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Preface

MODERN CONTROL SYSTEMS—THE BOOK

Global issues such as climate change, clean water, sustainability, waste management,
emissions reduction, and minimizing raw material and energy use have caused many
engineers to re-think existing approaches to engineering design. One outcome of
the evolving design strategy is to consider green engineering. The goal of green engi-
neering is to design products that minimize pollution, reduce the risk to human
health, and improve the environment. Applying the principles of green engineering
highlights the power of feedback control systems as an enabling technology.

To reduce greenhouse gases and minimize pollution, it is necessary to improve
both the quality and quantity of our environmental monitoring systems. One exam-
ple is to use wireless measurements on mobile sensing platforms to measure the
external environment. Another example is to monitor the quality of the delivered
power to measure leading and lagging power, voltage variations, and waveform har-
monics. Many green engineering systems and components require careful monitor-
ing of current and voltages. For example, current transformers are used in various
capacities for measuring and monitoring current within the power grid network of
interconnected systems used to deliver electricity. Sensors are key components of
any feedback control system because the measurements provide the required infor-
mation as to the state of the system so the control system can take the appropriate
action.

The role of control systems in green engineering will continue to expand as the
global issues facing us require ever increasing levels of automation and precision. In
the book, we present key examples from green engineering such as wind turbine
control and modeling of a photovoltaic generator for feedback control to achieve
maximum power delivery as the sunlight varies over time.

The wind and sun are important sources of renewable energy around the world.
Wind energy conversion to electric power is achieved by wind energy turbines con-
nected to electric generators. The intermittency characteristic of the wind makes
smart grid development essential to bring the energy to the power grid when it is
available and to provide energy from other sources when the wind dies down or is
disrupted. A smart grid can be viewed as a system comprised of hardware and soft-
ware that routes power more reliably and efficiently to homes, businesses, schools,
and other users of power in the presence of intermittency and other disturbances.
The irregular character of wind direction and power also results in the need for reli-
able, steady electric cnergy by using control systems on the wind turbines them-
selves. The goal of these control devices is to reduce the effects of wind
intermittency and the effect of wind direction change. Energy storage systems are
also critical technologies for green engineering. We seek energy storage systems that
are renewable, such as fuel cells. Active control can be a key element of effective
renewable energy storage systems as well.



Xii Preface

Control engineering is an exciting and a challenging field. By its very nature, con-
trol engineering is a multidisciplinary subject, and it has taken its place as a core
course in the engineering curriculum. It is reasonable to expect different approaches
to mastering and practicing the art of control engineering. Since the subject has a
strong mathematical foundation, we might approach it from a strictly theoretical
point of view, emphasizing theorems and proofs. On the other hand, since the ulti-
mate objective is to implement controllers in real systems, we might take an ad hoc
approach relying only on intuition and hands-on experience when designing feed-
back control systems. Our approach is to present a control engineering methodology
that, while based on mathematical fundamentals, stresses physical system modeling
and practical control system designs with realistic system specifications.

We believe that the most important and productive approach to learning is for
each of us to rediscover and re-create anew the answers and methods of the past.
Thus, the ideal is to present the student with a series of problems and questions and
point to some of the answers that have been obtained over the past decades. The
traditional method—to confront the student not with the problem but with the fin-
ished solution—is to deprive the student of all excitement, to shut off the creative
impulse, to reduce the adventure of humankind to a dusty heap of theorems. The
issue, then, is to present some of the unanswered and important problems that we
continue to confront, for it may be asserted that what we have truly learned and
understood, we discovered ourselves.

The purpose of this book is to present the structure of feedback control theory
and to provide a sequence of exciting discoveries as we proceed through the text
and problems. If this book is able to assist the student in discovering feedback con-
trol system theory and practice, it will have succeeded.

WHAT’S NEW IN THIS EDITION

This latest edition of Modern Control Systems incorporates the following key updates:

O A new section in Chapter 1 on green engineering. The role of control systems in green
engineering will continue to expand as global environmental challenges require ever
increasing levels of automation and precision.

U New design problems in key chapters that illustrate control design to support green
engineering applications, such as smart grids, environmental monitoring, wind power
and solar power generation.

O A new section in each chapter entitled “Skills Check” that allows students to test their
knowledge of the basic principles. Answers are provided at the end of each chapter for
immediate feedback.

O A new section on the negative gain root locus.

O A new section on PID tuning methods with emphasis on manual tuning and Ziegler-
Nichols tuning methods.

O  Over 20% of the problems updated or newly added. With the twelfth edition we now
have a total of over 1000 end-of-chapter exercises, problems, advanced problems,
design problems, and computer problems. Instructors will have no difficulty finding
different problems to assign semester after semester.

Q  Video solutions of representative homework problems are available on the companion
website: www.pearsonhighered.com/dorf.
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THE AUDIENCE

Preface xiii

This text is designed for an introductory undergraduate course in control systems for
engineering students. There is very little demarcation between aerospace, chemical,
electrical, industrial, and mechanical engineering in control system practice; there-
fore, this text is written without any conscious bias toward one discipline. Thus, it is
hoped that this book will be equally useful for all engineering disciplines and, per-
haps, will assist in illustrating the utility of control engineering. The numerous prob-
lems and examples represent all fields, and the examples of the sociological,
biological, ecological, and economic control systems are intended to provide the
reader with an awareness of the general applicability of control theory to many
facets of life. We believe that exposing students of one discipline to examples and
problems from other disciplines will provide them with the ability to see beyond
their own field of study. Many students pursue careers in engineering fields other
than their own. For example, many electrical and mechanical engineers find them-
selves in the aerospace industry working alongside aerospace engineers. We hope this
introduction to control engineering will give students a broader understanding of
control system design and analysis.

In its first eleven editions, Modern Control Systems has been used in senior-level
courses for engineering students at more than 400 colleges and universities. It also
has been used in courses for engineering graduate students with no previous back-
ground in control engineering.

THE TWELFTH EDITION

A companion website is available to students and faculty using the twelfth edition.
The website contains all the m-files in the book, Laplace and z-transform tables,
written materials on matrix algebra and complex numbers, symbols, units, and con-
version factors, and an introduction to the LabVIEW MathScript RT Module.
An icon will appear in the book margin whenever there is additional related mate-
rial on the website. The companion website also includes video solutions of repre-
sentative homework problems and a complete Pearson eText. The MCS website
address is www.pearsonhighered.com/dorf.

With the twelfth edition, we continue to evolve the design emphasis that his-
torically has characterized Modern Control Systems. Using the real-world engi-
neering problems associated with designing a controller for a disk drive read
system, we present the Sequential Design Example (identified by an arrow icon in
the text), which is considered sequentially in each chapter using the methods and
concepts in that chapter. Disk drives are used in computers of all sizes and they
represent an important application of control engineering. Various aspects of the
design of controllers for the disk drive read system are considered in each chapter.
For example, in Chapter 1 we identify the control goals, identify the variables to
be controlled, write the control specifications, and establish the preliminary sys-
tem configuration for the disk drive. Then, in Chapter 2, we obtain models of the
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Preface XV

direct feedback, you can check your answers with the answer key provided at the
conclusion of the end-of-chapter problems.

The book is organized around the concepts of control system theory as they have
been developed in the frequency and time domains. An attempt has been made to
make the selection of topics, as well as the systems discussed in the examples and
problems, modern in the best sense. Therefore, this book includes discussions on
robust control systems and system sensitivity, state variable models, controllability
and observability, computer control systems, internal model control, robust PID con-
trollers, and computer-aided design and analysis, to name a few. However, the classi-
cal topics of control theory that have proved to be so very useful in practice have
been retained and expanded.

Building Basic Principles: From Classical to Modern. Our goal is to present a clear
exposition of the basic principles of frequency- and time-domain design techniques.
The classical methods of control engineering are thoroughly covered: Laplace trans-
forms and transfer functions; root locus design; Routh-Hurwitz stability analysis;
frequency response methods, including Bode, Nyquist, and Nichols; steady-state
error for standard test signals; second-order system approximations; and phase and
gain margin and bandwidth. In addition, coverage of the state variable method is
significant. Fundamental notions of controllability and observability for state vari-
able models are discussed. Full state feedback design with Ackermann’s formula for
pole placement is presented, along with a discussion on the limitations of state vari-
able feedback. Observers are introduced as a means to provide state estimates when
the complete state is not measured.

Upon this strong foundation of basic principles, the book provides many oppor-
tunities to explore topics beyond the traditional. Advances in robust control theory
are introduced in Chapter 12. The implementation of digital computer control sys-
tems is discussed in Chapter 13. Each chapter (but the first) introduces the student
to the notion of computer-aided design and analysis. The book concludes with an
extensive references section, divided by chapter, to guide the student to further
sources of information on control engineering,.

Progressive Development of Problem-Solving Skills. Reading the chapters, attending
lectures and taking notes, and working through the illustrated examples are all part of
the learning process. But the real test comes at the end of the chapter with the prob-
lems. The book takes the issue of problem solving seriously. In each chapter, there are
five problem types:

3  Exercises

O  Problems

Q  Advanced Problems
Q  Design Problems

O Computer Problems
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For example, the problem set for The Root Locus Method, Chapter 7 (see page
443) includes 28 exercises, 39 problems, 14 advanced problems, 14 design problems,
and 10 computer-based problems. The exercises permit the students to readily uti-
lize the concepts and methods introduced in each chapter by solving relatively
straightforward exercises before attempting the more complex problems. Answers
to one-third of the exercises are provided. The problems require an extension of the
concepts of the chapter to new situations. The advanced problems represent prob-
lems of increasing complexity. The design problems emphasize the design task: the
computer-based problems give the student practice with problem solving using
computers. In total, the book contains more than 1000 problems. The abundance of
problems of increasing complexity gives students confidence in their problem-
solving ability as they work their way from the exercises to the design and computer-
based problems. An instructor’s manual. available to all adopters of the text for
course use, contains complete solutions to all end-of-chapter problems.

A set of m-files, the Modern Control Systems Toolbox, has been developed by
the authors to supplement the text. The m-files contain the scripts from each com-
puter-based example in the text. You may retrieve the m-files from the companion
website: www.pearsonhighered.com/dorf.

Design Emphasis without Compromising Basic Principles. The all-important topic
of design of real-world, complex control systems is a major theme throughout the
text. Emphasis on design for real-world applications addresses interest in design by
ABET and industry.

The design process consists of seven main building blocks that we arrange into
three groups:

1. Establishment of goals and variables to be controlled, and definition of
specifications (metrics) against which to measure performance

2. System definition and modeling

3. Control system design and integrated system simulation and analysis

In each chapter of this book, we highlight the connection between the design
process and the main topics of that chapter. The objective is to demonstrate differ-
ent aspects of the design process through illustrative examples. Various aspects of
the control system design process are illustrated in detail in the following examples:

O

smart grids (Section 1.9, page 28)

photovoltaic generators (Secction 2.8, page 91)

space station orientation modeling (Section 3.8. page 193)
blood pressure control during anesthesia (Section 4.8, page 259)
attitude control of an airplane (Section 5.9, page 346)
robot-controlled motorcycle (Section 6.5, page 406)

wind turbine rotor speed control (Scction 7.8, page 497)
maximum power pointing tracking (Section 8.6, page 583)

PID control of wind turbincs (Section 9.8, page 674)

O0uUDO0ODODO0DO0DO

milling machine control system (Section 10.12, page 790)


http://www.pearsonhighered.com/dorf
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Ka=30; < *{ Select K.

t=[0:0.01:1];

ne=[Ka"5};dc=[1}; sysc=tf(nc,dc);
ng=[1];dg={1 20 0]; sysg=tf(ng,dg);
sys1=series(sysc,sysg); Compute the
sys=feedback(sysi, [1]); (4| closed-loop
y=step(sys.t); transfer function.

plot(t,y), grid
xlabel('Time (s)')
ylabel('y(t)')

(a)

K, = 60
1
08
K, =30
g 06 -
0.4
02
0

0 01 02 03 04 05 06 07 08 09 |
Time (s)

(b)

Learning Enhancement. Each chapter begins with a chapter preview describing
the topics the student can expect to encounter. The chapters conclude with an
end-of-chapter summary, skills check, as well as terms and concepts. These sec-
tions reinforce the important concepts introduced in the chapter and serve as a
reference for later use.

A second color is used to add emphasis when needed and to make the graphs
and figures easier to interpret. Design Problem 4.4, page 297, asks the student to de-
termine the value of K of the controller so that the response, denoted by Y(s), to a
step change in the position, denoted by R(s), is satisfactory and the effect of the dis-
turbance, denoted by T(s). is minimized. The associated Figure DP4.4, p. 298, assists
the student with (a) visualizing the problem and (b) taking the next step to develop
the transfer function model and to complete the design.






Preface

Chapter 5 The Performance of Feedback Control Systems. In Chapter 5, the per-
formance of control systems is examined. The performance of a control system is
correlated with the s-plane location of the poles and zeros of the transfer function of
the system.

Chapter 6 The Stability of Linear Feedback Systems. The stability of feedback sys-
tems is investigated in Chapter 6. The relationship of system stability to the charac-
teristic equation of the system transfer function is studied. The Routh-Hurwitz
stability criterion is introduced.

Chapter 7 The Root Locus Method. Chapter 7 deals with the motion of the roots
of the characteristic equation in the s-plane as one or two parameters are varied.
The locus of roots in the s-plane is determined by a graphical method. We also
introduce the popular PID controller and the Ziegler-Nichols PID tuning method.

Chapter 8 Frequency Response Methods. In Chapter 8, a steady-state sinusoid
input signal is utilized to examine the steady-state response of the system as the fre-
quency of the sinusoid is varied. The development of the frequency response plot,
called the Bode plot, is considered.

Chapter 9 Stability in the Frequency Domain. System stability utilizing frequency
response methods is investigated in Chapter 9. Relative stability and the Nyquist
criterion are discussed.

Chapter 10 The Design of Feedback Control Systems. Several approaches to
designing and compensating a control system are described and developed in
Chapter 10. Various candidates for service as compensators are presented and it is
shown how they help to achieve improved performance.

Chapter 11 The Design of State Variable Feedback Systems. The main topic of
Chapter 11 is the design of control systems using state variable models. Full-state
feedback design and observer design methods based on pole placement are dis-
cussed. Tests for controllability and observability are presented, and the concept of
an internal model design is discussed.

