure is to choose the value of o: so 
that the theoretical percentage second
harmonic distortion without feedback, 
given by the Table 1 formula as 500: ◊ oub 

is the same as the measured secoJ:ld
harmonic distortion at the value of V 001 · 

adopted. This effectively matches the 
value of a to that of the practical circuit, 
and is more convenient than deter
mining a by other means. 

F.e.t. characteristics 
Most text books give the following 
equation for the drain current, 111, of an 
f.e.t. whose drain-to-source voltage. V.., 
is well in excess of pinch-off voltage, V" 

[ 
Vs• 12 

I.i=ld., VP - l (11) 

This is a parabolic relationship, as il
lustrated in Fig. 4, and from the 
geometry of this diagram it follows that 

21 d11 
gmo"'V-

1' 

(12) 

An f.e.t. would therefore appear to be 
the ideal parabolic device for checking 
the distortion theory evolved above. 

However, several years ago, it struck 
me that there would be something 
rather queer about a device if it accu
rately followed a law as given by equa
tion ( 11 ), the reasoning being as follows. 
Differentiating (l l) gives 

g = did =2Idox[ ~::.. _ 11 
"" dY g., Yr Yr 

(13) 

But from (11) 

V ~• -1 = rr:i-· 
V r ,Jr:, 

and substituting this in (13) leads to 

g ,.,'!_!.!!_o ~ 
"' VP -J,:;;; 

Rado of harmonic 
amplitude. 

Harmonic,, Ratio 

1-Afl 
2nd : 3rd 1 

x~ 

3rd , 4th 0.800 .. .. 

4th : 5th 0 .714 .. .. 

5th : 6th 0.667 " " 

Finally, using the relationship (12), this 
becomes 

Jr;; (14) g.,=g..,. -1-
do 

According to this equation, as the work• 
ing drain current Id is reduced, gm falls 
off in proportion to the square root of Id. 
Now for a junction transistor gm varies 
with collector current le according to 
the relationship 

(15) 

where q • charge of an electron, 
k = Boltzmann's constant , and 
T = absolute temperature. 

Here gm is proportional not to the 
square root of the collector current, but 
to the collector current itself, and with 
silicon planar transistors the relation
ship holds accurately in practice down 
to currents of less than a nanoamp. 
Thus, while an f.e.t. will normally have a 
lower g than a junction transistor at, 
say, ImA, the more gradual fall-off in Bm 
with working current for the f.e.t . 
would, if continued, give it a much 
larger gm than a junction transistor 
when operated at a low enough current. 
In view of the very basic quantities 
involved in equation (15), I felt this 
result was probably too good to be true! 
A measurement of gm for an f.e.t. over a 
wide range of drain current was there
fore made, and gave the result shown in 
Fig. 5. Thus it seems that a law of nature 
does indeed come into action to prevent 
the g,,, of an f.e.t. exceedin~ that of a 
junction transistor. It will be seen that 
the steeper broken-line asymptote is 
fairly closely that expected for a jiJn~
tion transistor, and would, if continued 
to the right, give a gm of nearly 40mA/V 
at lmA. 

Because of the above discrepancy 
between the usual text-book equation 
(l l) and what is found to happen in 
practice, if for no other reason, one 
would not expect the transfer chracter-

. istic, corresponding to Fig. 4, for an 

.. 
actual f .e .t .. to be quite precisely 
parabolic. Consequently, even without 
negative feedback, harmonic com. 
ponents in addition to second harmonic 
must be expected to appear to some 
extent. 

However, despite the above, the 
assumption that the transfer character
istic for an f.e.t. is as given by equation 
(11) is quite near enough to the mark to , 
permit the magnitude of the second
harmonic distortion without feedback 
to be fairly accurately calculated -
provided the working current is not 
excessively small (see Fig. 5). It may be 
deduced from equation (l I) that 

-- f 
%2nd= 12.5--c-=--

1 de 

(16) 

(f.e.t. without feedback) 
where I is the peak fundamental drain
current excursion and I de is the working 
d.c. drain current. 

Equation (16) may be compared ~ith 
the result for an ideal voltage-driven 
junction transistor, which is 

" I 
%2nd= 2~

1 
(17) 

de 

(Junction transistor without feedba~k) 
In th is latter case an alternative 
formula ' 2is 

%2nd=Vin (18) 
where V;n is the peak signal input vol• 

. t·--

-+ · 

•-i ... , ... ~ 

fJ 
'011--....L-------~-~ 

102 10
1 

I 10 d ·103 

DRAIN C\JRRENT, ld (;,AJ 

Fig, 5 Measured mutual-conductance 
characteristic for an f. e. t. 

Fi&, 8 Test circuit for 
harmonic-distortion measurements . 
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tage in millivolts. But no such delight
fully simple result applies to the f.e.t. 

