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A NEURAL NETWORK APPROACH TO THE ADAPTIVE

CORRECTION OF LOUDSPEAKER NONLINEARITIES

Stephen Low and Dr. Malcolm O. J. Hawksford

Universityof Essex
DepartmentofElectronicSystentsEngineering

AudioResearchGroup
WivenhoePark,ColchesterC043SQ,UK

Abstract

All adapth,eloudspeakercorrectionschemefor sub-woofersispresentedthatis
based upona four-layerneuralnem,orkalgorithm. Compensationfor both
dominanttime-invariantnon-linearitiesand timevaryingchangesin cone mass
andvoice-coilresistanceis achieved.Controldatafor thecorrectionalgorithmis
derivedusinga novelmethodbaseduponthe_owledgeof thecurrentandvoltage
monitoredat thedriveunit'sterminals.

0 INTRODUCTION

Digital recording systems together with certain types of music place a high demand upon the
generation of low frequency signals using moving-coil technology. It has been shown by
Fielder and Benjamin[i] that a bass extension to 20 Hz with sound levels up to 110 dB and
distortion levels below 3% is desirable for realistic sound reproduction, where as an extreme
case, Figures l(a) and (b) show the musical content of a segment of the "1812 Overture" by
Tschaikowsky[l ].

Recognising the difficulty of achieving adequate bass performance within the context of
modestly sized and cost-bounded loudspeakers, this paper explores techniques of
compensation for non-linearities within low-frequency loudspeakers using digital signal
processing. A range of distortion mechanisms are reviewed and a novel form of adaptive
neural network introduced as a candidate for a correction strategy, where the performance of
an example network is explored through computer simulation.

1 DOMINANT NON-LINEARITIES IN MOVING-COIL LOUDSPEAKERS

A moving-coil sub-woofer system employing a closed-box bass loading scheme may be driven
from either a voltage source or a current source. Figures 2(a) and (b) contain the mechanical
equivalent circuits of current and voltage drive closed-box sub-woofers. Most amplifiers
provide a voltage source drive output to moving-coil loudspeakers, but specially constructed
amplifiers (Mills and Hawksford[2]) can provide current drive to moving-coil loudspeakers. It
is evident from comparisons made by Mills and Hawksford[2] and Klippel[3] that certain
output non-linearities can be compensated for by employing current drive technology.



Figure 4 provides a detailed summary of moving-coil loudspeaker non-linearities. Current
drive eliminates the effects of voice coil inductance change with cone excursion (whose
contribution is anyway minor at bass frequencies) and the effects of (bl) 2 modulations
contributing to non-linear electrodynamic damping. In addition, operating point variation
caused by voice-coil current heating effects is very much reduced. Doppler distortion as
reported in reference [1] may be neglected even at high acoustical outputs in the bass region.
The positive features of current drive leave only the following non-linearities to be corrected
for in a closed-box system:

a. Non-linear bl displacement factor,

b. Non-linear suspension spring force, and,

c. Non-linear box spring force.

2 OVERVIEW OF NON-LINEAR DISTORTION COMPENSATION

The incorporation of negative feedback and proper frequency alignment/equalisation has been
the traditional approach (Mills and Hawksford[2]) used to reduce non-linear distortion in sub-
woofers. Negative feedback and frequency alignment/equalisation entail the use of external
sensors and special amplifiers, thereby subjecting the manufacturer to extra production costs
and limited adjustment fiexibilty. Recent advances in signal processing and computer
technology have led to the incorporation of adaptive signal processing in the correction of
non-linear loudspeaker distortion. Klippel[3] suggested the use ora mirror filter to provide a
form of non-linear real-time inverse mapping function to linearise a toudspeaker's output at
bass frequencies. A refinement in Klippel's technique [3], through the use of a neural
network is proposed in this paper.

3 COMPUTER MODELLING AND SIMULATION

A computer model of a current-driven closed-box sub-woofer was constructed through the
technique of Transient Anaiysis[4]. Neural network simulations are best observed in the time
domain, as the effect of incremental change in the output gives a real-time indication of bow
the network is responding to an applied training algorithm. Therefore Transient Analysis is
preferred to that of the Volterra Series [5] in modelling neural network loudspeaker correction
systems. The input-output relationships amongst the output parameters of cone displacement,
velocity and acceleration, and that of the driver's terminal voltage with that of the input
parameter of drive current are illustrated in Figure 5. Integration and differentiation are
carried out by numerical techniques (references [4] and [6]).