Chapter 12 Robust Control Systems. Chapter 12 deals with the design of highly
accurate control systems in the presence of significant uncertainty. Five methods for
robust design are discussed, including root locus, frequency response, ITAE meth-
ods for robust PID controllers, internal models, and pseudo-quantitative feedback.

Chapter 13 Digital Control Systems. Methods for describing and analyzing the
performance of computer control systems are described in Chapter 13. The stability

and performance of sampled-data systems are discussed.

Appendix A MATLAB Basics
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PREVIEW

In this chapter, we discuss open- and closed-loop feedback control systems. A con-
trol system consists of interconnected components to achieve a desired purpose. We
examine examples of control systems through the course of history. These early sys-
tems incorporated many of the same ideas of feedback that are employed in modern
manufacturing processes, alternative energy, complex hybrid automobiles, and so-
phisticated robots. A design process is presented that encompasses the establish-
ment of goals and variables to be controlled, definition of specifications, system
definition, modeling, and analysis. The iterative nature of design allows us to handle
the design gap effectively while accomplishing necessary trade-offs in complexity,
performance, and cost. Finally, we introduce the Sequential Design Example: Disk
Drive Read System. This example will be considered sequentially in each chapter of
this book. It represents a very important and practical control system design problem
while simultaneously serving as a useful learning tool.

DESIRED OUTCOMES

Upon completion of Chapter 1, students should:

O Possess a basic understanding of control system engineering and be able to offer
some illustrative examples and their relationship to key contemporary issues.

Q Be able to recount a brief history of control systems and their role in society.

O Be capable of discussing the future of controls in the context of their evolution-
ary pathways.

Q  Recognize the elements of control system design and possess an appreciation of
controls in the context of engineering design.



2

Chapter 1 Introduction to Control Systems

1.1 INTRODUCTION

FIGURE 1.1
Process to be
controlled.

FIGURE 1.2
Open-loop control
system (without
feedback).

Engineering is concerned with understanding and controlling the materials and
forces of nature for the benefit of humankind. Control system engineers are con-
cerned with understanding and controlling segments of their environment, often
called systems, to provide useful economic products for society. The twin goals of
understanding and controlling are complementary because effective systems con-
trol requires that the systems be understood and modeled. Furthermore, control en-
gineering must often consider the control of poorly understood systems such as
chemical process systems. The present challenge to control engineers is the model-
ing and control of modern, complex, interrelated systems such as traffic control sys-
tems, chemical processes, and robotic systems. Simultaneously, the fortunate
engineer has the opportunity to control many useful and interesting industrial au-
tomation systems. Perhaps the most characteristic quality of control engineering is
the opportunity to control machines and industrial and economic processes for the
benefit of society.

Control engineering is based on the foundations of feedback theory and linear
system analysis, and it integrates the concepts of network theory and communica-
tion theory. Therefore control engineering is not limited to any engineering disci-
pline but is equally applicable to aeronautical, chemical, mechanical, environmental,
civil, and electrical engineering. For example, a control system often includes elec-
trical, mechanical, and chemical components. Furthermore, as the understanding of
the dynamics of business, social, and political systems increases, the ability to control
these systems will also increase.

A control system is an interconnection of components forming a system configu-
ration that will provide a desired system response. The basis for analysis of a system
is the foundation provided by linear system theory, which assumes a cause—effect re-
lationship for the components of a system. Therefore a component or process to be
controlled can be represented by a block, as shown in Figure 1.1. The input-output
relationship represents the cause-and-effect relationship of the process, which in turn
represents a processing of the input signal to provide an output signal variable, often
with a power amplification. An open-loop control system uses a controller and an ac-
tuator to obtain the desired response, as shown in Figure 1.2. An open-loop system is
a system without feedback.

An open-loop control system utilizes an actuating device to control the process
directly without using feedback.

Input ===—pi Process > Output

Desired output
Tesponsc

Actuator —»|  Process [ Qutput

v

Controller




FIGURE 1.3
Closed-loop
feedback control
system (with
feedback).

FIGURE 1.4
Closed-loop
feedback system
with external
disturbances and
measurement
noise.
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In contrast to an open-loop control system, a closed-loop control system utilizes
an additional measure of the actual output to compare the actual output with the
desired output response. The measure of the output is called the feedback signal. A
simple closed-loop feedback control system is shown in Figure 1.3. A feedback con-
trol system is a control system that tends to maintain a prescribed relationship of
one system variable to another by comparing functions of these variables and using
the difference as a means of control. With an accurate sensor, the measured output
is a good approximation of the actual output of the system.

A feedback control system often uses a function of a prescribed relationship be-
tween the output and reference input to control the process. Often the difference
between the output of the process under control and the reference input is amplified
and used to control the process so that the difference is continually reduced. In gen-
eral, the difference between the desired output and the actual output is equal to the
error, which is then adjusted by the controller. The output of the controller causes the
actuator to modulate the process in order to reduce the error. The sequence is such,
for instance, that if a ship is heading incorrectly to the right, the rudder is actuated to
direct the ship to the left. The system shown in Figure 1.3 is a negative feedback con-
trol system, because the output is subtracted from the input and the difference is
used as the input signal to the controller. The feedback concept has been the founda-
tion for control system analysis and design.

A closed-loop control system uses a measurement of the output and feedback of
this signal to compare it with the desired output (reference or command).

As we will discuss in Chapter 4, closed-loop control has many advantages over
open-loop control including the ability to reject external disturbances and improve
measurement noise attenuation. We incorporate the disturbances and measurement
noise in the block diagram as external inputs, as illustrated in Figure 1.4. External
disturbances and measurement noise are inevitable in real-world applications and
must be addressed in practical control system designs.

Disturbance
Desired output Error +1 Actual
esired outpu tus
enire P —b()——bController—bO—-» Actuator =1 Process ctua
response y ¢ + output
+
Measurement
+ noise

Sensor [«

Mecasurement output Feedback
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Outer
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FIGURE 1.5 Multiloop feedback system with an inner loop and an outer loop.

The feedback systems in Figures 1.3 and 1.4 are single-loop feedback systems. Many
feedback control systems contain more than one feedback loop. A common multi-
loop feedback control system is illustrated in Figure 1.5 with an inner loop and an
outer loop. In this scenario, the inner loop has a controller and a sensor and the
outer loop has a controller and sensor. Other varieties of multiloop feedback sys-
tems are considered throughout the book as they represent more practical situa-
tions found in real-world applications. However, we use the single-loop feedback
system for learning about the benefits of feedback control systems since the out-
comes readily extend to multiloop systems.

Due to the increasing complexity of the system under control and the interest in
achieving optimum performance, the importance of control system engineering has
grown in the past decade. Furthermore, as the systems become more complex, the in-
terrelationship of many controlled variables must be considered in the control
scheme. A block diagram depicting a multivariable control system is shown in
Figure 1.6.

A common example of an open-loop control system is a microwave oven set to
operate for a fixed time. An example of a closed-loop control system is a person
steering an automobile (assuming his or her eyes are open) by looking at the auto’s
location on the road and making the appropriate adjustments.

The introduction of feedback enables us to control a desired output and can im-
prove accuracy, but it requires attention to the issue of stability of response.

Error N N N
Desired —" > > - > actual
output ———p| Comparison —»  Controller > Actuator »|  Process > output
1esponse > » > >
A A A
Sensor |«
Measurement output Feedback

FIGURE 1.6 Multivariable control system.
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self-oscillations over very wide frequency bands when many people doubted such cir-
cuits would be stable? My confidence stemmed from work that I had done two years
earlier on certain novel oscillator circuits and three years earlier in designing the termi-
nal circuits, including the filters, and developing the mathematics for a carrier telephone
system for short toll circuits.

The frequency domain was used primarily to describe the operation of the feed-
back amplifiers in terms of bandwidth and other frequency variables. In contrast,
the eminent mathematicians and applied mechanicians in the former Soviet Union
inspired and dominated the field of control theory. Therefore, the Russian theory
tended to utilize a time-domain formulation using differential equations.

The control of an industrial process (manufacturing, production, and so on) by
automatic rather than manual means is often called automation. Automation is
prevalent in the chemical, electric power, paper, automobile, and steel industries,
among others. The concept of automation is central to our industrial society. Auto-
matic machines are used to increase the production of a plant per worker in order to
offset rising wages and inflationary costs. Thus industries are concerned with the
productivity per worker of their plants. Productivity is defined as the ratio of physi-
cal output to physical input [26]. In this case, we are referring to labor productivity,
which is real output per hour of work.

The transformation of the U.S. labor force in the country’s brief history follows
the progressive mechanization of work that attended the evolution of the agrarian
republic into an industrial world power. In 1820, more than 70 percent of the labor
force worked on the farm. By 1900, less than 40 percent were engaged in agriculture.
Today, less than 5 percent works in agriculture [15].

In 1925, some 588,000 people—about 1.3 percent of the nation’s labor force—
were needed to mine 520 million tons of bituminous coal and lignite, almost all of it
from underground. By 1980, production was up to 774 million tons, but the work
force had been reduced to 208,000. Furthermore, only 136,000 of that number were
employed in underground mining operations. The highly mechanized and highly
productive surface mines, with just 72,000 workers, produced 482 million tons, or 62
percent of the total [27].

A large impetus to the theory and practice of automatic control occurred during
World War II when it became necessary to design and construct automatic airplane
piloting, gun-positioning systems, radar antenna control systems, and other military
systems based on the feedback control approach. The complexity and expected per-
formance of these military systems necessitated an extension of the available con-
trol techniques and fostered interest in control systems and the development of new
insights and methods. Prior to 1940, for most cases, the design of control systems was
an art involving a trial-and-error approach. During the 1940s, mathematical and an-
alytical methods increased in number and utility, and control engineering became an
engineering discipline in its own right [10-12].

Another example of the discovery of an engineering solution to a control system
problem was the creation of a gun director by David B. Parkinson of Bell Telephone
Laboratories. In the spring of 1940, Parkinson was a 29-year-old engineer intent on
improving the automatic level recorder, an instrument that used strip-chart paper to
plot the record of a voltage. A critical component was a small potentiometer used to
control the pen of the recorder through an actuator.
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Parkinson had a dream about an antiaircraft gun that was successfully felling
airplanes. Parkinson described the situation [13]:

After three or four shots one of the men in the crew smiled at me and beckoned me to
come closer to the gun. When [ drew near he pointed to the exposed end of the left
trunnion. Mounted there was the control potentiometer of my level recorder!

The next morning Parkinson realized the significance of his dream:

If my potentiometer could control the pen on the recorder, something similar could.
with suitable engineering, control an antiaircraft gun.

After considerable effort, an engineering model was delivered for testing to the
U.S. Army on December 1, 1941. Production models were available by early 1943,
and eventually 3000 gun controllers were delivered. Input to the controller was pro-
vided by radar, and the gun was aimed by taking the data of the airplane’s present
position and calculating the target’s future position.

Frequency-domain techniques continued to dominate the field of control follow-
ing World War II with the increased use of the Laplace transform and the complex fre-
quency plane. During the 1950s, the emphasis in control engineering theory was on the
development and use of the s-plane methods and, particularly, the root locus ap-
proach. Furthermore, during the 1980s, the use of digital computers for control com-
ponents became routine. The technology of these new control elements to perform
accurate and rapid calculations was formerly unavailable to control engineers. There
are now over 400,000 digital process control computers installed in the United States
[14, 27]. These computers are employed especially for process control systems in
which many variables are measured and controlled simultaneously by the computer.

With the advent of Sputnik and the space age, another new impetus was imparted
to control engincering. It became necessary to design complex, highly accurate control
systems for missiles and space probes. Furthermore, the necessity to minimize the
weight of satellites and to control them very accurately has spawned the important
field of optimal control. Due to these requirements, the time-domain methods devel-
oped by Liapunov, Minorsky, and others have been met with great interest in the last
two decades. Recent theories of optimal control developed by L. S. Pontryagin in the
former Soviet Union and R. Bellman in the United States, as well as recent studies of
robust systems, have contributed to the interest in time-domain methods. It now is
clear that control engineering must consider both the time-domain and the frequency-
domain approaches simultaneously in the analysis and design of control systems.

A notable recent advance with worldwide impact is the U.S. space-based ra-
dionavigation system known as the Global Positioning System or GPS [82-85]. In
the distant past, various strategies and sensors were developed to keep explorers on
the oceans from getting lost, including following coastlines, using compasses to point
north, and sextants to measure the angles of stars, the moon, and the sun above the
horizon. The early explorers were able to estimate latitude accurately, but not longi-
tude. It was not until the 1700s with the development of the chronometer that, when
used with the sextant, the longitude could be estimated. Radio-based navigation sys-
tems began to appear in the early twentieth century and were used in World War II.
With the advent of Sputnik and the space age, it became known that radio signals
from satellites could be used to navigate on the ground by observing the Doppler
shift of the received radio signals. Research and development culminated in the
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1990s with 24 navigation satellites (known as the GPS) that solved the fundamental
problem that explorers faced for centuries by providing a dependable mechanism to
pinpoint the current location. Freely available on a continuous worldwide basis,
GPS provides very reliable location and time information anytime, day or night,
anywhere in the world. Using GPS as a sensor to provide position (and velocity) in-
formation is a mainstay of active control systems for transportation systems in the
air, on the ground, and on the oceans. The GPS assists relief and emergency workers
to save lives, and helps us with our everyday activities including the control of power
grids, banking, farming, surveying, and many other tasks.

A selected history of control system development is summarized in Table 1.1.

Table 1.1 Selected Historical Developments of Control Systems

1769 James Walt’s steam engine and governor developed. The Watt steam engine
is often used to mark the beginning of the Industrial Revolution in Great
Britain. During the Industrial Revolution, great strides were made in the
development of mechanization, a technology preceding automation.

1800 Eli Whitney’s concept of interchangeable parts manufacturing demonstrated
in the production of muskets. Whitney’s development is often considered
to be the beginning of mass production.

1868 J. C. Maxwell formulates a mathematical model for a governor control of a
steam engine.

1913 Henry Ford’s mechanized assembly machine introduced for automobile
production.

1927 H. S. Black conceives of the negative feedback amplifier and H. W. Bode
analyzes feedback amplifiers.

1932 H. Nyquist develops a method for analyzing the stability of systems.

1941 Creation of first antiaircraft gun with active control.

1952 Numerical control (NC) developed at Massachusetts Institute of Technology
for control of machine-tool axes.

1954 George Devol develops “programmed article transfer,” considered to be the
first industrial robot design.

1957 Sputnik launches the space age leading, in time, to miniaturization of
computers and advances in automatic control theory.