F .e.t test circuit 
The experimental circuit used for 
distortion measurements on an f.e.t. 
amplifier stage, with and without 
negative feedback, is shown in Fig. 6. 
No very expensive measuring equip
ment was used. The lOOOHz signal 
source consisted of a home-made low
distortion R-C oscillator feeding a Quad 
50E amplifier, an air-cored tuned circuit 
purifying arrangement being connected 
to its floating output winding. The ana
lyser system consisted of a parallel-T 
IOOOHz notch filter, whose output fed 
an R·C oscillator modified to function 
as a very highly selective amplifier 
feeding a c.r.o. For all measurements 
except second-harmonic. a passive 
notch circuit tuned to the second
harmonic frequency was inserted in 

· front of the selective amplifier. Having 
.tuned in a particular harmonic, the 
analyser system input was then 
switched to another oscillator, at the 
harmonic frequency, the known output· 
of this oscillator being adjusted to give 
the same size of c.r.o. picture as before. 
With due care to avoid r.f. interference 
and hum problems, this set-up was both 
highly sensitive and of satisfactory 
accuracy. A test was done in which the 
signal source, at an enhanced level, was 
fed via a 3.3k0 resistor straight to the 
integrated-circuit follower. The har
monic readings at the output of either 
integrated circuit, as the same fun• 
damental voltage as before, were then 
negligible compared with those 
obtained with the f.e.t. in operation. 

Consideration of results 
Fig. 7 shows, in full-line, the results of 
measurements using the Fig. 6 circuit, 
the chain-dotted curves being calcu
lated from the formulae in Table I. All 
curves relate to a fundamental output 
voltage of 3 volts peak. (A convenient 
fact is that, even with a large second
harmonic present, the peak value of the 
fundamental is accurately equal to half 
the peak-to-peak value of the total out
put waveform.) 
-·tfie mean drain current in Fig. 6 is 

l.55mA. The a.c. drain load is 3.2k0, 
giving· a peak fundamental drain cur
rent, at 3 volts peak, of 0.94mA. Equa• 
tion (16) above thus predicts a pe-.-cen• 
tage second-harmonic distortion with
out feedback of I 2. 5 x (0. 9411.55) -
7.6%. It will be seen that the measured 
value is very close to this. As expected, 
however, the f.e.t. without feedback 
shows itself to be by no means Ideally 
parabolic in transfer characteristic, so 
that appreciable amounts of higher
order harmonics are measured -
though the largest of the!je, the third: 
harmonic, is only 0.19% despite the quite 
large output level. 

·when feedback is applied, the mag
nitude of the measured third harmonic, 
conveniently.expressed as a percentage 

100 0 

F...-.;lame~tal 

I 
I 

10 ,-
-40 

, / I I- / ID 
z 0 1 ~ 
0 

~ ;:: 
a: 
0 

,. 
a: ,_ 
$1 V) 

0 V) 

0-01 5 

0,001 

0-0001 L.. ............ ~ ....... --.... ~ 

r-~~01 ~ ~ ~ 
L~P.•~ "' , Go,n w,t~ le~ J 

dB • o1 ! eed back GOlin w,t~O<J t !ee<l ~ ac k 

Fla- 7 The full-line curves represent 
distortion measurements using the Fig. 
6 set-up. The chain-dotted curves relate 
to calculated-distortion, o:1s1nning an 
ideal parabolic f.e.t. characteristic as 
shown in Fig. 4. All curves are for a 
fundamental output level of 3V peak. 

of the constant fundamental out.put, at 
first rises, as more and more second 
harmonic is fed back into the input 
circuit to intermodulate with the fun
damental voltage existing between gate 
and source and thus generate a sum 
component at third-harmonic 
frequency. As the feedback is further 
increased, the resulting improved 
linearity of the amplifier soon becomes 
the dominating influence and, when the 
amount of feedback is large, the third
h a rmon ic output (at constant fun
damental output) becomes directly 
proportional to l/(l-Ajl). Similar 
effects occur also for the other bar• 
monies, and it will be seen that the 
measured distortions, when the feed
back is large, approximate closely to 
those calculated assuming a purely 
parabolic transfer characteristic. Thus, 
for an f.e.t. at least (though actually it 
applies also for a junction transistor), 
the main distortion mechanism for the 
production of third and higher har
monics, once plenty of feedback is 
applied, is the intermodulation one 
mentioned, rather than the existence of 
cubic and higher terms In the power 
series representing the transfer charac
teristic. 
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Conclusions 
Some important conclusions that may 
be drawn from the above are: 

• Even f.e.ts, used without feedback,· 
generate high-order harmonics - and 
therefore, on programme, high-order 
intermodulation products. 

• A small amount of negative feedback 
(e.g. 6dB) in a single-ended stage, 
though reducing the second-harmonic 
distortion, and also the total (un• 
weighted) distortion, by about 6dB, will 
increase the higher-order distortion, 
and the quality of reproduction may 
well become worse as judged subjec
tively. 

• If enough negative feedback is 
applied, all significant harmonics (and 
corresponding intermodulation pro
ducts) can be reduced to a far lower 
level than without feedback, though the 
amount of feedback required to achieve 
this becomes larger the higher the order 
of the harmonic considered. (For 
example, referring again to Fig. 7, 
16.5dB of feedback Is sufficient to 
reduce the third harmonic to the same 
level as it has without feedback, 
whereas about 35dB is required for 
reducing the sixth harmonic to its no
feedback level.) 

