
A macroscopic-scale wave-particle duality :

With : 

Emmanuel Fort,

Suzie Protière, Antonin Eddi,

Julien Moukhtar, Eric Sultan 

Arezki Boudaoud, Charles Henri Gautier, 

Frédéric Moisy and Maurice Rossi, , 

Matières et Systèmes Complexes (Université Paris–Diderot)

Toronto 2011



Can any of the phenomena characteristic of the quantum wave-

particle duality be observed in a non quantum system?

We were drawn into investigating this question by the, almost 

accidental,  finding of a wave-particle association at macroscopic 

scale.



Introduction

A massive particle driven by the wave it generates

The bouncing droplet and its coupling to surface waves. 

Part I : Walking straight

The wave-field structure and its “path-memory”: a non locality in time.

Part II: Walking in circles
The orbits of walkers when submitted to a transverse force

Part III : Walking when confined
(a) In corrals

(b) Through slits (diffraction and interference) 

(c) By a single barrier: a tunnel effect of a kind

Discussion
The relation to de Broglie’s pilot waves

Trajectories and probability of visit



The basic experimental set-up

Silicon oil of viscosity 

m = 50 10-3 Pa.s 



Vertical acceleration

 m cos  t 
with    2 = 80 Hz 

and     0 <  m<  5

There is always an air film between the 

drop and the substrate

The drop can bounce for days!





Part I

An experiment where a particle is driven 

by the wave it generates

Couder Y., Protière S., Fort E. & Boudaoud A., Nature 437, 208. (2005)

Protière S., Boudaoud A. & Couder Y. J. Fluid Mech. 554, 85-108, (2006)



Phase diagram of the different types of bouncing 

(for m=50 10-3 Pa s   and /2=80 Hz)

as a function of the droplet size and the amplitude of the forcing

Faraday Instability

threshold

Bouncing threshold

•B : simple bouncing at the 

forcing frequency

•PDB : Period doubling

•PDC: Temporal chaos

•W : “walkers“

•F :  Faraday instability



The Faraday instability of a vertically vibrated liquid surface 

When

the surface becomes covered 

with standing waves of frequency /2

In the present experiment 



 m cos  t 



m  m
Far

Vertical oscillations 



 2 80Hz and    m
Far 4.5 g



The Faraday instability  results from the parametric forcing of the surface waves
cf e.g. Stéphane Douady, Thesis (1989)

Analogous to the parametric forcing 

of a rigid pendulum



2a

t2
2 f

a

t
0

2 12cost 0

The motion is given by Mathieu’s equation:

and its frequency is half that of the forcing



Phase diagram of the different types of bouncing 

(for m=50 10-3 Pa s   and /2=80 Hz)

as a function of the droplet size and the amplitude of the forcing

Faraday Instability

threshold

Bouncing threshold

•B : simple bouncing at the 

forcing frequency

•PDB : Period doubling

•PDC: Temporal chaos

•W : “walkers“

•F :  Faraday instability



The drop’s bouncing: (for 0.6 < D < 1.1mm)
Spatio-temporal diagrams of the vertical motion 

m=1.5g

Bouncing at the 

forcing frequency

m= 3g

Period doubling

m= 4g

no chaos and 
complete period 
doubling

Time



Near the Faraday instability onset, the droplets become local sources of Faraday 
waves,  correlatively they become “walkers”

There is a simple model of the walking bifurcation

Onset of bouncing



Part I (b) 

A simple model of the walking bifurcation

(Arezki Boudaoud)

Protière S., Boudaoud A. & Couder Y. J. Fluid Mech. 554, 85-108, (2006)



How can the coupling to waves generate a bifurcation to walking?