1960 First Unimate robot introduced, based on Devol's designs. Unimate
installed in 1961 for tending die-casting machines.

1970 State-variable models and optimal control developed.

1980 Robust control system design widely studied.

1983 Introduction of the personal computer (and control design software soon
thereafter) brought the tools of design to the engineer’s desktop.

1990 Export-oriented manufacturing companies emphasize automation.

1994 Feedback control widely used in automobiles. Reliable, robust systems
demanded in manufacturing.

1995 The Global Positioning System (GPS) was operational providing positioning,
navigation, and timing services worldwide.

1997 First ever autonomous rover vehicle, known as Sojourner, explores the

Martian surface.

1998-2003 Advances in micro- and nanotechnology. First intelligent micromachines
are developed and functioning nanomachines are created.

2007 The Orbital Express mission performed the first autonomous space
rendezvous and docking.
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work to assist in construction projects, crop monitoring, and continuous weather
monitoring. In a military setting, UAVs can perform intelligence, surveillance, and
reconnaissance missions [74]. Smart unmanned aircraft will require significant
deployment of advanced control systems throughout the airframe.

1.4 ENGINEERING DESIGN

Engineering design is the central task of the engineer. It is a complex process in
which both creativity and analysis play major roles.

Design is the process of conceiving or inventing the forms, parts, and details of a
system to achieve a specified purpose.

Design activity can be thought of as planning for the emergence of a particu-
lar product or system. Design is an innovative act whereby the engineer creatively
uses knowledge and materials to specify the shape, function, and material content
of a system. The design steps are (1) to determine a need arising from the values
of various groups, covering the spectrum from public policy makers to the con-
sumer; (2) to specify in detail what the solution to that need must be and to em-
body these values; (3) to develop and evaluate various alternative solutions to
meet these specifications; and (4) to decide which one is to be designed in detail
and fabricated.

An important factor in realistic design is the limitation of time. Design takes
place under imposed schedules, and we eventually settle for a design that may be less
than ideal but considered “good enough.” In many cases, time is the only competitive
advantage.

A major challenge for the designer is writing the specifications for the technical
product. Specifications are statements that explicitly state what the device or prod-
uct is to be and do. The design of technical systems aims to provide appropriate de-
sign specifications and rests on four characteristics: complexity, trade-offs, design
gaps, and risk.

Complexity of design results from the wide range of tools, issues, and knowledge
to be used in the process. The large number of factors to be considered illustrates the
complexity of the design specification activity, not only in assigning these factors
their relative importance in a particular design, but also in giving them substance
either in numerical or written form, or both.

The concept of trade-off involves the need to resolve conflicting design goals, all
of which are desirable. The design process requires an efficient compromise between
desirable but conflicting criteria.

In making a technical device, we generally find that the final product does not
appear as originally visualized. For example, our image of the problem we are solving
does not appear in written description and ultimately in the specifications. Such
design gaps are intrinsic in the progression from an abstract idea to its realization.

This inability to be absolutely sure about predictions of the performance of
a technological object leads to major uncertaintics about the actual effects of the
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designed devices and products. These uncertainties are embodied in the idea of un-
intended consequences or risk. The result is that designing a system is a risk-taking
activity.

Complexity, trade-off, gaps, and risk are inherent in designing new systems and
devices. Although they can be minimized by considering all the effects of a given de-
sign, they are always present in the design process.

Within engineering design, there is a fundamental difference between the two
major types of thinking that must take place: engineering analysis and synthesis.
Attention is focused on models of the physical systems that are analyzed to provide
insight and that indicate directions for improvement. On the other hand, synthesis is
the process by which these new physical configurations are created.

Design is a process that may proceed in many directions before the desired
one is found. It is a deliberate process by which a designer creates something new
in response to a recognized need while recognizing realistic constraints. The de-
sign process is inherently iterative—we must start somewhere! Successful engi-
neers learn to simplify complex systems appropriately for design and analysis
purposes. A gap between the complex physical system and the design model is in-
evitable. Design gaps are intrinsic in the progression from the initial concept to
the final product. We know intuitively that it is easier to improve an initial con-
cept incrementally than to try to create a final design at the start. In other words,
engineering design is not a linear process. It is an iterative, nonlinear, creative
process.

The main approach to the most effective engineering design is parameter analy-
sis and optimization. Parameter analysis is based on (1) identification of the key pa-
rameters, (2) generation of the system configuration, and (3) evaluation of how well
the configuration meets the needs. These three steps form an iterative loop. Once
the key parameters are identified and the configuration synthesized, the designer
can optimize the parameters. Typically, the designer strives to identify a limited set
of parameters to be adjusted.

1.5 CONTROL SYSTEM DESIGN

The design of control systems is a specific example of engineering design. The goal
of control engineering design is to obtain the configuration, specifications, and iden-
tification of the key parameters of a proposed system to meet an actual need.

The control system design process is illustrated in Figure 1.17. The design
process consists of seven main building blocks, which we arrange into three groups:

1. Establishment of goals and variables to be controlled, and definition of specifications
(metrics) against which to measure performance

2. System definition and modeling

3. Control system design and integrated system simulation and analysis

In each chapter of this book, we will highlight the connection between the de-
sign process illustrated in Figure 1.17 and the main topics of that chapter. The objec-
tive is to demonstrate different aspects of the design process through illustrative
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As designers, we proceed to the first attempt to configure a system that will re-
sult in the desired control performance. This system configuration will normally
consist of a sensor, the process under control, an actuator, and a controller, as shown
in Figurc 1.3. The next step consists of identifying a candidate for the actuator. This
will, of course, depend on the process, but the actuation chosen must be capable of
effectively adjusting the performance of the process. For example, if we wish to con-
trol the speed of a rotating flywheel, we will select a motor as the actuator. The sen-
sor, in this case, must be capable of accurately measuring the speed. We then obtain
a model for each of these elements.

Students studying controls are often given the models, frequently represented
in transfer function or state variable form, with the understanding that they repre-
sent the underlying physical systems, but without further explanation. An obvious
question is, where did the transfer function or state variable model come from?
Within the context of a course in control systems, there is a need to address key
questions surrounding modeling. To that end, in the early chapters, we will provide
insight into key modeling concerns and answer fundamental questions: How is the
transfer function obtained? What basic assumptions are implied in the model devel-
opment? How general are the transfer functions? However, mathematical modeling
of physical systems is a subject in and of itself. We cannot hope to cover the mathe-
matical modeling in its entirety, but interested students are encouraged to seek out-
side references (see for example [76-80]).

The next step is the selection of a controller, which often consists of a summing
amplifier that will compare the desired response and the actual response and then
forward this error-measurement signal to an amplifier.

The final step in the design process is the adjustment of the parameters of the
system to achieve the desired performance. If we can achieve the desired perfor-
mance by adjusting the parameters, we will finalize the design and proceed to docu-
ment the results. If not, we will need to establish an improved system configuration
and perhaps select an enhanced actuator and sensor. Then we will repeat the design
steps until we are able to meet the specifications, or until we decide the specifica-
tions are too demanding and should be relaxed.

The design process has been dramatically affected by the advent of powerful
and inexpensive computers and effective control design and analysis software.
For example, the Boeing 777, which incorporates the most advanced flight avionics
of any U.S. commercial aircraft, was almost entirely computer-designed [56, 57].
Verification of final designs in high-fidelity computer simulations is essential.
In many applications, the certification of the control system in realistic simulations
represents a significant cost in terms of money and time. The Boeing 777 test pilots
flew about 2400 flights in high-fidelity simulations before the first aircraft was even
built.

Another notable example of computer-aided design and analysis is the McDon-
nell Douglas Delta Clipper experimental vehicle DC-X, which was designed, built,
and flown in 24 months. Computer-aided design tools and automated code-generation
contributed to an estimated 80 percent cost savings and 30 percent time savings [58].

In summary, the controller design problem is as follows: Given a model of the
system to be controlled (including its sensors and actuators) and a set of design goals,
find a suitable controller, or determine that none exists. As with most of engineering
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design, the design of a feedback control system is an iterative and nonlinear process. A
successful designer must consider the underlying physics of the plant under control,
the control design strategy, the controller design architecture (that is, what type of
controller will be employed), and effective controller tuning strategies. In addition,
once the design is completed, the controller is often implemented in hardware, and
hence issues of interfacing with hardware can appear. When taken together, these dif-
ferent phases of control system design make the task of designing and implementing
a control system quite challenging [73].

1.6 MECHATRONIC SYSTEMS

FIGURE 1.18
The key elements of
mechatronics [64].

A natural stage in the evolutionary process of modern engineering design is en-
compassed in the area known as mechatronics [64]. The term mechatronics was
coined in Japan in the 1970s [65-67]. Mechatronics is the synergistic integration of
mechanical, electrical, and computer systems and has evolved over the past 30
years, leading to a new breed of intelligent products. Feedback control is an integral
aspect of modern mechatronic systems. One can understand the extent that mecha-
tronics reaches into various disciplines by considering the components that make
up mechatronics [68-71]. The key elements of mechatronics are (1) physical sys-
tems modeling, (2) sensors and actuators, (3) signals and systems, (4) computers
and logic systems, and (5) software and data acquisition. Feedback control encom-
passes aspects of all five key elements of mechatronics, but is associated primarily
with the element of signals and systems, as illustrated in Figure 1.18.

Advances in computer hardware and software technology coupled with the de-
sire to increase the performance-to-cost ratio has revolutionized engineering design.
New products are being developed at the intersection of traditional disciplines of
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must be able to understand and work with various network protocols, diverse oper-
ating systems and programming languages. While the theory of systems and controls
serves as the foundation for the modern control system design, the design process is
rapidly expanding into a multi-disciplinary enterprise encompassing multiple engi-
neering areas, as well as information technology and computer science. m

Advances in alternate energy products, such as the hybrid automobile and the
generation of efficient wind power generators, provide vivid examples of mecha-
tronics development. There are numerous other examples of intelligent systems
poised to enter our everyday life, including autonomous rovers, smart home appli-
ances (e.g., dishwashers, vacuum cleaners, and microwave ovens), wireless network-
enabled devices, “human-friendly machines” [72] that perform robot-assisted
surgery, and implantable sensors and actuators.

1.7 GREEN ENGINEERING

Global issues such as climate change, clean water, sustainability, waste management,
emissions reduction, and minimizing raw material and energy use have caused many
engineers to re-think existing approaches to engineering design in critical areas.
One outcome of the evolving design strategy is to consider an approach that has
come to be known as “green engineering.” The goal of green engineering is to design
products that will minimize pollution, reduce the risk to human health, and improve
the environment. The basic principles of green engineering are [86]:

1. Engineer processes and products holistically, use systems analysis, and integrate
environmental impact assessment tools.

2. Conserve and improve natural ecosystems while protecting human health and
well-being.

3. Use life-cycle thinking in all engineering activities.

4. Ensure that all material and energy inputs and outputs are as inherently safe and
benign as possible.

5. Minimize depletion of natural resources.

6. Strive to prevent waste.

7. Develop and apply engineering solutions, while being cognizant of local geography,
aspirations, and cultures.

8. Create engineering solutions beyond current or dominant technologies; improve,
innovate, and invent technologies to achieve sustainability.

9. Actively engage communities and stakeholders in development of engineering
solutions.

Putting the principles of green engineering into practice leads us to a deeper un-
derstanding of the power of feedback control systems as an enabling technology. For
example, in Section 1.9, we present a discussion on smart grids. Smart grids aim to
deliver electrical power more reliably and efficiently in an environmentally friendly
fashion. This in turn will potentially enable the large-scale use of renewable energy
sources, such as wind and solar, that are naturally intermittent. Sensing and feedback
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are key technology areas that enable the smart grids [87]. Green engineering appli-
cations can be classified into one of five categories [88]:

1. Environmental Monitoring
2. Energy Storage Systems

3. Power Quality Monitoring
4. Solar Energy

5. Wind Energy

As the field of green engineering matures, it is almost certain that more applications
will evolve, especially as we apply the eighth principle (listed above) of green engi-
neering to create engineering solutions beyond current or dominant technologies
and improve, innovate, and invent technologies. In the subsequent chapters, we pre-
sent examples from each of these areas.

There is a global effort underway to reduce greenhouse gases from all sources.
To accomplish this, it is necessary to improve both the quality and quantity of our
environmental monitoring systems. An example is using wireless measurements on
a cabled robotic controlled mobile sensing platform moving along the forest under-
story to measure key environmental parameters in a rain forest.

Energy storage systems are critical technologies for green engineering. There
are many types of energy storage systems. The energy storage system we are most
familiar with is the battery. Batteries are used to power most of the electronic de-
vices in use today; some batteries are rechargeable and some are single-use throw-
aways. To adhere to green engineering principles, we would favor energy storage
systems that are renewable. A very important energy storage device for green engi-
neering systems is the fuel cell.

The problems associated with power quality monitoring are varied and can in-
clude leading and lagging power, voltage variations, and waveform harmonics. Many
of the green engineering systems and components require careful monitoring of
current and voltages. An interesting example would be the modeling of current
transformers that are used in various capacities for measuring and monitoring with-
in the power grid network of interconnected systems used to deliver electricity.

Efficiently converting solar energy into electricity is an engineering challenge.
Two technologies for generation of electricity using sunshine are solar photovoltaic
and solar thermal. With photovoltaic systems the sunlight is converted directly to
electricity, and with solar thermal the sun heats water to create steam that is used to
power steam engines. Designing and deploying solar photovoltaic systems for solar
power generation is one approach employing green engineering principles to utilize
the sun’s energy to power our homes, offices, and businesses.

Power derived from wind is an important source of renewable energy around
the world. Wind energy conversion to electric power is achieved by wind energy tur-
bines connected to electric generators. The intermittency characteristic of wind en-
ergy makes the smart grid development (sec Example 1.4) essential to bring the
energy to the power grid when it is available and to provide energy from other
sources when the wind dies down or is disrupted. The irregular character of wind
direction and power also results in the need for reliable, steady electric energy by
using control systems on the wind turbines themselves. The goal of these control
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revolution in computer technology is causing an equally momentous social change,
the expansion of information gathering and information processing as computers
extend the reach of the human brain [16].

