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ABSTRACT

An algebraic technique which computes nonlinear, delay-free dig-
ital filter networks is applied to model the Dolby B in the discrete-
time. The model preserves the topology of the analog system,
and imports the characteristics of the nonlinear processing blocks
which are responsible of the peculiar functioning of Dolby B. The
resulting numerical system exhibits qualitatively similar dynamic
behavior and performance — full compliance with the Dolby B
specifications would be achieved by deriving, from comprehensive
data sheets of the system, accurate discrete-time models of the ana-
log processing blocks. Results demonstrate that the computation
converges if proper iterative methods are employed.

1. INTRODUCTION

The history of audio effects design traces back to the world of ana-
log circuits. It was not long after the advent of digital architectures
that scientists considered the possibility to reproduce in the digi-
tal domain the analog and electro-acoustic mechanisms the early
audio effects were based upon.

Converting a continuous-time process into a sequence of dis-
crete computations inevitably introduces approximations, which
in some cases can generate intolerable problems, like heavy arti-
facts in the system response, or even instability of the discrete-time
model. The delay-free loop problem [1, sec. 6.1.3] refers to the
presence in a network of feedback paths that are not computable,
meaning with this that the computation cannot be executed sequen-
tially due to the lack of pure delays along the loop. This problem
can appear in particular during conversion to the digital domain of
analog filter networks, or even in digital-to-digital domain trans-
formations (such as frequency-warping mappings [2])).

If the network is linear, various techniques can be used to con-
vert a continuous-time system into an equivalent numerical one,
working either in the time or in the Laplace domains. As an exam-
ple, wave methods [3]] and transfer function models [4] have been
widely applied to the numerical simulation of acoustic systems.
Moreover, a linear network can be always rearranged into a new
one in which delay-free paths are solved by composing the filters
belonging to them into bigger linear structures that “embed” the
loop [1]. Nevertheless there are cases where this rearrangement
is deprecated (e.g., situations in which the access to the filter pa-
rameters becomes too complicated after the rearrangement). Fur-
thermore, the elimination of a delay-free path implies that all the
branches belonging to it cannot be used any longer as input/output
points where to inject/extract the signal to/from the system: this
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point is particularly relevant in the design of virtual musical in-
struments by physical modeling.

When nonlinearities exist in the continuous-time system, how-
ever, the discretization procedure must preserve stability and must
ensure a precise simulation of the nonlinear characteristic. More-
over, if a nonlinearity is part of a delay-free path there is no general
procedure to rearrange the loop to realize a new linear structure in
which to embed the delay-free path.

A technique to compute linear delay-free paths without topol-
ogy rearrangement was proposed in [S]. It was applied to warped
IIR filter computation [2] and to magnitude-complementary para-
metric equalizers [6]], and generalized to linear filter networks with
arbitrary delay-free path configurations [7]. It was then extended
to networks containing nonlinear blocks [8, 9]]. The technique as-
sumes that each linear and nonlinear block has been already indi-
vidually modeled in the discrete time domain.

In this paper we analyze the Dolby B codec as a challeng-
ing example of analog system that includes nonlinear feedback
loops. We show that the system can be realized exactly in the
discrete-time domain by employing the numerical technique pre-
sented in [8l[9]. Sections[2]and[3|review the functioning of the ana-
log system and of existing discrete-time realizations. Sections [4]
and 5] discuss the exact realization proposed in this paper and an-
alyze the convergence of the iterative schemes used to solve the
nonlinear digital network. Finally, results from numerical simula-
tions of the system are presented in Section[6}

2. THE DOLBY B CODEC

At the mid of the sixties Dolby Laboratories introduced a family
of noise reduction systems that had a strong impact on the indus-
try of consumer audio which, at that time, was experiencing the
explosion of the compact cassette [[10].