The first model for the walking transition 

(Arezki Boudaoud)



m
d2x

dt2
 Fb sin 2

dx dt

VF










 f v dx dt

Newton’s equation, the fast vertical motion being averaged over one period

- m ~ 10-6 kg mass of the droplet

- Fb effective force due to the bouncing on an inclined surface



F
b
mb

Aw





TF









106 N



f
v

maS

b



TF









106 N

b Vertical acceleration, 

Aw/slope of the surface

 duration of the collision

- f v : damping due to the shearing of the air film



The “walking“ bifurcation



Ý x VF
  6 2  Fb Fc

b /Fb

Seeking steady solutions 
(and in the limit of small velocities)



mÝ Ý x  Fb sin
2 Ý x 

VF










 f v Ý x 



f v Ý x  F b 2 Ý x 

VF



1

6

2 Ý x 

VF












3













for small values ofF b the only solution is Ý x  0



Above a threshold, the motionless solution becomes unstable

And two self propagative solutions of opposite velocities appear.



The computed and observed bifurcation

A more complete model based on  the same principle has been developed recently by Jan 

Molacek and John Bush



Part I (c)

The energy balance : the steady regimes of a dissipative 

structure



The energy balance 

The system is dissipative : viscous friction damps the droplet motion and the 

wave  

However steady regimes are obtained because energy is provided by the forcing 

to both the droplet and the wave.

- The droplet is kicked up at each of its collision with the interface.

( similar to the escapement mechanism of mechanical clocks)

- The wave being a Faraday wave is almost sustained by parametric 

forcing

(in the vicinity of the instability threshold).

The main limitation of this experiment is that the forcing imposes a fixed 

frequency: the energy is fixed



A walker is formed of: 

- A spread-out and continuous wave

- A discrete and localized droplet 

How can they have a common dynamics?

I Walking straight

II Walking in circles

III Walking when confined



Part I

Walking straight

The wave field structure and its “path-memory”, 

A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. 

Fluid Mech., 674, 433- 464, (2011).



Evolution of the wave field as a 

function of the distance to the 

Faraday instability threshold



 m
F m /m

F

 the non-dimensional distance to threshold tends to zero

A detail of the phase diagram



The measured wave field

Obtained by an adaptation of a particle image velocimetry technique (PIV) to 

measure the shape of the interface, a technique due to

Frédéric Moisy and Marc Rabaud (FAST Orsay)



The interface is disturbed by the repeated impacts of the droplet

What type of wave is generated by one single collision?





(a 1 mm  steel ball dropped in the 

bath)

Without periodic 

forcing

With a periodic forcing near 

the Faraday instability 

threshold

The wave-field produced 

by one single collision

t=10 ms

t=300 ms



  m m
F 1

The Faraday waves decay 

with a characteristic time:



Without periodic forcing

With a periodic forcing near the 

Faraday instability threshold

Conclusion: near the Faraday threshold, a point which has been disturbed 

remains the centre of a localized state of almost sustained Faraday waves 

Spatio-temporal evolution of 

the radial profile of the wave 

emitted by one bounce



The numerical model of walkers 

(Emmanuel Fort)



The numerical model of walkers 

(Emmanuel Fort)

A/    Motion of the droplet :

(1) Take-off and landing times are 

determined by the forcing 

oscillations only.

(2) The walk result from successive 

displacements rn due to the 

kicks. The direction and 

modulus of rn are determined 

by the surface slope at the point 

of landing.

(3) This slope results of the 

interfering waves due to the 

previous bounces

1) At each bounce, a circular localized mode of 

Faraday waves is generated.

(2) The points of the surface visited by the droplet 

in the past remain the centres of such a 

localized mode.

(3) The wave field results from the superposition 

of all these waves, and thus contains a 

memory of the path followed by the droplet 

B/ Computation of the wave-field



B/  The computation of the wave-field



h(r,ti)  Re
A

r rp

1/2
exp

ti  tp











exp

r rp

















exp i
2 r rp

F






























p i1







tp  ti  (i  p)TFrp position of the droplet at time

the damping time is related to the distance to Faraday instability onset: 



  m m
F 1



First results of the numerical simulation

(1) The walking bifurcation is recovered

(2) A realistic structure of the wave field is obtained for a rectilinearly

moving walker

The measured field Its simulation

The structure of the wave field exhibits Fresnel interference fringes



In the limit of weak decay times: 
Fresnel fringes

Fresnel diffraction behind an edge
(simulation John Talbot 1997)



The wave field structure of a walker is dominated by a “path memory” effect

- At each bounce, a circular localized mode of standing waves is generated

- The Faraday instability is a super critical bifurcation : below its threshold a

perturbation is damped on a typical time :



  m m
F 1



M  /TF

M=5 M=10 M=40

- A memory parameter can be defined as :

- M is the number of bounces that contribute to the wave field





Part II

Walking in circles

Orbiting due to an external force

E. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, and Y. Couder, 

PNAS, 107, 17515-17520, (2010)



How to obtain circular trajectories?