The non-linear differential equation describing the response of a closed-box current-drive low
frequency loudspeaker is,



b!(x)i(t) = L-_{ms2 +(Rms)s+ ko}*x(t) + x(t){A kmt(x)}

(1)

where, s = o +jo), the complex frequency,
i(t) = the input drive current, and,
x(t) is the resulting cone displacement output.

The term, z_kmt(x),represents the total non-linear contributions of both the spring force and

box spring force respectively, ko represents the total static box and suspension spring forces
when the cone is at its rest position. The tel_ns, bi(x) and kms(x) are modelled as polynomial
expansions in powers ofx(t) as follows:

bi(x) = bo+ bix+ ...... +b.x" (2)

kms(x) = kso+ ks_ +...... +ks.x" (3)

Following the suggestion of Kaiser[5], the box spring force, kmb(x) may be expressed as,

( _ -(¥+ 1)

kmblx) = y S 2P°_I + Sx_ (4)
v0[ Voj

where, Po = static air pressure of 1.01325 x 105N/m2,
V0=static volume of box enclosure,
S = effective cone surface area of radiation, and,
y = adiabatic expansion constant of 1.4.

Figures 6(a) to 6(c) depict the variations of the bi(x), kms(x) and limb(x) with cone
displacement x(t). The plots of Figures 6(a) to 6(c) represent the characteristics of a typical
medium-sized closed-box system which was used in this simulation.

4 CORRECTION STRATEGY

An inverse mapping function of the form,

ico_(t) = N_,(x){ i(t) + N_..(x)} (5)

where, i_o.(t)= pre-distorted drive current,
Nat(x) represents the non-linear correction factor for the bl

displacement force, and,
N_..(x) being the total correction for the suspension and box

spring forces,



may be used to correct for the dominant non-linearities. Applying the inverse mapping
equation (5) would result in the linearisation ofx(t) as shown below:

x(t)= t,t(x)
[ ms 2+ (Rms)s+ kmt(x)J _o,,x , (6)

5 DESCRIPTION OF THE ARTIFICIAL NEURAL NETWORK CORRECTION
SCHEME

The practical realisation of equation (6) may be obtained through the use of an adaptive
correction scheme employing an artificial neural network. In addition to the correction of the
dominant non-linearities, a neural network could adapt itself as the loudspeaker is in
operation to time varying changes in cone mass and voice-coil resistance. Figure 7 contains a
block diagram representation of the artificial neural network correction scheme. The
correction strength of the network lies in its ability to make synaptic changes in the values of
weights wl to w8 in response to a change in the error between the output of the linear filter,
which provides the reference or training signal and that of the derived cone displacement
signal, which is representative of the actual cone displacement. Weight w8 is normally set to
1.0, unless the output from the current sensor indicates a notable change in the voice-coil
resistance due to heating. The correction of the dominant non-linearities and that of
variations in the cone mass are effected by the synaptic strengths of the weights, wi to w7
respectively. The general equation representing the output at a summing junction may be
expressed as:

n

Njk = _ woNij (7)
i=1

Njkrepresents the network output of the kth layer which comprises of the total weighted

strength of the jth layer network outputs represented by N_jand synaptically weighted by the
jth layer weights, w0.

6 MEASUREMENT OF CONE DISPLACEMENT

In order that the synaptic strength of the neural weights wl to w7 be changed in response to
the input signal, a knowledge of the instantaneous cone displacement is required and this is
obtained through a novel voltage feedback scheme. This scheme, unlike most servo-loop
negative feedback systems, which obtain cone displacement information through the use of
acoustical or mechanical sensors, only monitors the voltage across the driver's terminals. The
terminal voltage is a representation of the instantaneous cone velocity, u(t), and thus by
monitoring this voltage and then employing a suitable numerical integration technique, the
instantaneous cone displacement, x(t), may be computed and fed back as an input signal,
xjb(t), to the neural network. Figure 8(a) shows the scheme to obtain the derived cone

displacement. If the circuit is operated in the digital domain, the derived displacement, xJb[n],
is thus,



A r. -_[ v[n- 11- ice. [n- 1]Re

xJb[n] = '2't z +/xJ'_, bl(__i 'l + k (xfbln- 11} (8)