• The magnitude of harmonics of ex
tremely high order will be increased by 
the application of negative feedback, no 
matter what practical amount of feed
back is employed, but this is of no 
consequence if, when thus increased, 
they are, say, 120dB below the fun
damental. 

• Fig. 7, as already stated, applies at a 
particular output level of 3V peak in the 
Fig. 6 circuit, the peak drain current 
excursion being about 60% of the work• 
ing drain current - in other words, It Is 
high-level class A operation. When the 
signal level is reduced, the various har
monics fall off at different rates, as may 
be seen from Table 1. The percentage 
second-harmonic is proportional to V ""~ 
whereas the percentage fifth-harmonic, 
for example, is proportional to ◊ ou/ On 
a logarithmic plot, as in Fig. 7, the effect 
of reducing the output signal level is 
that all the curves remain of the same 
shape, but each curve shifts downwards 
by a distance proportional to (n-1), 
where n is the order of the harmonic, so 
that the spacing between the curves 
becomes wider. Thus at a reduced out
put level the higher-order harmonics 
rapidly become negligible. 

(fo be continued) 
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Audio povver an1plifier design - 6. 

More on negative feedback and non-linearity distortion - a continuation of part 5 

by P.-r J. B■xandall, B.Sc .(Eng .), F. I , E.E .. F.I.E.R. E. 

Pan 5 (December issue) discussed 1he 
theory of non-linearity distortion in an 
ideal feedback amplifier having a 
parabolic forward transfer characteristic. 
At~ention is now turned to distortion in 
circuits using ordinary junction 
transistors'. having exponential transfer 
characteristics. The concept of "inverse 
distortion" is introduced . leading to a 
useful distortion theorem . 

THE CIRCUIT USED for obtaining the 
experimental results presented below is 
shown in Fig. l and is the same as for the 
f.e.t. tests in Part 5, except for two small 
modifications. The lnF capacitor was 
found necessary to prevent high
frequency oscillation when full feed
back was applied, and the resistive 
attenuator in the base circuit was added 
to reduce loop gain, for convenience, to 
a similar range of values to that 
applying to the f.e.t. version of the 
circuit. The measured current gain (~oe 
or hFE of the transistor used was 580 at, 
an Ib of lµA. 

Throughout the measurements the• 
fundamental output voltage was kept 
constant at three volts peak, corres
ponding to a ratio of peak signal current 
to direct working current of 0.647 - the 
same conditions as for the f.e.t. tests in 
Part 5. The results are shown by the 
full-line curves in Fig. 2, and exhibit 
some fascinating features when 
compared with the earlier f.e.t . results. 
A great deal of thought, both of a for
mally analytical and also of a more 
intuitive type, has been devoted to 
trying to understand these features, and 
considerable en lighten men t has 
resulted. 

A junction transistor has the great 
virtue, at sufficiently low values of 
collector current, that it follows in 
practice, with high accuracy. the 
relationship 

QVbe 
·Ic•I0ex~ (1) 

where le is collector current, V be base-

• Sometimes called bipolar junction transistors or 
b.j.t. because 1heir operation involves both polar · 
ities bf charge ca1Tier. The usual type of f.e.t . is al,o 
a junction device, but it is unipolar bec•use only 
one polarity of charge carrier is involved. 

From !looting 

1kl-4Z 1ource 
tvery 10w 
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Peck fu nd0 m ento I 
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Fig, I. Circuit used for distortion measurements. 

to-emitter voltage, and the other sym
bols are constants . (The tendency 
always to regard junction transistors as 
current-operated devices, and the cur
rent gain as the basic parameter for 
design purposes, should be most 
strongly discouraged, in my opinion.) 

-A practical junction transistor would 
be expected to follow the above law 
much more closely than an f.e.t. would 
be expected to follow a parabolic law, so 
that there seemed good reason for 
thinking that the curious wiggles in the 
Fig. 2 curves might be theoretically 
explicable on the basis of equation I. 

Determining transfer 
characteristic 
For analysis the circuit may be sim
plified to that shown in Fig. 3, in which 
the transistor is assumed to follow 
equation I. It may be shown that the 
incremental signal input and output 
voltages of the circuit are related by 

where q is the electronic charge 
(1.60 x 10- 19 coulomb) k Boltzmann's 
constant (l.38X 10-2.1 joules/deg C) and 
T absolute temperature. To be able to 
calculate the harmonics in v u, when V; 0 

in equation 2 is put equal to ~insinwt, the 
relation must be expressed in the form 
of a power series: I 

You, •a 1Vin +a2V;n 
2 + 

03V;n 3 + 04V;n 4 + . , . (3) 
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Fig. 2. Measured and calculated results 
for the Fig. I circuit. 
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The values of the coefficients a 1, a 2, a 3 
etc may be found by using Maclaurin's 
theorem, which says 

a,=--[ 
dvout l 
dv1n ain-o 

I (d2
vnut l 02=-~ 

2! dv;,. vin•O 

I [d3voul l 03=-~ 
3! dv;. vin-o 

By successively differentiating equation 
2 and putting V;n = 0 in the resultant 
expressions, the coefficients may thus 
be determined. Unfortunately the 

ialgebra rapidly becomes cumbersome, 
and being no mathematician, I gave up 
after determining the first three coef
ficients, which are 