Use either a magnetic field or a rotating system, 

(an analogy used by Michael Berry 

to obtain a fluid mechanics analog of the Aharonov-Bohm effect) 

In a magnetic field   B

Orbital motion

On a surface rotating with angular velocity 

W

Orbital motion in the rotating frame

Larmor angular velocity     Orbital motion angular velocity

Orbit radius Orbit radius 



F q V B  



F c 2m V W 



2W



L  qB/m



L V /L



RV /2W



The rotating Faraday experiment



Measured trajectories

Trajectory in the laboratory 

frame of reference

Trajectory in the rotating

frame of reference



Classical radius of the orbits

The “classical“ radius of the orbit 

observed in the rotating frame and 

due to Coriolis effect should be: 

R=V/2W
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Measured radius of the orbits 

for walkers with weak path memory

(far from the Faraday threshold)

The radius of the orbit observed in 

the rotating frame has a “classical“ 

dependence, but slightly shifted

R=a (V/2W

With



a 1.3

0
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Measured radius of the orbits of walkers having long term 

path memory (near the Faraday threshold)
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2W/V

Near the Faraday instability 

threshold, the radius of the 

orbit evolves by discrete 

jumps when W is increased



Dimensionless radius of the orbits

The radii of the orbits obtained at various 

frequencies and for walkers of various 

velocities are all rescaled by expressing:



 
Rn

F

  as a function of the non- dimensionnal 

parameter 
VW

2WF

0

0,5

1

1,5
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0 0,5 1 1,5

(V
W

/(2W
F
)1/2

R/
F



The first two modes

dn
orb=3 F

dn
orb=2 F

dn
orb=F



Landau levels: 

the Bohr-Sommerfeld quantization in a magnetic field



peA   dl  n h



L
n 

1



h

qB
n

1

2











The Larmor radius can only take discrete values

The Bohr Sommerfeld condition imposes:



The radii of the Landau orbits in a magnetic field



L
n 

1


n

1

2











h

qB

The quantized Larmor radius: 

can be expressed as a function of the de Broglie wavelength



dB 
h

mV



n

dB

 1/ n
1

2











m

qB

V

dB

The analogy suggests:



Rn

F

 1  n
1

2











VW

2WF


m

qB


1

2W

dB  F



Dimensionless radius of the orbits

The analogy suggests:

0

0,5

1

1,5

2

2,5

3

0 0,5 1 1,5

(V
W

/(2W
F
)1/2

R/
F

n=0

n=4

n=3

n=2

n=1



Rn

F

0.89 n
1

2











VW

2WF



1/ 0.564

We find 



Rn

F

 1  n
1

2











VW

2WF

The diameters are quantized, not the perimeters



How to compute the local slope induced at the point 

of impact by the superposition of the waves due to 

“sources” distributed on a circular orbit

Short-term memory

Long-term memory

The path memory effect in the case of circular trajectories



r 
S (

r 
r i,ti) 

p i1




r 
s (

r 
r i 

r 
r p,ti  tp)



r 
S (

r 
r i,ti)

r 
h(

r 
r i,ti)



The first two modes

as observed and 

simulated

dn
orb=3 F



How to compute the local slope induced at the point 

of impact by the superposition of the waves due to 

“sources” distributed on a circular orbit

Short-term memory

Long-term memory

The path memory effect in the case of circular trajectories



r 
S (

r 
r i,ti) 

p i1




r 
s (

r 
r i 

r 
r p,ti  tp)



r 
S (

r 
r i,ti)

r 
h(

r 
r i,ti)



The radial slope Sr at the point of bouncing generates an additional centripetal 

(or centrifugal) force. 