Dolby noise reduction systems gave the most successful so-
lution to the problem of noise floor generated by the tape, clearly
audible in the mid and high frequencies unless masked by a moder-
ately loud audio message, and, hence, preventing music listening
at Hi-Fi standards. While convincingly reducing noise floor, the
Dolby coding paradigm did not heavily mask the audio content. In
this way music from a Dolby encoded cassette could still be lis-
tened to even by a normal tape player [11]. Due to this versatility,
Dolby systems marked a commercial advantage against other noise
reduction architectures such as DBX, Tel Com by Telefunken and
DNL by Philips.

Among the many noise reduction systems licensed by Dolby
Laboratories [10], the B architecture was one of the most success-
ful. As its predecessor, the A system, Dolby B is based on the
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Figure 1: Dolby B codec.

idea that tape noise floor has to be canceled only when the dynam-
ics of the audio signal is too low to mask it, otherwise the music
message can be left untouched. For this reason, before recording
the signal on the tape, the encoder emphasizes the mid and high
frequency range under low dynamics conditions. Coherently, the
decoder de-emphasizes the same frequencies during audio tape re-
production under similar dynamic conditions. The overall result is
a proportional decrease of the cassette noise.

The Dolby B codec is shown in Figure[I] According to this
scheme, the encoded signal y(¢) is obtained by summing, to the
unencoded signal x(t), a filtered version e(t) of the same unen-
coded signal:

y(t) = 2(t) +et) = {1+ fle, )} xa(t). (D

In Eq. (T) we recognize the filter f to be nonlinear and time-
varying: both characteristics are mandatory if we want to pro-
cess the signal depending on its dynamics. More in detail, we
see that the encoded message depends on the characteristics of the
signal captured at the time-varying filter output (the more obvious
choice of reading the dynamics before encoding was implemented
by Dolby A, then abandoned). In particular, the higher the ampli-
tude of e, the smoother the high-pass characteristic of f. In the
limit case when e has a very pronounced dynamics, then f be-
comes nearly transparent, i.e., f(e, t) ~ 1.

Conversely, and assuming the inverse transfer characteristic of
1+ f(e,t) to be stable, the decoder realizes the following nonlin-
ear transfer function against the noisy version ¢(t) of the encoded
signal:

T(t) = g(t) —e(t) = y(t) — f(&t) »x(t). ()

In Eq. we have neglected transmission delay. Noticeably, if
no noise or whatever audio artifact superimposes to y(t), i.e., if
g(t) = y(t), then decoding is error-free, i.e., Z(t) = z(t). Of
course noise-free transmission is unrealistic: should it exist, then
noise reduction systems would have turn out to be unnecessary.

x(t)

®

P

e(t)
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Figure 2: Dolby B encoder.

3. DIGITAL REALIZATIONS OF DOLBY B

Figure[I|immediately shows that implementing a Dolby B encoder
in the digital domain is difficult due to the existence of a delay-free
path connecting the time-varying filter output to its control input.

A more detailed inspection of the filter (see the schematic in
Figure[2] disclosed by Dolby Labs [[10]) reveals that control is re-
alized by passing the signal e(t) through a smooth high-pass linear
filter G(s) yielding a signal u(t), and, then, through an envelope
follower. This stage rectifies the audio message into a control sig-
nal v(¢) that instantaneously drives, by means of the output w from
the map m(v), the high-pass characteristic of a time-varying linear
filter H,, (s) whose output, depending on the value taken by w, is
finally added to the original signal to form the encoded message.

In this explanation (but not in Figure [2)) we have omitted the
presence of a compressor, located between the time-varying filter
and the adder, whose role is to remove from e(t) overshoots aris-
ing when the input suddenly switches from very low to very high
dynamics. In this case, a short but audible time window occurs in
which the mid and high frequencies in z(¢) are mistakenly ampli-
fied until the system responds to the high dynamics by positioning
the time-varying filter H,,(s) to almost transparent behavior. This
compressor, hence, prevents such high-frequency boosts to come
out from the system by filtering them out from e(¢) until its am-
plitude falls within the correct dynamic range. Otherwise, e.g. for
medium and low dynamics, the compressor is transparent.