The term, k is an integrator constant, to provide a levelling off of the integrator gain in order
to ensure system stability. A, the integration step size is numerically equated to the sampling
interval of the digital system, i,o. may be obtained without measurement through a knowledge
of the network output NS. The use of equation (8) to obtain a sample of the instantaneous
cone displacement is accurate and does not require laborious tuning and refinement unlike that
of employing mechanical or acoustical sensors. A simulation run with an input current
amplitude of 1 A and a frequency of 16 Hz produced the resultant outputs of Figure 8(b). The
simulation result shows that the derived displacement obtained by the use of the novel scheme
of equation (8) is in close agreement with the actual cone displacement.

7 TRAINING THE NEURAL NETWORK

In Figure 9, a flowchart illustrating the training and simulation strategy of the neural network
correction scheme is presented. In order to simplify the actual training and implementation of
the correction scheme, so as to reduce set-up and production times, the use of the generalised
delta rule and back-propagation are adopted (Reference [7]). Weight changes are made
following a simplified gradient descent procedure [8] where the error signal, 8[n], is
computed as follows,

8[nl -- x_[n] -xfbIn] (9)

The target signal, xu,[n], is generated from the input drive current, i[n], from a linear filter,
whose transfer function is the digital domain representation of the input-output relationship of
the current-drive loudspeaker in the absence of non-linearities,

L_', [ _ }*i(t) (10)Xa,(t) = [ms_+(Rms)s+ko

Updating of the synaptic strength of the weights takes place first between the output layer and
the hidden layer immediately behind it. This involves the update of wT. The new value of w7
is computed by this step,

w7[n+ 11= w7[n] + 13sNS[n] + otAw7[n] (11)

13represents the training factor which is allowed in the simulation runs to vary about an initial
setting of 1.0, in accordance with the strength of the output NS[n]. NS[nj is the digital
representation of the actual pre-distorted drive current, ico,,[n]. A momentum term, ct, is
added to equation (11) to improve the rate of convergence. A value of 0.6 was found to be
optimum, during simulation runs, as higher values of ct resulted in overtraining and contributed
more distortion to the cone displacement.

The weights wl to w6 are embedded in the hidden layers of the neural network, and will bear
no direct relationship with the output layer. Their synaptic strength may be updated by means



of the backpropagation algorithm, where the updated value of w7, is propagated back together

with the value of the error signal So, for any weight in the hidden layers, w_j,

w0in+ 1] = w 0 in] + exJb[n]w7[n+ 1] + o_Awo [nl (12)

8 SELECTION OF THE TRAINING SET AND WEIGHT INITIALISATION

In the selection of a set of training signals, it is important that signals posess similar
characteristics to that of actual music as well as have sufficient magnitude to drive the cone
through its full displacement range. The training signals chosen for the simulation runs
comprised of sine wave tones at an amplitude of lA through a frequency range spanning 16
Hz to 120 Hz. It has been computed that a drive current of lA in amplitude would produce
maximum linear cone excursion amplitude of 7mm at resonance for the current drive model
under study before the application of frequency alignment/equalisation. The training
procedure involved simulation runs of one second duration with a sine wave tone set at a
particular frequency commencing at 16 HZ, The training sequence continued at intervals of 4
HZ right through to 120 Hz. Weight changes in wl to w7 are recorded at each frequency.

Kolen and Pollack[9], have reported that back propagation is sensitive to the initial synaptic
strengths of the weights in a neural network at the commencement of a training cycle. A
wrong choice of initial conditions may lead to network paralysis or the optimisation process
being stuck at a local minimum. In order to avoid the training situations described above, the
inital weight values are set either through the use of a look-up table or with some knowledge
of the average correction to be applied to the dominant non-linearities over the span of the
cone excursion.

w8 is initialised to a value of 1.0 at the start of any training sesssion or when the loudspeaker
correction system is in actual operation. A current sensor continually monitors the rms value
of i,o,(t) so that the change of the voice coil resistance due to heating effects could be
compensated through the adjustment of the weight strength of w8.

