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ABSTRACT 
A weak nonlinear plant can be linearized and will track 

an input signal if the plant is preceded by a nonlinear controller 
wfiich approximates the inverse of the plant's transfer function. 
Present techniques for adjusting the controller adaptively to the 
plant requk an additional nonlinear adaptive filter to perform a 
separate system identification. Stmightfonwrd update algorithms 
can not directly update the filter parameter in the controller 
because the transfer hction of the plant might cause instabilities in 
the adaptive process. This problem is overcome by performing 
additional linear filtering to the nonlinear state vector andor error 
signal. Novel filtered-A and filtered-E modifications of the 
stochastic gradient based methcds are presented which are capable 
to update generic as well as special block-oriented nonlinear filter 
arChiteCtllrC3. 

1. INTRODUCTION 

Most techniques developed for the inverse control of 
physical systems are based on a linear model for both the plant and 
the precedtng controller. However, some real plants such as 
electromechanic and electroacoustic transducers (loudspeakers, 
actuators) are more precisely modeled by a nonlinear system. The 
nonhearities are relatively weak and the plant behaves at small 
amplitudes almost linear but can generate substantid nonlinear 
distortion of the output signal at higher amplitudes. Nonlinear signal 
distortion generated by loudspeaker, for example, affects the 
perceived sound qualitity and can impair the efficiency of active 
attenuation systems in professional applications. In an adaptive 
controller based on a linear filter the nonlinear distortim 
components increase the residual m and can generate a bias in 
the l ina parameter estimates. 

The nonlinearities of the plant can actively be 
compensated by using a nonlinear contmller h c h  approximates 
the inverse of the plant's transfer function. The inverse 
pr- of the control signal can be realuRd with nonlinear 
fdters based on a polynomial expansion [l] or on neural networks 
[2-31. However, control systems based on such generic architectures 
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can not be implemented on current digital signal processors (DSP) 
at low costs. Alternatively, block-oriented filter structures (such as 
the &-model [4], Hammerstein-model [5], -model [6]) are 
composed of both static nonlinear subsystems and dynamic linear 
subsystems. These architectures have a lower complexity and are 
v q  effective ifthe used filter structure is adequate for the nonlinear 
mechanism in the plant. If a pxiori information h m  physical 
modelug of the plant is available then it is even possible to derive 
special blockaiented filter structures with a minimal number of 
elements and free filter parameters, which are intapretable in a 
physical sense. Following this approach special nonlinear filter 
architectures have been derived from the woofer and hom 
loudspeaker modelug and have been implemented and tested as 
loudspeaker  controller^ [7 - 91. 

Nonlinear Fitter 

Ld Nonlinear Filter I I I 
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Figure 1 : Adaptwe inverse control based on foxward model identifi- 
cation. 

After findtng adequate filter structures the interest of re- 
search is now focused on the optimal adjustment of the free control- 
ler parameters to the particular plant. An adaptive parametex updat- 
ing is preferable to an off-line ,Idjustment because parameter varia- 
tions of the plant can be comperrsated automatically. Stmightfbnwrd 
adaptive algorithms available for the generic filter structures 
(polynomial filter [lo] and neural netwwk [3]), require an indirect 
adjustment of the nonhear by performing an additional non- 
linear system identificaton of the plant. The identification can be 
p"ed as a forward or an inverse mode@ as show in Fig. 1 
and 2, respectively. 
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Figure 2: Adaptive inverse control based on inverse model iden- 
tification. 

The additional model filter can be updated by Straight- 
forward methods (LMS, LS, RLS, backpropagation methcd) be- 
cause this filter is located after or in parallel to the plant. In the for- 
ward model identification in Fig. 1 the identified model parameters 
W have to be transfmed into mapondug mtrol parameters 
W’ and loaded into the non-adaptive control filter. The transforma- 
tion can be accomplished by calculatmg the Volterra kernels fiom 
the parameter of the model filter first, invertmg the kemel +xknction 
as described in details in [ 1 1 J and finally by synthesizing the pa- 
rameters of the control filter from the inverted system fimction. Goa 
[l] simplitied the transformation by performing a separate c o m p -  
sation of the first-order system in the plant modeW. 

The cumbersome transformation can completely be 
omitted by using the inverse model identification as shown in Fig. 2. 
The identified inverse model parameters can directly be copied into 
the control filter precedq the plant. However, this advantage is 
paid by a biased parameter estimations under conditions of plant 
noise additive n(i). 