In spite of this fairly complicate network, a digital encoder can
be (at least in principle) realized by assuming that v(¢) is enough
slowly varying to allow for the inclusion of a fictitious unit de-
lay between the envelope follower and the map. Since the signal
rectification performed by the envelope follower indeed results in a
slowly varying output, then a computational scheme for a discrete-
time Dolby B encoder can be figured out which, starting from an
initial state plus an initial value for w (e.g. those resulting from
a null input) computes e known x and, then, the new state and
samples for all the block outputs, including y.

It is clear that this computing procedure requires that every
analog processing block in Figure 2] has been somehow converted
to the digital domain, possibly taking the unavoidable distortions
introduced by the presence of the fictitious delay into account.

The digital conversion of the decoder is a much more com-
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plicate matter. If one reports the internal structure of f(e,t) (see
Figure [J) into the block scheme of the dolby B decoder (see Fig-
ure[T)), then a double feedback can be immediately noticed: one at
the subtraction point e(¢) — y(¢) and one, already explained, at the
input control of the time-varying filter. The former, in particular,
cannot be translated into a corresponding discrete time feedback
loop by including a unit delay, since the audio signal flowing along
it is by no means slowly varying. Furthermore, both feedbacks in-
clude nonlinear blocks in between.

Alternative structures aimed at realizing a real-time Dolby B
decoder in the digital domain have been successfully engineered
by Philips [12] and STMicroelectronics [[13}114)]. Such structures
include a fictitious time delay to account for the instantaneous
feedback at the time-varying filter control, and rearrange the other
feedback loop into an alternative, feed-forward topology. As a
consequence, most of the parameters characterizing the circuitry
of the Dolby B analog blocks must be carefully adapted for the
resulting digital decoder to match the specification requirements
imposed by Dolby Labs.

In particular, the discrete-time Dolby B proposed by STMi-
croelectronics [13}[14]] contains careful transpositions of all analog
stages into corresponding digital blocks. The transfer characteris-
tic X (s)/Y (s) is modeled by a time-varying feed-forward digital
filter whose transfer function is given by

X(z) 1
Y(2) 1+ Huw(z)’

3

The filter G(z), digital counterpart of G(s), is driven by a discrete-
time model of the transfer characteristic E(s)/Y (s):

E(z) _ Hulz) _, X(2)
Y(2) 1+ Hy(2) ! Y(z)° @

In this way a single time-varying digital filter, whose transfer func-
tion is given by (3), is used both to compute the system output and,
via Eq. @), to feed the filter G(z). Obviously, such a realization
requires to re-design the nonlinear map m(v) properly.

4. EXACT TRANSPOSITION OF THE
ENCODING/DECODING NETWORK

In [8] we have presented an algebraic technique which allows to
compute every nonlinear filter network, regardless of the existence
of delay-free paths located in between processing blocks. The
same technique also promises to add insight on the inherent sta-
bility properties of a nonlinear system structured, like Dolby B, as
an interconnection of input/output blocks [9]].

In order to exploit this technique to realize a Dolby B architec-
ture exactly, we will develop a ‘mock-up’ of the system which, in
particular, preserves all the nonlinearities and topological details
of the analog structure. However, we will avoid to carefully trans-
pose into discrete time the transfer characteristics of the Dolby B
analog blocks. Instead, we will rely on simplified digital versions
of the same blocks without sacrificing in generality.

As a result, we have realized a digital “Dolby B-like” system
working at 44100 Hz which, in spite of its resemblance to the real
Dolby B both in structure and performance, does not comply with
the requirements of Dolby Labs due to discrepancies between the
transfer characteristics of the analog blocks forming the original
system and their digital transpositions. As to the question whether

a Dolby B codec can be exactly realized in discrete time, our an-
swer is ‘yes’ as far as every block of the analog architecture is
exactly translated into the digital domain using proper transforma-
tion methods [ 15} |1]].