Control systems are used to achieve (1) increased productivity and (2) improved
performance of a device or system. Automation is used to improve productivity and
obtain high-quality products. Automation is the automatic operation or control of a
process, device, or system. We use automatic control of machines and processes to
produce a product reliably and with high precision [28]. With the demand for flexible,
custom production, a need for flexible automation and robotics is growing [17, 25].

The theory, practice, and application of automatic control is a large, exciting,
and extremely useful engineering discipline. One can readily understand the moti-
vation for a study of modern control systems.

1.9 DESIGN EXAMPLES

In this section we present illustrative design examples. This is a pattern that we will
follow in all subsequent chapters. Each chapter will contain a number of interesting
examples in a special section entitled Design Examples meant to highlight the main
topics of the chapter. At least one example among those presented in the Design Ex-
ample section will be a more detailed problem and solution that demonstrates one or
more of the steps in the design process shown in Figure 1.17. In the first example, we
discuss the development of the smart grid as a concept to deliver electrical power
more reliably and efficiently as part of a strategy to provide a more environmentally
friendly energy delivery system. The smart grid will enable the large-scale use of re-
newable energy sources that depend on the natural phenomenon to generate power
and which are intermittent, such as wind and solar. Providing clean energy is an engi-
neering challenge that must necessarily include active feedback control systems, sen-
sors, and actuators. In the second example presented here, a rotating disk speed
control illustrates the concept of open-loop and closed-loop feedback control. The
third example is an insulin delivery control system in which we determine the design
goals, the variables to control, and a preliminary closed-loop system configuration.

EXAMPLE 1.4 Smart grid control systems

A smart grid is as much a concept as it is a physical system. In essence, the concept is
to deliver power more reliably and efficiently while remaining environmentally
friendly, economical, and safe [89, 90]. A smart grid can be viewed as a system com-
prised of hardware and software that routes power more reliably and efficiently to
homes, businesses, schools, and other users of power. One view of the smart grid is il-
lustrated schematically in Figure 1.23. Smart grids can be national or local in scope.
One can even consider home smart grids (or microgrids). In fact, smart grids en-
compass a wide and rich field of investigation. As we will find, control systems play
a key role in smart grids at all levels.

One interesting aspect of the smart grid is real-time demand side management re-
quiring a two-way flow of information between the user and the power generation sys-
tem [91]. For example, smart meters are used to measure electricity use in the home
and office. These sensors transmit data to utilities and allow the utility to transmit
control signals back to a home or building. These smart meters can control and turn on
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FIGURE 1.24

(a) Open-loop
(without feedback)
control of the speed
of a rotating disk.
(b) Block diagram
model.
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Transmission of power is called power flow and the improved control of power
will increase its security and efficiency. Transmission lines have inductive, capacitive,
and resistive effects that result in dynamic impacts or disturbances. The smart grid
must anticipate and respond to system disturbances rapidly. This is referred to as
self-healing. In other words, a smart grid should be capable of managing significant
disturbances occurring on very short time scales. To accomplish this, the self-healing
process is constructed around the idea of a feedback control system where self-as-
sessments are used to detect and analyze disturbances so that corrective action can
be applied to restore the grid. This requires sensing and measurements to provide
information to the control systems. One of the benefits of using smart grids is that
renewable energy sources that depend on intermittent natural phenomena (such as
wind and sunshine) can potentially be utilized more efficiently by allowing for load
shedding when the wind dies out or clouds block the sunshine.

Feedback control systems will play an increasingly important role in the
development of smart grids as we move to the target date. It may be interesting to
recall the various topics discussed in this section in the context of control systems as
each chapter in this textbook unfolds new methods of control system design and
analysis.

EXAMPLE 1.5 Rotating disk speed control

Many modern devices employ a rotating disk held at a constant speed. For example,
a CD player requires a constant speed of rotation in spite of motor wear and varia-
tion and other component changes. Our goal is to design a system for rotating disk
speed control that will ensure that the actual speed of rotation is within a specified
percentage of the desired speed [40, 43]. We will consider a system without feedback
and a system with feedback.

To obtain disk rotation, we will select a DC motor as the actuator because it
provides a speed proportional to the applied motor voltage. For the input voltage to
the motor, we will select an amplifier that can provide the required power.

The open-loop system (without feedback) is shown in Figure 1.24(a). This system
uses a battery source to provide a voltage that is proportional to the desired speed. This

Battery A ~ Speed
| I — Rotating disk
Speed ;
setting | bC DC motor
amplifier
(@
Controller Actuator Process
Desired .
. . DC .| Rotating Actual
spee(l  s——pl  Amplifier motor > disk speed
(voltage)

(b)
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(a) Closed-loop
control of the speed
of a rotating disk.
(b) Block diagram
model.
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voltage is amplified and applied to the motor. The block diagram of the open-loop sys-
tem identifying the controller, actuator, and process is shown in Figure 1.24(b).

To obtain a feedback system, we need to select a sensor. One useful sensor is a
tachometer that provides an output voltage proportional to the speed of its shaft.
Thus the closed-loop feedback system takes the form shown in Fig. 1.25(a). The block
diagram model of the feedback system is shown in Fig. 1.25(b). The error voltage is
generated by the difference between the input voltage and the tachometer voltage.

We expect the feedback system of Figure 1.25 to be superior to the open-loop
system of Figure 1.24 because the feedback system will respond to errors and act to
reduce them. With precision components, we could expect to reduce the error of the
feedback system to one-hundredth of the error of the open-loop system. =

EXAMPLE 1.6 Insulin delivery control system

Control systems have been utilized in the biomedical field to create implanted auto-
matic drug-delivery systems to patients [29-31]. Automatic systems can be used to
regulate blood pressure, blood sugar level, and heart rate. A common application of con-
trol engineering is in the field of open-loop system drug delivery, in which mathematical
models of the dose-effect relationship of the drugs are used. A drug-delivery system
implanted in the body uses an open-loop system, since miniaturized glucose sensors are
not yet available. The best solutions rely on individually programmable, pocket-sized in-
sulin pumps that can deliver insulin according to a preset time history. More compli-
cated systems will use closed-loop control for the measured blood glucose levels.

The blood glucose and insulin concentrations for a healthy person are shown in
Figure 1.26. The system must provide the insulin from a reservoir implanted within
the diabetic person. Therefore, the control goal is:

Control Goal

Design a system to regulate the blood sugar concentration of a diabetic by con-

trolled dispensing of insulin.
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FIGURE 1.26
The blood glucose
and insulin levels
for a healthy
person.
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Referring to Figure 1.26, the next step in the design process is to define the variable
to be controlled. Associated with the control goal we can define the variable to be
controlled to be:

Variable to Be Controlled
Blood glucose concentration

In subsequent chapters, we will have the tools to quantitatively describe the control
design specifications using a variety of steady-state performance specifications and
transient response specifications, both in the time-domain and in the frequency domain.
At this point, the control design specifications will be qualitative and imprecise. In that
regard, for the problem at hand, we can state the design specification as:
Control Design Specifications
Provide a blood glucose level for the diabetic that closely approximates
(tracks) the glucose level of a healthy person.

Given the design goals, variables to be controlled, and control design specifications, we
can now propose a preliminary system configuration. An open-loop system would use
a preprogrammed signal generator and miniature motor pump to regulate the insulin
delivery rate as shown in Figure 1.27(a). The feedback control system would use a sen-
sor to measure the actual glucose level and compare that level with the desired level,
thus turning the motor pump on when it is required, as shown in Figure 1.27(b). m

1.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

Fode

b

This design example, identified by the arrow icon, will be considered sequentially in
each chapter. We will use the design process of Figure 1.17 in each chapter to identi-
fy the steps that we are accomplishing. For example, in Chapter 1 we (1) identify the
control goal, (2) identify the variables to control, (3) write the initial specifications
for the variables, and (4) establish the preliminary system configuration.
Information can be readily and efficiently stored on magnetic disks. Disk drives
are used in notebook computers and larger computers of all sizes and are essentially all
standardized as defined by ANSI standards [50, 63]. The worldwide total available mar-
ket for disk drives is greater than 650 million units [51]. In the past, disk drive designers
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SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems.

1

2.

3.
4.

5.

6.

N

®

9.

In the following True or False and Multiple Choice problems, circle the correct answer.

The flyball governor is generally agreed to be the first automatic

feedback controller used in an industrial process. True or False
A closed-loop contro] system uses a measurement of the output and

feedback of the signal to compare it with the desired input. True or False
Engineering synthesis and engineering analysis are the same. True or False
The block diagram in Figure 1.31 is an example of a closed-loop

feedback system. True or False

R(s) = Con'tro! —{ Actuator | Process —» Y(s)
device

FIGURE 1.31 System with control device,
actuator, and process.

A multivariable system is a system with more than one input and/or

more than one output. True or False
Early applications of feedback control include which of the following?

a. Water clock of Ktesibios

b. Watt’s flyball governor

¢ Drebbel’s temperature regulator

d. All of the above

Important modern applications of control systems include which of the following?
a. Fuel-efficient and safe automobiles

b. Autonomous robots

¢. Automated manufacturing

d. All of the above

Complete the following sentence:
Control of an industrial process by automatic rather than manual means is often called

a. negative feedback
b. automation

¢. adesign gap

d. aspecification

Complete the following sentence:
are intrinsic in the progression from an initial concept to the final product.
a. Closed-loop feedback systems
b. Flyball governors
¢. Design gaps
d. Open-loop control systems
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10.

11.

12.

13.

14.

Complete the following sentence:

Control engineers are concerned with understanding and controlling segments of their envi-
ronments, often called

a. systems

b. design synthesis

¢, trade-offs

d. risk

Early pioneers in the development of systems and control theory include:
a. H.Nyquist

b. H.W.Bode

¢. H.S.Black

d. All of the above

Complete the following sentence:

An open-loop control system utilizes an actuating device to control a process
a. without using feedback

b. using feedback

¢. in engineering design

d. in engineering synthesis

A system with more than one input variable or more than one output variable is known
by what name?

a. Closed-loop feedback system
b. Open-loop feedback system
¢. Multivariable control system
d. Robust control system
Control engineering is applicable to which fields of engineering?
a. Mechanical and aerospace
b. Electrical and biomedical
¢ Chemical and environmental
d. All of the above
Closed-loop control systems should have which of the following properties:
a. Good regulation against disturbances
b. Desirable responses to commands
¢. Low sensitivity to changes in the plant parameters
d. All of the above
In the following Word Match problems, match the term with the definition by writing the

correct letter in the space provided.

a.

b.

c.
d.

€.

Optimization The output signal is fed back so that it subtracts from
the input signal.
Risk A system that uses a measurement of the output and

compares it with the desired output.
Complexity of design A set of prescribed performance criteria.

System A measure of the output of the system used for
feedback to control the system.
Design A system with more than one input variable or more

than one output variable.
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f. Closed-loop feedback The result of making a judgment about how much

control system
criteria.

g. Flyball governor

compromise must be made between conflicting

An interconnection of elements and devices for a

desired purpose.

h. Specifications

A reprogrammable, multifunctional manipulator used

for a variety of tasks.

i. Synthesis

A gap between the complex physical system and the

design model intrinsic to the progression from the
initial concept to the final product.

j- Open-loop control
system

k. Feedback signal

The intricate pattern of interwoven parts and
knowledge required.

The ratio of physical output to physical input of an

industrial process.

I. Robot

m. Multivariable control
system

n. Design gap

The process of designing a technical system.

A system that utilizes a device to control the process
without using feedback.

Uncertainties embodied in the unintended

consequences of a design.

0. Positive feedback

The process of conceiving or inventing the forms,

parts, and details of a system to achieve a specified

purpose.
p. Negative feedback
q. Trade-off

The device, plant, or system under control.
The output signal is fed back so that it adds to the

input signal.

r. Productivity

An interconnection of components forming a

system configuration that will provide a desired

response.
The control of a process by automatic means.
The adjustment of the parameters to achieve the most

s. Engineering design
t. Process

favorable or advantageous design.

u. Control system
created.

v. Automation

The process by which new physical configurations are

A mechanical device for controlling the speed of a

steam engine.

EXERCISES

Exercises are straightforward applications of the concepts
of the chapter.

The following systems can be described by a block diagram
showing the cause-effect relationship and the feedback (if
present). Identify the function of each block and the de-
sired input variable, output variable, and measured vari-
able. Use Figure 1.3 as a model where appropriate.

E11 Describe typical sensors that can measure each of
the following [93]:

a. Linear position
b. Velocity (or speed)

¢. Nongravitational acceleration
d. Rotational position (or angle)
e. Rotational velocity
f. Temperature
g. Pressure
h. Liquid (or gas) flow rate
i. Torque
J- Force
E1.2 Describe typical actuators that can convert the fol-
lowing [93]:
a. Fluidic energy to mechanical energy
b. Electrical energy to mechanical energy
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FIGURE E1.3 Partial block diagram of an optical source.

¢. Mechanical deformation to electrical energy
d. Chemical energy to kinetic energy

E13 A precise optical signal source can control the out-
put power level to within 1 percent [32]. A laser is con-
trolled by an input current to yield the power output. A
microprocessor controls the input current to the laser.
The microprocessor compares the desired power level
with a measured signal proportional to the laser power
output obtained from a sensor. Complete the block di-
agram representing this closed-loop control system
shown in Figure E1.3, identifying the output, input, and
measured variables and the control device.

E14 An automobile driver uses a control system to main-
tain the speed of the car at a prescribed level. Sketch a
block diagram to illustrate this feedback system.

E1.5 Fly-fishing is a sport that challenges the person to
cast a small feathery fly using a light rod and line. The
goal is to place the fly accurately and lightly on the
distant surface of the stream [59]. Describe the fly-
casting process and a model of this process.

E1.6 An autofocus camera will adjust the distance of the
lens from the film by using a beam of infrared or ul-
trasound to determine the distance to the subject [42].
Sketch a block diagram of this open-loop control sys-
tem, and briefly explain its operation.

E1.7 Because a sailboat cannot sail directly into the wind,
and traveling straight downwind is usually slow, the
shortest sailing distance is rarely a straight line. Thus
sailboats tack upwind—the familiar zigzag course—and
jibe downwind. A tactician’s decision of when to tack
and where to go can determine the outcome of a race.

Describe the process of tacking a sailboat as the
wind shifts direction. Sketch a block diagram depict-
ing this process.

E1.8 Modern automated highways are being implement-
ed around the world. Consider two highway lanes merg-
ing into a single lane. Describe a feedback control
system carried on the automobile trailing the lead au-
tomobile that ensures that the vehicles merge with a
prescribed gap between the two vehicles.