9 LOOK-UP TABLE WEIGHT INITIALISATION

Figures 10(a) to 10(g) show the correction values for the dominant non-linearities to be
initially applied as weight values, w7 provides compensation for the bi factor non-linearity.
wi to w4 compensate for the non-linearity of the suspension spring force, while w5 and w6
compensate for the non-linearity in the box spring force. As the training cycle progresses for a
particular frequency, the value of the derived displacement is used to compute the index, N of
the look-up table as illustrated in Figure 11. Once the individual weight values in a particular
indexed row are identified, they will be used as initial weight values for that particular sample
of time. The weight updates then continue with gradient descent and back propagation and
the updated values of wl to w7 are recorded in a data file indexed to Nth row. Once the
network has been trained over the full complement of signals in the training set, the average
individual value of a particular weight in an indexed row N becomes,



f_l

fin equation (13) refers to a particular frequency of the input and N, index number of the Nth
row. It has been observed during simulation that the number of steps in the look-up table
affects the rapidness of convergence and hence the accuracy of compensation. A 4096 step
look-up table with equal incremental steps spanned over the +7 mm cone excursion range of
the model yielded good results. K represents the total number of frequencies in the training
set.

10 FIXED WEIGHT INITIALISATION

An alternative to look-up table initialisation, would be that of fixed weight initia[isation. This
method reduces the memory overhead needed to store a huge 4096 x 7 array of weight values.
In fixed weight initialisation, a weight value wo(inital), is initialised by taking the mean of all
the correction values that span over the cone excursion range,

S

w0 (initial) = S ___ w0 IN] (14)
/

N=I

where, S = number of steps in look-up table, and,
N = step index.

It is evident that fixed initialisation requires a total storage of only seven weight values at any
one time during either training or operation of the system.

11 EVALUATION OF NETWORK PERFORMANCE

The performance of the neural network is compared against that of a frequency
equalised/aligned and that of an unequalised/unaligned current drive model with the same
parameter values. Evaluation of performance in the areas of second and third harmonic
distortion levels, cone compression and sensitivity to cone mass variations revealed the good
correction ability of the neural network compensation scheme. Look-up table weight
initialisation were used in these tests.

Reference to Figure 12(a) reveals the superior performance of the neural network in the
correction of second harmonic distortion, especially in the region between 20 Hz to 45 Hz. In
the area of third harmonic distortion output, the neural network provides superior performance
in the frequency range between 48 Hz to 92 Hz when compared with the other two systems.

Figures 13(a) to (c) show the simulation results of the performance of the three above systems
in the area ofintermodulation distortion. The two test tones chosen were 16 Hz and 64 HZ,
both with an equal amplitude of 0.5 A. This would simulate a reasonably accurate real world
situation where a 16 HZ organ pedal note may be modulated with a 64 HZ note from a double



bass or a contra-bassoon. (Richard Strauss' opening bars of tile Also Sprach Zarathrustra tone
poem recorded in the Telarc CD of reference [1] is one typical musical example). The neural
network system showed reduced intermodulation distortion output at 32 Hz, 48 Hz and 80 Hz
in comparison with the aligned/equalised system. The intermodulation products at frequencies
beyond 200 Hz are at least 60 dB below the two test tones, indicating that the neural network
scheme would produce very little upper bass and lower mid-range energy which interfere with
the output of low bass frequencies.

The neural network system also showed good adaptation to parameter variations from design
specifications. Simulation runs were conducted where the cone mass was first reduced by
20% and then increased by 20% &the design value. The percentage change (relative to that of
the output with design specified cone mass) in cone excursion amplitude is observed at
intervals of 4 Hz for the frequency range between 20 Hz to 120 Hz. In the frequency range
between 20 Hz to 110 Hz (typical sub-woofer operation range), the neural network system
exhibited no more than + 25% variation in excursion amplitude when the mass is reduced by
20%. An increase in cone mass by 20% from that of the design specified value resulted in a
fluctuation of excursion amplitude of no greater than + 32%. The amplitude fluctuations
produced by the other two systems under test over the frequency range of 20 Hz to 110Hz
are more extreme as indicated in Figures 14(a) and (b) when compared against the neural
network scheme.