It is responsible for the formation of plateaus

2W



The results of numerical simulations (Emmanuel Fort’s model)
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short term path memory

In black:
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The evolution of the orbits diameters can be recovered analytically by  assuming 

that with increasing memory only one source diametrically opposed to the droplet 

generates the additional force



mVW
2

R
m 2WVW  Asin(2

2R

F

)










with

A A0 e


r

nsF e


t

ntTF



What is the effect of path memory when the trajectory is confined by 

boundaries?

(a) Trajectories in closed cavities

(b) Trajectories through slits : diffraction and interferences

Part III

Walking when spatially confined



(a) Effect of the confinement in a corral





Chaotic trajectories in a square corral

Has the probability of visit a relation to the eigenmodes of the cavity?

We chose to study rectangular cavities tuned with one dominant resonant mode,

Dan Harris and John Bush (MIT) chose circular cavities (John’s talk) 



In a rectangular cavity
with Julien Moukhtar

The Faraday eigenmode of the 

rectangular cavity



In a rectangular cavity
with Julien Moukhtar

The Faraday eigenmode of the 

rectangular cavity

The probability of presence 

of a walker along the main 

axis of the cavity



In a rectangular cavity

The local velocity of the 

walker along the main axis 

of the cavity  

The Faraday eigenmode of the 

rectangular cavity



The numerical model of walkers in the vicinity of boundaries 

The echolocation of the walker:  interaction with boundaries, 
reflected waves are also taken into account



The 1D numerical simulation





Boites 

circulaires



The same experiment by Dan Harris et John Bush (MIT)



Courtesy Dan Harris and John Bush

The probability of visit (21966 position measurements)



Part III (b)

Single particles diffraction and interference

Couder Y. & Fort E. PRL,. 97, 15101, (2006)



The experimental set up for diffraction and interference experiments

In the grey regions the 

fluid layer thickness is 

reduced to h1=1mm

(h0=4mm elsewhere)

In these regions the 

Faraday threshold being 

shifted, the walkers do 

not propagate

Cross section





Four 

photographs of 

the 

wave pattern 

during the 

diffraction 

of a walker



Measurements on  the droplet’s trajectory

The relevant parameters:

L :  the width of the slit,

qi : angle of incidence (chosen qi= /2),

a : the angle of deviation

Yi = yi/L : the impact parameter

(With -0.5 < Yi <  0.5)



Is there a link between the deviation a

and the impact parameter Yi ?

The measured deviation in experiments performed with the same walker,

the same angle of incidence, but various impact parameters

L/F=3.1 (L=14.7mm and  F= 4.75 mm).

Three independent trajectories with the same initial 

conditions (within experimental accuracy)

What about statistical properties?



Cumulative histograms of the observed deviations in N independent crossings

L/F=3.1

L=14.7mm, F= 4.7 mm

The curve is the modulus of the amplitude of a plane wave of the same wavelength 

diffracted through a slit of the same width 



f(a) A
sin  L sin a F 
 L sin a F

L/F = 2.1

(L=14.7mm, F= 6.9 mm)



The numerical simulation of the diffraction

L/F = 3

In the presence of path memory the deviation becomes a complex 

function of the impact parameter

And the pdfs of deviations are similar to those observed 

experimentally



Diffraction of waves…

Here, however, we do not measure the wave-field but the trajectories of successive

particles. Their individual deviations are unpredictable, exhibiting an uncertainty

linked with the spreading of the wave:

It is not a surprise that a wave passing through a slit is diffracted. This is 

the standard result from Fourier transform. The wave truncation results in 

its spreading in the transverse direction.

… or diffraction of particules? 

The Fourier spreading of the wave generates an uncertainty for 

the direction of the velocity of the particle and thus for its momentum.