In the remainder of this section we adopt the notation used
in (8l 9]: linear blocks are defined through their transfer functions
H; and nonlinear blocks are defined through their nonlinear char-
acteristics f;, with ¢ = 1,2,.... Inputs and outputs are denoted
as xri,yr: (linear blocks) and xn;, yn; (nonlinear blocks). We
employ the following digital blocks (refer to Figure [2] for nomen-
clature of the continuous-time blocks):

e The time-varying filter H.,(s) is replaced by a digital high-
frequency shelving filter [1]

H,(z) = Hi(z)+wHs(z) )
S - AE)}+ S {1+ AG)

with
-1

a—z
Alz) = 1—az?

In this filter the coefficient w controls the high-frequency
gain. We will consider this gain to be a time-varying pa-
rameter w(nT).

and a=-0.9. (6)

e The high-pass filter G(s) in the feedback control loop is
replaced with a digital equivalent [14]:

. U(Z) . bo — blzil
Hs(2) = E(z)  1—ajz~t’

@)

with bg = 0.55, by = —0.46, a1 = 0.014;

e The envelope follower [ is replaced by a digital equivalent
that rectifies the signal u(nT") according to the nonlinear
function [[16]:

v(nT) = fi(u(nT),v(nT —T)) (8)
{1 = bo(nT)}Hu(nT)| + b(nT)v(nT —T)
with
bup |lu(nT)| > v(nT —T)
b(nT) = { bdown otherwi‘se ©)

in which by, = 0.995 and bgown = 0.9998;

e The control on the time-varying shelving filter is realized as
a nonlinear map that defines the gain w(nT’) as a function
of the envelope v := yn1 and multiplies w by the output
YyrL2 of H. 2:

fa(yn1(nT), yr2(nT)) = yr2(nT)-w(yni(nT)), (10)
with

—-b ¢ 0< <
wn) = { 4 o) o =

1+¢/(1 —dyn1) otherwise an

This equation was determined empirically by observing that
w must have high values for small values of the envelope,
while w — 1 (the high-pass filter becomes transparent)
for high values of the envelope. Parameters in Eq. (II)
were determined by interpolating over two values and by
requiring w to be C™ at yy1 = 1. The chosen values are
a=78b=14-10"" e=30, c=0.57, d = 2.86.
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Figure 3: Digital Dolby B-like system, (a) encoder; (b) decoder.

e The overshoot characteristics realizes the following nonlin-
ear compression function:

f3(e(nT)) = (12)
e(nT), le(nT)| < T
T+ g2=-{e(nT) = T1}, T <|e(nT)| <Ts
T, le(nT)| > T

with 77 = 80, 7o = 100, 73 = 200. We give reason
of such parameters by considering that our system is de-
signed to work in the dynamic range (—10, 30) dB. Hence,
the amplitude of e(t) is considered acceptable until staying
within 40 dB, i.e., absolute value equal to 100, otherwise
an overshoot caused by the time-varying filter is detected.

Using the characteristic (§) for the time-varying filter guaran-
tees that the transfer function 1 + H.,(z) is minimum-phase for
every choice of w. This fact in practice ensures the stability of the
decoder, where the output depends on the input according to the
relation explained by (3} .

In summary, both the encoder and the decoder comprise three
linear blocks H; and three nonlinear blocks f;. The update of
linear blocks is written in matrix form as

ypln] = Bxr[n] + g(n], (13)

where the vectors 1, and y ;, collect inputs and outputs of blocks,
gi[n] = b1xri[n — 1] + a1,:yr:[n — 1] collect contributions of

past components, and B is a diagonal matrix containing the linear
coefficients b ;.
The update of nonlinear blocks is written in matrix form as

yy[n] = f(znn], p[n]), (14)

where the vectors N, y 5, collect inputs and outputs of the non-
linear blocks, while p; contains the contribution of historical com-
ponents in the functions. According to equations (OTI|[T2), f1 has
a non-null historical component p;[n] = v(nT —T), while f> and
f3 are algebraic nonlinearities.