12 NETWORK PERFORMANCE COMPARISON - FIXED VS LOOK-UP
TABLE WEIGItT INITIALISATION

It is interesting to make observations of network performance under fixed and look-up table
weight initialisation strategies. A simulation run with a 16 Hz, 1 A sine wave tone was
conducted with both weight initialisation schemes and the results were compared against the
equalised/aligned model. Fixed weight initialisation produced the least compression but
showed inferior second and third harmonic distortion reduction when compared against look-
up table weight initialisation. Figures 15(a) and (b) summarise these results. Simulation runs
conducted at higher frequencies indicated poorer overall performance for the fixed weight
initialisation scheme, thereby confirming the observation of Kolen and Pollack[9], regarding
the sensitivity of network performance to the initial synaptic values of the neural weights.

13 CONCLUSIONS

Evaluation of the main performance areas of the neural network correction scheme has
indicated that the scheme holds promise of good performance especially in the areas of
reduced cone compression and second harmonic distortion output in the low bass region
between 20 Hz to 45 Hz where cone excursion is substantial. In the reduction of
intermodulation and third harmonic distortion output, the neural network system performed
equally well if not better than the other two systems in the comparison tests (the
unaligned/unequalised and frequency aligned/equalised systems respectively). In the area of
adaption to parameter variations such as changes in voice-coil resistance and cone mass
variations, the neural network scheme is superior to the other two systems under test, thereby
indicating the network's tolerance to time-varying parametric changes. This paper merely
represents the "tip of tho iceberg" in the exploitation of neural network theory to loudspeaker



non-linearity correction. Further investigations into more advanced strategies (references [10]
to [15]) will certainly lead to the conceivement of more powerful and efficient correction
schemes. The corrective properties of neural networks are rich in scope and variety, and are
very well suited to use in a non-linear control problem such as loudspeaker non-linearity
correction.
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Figure 2(a) - Mechanical Model of a CurrentDrive Moving-Coil LoudspeakerSystem
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Figure 2(b) - Mechanical Model of a VoltageDriven Moving-CoU Loudspeaker.
Effects of (bi)'modulations are reflected from electrical Inputelreult and

manlfestedin theparameters of Zmg, Cme and Rme respectively.



PARAMETER/DRIVE ELECTRICAL MECHANICAL
UNIT MODEL MODEL

Voice Coil Resistance Re _ Rme - (bI)2 kg/s
Re

Voice Coil Inductance Le G H Le
Cme* - m/N

(bl) 2

EnclosureCompliance/ Lmb* -- Cmb(bl) 2 H Crab* _- __1 m/N
Box Spring Force kmb

Suspension Compliance/ Lms _ = Cms(bi): H 1Cms* -- -- m/N
Restoration Spring Force kms

Moving Cone Mass/ Cmcs= tn F m kg
Suspension Mass (bl)2

Mechanical Resistive (bi) 2 _ Rms kg/s
Losses Res- Rms

Source Impedance Zg(assume zero) _ (bi)2
Zing - kg/s

Zg
Voltage/Force V(voltage) V F (force) N
(Drive Units)
Current/Velocity I (current) A u (cone velocity) m/s
(Drive Units)
Other Mechanical Units x (cone displacement) m

a (cone acceleration)
m/s 2

Ei'ectromagnetic Conversion bi* N/A
Parameter/Force Factor

* Indicates non-linearparameter dependent onconedisplacement,x.

Figure3 - TabularSummaryof MainModeU_gParametersin TransientAnalysis



MAIN NON-LINEARITIES IN MOVING-COIL LOUDSPEAKERS

A. NONLINEARITIES IN THE MOTOR COIL AND MOTOR/MAGNET
SYSTEM

I. Variation of bl force factor with cone displacement*

:. (bi)2 variations producing non-linear electro-dynamic damping of cone
motion

3. Variation of the voice coil inductance with cone excursion

4. Variation of the voice coil induced emf with cone excursion

5. Changes in the operating point of the permanent magnet system due to a
variation of voice coil current (heating effects)

B. MECHANICAL NONLINEARITIES

1. Non-linear suspension stiffness (or compliance) of the loudspeaker spider
and outer rim with cone excursion*

2. Mechanical clipping and compression * of the voice coil

3. Hysteresis effect of the displacement or driving force of the voice coil

4. Generation of sub-harmonics (or rocking) due to cone material non-
linearities at extreme drive levels

5. Adiabatic compression of enclosed air in closed-box systems*
(box compliance or box spring force)

C NON-LINEARITIESINRADIATED SOUND

1. Doppler Distortion

2. Contributions of non-ideal room acoustical conditions

· Included incurrent drivemodel.

Figure4
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