E19 Describe the block diagram of the speed control sys-
tem of a motorcycle with a human driver.

EL10 Describe the process of human biofeedback used
to regulate factors such as pain or body temperature.

Biofeedback is a technique whereby a human can,
with some success, consciously regulate pulse, reaction
to pain, and body temperature.

E1.11 Future advanced commercial aircraft will be E-
enabled. This will allow the aircraft to take advantage
of continuing improvements in computer power and
network growth. Aircraft can continuously communi-
cate their location, speed, and critical health parame-
ters to ground controllers, and gather and transmit
local meteorological data. Sketch a block diagram
showing how the meteorological data from multiple
aircraft can be transmitted to the ground, combined
using ground-based powerful networked computers
to create an accurate weather situational awareness,
and then transmitted back to the aircraft for optimal
routing.

E1.12 Unmanned aerial vehicles (UAVs) are being de-
veloped to operate in the air autonomously for long
periods of time (see Section 1.3). By autonomous, we
mean that there is no interaction with human ground
controllers. Sketch a block diagram of an autonomous
UAV that is tasked for crop monitoring using aerial
photography. The UAV must photograph and transmit
the entire land area by flying a pre-specified trajectory
as accurately as possible.

E1.13 Consider the inverted pendulum shown in Figure
E1.13. Sketch the block diagram of a feedback control

m, mass

Optical encoder to

measure angle 7, torque

/ =

FIGURE E1.13 Inverted pendulum control.
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ANSWERS TO SKILLS CHECK

(5) True

True or False: (1) True; (2) True; (3) False; (4) False;

Introduction to Control Systems

Word Match (in order, top to bottom): p, f, h, k, m,
q.d.Ln,c.rsj,betouv,a,ig

Multiple Choice: (6) d; (7) d; (8) b; (9) c; (10) a;

(11) d; (12) a; (13) ¢; (14) d; (15) d

TERMS AND CONCEPTS

Automation The control of a process by automatic means.

Closed-loop feedback control system A system that uses
a measurement of the output and compares it with the
desired output to control the process.

Complexity of design The intricate pattern of interwoven
parts and knowledge required.

Control system An interconnection of components form-
ing a system configuration that will provide a desired
response.

Design The process of conceiving or inventing the forms,
parts, and details of a system to achieve a specified
purpose.

Design gap A gap between the complex physical system
and the design model intrinsic to the progression from
the initial concept to the final product.

Disturbance An unwanted input signal that affects the
output signal.

Embedded control Feedback control system that employs
on-board special-purpose digital computers as integral
components of the feedback loop.

Engineering design  The process of designing a technical

system.

Feedback signal A measure of the output of the system
used for feedback to control the system.

Flyball governor A mechanical device for controlling the
speed of a steam engine.

Hybrid fuel automobile An automobile that uses a con-
ventional internal combustion engine in combination
with an energy storage device to provide a propulsion
system.

Measurement noise An unwanted input signal that affects
the measured output signal.

Mechatronics The synergistic integration of mechanical,
electrical, and computer systems.

Multiloop feedback control system A feedback control
system with more than one feedback control loop.

Multivariable control system A system with more than
one input variable or more than one output variable.

Negative feedback An output signal fed back so that it
subtracts from the input signal.

Open-loop control system A system that uses a device to
control the process without using feedback. Thus the
output has no effect upon the signal to the process.

Optimization The adjustment of the parameters to achieve
the most favorable or advantageous design.

Plant See Process.

Positive feedback An output signal fed back so that it
adds to the input signal.

Process The device, plant, or system under control.

Productivity The ratio of physical output to physical input
of an industrial process.

Risk Uncertainties embodied in the unintended conse-
guences of a design.

Robot Programmable computers integrated with a ma-
nipulator. A reprogrammable, muitifunctional manip-
ulator used for a variety of tasks.

Speciflications Statements that explicitly state what the
device or product is to be and to do. A set of prescribed
performance criteria.

Synthesis The process by which new physical configura-
tions are created. The combining of separate elements
or devices to form a coherent whole.

System An interconnection of elements and devices for a
desired purpose.

Trade-off The result of making a judgment about how to
compromise between conflicting criteria.
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PREVIEW

Mathematical models of physical systems are key elements in the design and analysis
of control systems. The dynamic behavior is generally described by ordinary differen-
tial equations. We will consider a wide range of systems, including mechanical,
hydraulic, and electrical. Since most physical systems are nonlinear, we will discuss lin-
earization approximations, which allow us to use Laplace transform methods. We will
then proceed to obtain the input—output relationship for components and subsystems
in the form of transfer functions. The transfer function blocks can be organized into
block diagrams or signal-flow graphs to graphically depict the interconnections. Block
diagrams (and signal-flow graphs) are very convenient and natural tools for designing
and analyzing complicated control systems. We conclude the chapter by developing
transfer function models for the various components of the Sequential Design
Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 2, students should:

3 Recognize that differential equations can describe the dynamic behavior of physical

systems.

U Be able to utilize linearization approximations through the use of Taylor series
expansions.

U Understand the application of Laplace transforms and their role in obtaining transfer
functions.

1 Be aware of block diagrams (and signal-flow graphs) and their role in analyzing
control systems.

3 Understand the important role of modeling in the control system design process.

49



50 Chapter 2 Mathematical Models of Systems
2.1 INTRODUCTION

To understand and control complex systems, one must obtain quantitative
mathematical models of these systems. It is necessary therefore to analyze the rela-
tionships between the system variables and to obtain a mathematical model.
Because the systems under consideration are dynamic in nature, the descriptive
equations are usually differential equations. Furthermore, if these equations can be
linearized, then the Laplace transform can be used to simplify the method of solu-
tion. In practice, the complexity of systems and our ignorance of all the relevant
factors necessitate the introduction of assumptions concerning the system opera-
tion. Therefore we will often find it useful to consider the physical system, express
any necessary assumptions, and linearize the system. Then, by using the physical
laws describing the linear equivalent system, we can obtain a set of linear differen-
tial equations. Finally, using mathematical tools, such as the Laplace transform, we
obtain a solution describing the operation of the system. In summary, the approach
to dynamic system modeling can be listed as follows:

1. Define the system and its components.

2. Formulate the mathematical model and fundamental necessary assumptions based on
basic principles.

. Obtain the differential equations representing the mathematical model.
. Solve the equations for the desired output variables.

. Examine the solutions and the assumptions.

N U A W

. If necessary, reanalyze or redesign the system.

2.2 DIFFERENTIAL EQUATIONS OF PHYSICAL SYSTEMS

The differential equations describing the dynamic performance of a physical system
are obtained by utilizing the physical laws of the process [1-3]. This approach applies
equally well to mechanical [1], electrical [3], fluid, and thermodynamic systems [4].
Consider the torsional spring-mass system in Figure 2.1 with applied torque 7,(¢).
Assume the torsional spring element is massless. Suppose we want to measure the
torque T;(¢) transmitted to the mass m. Since the spring is massless, the sum of the
torques acting on the spring itself must be zero, or

T(t) — Ty(t) = 0,
which implies that T;,(t) = T,(t). We see immediately that the external torque T,(¢)
applied at the end of the spring is transmitted through the torsional spring. Because

of this, we refer to the torque as a through-variable. In a similar manner, the angular
rate difference associated with the torsional spring element is

w(t) = wy(t) — @q(1)-
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linear, dynamic elements is given in Table 2.2 [5]. The equations in Table 2.2 are ideal-
ized descriptions and only approximate the actual conditions (for example, when a

linear, lumped approximation is used for a distributed element).

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

Type of Physical Governing Energy E or
Element Element Equation Power & Symbol
. di 1. . L .
Electrical inductance vy = LZ E= ELz2 vy LYY Yy o v,
. . 1 dF 1 F? ko,
Translational spring U= E = K U0l YY Y\,
Inductive storage ¢ )
=7 =57 oYY Y oy
otational spring ©n = T 2K w, T
cq . _ dQ _ 1 5 1 0
Fluid inertia Py = I? E = EIQ P, ol YY" \So p,
dv 1 i
Electrical capacitance i=C 721 E= ECvZIZ v, o_L_l lc—o v
dv 1 o I—O
Translational mass F=M-—7 E = -Mvy? F 0 v =
dt 2 constant
d 1 0 '—0 =
Capacitive storage ¢ Rotational mass T=1J =2 E =—Jw? T > 0=
dr 2 constant
dP; 1
Fluid capacitance Q=C th E= ECfPZIZ g Py
d; o o
Thermal capacitance q= C,-d—t2 E=CY e g, g, =
constant
. . 1 _1 5 R i
Electrical resistance i=2vn P = R 75 6—AAA——0 3|
Translational damper F = by P = bvy?® Fo ]_olb v
Energy dissipators ¢ Rotational damper T = bwy P = bwy’ T —o '—‘Il —ow)
1 1
Fluid resistance Q=—P"FPy P =—Py’ R o
R f Rf Py o=AAN——0 P}
1 1
Thermal resistance g=—=9y P =09y R, 4
R, R, Ty o—AAAN——0 T
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FIGURE 2.3
RLC circuit.

FIGURE 2.4
Typical voltage
response for an
RLC circuit.
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(1) +
Current R L C (1)
souree | -

Alternatively, one may describe the electrical RLC circuit of Figure 2.3 by utiliz-
ing Kirchhoff’s current law. Then we obtain the following integrodifferential equation:
(1) vty 1 [

R +C T + 7 A v(t) dt = r(2). (22)

The solution of the differential equation describing the process may be ob-

tained by classical methods such as the use of integrating factors and the method of

undetermined coefficients [1]. For example, when the mass is initially displaced a

distance y(0) = y; and released, the dynamic response of the system can be repre-
sented by an equation of the form

y(t) = Kie™® sin(Byt + 6,). (2.3)

A similar solution is obtained for the voltage of the RLC circuit when the circuit
is subjected to a constant current r(¢) = I. Then the voltage is

0(t) = Kae ™ cos(Bt + ). 2.4)

A voltage curve typical of an RLC circuit is shown in Figure 2.4.
To reveal further the close similarity between the differential equations for the
mechanical and electrical systems, we shall rewrite Equation (2.1) in terms of velocity:

d
v(t) = —’fi(}i)—
Then we have
d t
M Z(t’) + bo(t) + k A o) dt = r(2). 2.5)

Voltage

/\ f\ S T

-
-

<
C
(
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One immediately notes the equivalence of Equations (2.5) and (2.2) where veloc-
ity v(¢) and voltage v(¢) are equivalent variables, usually called analogous variables,
and the systems are analogous systems. Therefore the solution for velocity is similar to
Equation (2.4), and the response for an underdamped system is shown in Figure 2.4.
The concept of analogous systems is a very useful and powerful technique for system
modeling. The voltage—velocity analogy, often called the force-current analogy, is a
natural one because it relates the analogous through- and across-variables of the elec-
trical and mechanical systems. Another analogy that relates the velocity and current
variables is often used and is called the force-voltage analogy [21, 23].

Analogous systems with similar solutions exist for electrical, mechanical, ther-
mal, and fluid systems. The existence of analogous systems and solutions provides
the analyst with the ability to extend the solution of one system to all analogous sys-
tems with the same describing differential equations. Therefore what one learns
about the analysis and design of electrical systems is immediately extended to an
understanding of fluid, thermal, and mechanical systems.

2.3 LINEAR APPROXIMATIONS OF PHYSICAL SYSTEMS

A great majority of physical systems are linear within some range of the variables.
In general, systems ultimately become nonlinear as the variables are increased with-
out limit. For example, the spring-mass-damper system of Figure 2.2 is linear and
described by Equation (2.1) as long as the mass is subjected to small deflections y(¢).
However, if y(f) were continually increased, eventually the spring would be overex-
tended and break. Therefore the question of linearity and the range of applicability
must be considered for each system.

A system is defined as linear in terms of the system excitation and response.
In the case of the electrical network, the excitation is the input current (¢) and the
response is the voltage v(¢). In general, a necessary condition for a linear system
can be determined in terms of an excitation x(¢) and a response y(f). When the
system at rest is subjected to an excitation x,(z), it provides a response y;(¢). Fur-
thermore, when the system is subjected to an excitation x,(¢), it provides a corre-
sponding response y(t). For a linear system, it is necessary that the excitation
x,(t) + x,(t) result in a response y;(t) + y,(¢). This is usually called the principle
of superposition.

Furthermore, the magnitude scale factor must be preserved in a linear system.
Again, consider a system with an input x(¢) that results in an output y(¢). Then the
response of a linear system to a constant multiple 8 of an input x must be equal to
the response to the input multiplied by the same constant so that the output is equal
to By. This is called the property of homogeneity.

A linear system satisfies the properties of superposition and homogeneity.

A system characterized by the relation y = x? is not linear, because the super-

position property is not satisfied. A system represented by the relation y = mx + b
is not linear, because it does not satisfy the homogeneity property. However, this
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second system may be considered linear about an operating point xg, y; for small
changes Ax and Ay. When x = xo + Axand y = y, + Ay, we have

y=mx+b

or
Yo+ Ay = mxy + mAx + b.

Therefore, Ay = m Ax, which satisfies the necessary conditions.

The linearity of many mechanical and electrical elements can be assumed over a
reasonably large range of the variables [7]. This is not usually the case for thermal and
fluid elements, which are more frequently nonlinear in character. Fortunately, how-
ever, one can often linearize nonlinear elements assuming small-signal conditions. This
is the normal approach used to obtain a linear equivalent circuit for electronic circuits
and transistors. Consider a general element with an excitation (through-) variable x(f)
and a response (across-) variable y(f). Several examples of dynamic system variables
are given in Table 2.1. The relationship of the two variables is written as

y(&) = g(x(®), (26)
where g(x()) indicates y(¢) is a function of x(¢). The normal operating point is desig-
nated by x,. Because the curve (function) is continuous over the range of interest, a
Taylor series expansion about the operating point may be utilized [7]. Then we have

_ 2 — )2
y=ew = st v | SR gE EE e
The slope at the operating point,
dg
a X:Xu,

is a good approximation to the curve over a small range of (x — x), the deviation from
the operating point. Then, as a reasonable approximation, Equation (2.7) becomes

dg
y = g(xo) + i (x = xp) = yo + m(x — xo), (2.8)

where m is the slope at the operating point. Finally, Equation (2.8) can be rewritten
as the linear equation

(y = y) = m(x — x)

or

Ay = m Ax. (2.9)

Consider the case of a mass, M, sitting on a nonlinear spring, as shown in Figure 2.5(a).