A 
01= 1-AP 

l q A 
02= 21 kT (l-A/3)3 

l {_Q r,. [ l 3iAl31 
03=F\kTrp-All <I-MW + 

31Af31 2 IAPIJ + 31A Pl 3iAPl 2 

(l-Al3)3 - (1-AW t1-Al3)5 

(4) 

(5) 

In these equations fl is positive and 
A= -gmRL, where g., is the transistor 
mutual conductance when v,.=v 0 u1 =0 
and the collector current is Ide· 

Determining the harmonics 
Knowing the value of vm ( = 1\.sin<..:t), as 
a function of the amount of feedback in 
use, for the output level of 3V peak 
adopted, the output harmonic mag
nitudes may be calculated from equa
tion 3 on the assumption that only the 
square-law term is responsible for the 
second harmonic and only the cubic 
term for the third harmonic. Because 
the output level is large, this simplifying 
assumption leads to appreciable, 
though not unduly gross, errors, and for 
better accuracy the production of some 
second harmonic due to the presence of 
a fourth-power term needs to be taken 
into account, etc. A t'airly high output 
level was adopted in the experiments to 
make the high -order harmonics suf
ficiently large for straightforward 
measurement, i.e. well over 0.0001%.) 

The calculated second and third
harmonic curves are shown chain
dotted in Fig. 2, and lie somewhat below 
the measured curves because of the 
above simplifying assumption. The rea
sons for other detailed differences will 
become apparent later on. 

In view of the + and - signs in front 
of the terms in equation 6, and on the 
supposition that the expressions for a •. 
a5 etc. will contain even more t!'!rms of 
both signs, one can at least say that it is 
hardlY. surprising that the measured 
curves for the higher-order harmonics 
in Fig. 2 are of a more complex type. 

+ 

Fig. 3. Simplified version of Fig. I with 
d.c. bias arrangements omitted. 

Alternative approach 
The method of an a!ysis presented above 
basically involves determining the 
transfer characteristic for the complete 
feedback amplifier, and then calcu 
lating the harmonic magnitudes when a 
sine-wave input is handled via this 
transfer characteristic. The shape of the 
overall transfer characteristic changes 
as the amount of feedback is altered, 
resulting in the observed variation in 
the magnitudes of the various har
monics. It should be emphasized that no 
intermodulation concept is involved in 
this approach when the input to the 
complete circuit is a single sine-wave 
signal. 

An alternative approach , which is 
very helpful in providing further in
sight, involves thinking simply in terms 
of the invariant transfer characteristic 
of the forward amplifying device. Inter
modulation effects then do have to be 
taken into account, for the forward 
amplifying device receives inputs from 
both the sine-wave input signal and also 
via the ~-network from the amplifier 
output, the last-mentioned contribution 
containing harmonics which inter
modulate with the fundamental and 
with each other. 

In particular, the second harmonic 
and fundamental intermodulate to pro
duce a component at third-harmonic 
frequency, and careful consideration of 
the waveform polarities involved shows 
that this third-harmonic component is 
in antiphase with that produced by 
straightforward third-harmonic distor
tion of the fundamental. The null in the 
curve for total third-harmonic distor
tion thus occurs when the amount or 
feedback is such as to make these 
oppositely-phased third-harmonic com
ponents of equal magnitude. The fact 
that in the measured third-harmonic 
curve, a minimum rather than a perfect 
null is observed, is believed to be be
cause slight phase errors in the ex
perimental circuit prevented the two
third-harmonic components from being 
exactly in antiphase. 

A further intermodulation effect is 
that the (undamental and third har
monic intermodulate to produce a 
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second-harmonic component which, 
though of considerably smaller mag
nitude than that produced by straight
forward second-harmonic distortion of 
the fundamental, nevertheless slightly 
modifies the shape of the second
harmonic curve. 

The percentage of second harmonic 
generated within the transistor, at con 
stant output, is proportional to the 
third-harmonic voltage fed back inta 
the base circuit, but the percentage 
output distortion is reduced (I-A 13) 
times relative to this by negative feed
back. For working conditions to the left 
of the null in the third•harmonic curve, 
this intermodulation-generated second 
·harmonic is in the same phase as that 
produced by straightforward second
harmonic distortion. Its magnitude at 
the amplifier output, with enough feed
back to bring the working point onto 
the approximately constant-slope part 
of the third-harmonic curve, is such as 
to I ift the position of the second
harmonic curve by a constant distance, 
and the calculated spacing is of the 
order shown. 