The Young double-slit interference

with single particles

A  phenomenon which is assumed to have no 

equivalent in classical physics

R. Feynman’s, Lectures on Physics, vol. 3, Quantum 

Mechanics, (First chapter)

« … In this chapter we shall tackle immediately the basic 

element of the mysterious behavior in its most strange 

form. We choose to examin a phenomenon which is 

impossible, absolutely impossible, to explain in any 

classical way and which is at the heart of quantum 

mechanics. In reality it contains the only mystery. We 

cannot make the mystery go away by explaining how it 

works . We will just tell you how it works.… »

The build-up of the interference pattern 

(with electrons, after Tonomura)



Young’s two slits experiment



Interference: histogram 

for 75 realizations



f(a) A
sin  L sin a F 
 L sin a F

cos  d sin a F 

The curve is the modulus of the 

amplitude of the interference of a 

plane wave through two slits with 

L/F= 0.9 and d/F=1.7.



Part II (b)

Tunneling through a barrier

With Antonin Eddi

A.Eddi, F. Moisy, E. Fort & Y.Couder

" Unpredictable tunneling of a classical wave-particle association”

Phys. Rev. Lett. 102, 240401, (2009)



First experimental set-up

Escape out of a closed cavity





The origin of the 

probabilistic behaviour: 

the trajectories inside 

the frame

For thick walls the walker 

reaches a stable limit cycle

With thin walls the reflections 

are imperfect, leading to 

different types of collisions 

with the wall and to a 

probability of escape



A probability of escape can be measured

The walker has a billiard motion inside the frame and escapes out of it once in a while. 

Repeating the experimen, a probability of escape can be defined as the ratio of the number of escapes over the total 

number of collisions with the wall 

It turns out to depend on the barrier thickness and the velocity of the walker

Semi-log plot of the probability of 

crossing as a function of the barrier’s 

tickness 

Semi-log plot of the probability of 

crossing as a function of the  walker’s 

velocity



Second experimental set-up

The particle is guided by the divergent walls so that it impiges perpendicularly on the 

barrier of thickness e.



Accumulation of events



Probability of crossing with normal incidence

Semi-log plot of the probability of 

crossing as a function 

of the barrier’s tickness 

Linear plot of the probability of 

crossing as a function walker’s 

velocity 



The relation to the incident trajectory

Far from the barriers, all walkers have a normal incidence. 

They deviate because of the reflected waves

Only those walkers which have had a weak deviation have a probability of crossing

The walker deviates have a weaker probability of being deviated  when the reflected waves 

are weaker (thin barriers), hence a larger probability of crossing 



Propagation and localization in a random medium





Trajectoires d’un marcheur dans un milieu désordonné

Mémoire à court terme 

et faible désordre

Mémoire à long terme 

et fort désordre

Localisation d’Anderson?



The localization appears dominated by “self orbiting” motions on orbits 

similar to the tightiest orbit observed in the rotation experiment 



… also observed in cavities



Discussion:

is there a relation to quantum mechanics?

In our system we clearly have a particle driven by a wave it generates. It is 

therefore interesting to revisit the unorthodox “pilot wave” models of 

quantum mechanics. 



The “pilot wave” models

The association of particles to waves was initially proposed by de Broglie

L. de Broglie, Ondes et mouvements,  (Gautier Villars Paris) (1926). 

In 1952 D. Bohm obtain trajectories by deriving an equation of motion out of

the Schrödinger equation

D. Bohm, Phys. Rev. 85: 166-179, and 180-193, (1952),

Phys. Rev. 89: 458-466 (1953).

Perimeter Institute 2011

These two approaches are often identified to each other and called  

the de Broglie-Bohm pilot-wave models. 

They are in fact very different from each other and should be 

dissociated.



D. Bohm uses the Madelung transformation of the 

Schrödinger equation
revisited recently by John Bush
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          is the probability density

u =S           is the quantum velocity of the probability 

j = u            is the quantum probability flux
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The quantum Hamilton-Jacobi can be written:
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Where Q is the quantum potential
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m
Du
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Taking the gradient

Equating the quantum velocity and the “particle” velocity



m Ý Ý x p QV

Bohmian mechanics consists in solving Schrödinger equation for , from 

which Q is then computed, before solving the trajectory equation.



The limit of Bohmian mechanics

The trajectory equation:



m Ý x p QV

does not define the trajectory of the particle but the trajectory of  the probability 

density.