The normal operating point is the equilibrium position that occurs when the spring force
balances the gravitational force Mg, where g is the gravitational constant. Thus, we obtain
fo = Mg, as shown. For the nonlinear spring with f = y?, the equilibrium position is
Yo = (Mg) 172 The linear model for small deviation is

Af = m Ay,
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The transformation integrals have been employed to derive tables of Laplace trans-

forms that are used for the great majority of problems. A table of important Laplace

transform pairs is given in Table 2.3, and a more complete list of Laplace transform
L pairs can be found at the MCS website.

Table 2.3 Important Laplace Transform Pairs

fit) F(s)
1
Step function, «(t) S
1
—at
¢ sta
sin wt o
S+ w
cos wt al
s+ w
n!
¢ sn+]
d*f (1) R
9 a “F(s) = s*7'F(07) — s*72f1(07)
— ... = %00
' F (S)
f(2)dt w/f(z)dz
Impulse function 8(¢)
e " sin wt ——w—zz—
(s+a)y+ow
+
e cos wt %
(s + a)” + o
1 12 —at . s+ a
:;[(C{ - a)2 + wz] e Sln(wt + (ﬁ), m
¢ = tan o
wp

Wy \/_2
———e ' sinw, V1 - ¢4, ¢ < 1
\/1—52

1 1

+ e sin{wt — ¢),
@+ o oV + o ( 9)
w

¢ = tan ' —
—-a

1- ;e"‘”n‘ Sin(w,,
Vi1-¢
d=cosl e <1
a +l|:(a—a)2+w2

1- 0%+ ¢),

@ + o w ¢+ o

4 )
¢ = tan™! - tan™l—
a—-a

s+ 2{w,s + a),z1

1

s[(s + a)? + &

2
Wy

12
e sin(wt + ¢).

s(s? + 2w,s + @)

s+ a

s[{s + a)2 + wz]
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Alternatively, the Laplace variable s can be considered to be the differential
operator so that

S

N

(2.16)

Then we also have the integral operator

l t
" A . 2.17)

The inverse Laplace transformation is usually obtained by using the Heaviside
partial fraction expansion. This approach is particularly useful for systems analysis
and design because the effect of each characteristic root or eigenvalue can be clear-
ly observed.

To illustrate the usefulness of the Laplace transformation and the steps involved
in the system analysis, reconsider the spring-mass-damper system described by
Equation (2.1), which is

i

d2y dy
— + b=+ = . .
M 2 b i ky = r(t) (2.18)

We wish to obtain the response, y, as a function of time. The Laplace transform of
Equation (2.18) is

M(szY(s) — sy(07) — %(o-)> + b(sY(s) — y(07)) + kY (s) = R(s). (2.19)

When

1
() =0, and y(07) =y, and 91y,
dt|i—o-
we have
Ms2Y(s) — Msy, + bsY(s) — by, + kY(s) = 0. (2.20)

Solving for Y(s), we obtain

_ _WMs+b)y _ pls)
Ms* +bs +k q(s)

(2.21)

The denominator polynomial g(s), when set equal to zero, is called the characteristic
equation because the roots of this equation determine the character of the time
response. The roots of this characteristic equation are also called the poles of the sys-
tem. The roots of the numerator polynomial p(s) are called the zeros of the system;
for example, s = —b/M is a zero of Equation (2.21). Poles and zeros are critical fre-
quencies. At the poles, the function Y(s) becomes infinite, whereas at the zeros, the
function becomes zero. The complex frequency s-plane plot of the poles and zeros
graphically portrays the character of the natural transient response of the system.

For a specific case, consider the system when k/M = 2 and b/M = 3. Then
Equation (2.21) becomes

Y(s) = (s + 3y

T(s+ 1)(s+2) (22)



FIGURE 2.7
An s-plane pole and
zero plot.

FIGURE 2.8
Graphical
evaluation of the
residues.
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Jjw
A\ o
-3 -2 -1 0
X = pole
O = zero

The poles and zeros of Y(s) are shown on the s-plane in Figure 2.7.
Expanding Equation (2.22) in a partial fraction expansion, we obtain
kq + ks

Y(s)=s+1 s+ 2

(2.23)

where &, and k, are the coefficients of the expansion. The coefficients k; are called
residues and are evaluated by multiplying through by the denominator factor of
Equation (2.22) corresponding to k; and setting s equal to the root. Evaluating k;
when y, = 1, we have

_ (s = s)p(s)

ki a(s)

(2.24)

§=5

(s +1)(s +3)

TG+ (s +2) =2

s51=—1

and k, = —1. Alternatively, the residues of Y(s) at the respective poles may be eval-
uated graphically on the s-plane plot, since Equation (2.24) may be written as

s+ 3

ki =
)

(2.25)

s=8=-1

Sl+3

Sl+2

=2

S]=_1

The graphical representation of Equation (2.25) is shown in Figure 2.8. The graphi-
cal method of evaluating the residues is particularly valuable when the order of the
characteristic equation is high and several poles are complex conjugate pairs.

jo
s+ 3
A\ T
-3 -2 5p=-—1 0
—
(sy +2)
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FIGURE 2.9

An s-plane plot of
the poles and zeros
of Y(s).
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The inverse Laplace transform of Equation (2.22) is then

_ 2 ) -1
o) =2 1{s-i— 1} +* l{s+2}'

Using Table 2.3, we find that

(2.26)

y(t) = 2¢7 — 172 2.27)

Finally, it is usually desired to determine the steady-state or final value of the re-
sponse of y(¢). For example, the final or steady-state rest position of the spring-mass-
damper system may be calculated. The final value theorem states that

IEIIQIQ yt) = }LI% sY (s), (2.28)

where a simple pole of Y(s) at the origin is permitted, but poles on the imaginary
axis and in the right half-plane and repeated poles at the origin are excluded. There-
fore, for the specific case of the spring-mass-damper, we find that

lir(r)lo y(t) = lin}) sY(s) = 0. 2.29)
= R iand
Hence the final position for the mass is the normal equilibrium position y = 0.

Reconsider the spring-mass-damper system. The equation for Y(s) may be writ-
ten as

Y(s) = (s+b6/M)yy  _
s? + (b/M)s + k/M

where { is the dimensionless damping ratio, and w,, is the natural frequency of the
system. The roots of the characteristic equation are

51,8 = —{w, + 0,V -1, (2.31)

where, in this case, w, = Vk/M and { = b/(2V kM). When ¢ > 1, the roots are
real and the system is overdamped; when { < 1, the roots are complex and the sys-
tem is underdamped. When { = 1, the roots are repeated and real, and the condi-
tion is called critical damping.

When ¢ < 1, the response is underdamped, and

S12 = —fw,  ju, V1 — ZZ’ (2.32)

The s-plane plot of the poles and zeros of Y(s) is shown in Figure 2.9, where

(s + 28wa)yo
§t+ 2w,s + w?

(2.30)

6 = cos™! £. As { varies with w, constant, the complex conjugate roots follow a circular
Jjw
ik m— jo1 =22
-y : A N\
= C0S !
\1\ /)~
r'\ : o
240 ~{a, 0
j
|
|
D —jo1 = &
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FIGURE 2.10
The locus of roots
as ¢ varies with w,
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constant.
locus, as shown in Figure 2.10. The transient response is increasingly oscillatory as the
roots approach the imaginary axis when { approaches zero.
The inverse Laplace transform can be evaluated using the graphical residue
evaluation. The partial fraction expansion of Equation (2.30) is
ky k
= + — 2.33
Y(S) s 5 S = & ( )
Since s, is the complex conjugate of sy, the residue k; is the complex conjugate of k;
so that we obtain
kq k]
Y(s) = + ,
(<) $—8&n s- sT
where the asterisk indicates the conjugate relation. The residue k; is evaluated from
Figure 2.11 as
51 + 2fw M, e
ki = Yo(s1 { ) _ Yo 1 , (234)
S — & Mze”’/
where M, is the magnitude of s; + 2{w,, and M, is the magnitude of s, — s}. (A re-
“%#  view of complex numbers can be found on the MCS website.) In this case, we obtain
e = yo(wae®) Yo (235)
Y 20,V - 2 2\/1 = feltn20 '
jo
1 >‘f ——————— -1 J w, J] - {2
51 + 24w,
§1 T 5
g
-2¢w, 0
FIGURE 2.11
Evaluation of the =
residue k.
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FIGURE 2.12
Response of the
spring-mass-
damper system.
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¥
4

Yo Overdamped case

» Time

td
L.
#“¢~ 49! envelope

where 6 = cos™ {. Therefore,

Yo i /2~
ky = ———=¢l(m/2"9), 2.36)
Y (

Finally, letting 8 = V1 — £2, we find that
y(t) = kie®' + kpe™

(Ot gionbt . gin/2=0)Lant i

CVI- 2
= 0t sin(w, V1 = 2% + 6). (2.37)

V1 - {2

The solution, Equation (2.37), can also be obtained using item 11 of Table 2.3. The tran-
sient responses of the overdamped (¢ > 1) and underdamped (¢ < 1) cases are
shown in Figure 2.12. The transient response that occurs when { < 1 exhibits an oscil-
lation in which the amplitude decreases with time, and it is called a damped oscillation.

The relationship between the s-plane location of the poles and zeros and the
form of the transient response can be interpreted from the s-plane pole-zero
plots. For example, as seen in Equation (2.37), adjusting the value of {w, varies
the e *“ envelope, hence the response y(¢) shown in Figure 2.12. The larger the
value of {w,, the faster the damping of the response, y(f). In Figure 2.9, we see
that the location of the complex pole s; is given by s, = —{w, + jo,V1 — (%
So, making {w, larger moves the pole further to the left in the s-plane. Thus, the
connection between the location of the pole in the s-plane and the step response
is apparent—moving the pole s; farther in the left half-plane leads to a faster
damping of the transient step response. Of course, most control systems will
have more than one complex pair of poles, so the transient response will be the
result of the contributions of all the poles. In fact, the magnitude of the response
of each pole, represented by the residue, can be visualized by examining the
graphical residues on the s-plane. We will discuss the connection between the
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pole and zero locations and the transient and steady-state response more in sub-
sequent chapters. We will find that the Laplace transformation and the s-plane
approach are very useful techniques for system analysis and design where em-
phasis is placed on the transient and steady-state performance. In fact, because
the study of control systems is concerned primarily with the transient and
steady-state performance of dynamic systems, we have real cause to appreciate
the value of the Laplace transform techniques.

2.5 THE TRANSFER FUNCTION OF LINEAR SYSTEMS

FIGURE 2.13
An RC network.

The transfer function of a linear system is defined as the ratio of the Laplace transform
of the output variable to the Laplace transform of the input variable, with all initial
conditions assumed to be zero. The transfer function of a system (or element) repre-
sents the relationship describing the dynamics of the system under consideration.

A transfer function may be defined only for a linear, stationary (constant para-
meter) system. A nonstationary system, often called a time-varying system, has one
or more time-varying parameters, and the Laplace transformation may not be uti-
lized. Furthermore, a transfer function is an input-output description of the behav-
ior of a system. Thus, the transfer function description does not include any
information concerning the internal structure of the system and its behavior.

The transfer function of the spring-mass-damper system is obtained from the
original Equation (2.19), rewritten with zero initial conditions as follows:

Ms?Y (s) + bsY(s) + kY (s) = R(s). (2.38)
Then the transfer function is
Output _Y(s) 1

(2.39)

Input (s) = R(s) Ms®>+bs+k

The transfer function of the RC network shown in Figure 2.13 is obtained by
writing the Kirchhoff voltage equation, yielding

Vi(s) = (R + Els-)l(s), (2.40)

expressed in terms of transform variables. We shall frequently refer to variables and
their transforms interchangeably. The transform variable will be distinguishable by
the use of an uppercase letter or the argument (s).

The output voltage is

1
W(s) = I(s)(a) (241)
R
+o— AN o+
i
R CA~ t
-0 o—
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Therefore, solving Equation (2.40) for I(s) and substituting in Equation (2.41), we have
(1/Cs)Vi(s)

Vals) = R+ 1/Cs”

Then the transfer function is obtained as the ratio V5(s)/V{(s), which is

W 1 1
Vis) RCs+1 7s+1 s+1/7

G(s) (2.42)

where 7 = RC, the time constant of the network. The single pole of G(s) is
s = —1/7. Equation (2.42) could be immediately obtained if one observes that the
circuit is a voltage divider, where
VS Zos)
Vi(s)  Zi(s) + Za(s)’

(2.43)

and Zi(s) = R, Z, = 1/Cs.

A multiloop electrical circuit or an analogous multiple-mass mechanical sys-
tem results in a set of simultaneous equations in the Laplace variable. It is usually
more convenient to solve the simultaneous equations by using matrices and deter-
minants [1, 3, 15]. An introduction to matrices and determinants can be found on
the MCS website.

Let us consider the long-term behavior of a system and determine the response
to certain inputs that remain after the transients fade away. Consider the dynamic
system represented by the differential equation

ar dn—l d"_lr dn—Zr
dtz + q"—l:i—t,,% + ot qy = pn—IEi,,__f + pn—ZW + o+ opor, (2.44)

where y(t) is the response, and 7(¢) is the input or forcing function. If the initial con-
ditions are all zero, then the transfer function is the coefficient of R(s) in

p(s) Pro1S" L+ puoas™ 2+ - + py

Y(s) = G()R(s) = q—(sz(S) T gt o+ g

R(s). (2.45)

The output response consists of a natural response (determined by the initial
conditions) plus a forced response determined by the input. We now have

Y(s) = R(s),
=%
where g(s) = 0 is the characteristic equation. If the input has the rational form
n(s)
R(s) = ——~
©) = ay
then
v(s) = 2 L POy 1 ) + 1o, (2.46)

2) " q(s) d(s)
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where Y,(s) is the partial fraction expansion of the natural response, Y;(s) is the par-
tial fraction expansion of the terms involving factors of g(s), and Y;(s) is the partial
fraction expansion of terms involving factors of d(s).

Taking the inverse Laplace transform yields

y(©) = n@) + »n@) + y().

The transient response consists of y;(¢) + ,(¢), and the steady-state response is ys(¢).