It is instructive to compare the Fig. 2 
curves with those of Fig. 7 in Part 5. 
There are two basic differences (a) the 
f.e.t. curves show no nulls or minima; 
and (b) the measured f.e .t. second
harmonic curve does not exhibit the 
departure from linearity evident in the 
Fig. 2 curve. The reason for (a) above is 
believed to be that, for the f.e.t. speci
men used, the harmonic-distortion
generated third-harmonic component 
was in phase, rather than in antiphase, 
with the component generated by in
termodulation. The high-order terms in 
the transfer characteristic for an f.e.t., 
unlike those for a junction transistor, 
seem to vary from one specimen to 
another - the one used for the Fig. 7 
(Part 5) results had been selected for 
low third harmonic. It may well be that 
some other speciments would give 
curves with nulls, but this has not been 
investigated. 

The reason for difference (b) above 
is simply that the signal level was too 
low to make the effect noticeable. 
Though the f.e.t . and the junction tran
sistor were both worked at the same 
ratio of peak signal to direct working 
current, the f.e.t., because of its dif
ferent type of transfer characteristic, 
gave less second-harmonic distortion in 
the absence of feed-back - see equa
tions 16 and 17 in Part 5. On turning up 
the signal level in the f.e.t. circuit for 4V 
rather ~han 3V peak output, an, 
appreciable departure of the second
harmonic curve from linearity was 
observed. 

High-feedback theory 
It is a characteristic of the Fig. i curves 
that al! their complex features disapp
ear when enough feedback is applied, 
and this fact suggests that maybe the 
high-feedback parts of the curves at the 
left could be calculated in a manner 
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devoid of the above complications. This 
indeed turns out to be the case, and it is 
thought that appreciation of this fact is 
of considerable engineering value. for in 
the majority of practical applications 
one is really only interested in the per
formance with plenty of feedback 
applied. 

Any amplifier, without feedback, can 
in principle be made to give a perfectly 
sinusoidal output voltage, at a specified 
level , by feeding an appropriately dis• 
tarted waveform to its input . With 
negative feedback applied. this same 
totally undistorted output voltage can 
be maintained if V,n (Fig. 4) is arranged 
to contain the necessary distorted error 
voltage, as above, plus some extra fun
damental to cancel the fundamental 
being injected negatively into the input 
circuit via the )J-network. (With undis• 
torted output, the feedback voltage is, 
of course, also perfectly sinusoidal.) 
Thus, as~ is increased, V,n has to supply 
a constant-amplitude harmonic spec
trum plus an increased amount of 
fundamental. The magnitude of the 
required fundamental input, for the 
specified constant output voltage V ou,, 

is given by the usual feedback formula. 

which for the present purpose is more 
conveniently arranged as 

1-All 
V,n = V out ---X-

Since the harmonic part of the input is 
quite constant, the percentage input 
distortion is inversely proportional to 
the amount of fundamental input volt
age. i.e. it is proportional at l /(I-Al~). 
and this applies at every harmonic 
frequency. It also applies whether the 
amount of feedback is large or small. 

It is thus seen that the distortion 
situation for a feedback amplifier is 
really very much simpler when viewed 
on this basis of percentage input distor
tion for a pure output, than when con
sidered on the more usual basis of the 
output distortion for a pure sinusoidal 
input. At this point the reader may well 
object that, while it may indeed be 
easier to consider the feed back 
mechanism on this basis, the concept is 
artificial ,ind not related ui the v.·ay 
amplifiers are used in practice . The 
utility of the approach, however. lies in 
the fact that, provided there is plenty of 
f eedbacll, the distortions become prac
tically identical whether expressed on a 
distorted-input/pure. output basis, or 
on the usual distorted-outputlpure
input basis. Th us if the percentage 
distortion with no feedback is calcu· 
lated on a pure·outputldistorted input 
basis - which turns out to be relatively 
easy - then the distortion with plenty of 
feedback applied, expressed in the cus
tomary manner, is equal to the just
mentioned no-feedback percentage 
divided by (l-Aj3), the output level 

being kept constant. This applies both 
to total harmonic distortion and also to 
all individual harmonics of practical 
significance , provided only that the 
amount of feedback is sufficiently large. 
For the working conditions relevant to 
Fig. 2, or Fig. 7 of Part 5, it is evident that 
20 to 26c1B of feedback would be "suf
ficiently large." 

It is now neces'sary to justify the 
statement that the distortion with 
plenty of feedback is practically the 
same whether expressed on a distorted
in pullpu re-out pu l basis, or on a 
distorted·outputlpure-input basis. With 
reference to Fig . 4, consider the state of 
affairs when V,n is of pure sine 
waveform, suitably adjusted in mag
nitude to maintain a constant output 
voltage no matter how much feedback 
there is. With no feedback, V' will be 
equal to V"' and will be sinusoidal, V""' 
being highly distorted. As the amount of 
feedback is increased, V ""' becomes' 
more and more nearly sinusoidal. which 
requires that the v· waveform must 
approximale mnre and more dosely 
to that specific highly·distorted 
waveform, characteristic of the parti
cular forward amplifier, which will 
make it deliver a perfectly sinusoidal 
output. The whole of the distortion in V' 
- call it V d,,, - is supplied from the 
I-I-network. since V;n is pure. When the 
amount of feedback is large, the fun
damental output from the /-!-network, 
injected into the input circuit, is very 
nearly equal in magnitude to V m· Hence 
the percentage distortion in the output 
from the [{-network, and therefore also 
in the amplifier output voltage, which 
feeds the [-! · network, is very nearly 
( VJ,., ; V'") x iou'\,. JI' now, with this 
large amount of feedback applied, a 
slight harmonic content is introduced 
into the V,.