Both a p c h e s  require an additional nonlinear filter 
which has the same complexity as the control filter. ms increases 
the costs of DSP implementation and might be an obstacle for real 
time processing. 

In this paper an alternative approach is presented. It al- 
lows direct leaming of the nonlinear filter p“g the plant with- 
out separate nonlinear system identification. The correspondmg 
block-diag” is shown in Fig. 3. A new update circuit has been de- 
veloped which has a state vator A of the nonlinear control filter and 
the error signal e(t) as inputs and generates an updated parameter 
vector W as output. Available update algorithms can not directly be 
applied here because the transfer fbnction of the nonlinear plant 
might cause instable behavior of the feedback path. 

2. BASIC FILTER AND PLANT MODELING 

Following the Volterra series approach the plant is 
modeled as the sum of mth-order homogeneous power systems with 
m = 1, ..., M. All the higherader subsystems (m > 1) are 
Summarjzed in an here not M e r  specified nonlinear subsystem N 
which is connected in parallel to the firstader system with the 

0 -  Plant Nonlinear Filter 
(inverse control) 
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Figure 3: Lineaxization of loudspeakers based on adaptive inverse 
control. 
hea r  transfer function Hl(z) as show in Fig. 4. The output of the 
nonlinear subsystem Hi) represents the nonlinear “distortion” signal 
added to the linear output y(i) of the system Hl(z) and the plant 
noise n(i). 

It is assumed that Ip(i)l<< ly1(i)l, thus the plant behaves as 
a “weakly” nonlinear system This assumption is required to ensure 
that the mth-order distorhon products with m = 2, ..., M generated 
in the plant can be cornpensated by a Mth-order polynomial filter 
and that the ith-order distortion components with M < i 5 M2 
which are newly generated by cascadug two Mthader polynomial 
systems are sufliciently small. 

It is c u s t o m  to assume that the plant noise n(i) is a 
zero-mean process and is unmelated with the linear signal y(i), 
the nonhear distortion compenki p(i) and the desired signal 4i). 
Likewise, we assume that the filter input x(ij and the desired 
response 4i) are single realizations of jointly wide-sense stationary 
stochastic processes, both with zero mean. 

The nonlinear mtrol filter prmnnected to the plant is 
represented by a nonhear state expander fed by the input signal 
x(i) and gmeratq the state vector 

A(i) = [ao (i)  a, (i) . . . aL (i)IT . 
This vector is weighted by the parameter vector 

w(i) =[wo(i) w,(i) ... w,(i)]‘ 
and summarized by a following linear combiner to the filter output 
signal 

z(ij = A(ijTW(i). 

b model 1s stmghthward for p o l y n d  filters where the 
nonhear Volterra state expander generates the products of the 
delayed q u t  samples x(i) m all c o m b ” n s  as described by 

To apply k approach to the block-onented filter 
it 1s necessary to develop the stak nonhear systems lnto 

a m e s  expansion (eg power sen-) and to separate the hear  
parameters and the ccefficients of the senes expnsions from the 
hear  and nonhear operahons That leads to a nonhear state 
expander whlch compnses not only a tapped delay h e  and 
mulbphers but can also contan hear filters and stabc nonlmear 
systems ulth constant parameters 

Mathews [lo] 
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Figure 4: Basic m o d e h  of the direct inverse control system. 

3. OPTIMAL PARAMETER ADJUSTMENT 

A c " g  to Fig. 4 the error signal at the discrete time i is 

e(i)  = d( i ) - y ( i )  = ~ Z ( i ) - [ A ( i ) ~ W l * h ,  - n ( i ) - p ( i )  (1) 

where * denotes the convolution operator and it is undemtocd that 
the Z -transfinm of hl is Hl(z). 

Contrary to the usual approach in adaptive filtering the 
cost hcticm is defued here as the mean SqUaredJiltered error 

MSFE B J = E I( e(i) *he 1'1 (2) 
is a causal filter function 

H&). I"g Eq. (1) in Q. (2) and Merentiatmg the cost 
fimction with respect to each component of the weight vector yield 

where the Ztransfm of 

d J  
d W  

V ( J )  E - = 2RW + 2 2 -  2P 

where 
R = E[(A(r) *hi *h,)(A(i)*h, *he)']' 

P = E[(d(i)*hi *h,)(A(i) *hi *he)']> 

Z = E[(p( i )  *h,)(A(i) *hi *he)'] .  