For this reason de Broglie wrote in 1953 :

“A year and a half ago, David Bohm took up the pilot-wave theory again. His work is very 

interesting in many ways (…) But since Bohm’s theory regards the wave  as a physical 

reality, it seems to me to be unacceptable in its present form”.



de Broglie original model

L. de Broglie, Ondes et Mouvements,  

(Gautier-Villars Paris) (1926).



de Broglie assumes that there are well defined particles that he considers as point 
sources. 

This material point is considered as having an internal oscillation and emitting in the 
surrounding medium a wave of frequency :
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He writes :

« But there is also the convergent wave, the interpretation of which could raise 

interesting philosophical issues, but that appears necessary to insure the stability 

of the material point »

The particle is surrounded by a stationary spherical wave, the superposition 
of a divergent and a convergent wave. 

The phase of the particle oscillation and that of the wave are locked to each other

The pre-Shrödinger de Broglie model (1926)



In our system a standing wave is also associated to the particle. 

How is it generated?

Measured spatio-temporal evolution of the radial profile of the wave emitted by one bounce

Equivalently:

Each point of the wave front emits 

a wave moving backwards 

towards the source.

A travelling wave is emitted by the 

droplet. Because of the excitability of 

the medium, it leaves behind a 

Faraday standing wave



De Broglie proposed what he called a “double solution”

First solution 

The particle has an oscillation at a frequency 0=m0c
2/h  and is 

surrounded by a standing wave with a singularity (or non linear 

region) at its core. This structure forms the individual particle and 

has well-defined trajectories in space-time.  

The second solution

A linear and smooth wave, solution of the Schrödinger equation that 

corresponds to the averaged behaviours. 



De Broglie “double solution”

The first solution can be written 

Where f has very large values in a singular region

The second solution can be written 

Where a and  are continuous. 

 is the solution of the Shrödinger equation

The velocity of the particle is given by  
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There is a particle: the droplet. 

It is guided by a wave of 

wavelength F but this wave is 

not a plane wave

Analogous to de Broglie’s first 

solution

The probabilities of the various 

angles of deviation 

correspond to a diffracted plane 

wave of wavelength F

Analogous to a Schrödinger 

wave, de Broglie’s second 

solution

In our experiment we have a double solution situation of the type

proposed by de Broglie.



First solution

Courtesy Dan Harris

The double solution in cavities

First solution

-One given walker is piloted by the wave it has 

generated and has an individual complex 

trajectory.

-The structure of the pilot wave is complex as it 

contains a memory of the past trajectory

Second solution

- The probabilities are given by an underlying 

mean wave structure linked to the resonant 

modes of the cavity or more generally to the 

environment

Second solution



- Macroscopic scale : no relation with Planck constant.

- The system is two-dimensional. 

- The system is dissipative and sustained by external forcing.

- This forcing imposes a fixed frequency: the “energy” is fixed

- The waves live on a material medium: there is an “ether”. 

-

Toronto 2011

Returning to our experiment.

Its main drawback: 

it is very far from quantum mechanics



-At quantum scale the Planck limitation imposes itself to all phenomena. It is 

not possible to do a non-intrusive measurement.

-Intrusive measurements generate a projection onto states, so that only the 

probabilities of those states can be measured.

-Here we can do either intrusive or non intrusive measurements.

- If we try to know the position of a walker by confining it in a cavity or by 

having it pass through slits we find probabilistic behaviours. 

- The observation with light is non intrusive so that the undisturbed  

trajectory of the particle and the wave can be observed directly. 

- Non intrusive observations done during an intrusive measurement show 

that the latter generates chaotic trajectories that are responsible for the 

observed statistical properties.  

Toronto 2011

Its main interest:

it is very far from quantum mechanics, 



All the observed quantum-like properties emerge from what 

we have called the “wave-mediated path-memory”.

This “path memory” generates a particular type of space 

and time non locality.

For this reason we believe the debate on hidden variables is 

not closed
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Their summation

The individual contributions to  the local slope 

under the droplet 