EXAMPLE 2.2  Solution of a differential equation

Consider a system represented by the differential equation

d’y  dy
—2 44— +3y=
dtz 4 dt y zr(t)v
s - dy
where the initial conditions are y(0) = I’E(O) =0,andr(¢) = 1,¢ = 0.
The Laplace transform yields
[s?Y (s) — sy(0)] + 4[sY(s) — y(0)] + 3Y(s) = 2R(s).
Since R(s) = 1/s and y(0) = 1, we obtain
s+4 2
+ b
P+ 45+ 3 s(s?+ 45 +3)

Y(s) =

where g(s) = s* + 45 + 3 = (s + 1)(s + 3) = 0is the characteristic equation, and
d(s) = s. Then the partial fraction expansion yields

Y(s) = [ 2, _1/2} + [ L, 1B } + ? = Yi(s) + %(s) + K(s).

s+1 s+3 s+1 s+3

Hence, the response is

EXAMPLE 2.3 Transfer function of an op-amp circuit

The operational amplifier (op-amp) belongs to an important class of analog inte-
grated circuits commonly used as building blocks in the implementation of control
systems and in many other important applications. Op-amps are active elements
(that is, they have external power sources) with a high gain when operating in their
linear regions. A model of an ideal op-amp is shown in Figure 2.14.



FIGURE 2.14
The ideal op-amp.

FIGURE 2.15

An inverting amplifier
operating with ideal
conditions.
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o ~ ]

=

The operating conditions for the ideal op-amp are (1) i{; = 0 and i; = 0, thus
implying that the input impedance is infinite, and (2) v, — v; = 0 (or v; = ;). The
input-output relationship for an ideal op-amp is

v = K(v, — v) = —K(v; — v),

where the gain K approaches infinity. In our analysis, we will assume that the linear
op-amps are operating with high gain and under idealized conditions.

Consider the inverting amplifier shown in Figure 2.15. Under ideal conditions,
we have i; = 0, so that writing the node equation at v; yields

’Ul—'vin+'01—'00
R R
1 2

Since v, = v; (under ideal conditions) and v, = O (see Figure 2.15 and compare it
with Figure 2.14), it follows that v; = 0. Therefore,

=0

Yin Vo
R R
and rearranging terms, we obtain
w_ _R
Vin - Ry

We see that when R, = R), the ideal op-amp circuit inverts the sign of the input,
thatis,vg = —v, when R, = R;. m

EXAMPLE 2.4

Consider the mechanical system shown in Figure 2.16 and its electrical circuit analog
shown in Figure 2.17. The electrical circuit analog is a force—current analog as out-
lined in Table 2.1. The velocities v;(r) and v,(¢) of the mechanical system are directly

Transfer function of a system







70

Chapter 2 Mathematical Models of Systems

Assuming that the velocity of M, is the output variable, we solve for V|(s) by matrix
inversion or Cramer’s rule to obtain [1, 3]

(Mys + by + k/s)R(s)

Vi(s) = . 2.50
i(s) (Mys + by + b)) (Mps + by + k/s) — b? (2:50)
Then the transfer function of the mechanical (or electrical) system is
6ty = 1) _ (Mys + by + k/s)
R(s)  (Mys + by + by)(Myps + by + k/s) — b;®
Mos® + bys + k
= (M 5 ) - (2.51)
(Mls + bl + bz)(MzS + bls + k) - b] A)
If the transfer function in terms of the position x;(¢) is desired, then we have
Xi(s V(s G(s
() _ M) _ G 252 =

R(s) sR(s) s

As an example, let us obtain the transfer function of an important electrical
control component, the DC motor [8]. A DC motor is used to move loads and is
called an actuator.

An actuator is a device that provides the motive power to the process.

EXAMPLE 2.5 Transfer function of the DC motor

The DC motor is a power actuator device that delivers energy to a load, as shown in
Figure 2.18(a); a sketch of a DC motor is shown in Figure 2.18(b). The DC motor
converts direct current (DC) electrical energy into rotational mechanical energy. A
major fraction of the torque generated in the rotor (armature) of the motor is
available to drive an external load. Because of features such as high torque, speed
controllability over a wide range, portability, well-behaved speed-torque charac-
teristics, and adaptability to various types of control methods, DC motors are widely
used in numerous control applications, including robotic manipulators, tape trans-
port mechanisms, disk drives, machine tools, and servovalve actuators.

The transfer function of the DC motor will be developed for a linear approxi-
mation to an actual motor, and second-order effects, such as hysteresis and the volt-
age drop across the brushes, will be neglected. The input voltage may be applied to
the field or armature terminals. The air-gap flux ¢ of the motor is proportional to
the field current, provided the field is unsaturated, so that

¢ = Kfif. (253)

The torque developed by the motor is assumed to be related linearly to ¢ and the
armature current as follows:

T,y = K1¢i (t) = K Kyig(t)ig(2)- (2.54)
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FIGURE 2.19
Block diagram
model of field-
controlled DC
motor.
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Therefore, the transfer function of the motor-load combination, with T (s) = 0, is

o(s) K, B K../(JLy)
Vi(s) s(Us + b)(Lgs + Ry)  s(s + b/T)(s + Re/Ly)

(2.62)

The block diagram model of the field-controlled DC motor is shown in Figure 2.19.
Alternatively, the transfer function may be written in terms of the time constants of the
motor as

06) _ gy = — K/ ORp)
Vis) (s) = s(rys + D(rgs + 1)’

where 7 = L¢/R; and 7, = J/b. Typically, one finds that 7, > 7; and often the
field time constant may be neglected.

The armature-controlled DC motor uses the armature current i, as the control
variable. The stator field can be established by a field coil and current or a permanent
magnet. When a constant field current is established in a field coil, the motor torque is

(2.63)

7;n(s) = (KIKfIf)la(s) = anla(s)~ (264)
When a permanent magnet is used, we have
Tu(s) = Kulu(s),

where K, is a function of the permeability of the magnetic material.
The armature current is related to the input voltage applied to the armature by

Va(s) = (Ra + LoS)a(s) + Vi(s), (2.65)

where V;(s) is the back electromotive-force voltage proportional to the motor
speed. Therefore, we have

Vi(s) = Kyo(s), (2.66)
where w(s) = s6(s) is the transform of the angular speed and the armature current is

_ Vi(s) — Kpo(s)

1) = 31 (2.67)

Equations (2.58) and (2.59) represent the load torque, so that
T;.(s) = Js%0(s) + bsO(s) = T ,(s) — Ty(s). (2.68)



FIGURE 2.20
Armature-controlled
DC motor.
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The relations for the armature-controlled DC motor are shown schematically in
Figure 2.20. Using Equations (2.64), (2.67), and (2.68) or the block diagram, and let-
ting T(s) = 0, we solve to obtain the transfer function

Gls) = 8(s) Ko
DTV TSR, + Ly + b) + KoKyl
K
=— = > (2.69)
s(s° + 2lwps + i)

However, for many DC motors, the time constant of the armature, 7, = L,/R,, is
negligible; therefore,

o(s K K, /(R,b + KiK,,

G(s) = (s) - m - /( b )’ (2.70)
Vi(s) s[R,(Js + b) + KpK,,)] s(ris + 1)

where the equivalent time constant 71 = R,J/(Rb + KK ).

Note that X,, is equal to K. This equality may be shown by considering the
steady-state motor operation and the power balance when the rotor resistance is
neglected. The power input to the rotor is (Kyw)i,, and the power delivered to the
shaft is Tw. In the steady-state condition, the power input is equal to the power de-
livered to the shaft so that (Kyw)i, = Tw; since T = K,,i, (Equation 2.64), we find
that Kb = Km'

Electric motors are used for moving loads when a rapid response is not re-
quired and for relatively low power requirements. Typical constants for a fractional
horsepower motor are provided in Table 2.4. Actuators that operate as a result of
hydraulic pressure are used for large loads. Figure 2.21 shows the usual ranges of
use for electromechanical drives as contrasted to electrohydraulic drives. Typical
applications are also shown on the figure. =

Table 2.4 Typical Constants for a Fractional Horsepower DC Motor

Motor constant K, 50 X 10 N-m/A
Rotor inertia J,,, 1 X 103N -m-s?/rad
Field time constant T 1 ms

Rotor time constant T 100 ms

Maximum output power Vi hp, 187 W
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Thus, substituting Equation (2.71) into Equation (2.72), we obtain

2
—(kxx -0Q)= M d— + bflz (2.73)

Furthermore, the volumetric fluid flow is related to the piston movement as

- 4% 274
Then, substituting Equation (2.74) into Equation (2.73) and rearranging, we have
Akey dy A\ dy
—= — + == .
kp =M PR (b %y ) ar (2.75)

Therefore, using the Laplace transformation, we have the transfer function

Y(s) _ K

X(s) s(Ms+ B) (276)
where
Ak, A
K k» nd b kp

Note that the transfer function of the hydraulic actuator is similar to that of the elec-
tric motor. For an actuator operating at high pressure levels and requiring a rapid
response of the load, we must account for the effect of the compressibility of the
fluid [4, 5].

Symbols, units, and conversion factors associated with many of the variables in
Table 2.5 are located at the MCS website. The symbols and units for each variable can be
found in tables with corresponding conversions between SI and English units. =

The transfer function concept and approach is very important because it pro-
vides the analyst and designer with a useful mathematical model of the system ele-
ments. We shall find the transfer function to be a continually valuable aid in the
attempt to model dynamic systems. The approach is particularly useful because the
s-plane poles and zeros of the transfer function represent the transient response of
the system. The transfer functions of several dynamic elements are given in Table 2.5.

In many situations in engineering, the transmission of rotary motion from one
shaft to another is a fundamental requirement. For example, the output power of an
automobile engine is transferred to the driving wheels by means of the gearbox and
differential. The gearbox allows the driver to select different gear ratios depending
on the traffic situation, whereas the differential has a fixed ratio. The speed of the
engine in this case is not constant, since it is under the control of the driver. Anoth-
er example is a set of gears that transfer the power at the shaft of an electric motor
to the shaft of a rotating antenna. Examples of mechanical converters are gears,
chain drives, and belt drives. A commonly used electric converter is the electric
transformer. An example of a device that converts rotational motion to linear mo-
tion is the rack-and-pinion gear shown in Table 2.5, item 17.
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Table 2.5 Transfer Functions of Dynamic Elements and Networks

G(s)

Element or System
1. Integrating circuit, filter

c
I(
AN
R
= AN -
+ —o +
+
Vits) Va(s)

—0—

2. Differentiating circuit

R
C
] -
Vits) b Vs(s)

<+

o —0 —
3. Differentiating circuit
R R,
I Y l >
T
+ +
Vi(s) Vals)
= 5
4. Integrating filter
RI R2 |C2
, C +
Vits) Vs
o —5

Vals) 1
Vi(s)  RCs
Va(s)

() —-RCs

Va(s) _  Ra(RiCs +1)

Vils) R,

Va(s) 5 (R1Cys + 1)(RyGCys + 1)

Vi(s) RCys

(continued)
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FIGURE 2.22
Block diagram of a
DC motor.

FIGURE 2.23
General block
representation of
two-input, two-
output system.

FIGURE 2.24
Block diagram of
interconnected
system.
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the input and output variables. Therefore, one can correctly assume that the transfer
function is an important relation for control engineering.

The importance of this cause-and-effect relationship is evidenced by the facility
to represent the relationship of system variables by diagrammatic means. The block
diagram representation of the system relationships is prevalent in control system en-
gineering. Block diagrams consist of unidirectional, operational blocks that represent
the transfer function of the variables of interest. A block diagram of a field-con-
trolled DC motor and load is shown in Figure 2.22. The relationship between the dis-
placement 6(s) and the input voltage V;(s) is clearly portrayed by the block diagram.

To represent a system with several variables under control, an interconnection
of blocks is utilized. For example, the system shown in Figure 2.23 has two input
variables and two output variables [6]. Using transfer function relations, we can
write the simultaneous equations for the output variables as

Yi(s) = Gu(s)Ri(s) + Gra(s)Rx(s), 2.77)
and

Y(s) = Gu(s)Ri(s) + Grls)Ry(s), (2.78)
where Gj;(s) is the transfer function relating the ith output variable to the jth input vari-
able. The block diagram representing this set of equations is shown in Figure 2.24. In
general, for J inputs and 7 outputs, we write the simultaneous equation in matrix form as

Yi(s) Gi(s) Gu(s) || Ri(s)
ngs) G2l.(s) Gz{(s) R2'(3) 2.79)
()| Lone - Guls) ]| Rt
or simply
Y = GR. (2.80)

Ry(»

Ry(s)
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Here the Y and R matrices are column matrices containing the 7 output and the J input
variables, respectively, and G is an I by J transfer function matrix. The matrix representa-
tion of the interrelationship of many variables is particularly valuable for complex multi-
@ variable control systems. An introduction to matrix algebra is provided on the MCS
website for those unfamiliar with matrix algebra or who would find a review helpful [21].
The block diagram representation of a given system often can be reduced to a
simplified block diagram with fewer blocks than the original diagram. Since the
transfer functions represent linear systems, the multiplication is commutative. Thus,

in Table 2.6,item 1, we have

X3(5) = Gy(s)Xa(s) = Gi(s)Ga(s) Xi(s)-

Table 2.6 Block Diagram Transformations

Transformation Original Diagram Equivalent Diagram
1. Combining blocks in cascade X, X, X X, Xa
—| G\ > Gy(s) [——> — GG, ——>
or
X, X3
—| G,G, —>

2. Moving a summing point X3
behind a block G —»
3. Moving a pickoff point X, X, X, X,
ahead of a block —> G > » G |—>
X X
«— «— G [«
4. Moving a pickoff point X X3 X, X,
behind a biock » G |—> » G »
X, X1
— «— - |«
G
5. Moving a summing point X, X+ Xy
ahead of a block — G | G —>
+
T PR
G [*
6. Eliminating a feedback loop X, + X, X, el X,
G ~> > — -»
1¥ GH

I+
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FIGURE 2.25
Negative feedback
control system.
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When two blocks are connected in cascade, as in Table 2.6, item 1, we assume that
X3(s) = Gy(s)Gi(s) X1(s)

holds true. This assumes that when the first block is connected to the second block,
the effect of loading of the first block is negligible. Loading and interaction between
interconnected components or systems may occur. If the loading of interconnected
devices does occur, the engineer must account for this change in the transfer func-
tion and use the corrected transfer function in subsequent calculations.