1 
waveform so as to make the 

rmtrml perfect!:,' sinusoidal. neither the 
magnitude or V ,n· nor the harmonic 
content of the v· waveform, will change 
by more than a tiny amount , so that the 
distortion will sLill be given quite closely 
by ( V,1,,/ V,.,) x 100%. Thus the larger the 
amount of feedback. the more nearly 
does the percentage output distortion 
for pure input become equal to the 
percentage input distortion for pure 
output. 

Another argument to support the 
statement that the percentage distor
tions, with a large amount of feedback 
applied. are virtually the same when 
expressed on either basis mentioned 
above, is as follows . Referring to Fig. 4 
again, suppose V ,n contains the 
necessary harmonics to make V0 " 1 per
fectly sinusoidal. Now, with these input 
harmonics still present, imagine that we 
add a further set of input harmonics, 
each of equal magnitude to, and in 
antiphase with, the corresponding har
monic already there. The result will be 
to cancel all the input harmonics, but 
introduce harmonics into V o ut· If the 
harmonics thus introduced into V""' are 
simply the result of the faithful 
amplification of the additional set of 

v,n 

Error- voltoge V 1 

conll)mtng d1~tort1on 

Vd<St 

/3 

1/, 

Fig. 4 Busic fe'-'dback amplifier 
configuration. 
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vout 

harmonics fed in, then it follows that 
the percentage distortions must be the 
same whether considered on a distor
tionless input or a distortionless output 
basis . Whether this is nearly enough 
the case for practical purposes depends 
on how low is the intermodulation 
"distortion introduced by the complete 
feedback amplifier when fed with these 
small-amplitude additional input har
monics in the presence of a large fun
damental input, and clearly the more 
feedback there is, the less significant 
will be any "false harmonics" intro
duced by intermodulation - inter
modulation between the fundamental 
and the second harmonic might intro
duce some third harmonic, for example. 

Thus, once again, the conclusion is 
reached that, provided there is enough 
feedback, harmonic-distortion percen
tages will be very nearly the same 
whether expressed on the normal pure
input basis, or on the inverse basis of' 
input distortion for pure output. 

A distortion theorem 
'fbe ideas discussed above may be for
mu lated as a distortion theorem, appli
cable to total and to individual
harmonic distortion: 

"The percentage harmonic distortion 
in the output of an amplifier having a 
large amount of feedback and a sine
wave input, is very nearly equal to the 
percentage input distortion for distor
tion 1 ess output with out feedback, 
divided by ( 1-A ~)." 

The usefulness of this theorem is 
dependent on knowing the input 
distortion required to give distortionless 
output without feedback, for common 
amplifying devices and circuits, but 
fortunately the theory required is 
relatively simple. Such distortion can be 
termed "inverse distortion ." 

Junction transistor Inverse
distortion theory 
A simple single-ended junction
transistor stage will be considered first, 
the transistor being assumed to follow 
equation I. When V tie is such as to cause 
le to vary sinusoidally, 

(7) 
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in which V be has the appropriate special 
waveform which it is desired to find. 
When tsinwt passes instantaneously 
through zero 

qVdc 
I de= l 0 exp kT (8) 

where V de is the value of V be required to 
establish the mean collector current Ide 

in the absence of a signal input. Equa
tion 7 may be written 

1 ['dc+(sinwtl=_:ivh, 
og, 1

0 
hT 

from which may be derived 

kT[ r 1 . l V be= - log, -
1
dc + log,( I +---=-sm wt) (9) 

q " Ide 

But from equation 8, 

I qV 
log~=---dc 

e !" kT' 

so that equation 9 becomes 

hT f, . 
Y1,e=Vdc+-log.(l +-smwt) 

q !<1, 

We now use the fact that 

loge(! +x)=x-x~/2+x3 /3-x'1/4 + ... 

which leads to 

kT [ I ( j 1 Y1,e= Vdc+- -sinwt-% -) sin2,.;t 
q Ide I de . 

+h (_!_ 'j\in3=t~;/4 ( i__ 'j\in4wt + (10) 
Ide Vd,· 

Un the assumption that-i'/id~is ~ot so 
large that, for example, the second har
monic generated by the sin 4c.:t term is 
large enough to cause serious error, 
equation IO yields harmonic percentages. 
as given in the middle column of Table 

I. Since grn=q/<1,i/~T and l=g,,,\1,". we 
may replace f1 rd, by q V;" 1 k T At 290 K, 
which is approximately relevllnt to 
low-level stages at least, kTiq is 25mV. 
These facts enable the results in the 
right·hand column of Table I to be 
calculated. 
Table 1. Theoretical input dlstonion per
cenuig .. for pur■ sinu,oid■ I output from 
ide■I jurtetion transistor without feedbitek. 