The topology of the network and the external inputs to each
block are specified by the equation:

_ Cnn CnNi
’ Ciy Crr

uUN
ur

TN
L

, (15)

— C‘ YN
YL

1

where u . 1, represent external inputs to the nonlinear and linear
blocks, respectively. The topology matrix C' specifies connec-
tions between block inputs and outputs, and the four sub-matrices
C nN,~NL,LN, L1 account for nonlinear-to-nonlinear, linear-to-non-
linear, nonlinear-to-linear, and linear-to-linear connections, respec-
tively. The encoder and the decoder systems differ only on the
matrix C' specifying the topology:

0 0 0 0 0 1
1 0 0 0 0 O
0 0 0 0 1 0
C=|0 1 0 1 0 0], (16)
0 0 Cs5,3 0 0 0
0 0 C6,3 0 0 0
0 1 0 1 0 0
where c5,3 = c6,3 = 0 for the encoder, and c5,3 = c¢,3 = —1 for

the decoder. Note that in both cases there is no direct connection
between the input and the output of the same block.

In summary, the encoder and the the decoder satisfy all the
hypotheses for the applicability of the procedure described in [9].
The digital systems representing the encoder and the decoder are

represented in Figure and [4(b)| respectively.

5. ANALYSIS OF CONVERGENCE

We have shown in previous works [8} 9] that straightforward alge-
bra leads to the following equations for the system inputs:

T = FZiCLNf(xN,p) + F;;(Crrq+ur), (17a)
zy = Wif(xn,p)+Waq+ Wsur +un, (17b)

where the matrices F'r;,, W ; are defined from B and C (see [9]
for details). From equations and (T7b), one can write

ynyln] = fF(Wiyy[n] + Zn(n], p), (18)

where Z n[n] = Waq[n] + Wsur[n] + un[n] collects the con-
tribution of known quantities to the input « .

Note that the only unknown in is yy[n]. The presence
of delay-free paths in the network causes W to be non-null, and
consequently Eq. defines y y[n] implicitly. The network is
computable if y  [n] can be computed from . More precisely,
the computation can be decomposed into the following steps:

1. xx[n] and y [n] are computed from (17b) and using
external inputs w[n] and historical components p[n|, g[n];
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2. xr[n]and y [n] are computed from and (T3], respec-
tively;

3. p[n+ 1] and g[n + 1] are computed from known variables;
in particular g[n + 1] can be computed by feeding each
filter with a null signal [S]]. No computation is needed if the
filters are realized in transposed direct form [[1}[7].

In [8] we discussed the use of Newton-Raphson (NR) iteration for
the solution of step 1. in the computational scheme outlined above.
The NR algorithm [17] searches a local zero of the function

FWiyy +28,p) —yy- (19

In [9] we have proposed an approach based on fixed-point (FP)
iteration [17]. In this case we try to solve the fixed-point problem
Yn = g, (Y ), where the function g,, has been defined as

9,(un) = F(Wiyy +Zn,p). (20)

FP iteration is preferable over NR iteration in terms of effi-
ciency and ease of implementation. However, convergence of FP
iteration is ensured only if the nonlinear function g,, given in equa-
tion @ satisfies more restrictive hypothesis. Namely, g,, must be
a contraction, i.e. it possesses a Lipschitz constant 0 < Lg, < 1
such that ||g,, (y) — g, (¥™)|| < Ly, ||y —y™||. We have shown [9]
that L,, can be estimated from above as Ly, < Ly, ||W1||, where
Ly, is a Lipschitz constant for f(-,p). In the remainder of this
section we refine this analysis and apply it to the Dolby B. Specifi-
cally we show that FP iteration can be applied to the encoder topol-
ogy but not to the decoder topology.