To obtain the mini" mean-square error the parameter 
vector w is set at its optimal value w', where the gmdmt is zero. 
Assuming that the conelation matrix R is nomngdar, the optunal 
weight vector is 

(3) 

This result is the Wiener-Hopf equation for the special case of 
nonlinear inverse optimal filtering. The additional vector 2 
describes the crosscorrelation between the filtered nonlinear 
distortion signal Hi) and the filtered nonhear state vector. This 
vector is almost indepembt on the parameta W as long as the 
control filter and the plant behave as weakly nonlinear systems. 
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Figure 5: Nonlinear inverse control with A-filtered LMS Algorithm. 

4. GRADIENT-BASED ADAPTATION 

Although it is possible to solve the Wiener-Hopf equation 
(3) directly it is more practical in real time implementation to use an 
iterative method. Beginning with an initial value W(0) the next 
guess of the parameter vector is detexmined by the simple recursive 
relation 

W(i+l )=  W(i)+-p 1 [-V(J))]= W(i)+,u [p-Z-RW(i)] 
2 

or 

W(i + 1) = W(i)  + ,u E[(e( i )  *he)(A(i) * h, *he)] (4) 

leading to the steepest-descent algoxithm for this parbcular problem. 
omitting the expectation operator in Eq. (4) results to a 

stochastic gradient-basedmethod 

(5) 

belonging to the family of the LMS-algorithms. In contrast to the 
straightforwad gradient basedl algorithms the update Eqs. (4) and 
(5) require additional filtenng of the signals prior to their 
multiplication. Whereas HI@) w e s j m d s  with the first-order 
system of the plant, the filter function Wz) can be chosen 
a r b i M y .  However, there are two wnfigurations which are of 
special interest: 

W(i + 1) = W(i) +,u [(e(i)  *h,)(A(i) *h, *he)] 

4.1. F'Wd-A LMS Algorithm 

For Wz)=l the additional filter in the error path can be 
omitted and the update equaticm reduces to 

W(i +1) = W(i) + p  [e(i)(A(i) *h,')] 
related to the block diagram presented in Fig. 5. Each element of the 
nonlinear state vector requires a separate linear filter HI'(z) 
appmximatmg the first-order system fimction Hl(z). The adjustment 
of these filters is relatively Uncritical but if the responses Hi'(z) and 
Hl(z) deviate more than 330' in phase the update circuit might 
became instable. Fig. 5 shows a straighgorward way to ident@ the 
first& system function of the weak nonlinear plant. 

If the state expander is completely linem (such as a 
tapped delay line in an FIR-filter) the filtering of the state vector A 
can be replaced by smgle filtering of the input signal at) prior to 
the linear expansion which lads  to the straightforward filtered-X 
LMS algorithm. 

357 



Figure 6: N o h e a r  inverse control with E-filtered LMS A l p  
rithnl 

4.2 Filtered-E LMS Algorithm 

The presented filtered-A LMS algorithm is impractical if 
the dimension of the state vector A is high andor the filter function 
HI’@) is very complex. In such cases it is advisable to omit 
additional filtering of the state vector and to use an additional filter 
He)@) in the error path to hold the LMS algorithm stable. Ifthe filter 
function 

is just the inverse of the fkst-order system fimction Hl(z), inc1uh.q 
an additional time delay to make &(z) causal, the update algorithm 
reduces to 

The correspndmg block diag” is shown in Fig. 6. 
Besides the time delay of the nonhear state vector there is only one 
additional filter in the e m r  path required which performs an 
additional shaping of the error spectnun. The time delayed inverse 
of the first-oder system !?unction is identified with an additional 
hea r  adaptive filter in a straightfonmd configuration and instantly 
copied to the error filter. Plant noise n(i) might generate a bias in 
the estimate of wz) but that is acceptable for the error ater. 

5. CONCLUSION 

The filtered-A and filltered-E LMS algorithms presented 
here allow direct updating of the nonlinear filter controllug the 
plant. Mead of perfonnjng a complete identification of the 
nonlinear plant in the accuracy required for the controller the new 
approach only needs a rough estimate of the plant’s transfer function 
to perform additional prefiltering of the nonlinear state vector andor 
the error signal prior to their conelation. This technique ensures 
stabihty of the adaptive process as long as the plant behaves as a 
weak nonlinear system and the mputatput relationship can be 
approximated by a hea r  system !?unction. That is not a hindrance 

architectures used in the control filter are bound to the same 
for practical applications because almost all generic filter 

requirement to approximate the plant’s inverse and to provide 
sufficient compensation of the nonlinear &station. 

This technique is not h t e d  to the gradient- 
based algorithms presented in this paper but can also be applied to 
the recursive least-square algorithm. 
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