Harmonic Di•tor1ion Di•ior1ion t % ), 

number % a ltarnative fo rrn ulae 
for 290K 4 V ,., in mV) 

2 '251.T1,,) V, 

3 8 33(f l.,J· I 33 " 10 -·v _. 
4 3 1 Jit°I,,.): 2 on X 10 

-Lvl•.i 

5 1 2S1// l,J·· 3 20 X 10 
l•v•II.( 

6 D 5J11i-1,,/' 5 :u X II) 
H.,.,,11,_ 

V,, 

Comparison with "normal" 
distortion 
It is instructive to compare the Table I 
results with those giving the output 
distortion for an ideal sine-wave
driven junction transistor without 
feedbac.k. Referring to equation I, put 
V, •. ; 1·,,, + 0,,,sim .. -1. where V d< is a direct 
bias voltage. This leads to 

ie qY,nsinwt I - =expl-'--=--- -
fdc 11:T 

(II) 

where i0 is the instantaneous signal 
component of collector current and Ide 
the collector current when Y;nsinwt ... 0. 
This time the required matematical fact 
is that 

which gives 

+- - V 3sin 3wt 1 (q ')3'" 
6 hT ,n 

(12} 

The harmonic percentages may then be 
evaluated on the same basis as for Table 
I, as functions of both Y;n and r /Ide• 
since 

A 1 RT 
Vm=-X-

fde Q 

Substitutin,z this in equation 12 gives 

.... " 
-=-smc.:t +- - sm wt+ i,. I . I ( I j' i . 2 

Ide Ide · 2 Id 

-
6
1 (J_ 'j\i n :ic.:t + 

2
~ ( 

1 
'j\in 4wt + 

Ide 4 Ide 
. . (13) 

From equations 12 and 13 have been 
calculated the results given in Table 2. 
As before it is assumed that i1 IJ.- is small 
enough to ensure that a negligible por
tion of the total second•harmonic 
generated arises from the presence of 
the sin-1c.:1 term, etc. However, since the 
terms in equation 10 fall off in magnitude 
with increasing order less rapidly than 
in equation 13, a given high value of 
f; l,1, causes larger errors in the inverse
distortion figures of Table l than it does 
under the conditions of Table 2. 

Table 2. Theoretic■ I output diatonion per
centage, for pure •inuaoid■ I input voltage 
to ide■ I junction tran,i,tor without feed
back. 

H1rmonic bistonion Di1tonion t % I, 
n1iJmber !%1 al1ema1ive formulae 

for 290 Kt V.., in mVI 

2 25ii 10,1 v,o 
3 4 111r-1.,/. 6 67 X ,o••Jcln•' 
4 0 52\i?:1,/ :J 33 X 1o--4;11'11 
5 0 05 21 i//j,k)' 1 33 X , 0 '~11'14 

6 0 00434(/, 1
0
,); d 44 x 10-, 0: 11" 

Inverse distortion for parabolic 
device 
For an amp I ifier having the general 
parabolic transfer chartlcteristic given 
by equation l of Part 5, repeated here as 
equation 14, the formulae for input 
distortion for pure 

V.,u, =Av' + ,i(A v')i (14) 

sinusoidal output without feedback are 
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given in Table 3, middle column. For an 
ideal f.e.t. there is the restriction that 
the bottom of the parabola must lie on 
the zero-drain-current axis, as shown in 
Fig. 4 of Part 5, and it then follows that 
r1 V.,u, may be replaced by 1/,(fi ldcl, giving 
the formulae in the right-hand column 
of Table 3. (This substitution may also 
be made for o V,.u, in Table I of Part 5 
when applied to an ideal f.e.t.) 

Table 3. Theoretic•! input distortion for 
pur■ output for general p■r■bolic device, 
and f.e.t. without fe■db■ck. 

Harmonic;: 

"umber 

2 
3 
4 
5 
6 

DiHonio" (percentage) 
Oanar■I parabolic -- ' 

device I deal f .a. 1. 

sonv 12 5f,1ctc 
50[~:i'~III •✓ 3 I 21f11"'1' 

62 50~0 "': 
0 \177111/;,/ 

8 7 "'1 ~."( 0 3421£! 1,,./· 
131,, r"", 0 1 28(/ .' la/ 

Comparing the right·hand column of 
Table 3 with the middle column of Table 
1, the input harmonics for the f.e. t., at a 
given f; lu,· are smaller and decay more 
rapidly with increasing order than for a 
voltage-driven junction transistor. 
However, in many practical feedback 
circuits. this apparent disadvantage of 
the Junction transistor will be more 
than compensated by the fact that it has 
a much higher mutual conductance, 
giving a higher feedback loop gain and 
thus reducing all significant harmonics 
to a lower level than for the f.e.t. 

With regard to the f.e.t. investigation 
of Part 5, dividing the figures deter
mined from the right-hand column of 
Table 3 by 100 gives points on the left
hand vertical axis of Fig. 7 in Part 5 
which coincide with the intercepts of 
the chain-dotted curves. 