We restrict our analysis to the second component gz of g,,, as
it is easy to show that this is the critical one. The function g2 is
W, since g2(yy) = f2(Wiyy + &n). In order to estimate
whether g2 is a contraction, it suffices to estimate its derivatives
0g2/0yns (1 = 1,2, 3) [9]. If the condition

8g2
OYNi

sup
YNEY

>1 1)

holds for some ¢ in a given range Y, then g- is locally not a con-
traction in Y and FP iteration is not convergent. The derivatives
are computed as

892 afg orN i o f2

- = Wilji 22
NG zj: OrNj OyYyni — Dz, W, (22)
Substituting values of the coefficients [W1];,; for the encoder and
the decoder yelds

ow
{ym "Dy 0, 0]

092 _ 23)
Oy y Sw
{ym Ene 0, 0.95 - w(v)} (decoder)

(encoder)

Note in particular that the third component of this derivative is not
null for the decoder: this is a consequence of the decoder topology,
in which the output from the compressor f3 influences the input to
the time-varying high-frequency gain f> through the main feed-
back loop. Unfortunately w(v) is well above 1 in a neighborhood
of the origin, therefore Og2 /Ay is locally greater than 1 for the
decoder and FP iteration cannot be applied safely. On the contrary,
g, is globally a contraction for the encoder, and FP iteration can
be applied in this case.
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Figure 4: Digital system response; (a) encoder, (b) decoder.

6. NUMERICAL SIMULATIONS

The Dolby B-like codec was implemented as a set of Octave/Matlab
functions. We first experimentally verified the correctness of the
analysis reported in the previous section: numerical simulations
show that FP iteration converges when the system topology is the
one given in figure[A(a)| while this is not the case for the topology
of figure in accordance to our analytical study on g,,.

We then tested the response of the encoder and the decoder
by feeding both systems with a 9 x 20 matrix of sinusoidal inputs
z(t), containing 9 equally spaced input levels between —10 and
30 dB, and 20 exponentially spaced frequencies between 20 and
20000 Hz. In light of the results presented above, NR iteration was
used for the solution of both systems.

For each input sinusoid, the average number of NR iterations
per sample was computed. Results show that both the encoder
and the decoder require in average ~ 2 NR iterations per sample.
The average iteration number, not surprisingly, increases with the
frequency of the input sinusoid, with a maximum of 2.25 for the
encoder and 2.38 for the decoder. The same number decreases for
higher input levels, reaching a minimum of 1.21 for the encoder
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Figure 5: Example of an encoded sinusoid.

and 1.28 for the decoder: this is also a predictable effect, since the
lower the input level is, the higher is the time-varying gain w.

The responses of the two systems are plotted in figure [5(a)]
and respectively. For each element of the input matrix, the
frequency and amplitude of the resulting output sinusoid deter-
mined the interpolation point which the responses of figure[d]inter-
sect. Note in particular that for very low input levels the encoder
provides a maximum of about 10 dB boost above 4000 Hz, which
is qualitatively in accordance with the specification requirements
imposed by Dolby Labs [10]. Note also that the systems are trans-
parent to high input signal levels.

Figure[§] provides an example of the encoding process on a test
sinusoid at 20 dB and 500 Hz. The encoded sinusoid is boosted,
but as the envelope signal yn1 rises up the gain of the shelving
filter is lowered and the output level is consequently reduced.

Numerical simulations made by cascading the decoder after
the encoder show that the decoded sinusoids are exact reconstruc-
tions of the input signals. The presence of a very short and small
transient encoding/decoding error, lasting less than five samples
and invisible in Figure [5] disappears as soon as the initial input
discontinuity arising when the null signal turns into a sinusoid is
forgotten by the digital codec.

7. CONCLUSIONS

An exact realization of a Dolby B encoding/decoding architecture
was made possible by implementing a previously known algebraic
procedure that allows to compute nonlinear filter networks con-
taining delay-free paths. The use of this procedure sheds light
on some computational aspects of the Dolby B: specifically, the
analytical results reported in section [3] provide a quantitative link
between the inherent structure of the system and the robustness of
the computational procedure.

Ongoing work is focusing on investigating the properties of
the computational procedure further, and specifically on the rela-
tions between the topology of a generic nonlinear numerical sys-
tem (T7a]T7b) and its computational behavior.
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