Relationship to experimental 
results 

The distortion theorem formulated 
above may be used to calculate quickly 
and easily, the approximate output 
distortion for a single junction transis• 
tor stage having, say, 40d8 of feedback, 
for li Ide= 0.647 as used in the experi
ments with the Fig. I circuit. The no
feedback inverse-distortion figures are 
determined from the middle column of 
Table 1 , and are divided by I 00 to give 
the predicted distortion with feedback. 
The values obtained are indicated bv 
triangles on the left-hand vertical axis 
of Fig. 2. 

As alretldy explained, thP Table I 
formulae assume [1 l,1,- is small enough 
for the amount of second harmonic 
produced b~· the 4th and 6th power 
terms in the power series to be ignored. 
etc. With Ii IJ,· as high as 0.647. there is. 
however. an appreciable error due to 
this cause. Calculation shows that the 
amounts of inverse second harmonic 
arising from the sin•c.:t and sin''<..:/ terms 
in equation 10 are approximately 21 % 
and 4"i, of the amount due to the sin2~t 
term, the amounts produced bv even 
higher•order terms being rel~ ti vely 
negligible. Thus the true second
harmonic figure would be expected to 
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be about 26% higher than that calcu
lated from Table 1, the error becoming 
rapidly smaller with reduction in signal 
level. This more accurate theoretical 
prediction is indicated by the upper 
arrow at the left of Fig. 2, and ties up 
well with the broken-line extrapolation 
of the measured curve. 

At the zero-feedback end of the Fig. 2 
curves the simple theoretical distortion 
values are given by the middle column 
of Table 2, for f ll00 = 0.647, and the 
values obtained are indicated by the 
triangles on the right-hand vertical axis 
of Fig. 2. As already stated. the errors 
under the Table 2 conditions, caused by 
working at a rather high signal level, are 
much less than for Table I, but there are 
other causes of errors to be considered. 
Nevertheless, the calculated second
harmonic percentage agrees quite well 
with the experimental value. The shape 
of the second-harmonic curve can thus 
be explained in terms of the increasing 
effect of the high-order terms in the 
power series as the amount of feedback 
is increased - an alternative but equally 
sound explanation to that previously 
given involving intermodulation within 
the forward amplifier. 

The theoretical zero-feedback points, 
marked by triangles, for harmonics 
higher than the second do not agree 
well with the measured values. The 
reason for this is believed to be that 
when the Fig I circuit is set for 
nominally zero feedback, a small but 
finite amount of negative feedback is 
effectively still in operation, mainly 
because of the presence of finite resist-

ance in the base circuit. If this resist
ance, including rw, totals 1.2k!l, and 
assuming 13.., or h,e of 500, it is equi
valent to a resistance of 2.4Sl in the 
emitter lead.I causing l/(l-A/3) to be 
effectively 0.88 when set for nominally 
1.0. To allow for this, the extreme right
hand plotted points on all the ex
perimental curves should be moved to 
the left to l1(l-A13)=0.88. The effect of 
the 2.4f.! is negligible because of the 
logarithmic scale used in Fig. 2, except 
toward the right-hand side of the 
curves. With the curves thus shifted to 
the left, it seems reasonable to suppose 
that continuing the patterns of undula
tions already established, towards the 
l/ ( l -Aj3) ., 1.0 axis, would bring the 
curves approximately to the theoretical 
values marked by triangles. 

When allowance is made for the pro
duction of third harmonic by the sin5wt, 
sin 7wt and sin9<.,)t terms in equation 10, 
the magnitude of the third-harmonic 
distortion voltage is increased by 
approximately 32,., raising the calcu
lated value to that indicated by the 
lower arrow in Fig. 2, which again then 
ties up well with the broken-line extra
polation of the measured curve. The 
corresponding tedious calculations 
have not been done for the 4th, 5th and 
6th harmonics, but it seems probable 
that they, too, would raise the levels of 
the points marked by triangles to give 
reasonable agreement with the broken
line, 45°, extrapolations of the mea
sured curves. 

There is a further small point which 
must now be mentioned. In Table 2, for 
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a junction transistor without feedback 
driven by a sine-wave voltage, the fac• 
tor it l<k appears. f is the peak value of 
the fundamental current and Ilk is the 
value of the collector current at the 
moment when the input signal voltage 
goes through zero. It would also be the 
quiescent current, if the transistor were 
operated at fixed bias voltage, and the 
mean current with the signal applied 
would then be larger than Id, because of 
the rectifying action. However, the 
mean current is prevented from rising 
significantly when the signal is present 
in the Fig. I circuit, owing to the 
virtually-constant current in the 12k!l 
emitter resistor. This results in the 
distortion being higher than the simple 
theory predicts. The fact that the mea
_su red s_econd•harmonic curve goes 
through the 16% point predicted by 
Table 2 at its top end is thus fortuitous. 
The effect just mentioned tends to raise 
the level of the point, whereas the fact 
that there is a little feedback in action, 
even when the control is set for 
nominally zero feedback, tends to lower 
it. Once there is plenty of feedback in 
action both these effects become negli
gible. 

It can thus be concluded generally 
that provided plenty of feedback is 
assumed right at the beginning, the 
more awkward parts of the theory 
outlined in this article, though 
academically interesting, do not need to 
be taken into account for design pur
poses. O 

(To be continued) 