Block diagram transformations and reduction techniques are derived by consid-
ering the algebra of the diagram variables. For example, consider the block diagram
shown in Figure 2.25. This negative feedback control system is described by the
equation for the actuating signal, which is

E,(s) = R(s) — B(s) = R(s) — H(s)Y(s). (2.81)
Because the output is related to the actuating signal by G(s), we have
Y(s) = G(9)U(s) = G(5)Ga(s)Z(s) = G(5)Gu(5)G(s)Eu(s); (2.82)
thus,
Y(s) = G(s)Gu(s)G(s)[R(s) — H(s)Y (s5)]- (2.83)
Combining the Y(s) terms, we obtain
Y(s)[1 + G(5)Gu(5)G(s)H(s)] = G(5)Ga(s)G(s)R(s)- (2.84)
Therefore, the transfer function relating the output Y(s) to the input R(s) is

Y(s)  G(5)Gu(s)Gc(s)
R(s) 1+ G(s)G(s)Gc(s)H(s)’

(2.85)

This closed-loop transfer function is particularly important because it represents
many of the existing practical control systems.

The reduction of the block diagram shown in Figure 2.25 to a single block rep-
resentation is one example of several useful techniques. These diagram transforma-
tions are given in Table 2.6. All the transformations in Table 2.6 can be derived by
simple algebraic manipulation of the equations representing the blocks. System
analysis by the method of block diagram reduction affords a better understanding of
the contribution of each component element than possible by the manipulation of



FIGURE 2.26
Multiple-loop
feedback control
system.
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equations. The utility of the block diagram transformations will be illustrated by an
example using block diagram reduction.

EXAMPLE 2.7 Block diagram reduction

The block diagram of a multiple-loop feedback control system is shown in Figure 2.26.
It is interesting to note that the feedback signal H(s)Y(s) is a positive feedback sig-
nal, and the loop Gs(s)G4(s)H,(s) is a positive feedback loop. The block diagram
reduction procedure is based on the use of Table 2.6, transformation 6, which elim-
inates feedback loops. Therefore the other transformations are used to transform
the diagram to a form ready for eliminating feedback loops. First, to eliminate the
loop G3G4H,, we move H, behind block G, by using transformation 4, and obtain
Figure 2.27(a). Eliminating the loop G;G,H; by using transformation 6, we obtain
Figure 2.27(b). Then, eliminating the inner loop containing H,/G;,, we obtain Figure
2.27(c). Finally, by reducing the loop containing Hj, we obtain the closed-loop sys-
tem transfer function as shown in Figure 2.27(d). It is worthwhile to examine the
form of the numerator and denominator of this closed-loop transfer function. We
note that the numerator is composed of the cascade transfer function of the feed-
forward elements connecting the input R(s) and the output ¥{(s). The denominator is
composed of 1 minus the sum of each loop transfer function. The loop GsG4H; has a
plus sign in the sum to be subtracted because it is a positive feedback loop, whereas
the loops G1G,G3G4H; and G,G3H, are negative feedback loops. To illustrate this
point, the denominator can be rewritten as

q(S) =1 - (+GGsH; — G,G:H, — G1G2G3G4H3). (286)

This form of the numerator and denominator is quite close to the general form for
multiple-loop feedback systems, as we shall find in the following section. m

The block diagram representation of feedback control systems is a valuable
and widely used approach. The block diagram provides the analyst with a graphi-
cal representation of the interrelationships of controlled and input variables. Fur-
thermore, the designer can readily visualize the possibilities for adding blocks to
the existing system block diagram to alter and improve the system performance.
The transition from the block diagram method to a method utilizing a line path
representation instead of a block representation is readily accomplished and is
presented in the following section.



FIGURE 2.27
Block diagram
reduction of the
system of Figure
2.26.
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2.7 SIGNAL-FLOW GRAPH MODELS

Block diagrams are adequate for the representation of the interrelationships of con-
trolled and input variables. However, for a system with reasonably complex interre-
lationships, the block diagram reduction procedure is cumbersome and often quite
difficult to complete. An alternative method for determining the relationship be-
tween system variables has been developed by Mason and is based on a representa-
tion of the system by line segments [4, 25]. The advantage of the line path method,
called the signal-flow graph method, is the availability of a flow graph gain formula,
which provides the relation between system variables without requiring any reduc-
tion procedure or manipulation of the flow graph.

The transition from a block diagram representation to a directed line segment
representation is easy to accomplish by reconsidering the systems of the previous
section. A signal-flow graph is a diagram consisting of nodes that are connected by
several directed branches and is a graphical representation of a set of linear rela-
tions. Signal-flow graphs are particularly useful for feedback control systems be-
cause feedback theory is primarily concerned with the flow and processing of signals
in systems. The basic element of a signal-flow graph is a unidirectional path segment
called a branch, which relates the dependency of an input and an output variable in



FIGURE 2.28
Signal-flow graph
of the DC motor.

FIGURE 2.29
Signal-flow graph
of interconnected
system.
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a manner equivalent to a block of a block diagram. Therefore, the branch relating
the output 8(s) of a DC motor to the field voltage V;(s) is similar to the block dia-
gram of Figure 2.22 and is shown in Figure 2.28. The input and output points or junc-
tions are called nodes. Similarly, the signal-flow graph representing Equations (2.77)
and (2.78), as well as Figure 2.24, is shown in Figure 2.29. The relation between each
variable is written next to the directional arrow. All branches leaving a node will
pass the nodal signal to the output node of each branch (unidirectionally). The sum-
mation of all signals entering a node is equal to the node variable. A path is a branch
or a continuous sequence of branches that can be traversed from one signal (node)
to another signal (node). A loop is a closed path that originates and terminates on
the same node, with no node being met twice along the path. Two loops are said to
be nontouching if they do not have a common node. Two touching loops share one
or more common nodes. Therefore, considering Figure 2.29 again, we obtain

Yi(s) = Gu(s)Ry(s) + Gra(s)Ry(s), (2.87)

and
B(s) = Gu(s)Ry(s) + Gr(s)Ry(s). (2.88)
The flow graph is simply a pictorial method of writing a system of algebraic

equations that indicates the interdependencies of the variables. As another example,
consider the following set of simultaneous algebraic equations:

apx; + [232%) + r = Xy (289)
anxip + aypx, + r, = x, (2.90)
The two input variables are r; and r,, and the output variables are x; and x,. A sig-

nal-flow graph representing Equations (2.89) and (2.90) is shown in Figure 2.30.
Equations (2.89) and (2.90) may be rewritten as

x1(1 = an) + x(-ap) =rn, (2.91)
and
x1(~axn) + x(1 ~ ap) = n. (2.92)
The simultaneous solution of Equations (2.91) and (2.92) using Cramer’s rule re-
sults in the solutions
(1 — ap)n + apn 1 -ay ap

Xy = = n+ —=n, 2.93
Y - an)( — ap) — apay AP AT (2.93)
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FIGURE 2.30
Signal-flow graph
of two algebraic
equations.

Chapter 2 Mathematical Models of Systems

and
(1 = ay)ra + azyn _1- au o, 9
(1 = a)(1 — ap) — apay A 2T A

The denominator of the solution is the determinant A of the set of equations
and is rewritten as

. (294)

X9 =

A=(1-an)1 - ap) —apay =1—ay — ap + anay — apay. (2.95)

In this case, the denominator is equal to 1 minus each self-loop 4,1, a5, and a;,a,;,
plus the product of the two nontouching loops ay; and ay,. The loops ay, and a,,ay,
are touching, as are aq; and a,1a;,.

The numerator for x; with the input r; is 1 times 1 — a,,, which is the value of A
excluding terms that touch the path 1 from ry to x,. Therefore the numerator from r,
to x, is simply a,, because the path through a,, touches all the loops. The numerator
for x, is symmetrical to that of x;.

In general, the linear dependence 7;; between the independent variable x;
(often called the input variable) and a dependent variable x; is given by Mason’s
signal-flow gain formula [11, 12],

> ik Biji
= ——F—
P, = gain of kth path from variable x; to variable x;,

(2.96)

A = determinant of the graph,
A;j = cofactor of the path Fy,

and the summation is taken over all possible & paths from x; to x;. The path gain or
transmittance Py is defined as the product of the gains of the branches of the path,
traversed in the direction of the arrows with no node encountered more than once.
The cofactor Ay is the determinant with the loops touching the kth path removed.
The determinant A is

N
A=1-3SL,+ 3 LkLy— 2 LLul,+ -, (297)
n=1 n,m n.m,p
nontouching nontouching

where L, equals the value of the gth loop transmittance. Therefore the rule for eval-
uating A in terms of loops Ly, Ly, Ls,..., Ly is



FIGURE 2.31
Two-path

interacting system.

(a) Signal-flow
graph. (b) Block
diagram.
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A = 1— (sum of all different loop gains)
+ (sum of the gain products of all combinations of two nontouching loops)
— (sum of the gain products of all combinations of three nontouching loops)

+ ... .
The gain formula is often used to relate the output variable Y(s) to the input
variable R(s) and is given in somewhat simplified form as

2Py

d A

(2.98)

where T(s) = Y(5)/R(s).

Several examples will illustrate the utility and ease of this method. Although the
gain Equation (2.96) appears to be formidable, one must remember that it repre-
sents a summation process, not a complicated solution process.

EXAMPLE 2.8 Transfer function of an interacting system

A two-path signal-flow graph is shown in Figure 2.31(a) and the corresponding block di-
agram is shown in Figure 2.31(b). An example of a control system with multiple signal
paths is a multilegged robot. The paths connecting the input R(s) and output Y(s) are

P1 = GleG3G4 (path 1) and Pz = G5G6G7G8 (path 2)

Gi(s) Gy(s) Gs(s)

Gy(s)

v
+
+
t ¢
\ 4
+

R(s) =t Hyls) Hy(s)

»| Gs(s) G(s) Go(s) |—e
+ + J
He(s) Hq(s)

(b)

Y(s)

Gg(s)

v
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There are four self-loops:
L, = G,H,, L, = H3G;, Ly = G¢Hg, and L, = G;H;.
Loops L, and L, do not touch L5 and L,. Therefore, the determinant is
A=1-(Ly+Ly+ Ls+ Ly) + (LyLs + LyLy + LyLy + LyLy). (2.99)

The cofactor of the determinant along path 1 is evaluated by removing the loops
that touch path 1 from A. Hence, we have

L1=L2=0 and A1=].—(L3+L4).
Similarly, the cofactor for path 2 is
Az =1- (L1 =+ L2)
Therefore, the transfer function of the system is
Y(s PA, + PA
YO _ s = BALT PA, (2.100)
A
_ _GiGGG(1 — L3 — Ly) + GsGeG7Ge(1 — Ly — L,)

A similar analysis can be accomplished using block diagram reduction techniques.
The block diagram shown in Figure 2.31(b) has four inner feedback loops within the
overall block diagram. The block diagram reduction is simplified by first reducing
the four inner feedback loops and then placing the resulting systems in series. Along
the top path, the transfer function is

_ Gy(s) Gs(s)
1) = G‘(‘)[l = Gz(S)I‘Iz(S):”:l = Gs(s)Hs(s)}G“(‘)R(s)

_ [ Gi(5)Ga(5)G(5)Ga(s) } R(s)
(1 = GOH))(L — Ga(s)Hys)) |

Similarly across the bottom path, the transfer function is

_ ) Gﬁ(s) G7(S)
e = G5")[1 = Ge(S)Hs(S)][l = G7(s)zf7(s)}6*‘(”R("

_ [ Gs(5)G(5)Gr(5)Gals) } R(s)
(1 = Ge(s)Hs(s))(1 = Go()He(s)) |
The total transfer function is then given by
Gi(5)Go(5)G(5)Ga(s)
(1 = Gy()Hy(s))(1 = Gx(s)Hy(s))

Y(s) = Yi(s) + Yo(s) = [

Gs(5)Gg(5)G7(5)Gg(s)
(1 = Gg(s)He(5))(1 — G1(s)H+(5))

]R(s). ]



FIGURE 2.32
The signal-flow
graph of the
armature-controlled
DC motor.
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EXAMPLE 2.9 Armature-controlled motor

The block diagram of the armature-controlled DC motor is shown in Figure 2.20.
This diagram was obtained from Equations (2.64)—(2.68). The signal-flow diagram
can be obtained either from Equations (2.64)—(2.68) or from the block diagram and
is shown in Figure 2.32. Using Mason’s signal-flow gain formula, let us obtain the
transfer function for 8(s)/V,(s) with T(s) = 0. The forward path is Pi(s), which
touches the one loop, L(s), where

Py(s) = %GI(S)GZ(S) and Ly(s) = —KyGi(5)Gas).

Therefore, the transfer function is

T(s) = P(s)  _ _(1/9)Gi(5)Go(s) _ K,
1= Li(s) 1+ KGi(s)Go(s) s[(R, + Las)(Us + b) + KiK,,]

which is exactly the same as that derived earlier (Equation 2.69). =

The signal-flow graph gain formula provides a reasonably straightforward ap-
proach for the evaluation of complicated systems. To compare the method with
block diagram reduction, which is really not much more difficult, let us reconsider
the complex system of Example 2.7.

EXAMPLE 2.10 Transfer function of a multiple-loop system

A multiple-loop feedback system is shown in Figure 2.26 in block diagram form.
There is no need to redraw the diagram in signal-flow graph form, and so we shall
proceed as usual by using Mason’s signal-flow gain formula, Equation (2.98). There
is one forward path P, = G,G,G3G,4. The feedback loops are

L] = —GzG':;Hz, Lz = G3G4H1, and L3 = "G1G2G3G4H3. (2101)

All the loops have common nodes and therefore are all touching. Furthermore, the
path P, touches all the loops, so A; = 1. Thus, the closed-loop transfer function is

T(s) = Y(s) _ PA,
VTR T 1-L - L, - L,

= G16G,G3G4 (2.102) =

1 + G,G3H, — GG, H, + GleG3G4H3. )
T s
GO = 7 5 649 = i
1 G](S) Tm(“') 1 T ! 1 TL(S) Gz(s) %

v (5) O— — O —) #s)

—K,
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FIGURE 2.33
Multiple-loop
system.
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Y(s)

_113

EXAMPLE 2.11 Transfer function of a complex system

Finally, we shall consider a reasonably complex system that would be difficult to re-
duce by block diagram techniques. A system with several feedback loops and feed-
forward paths is shown in Figure 2.33. The forward paths are

P, 1= G1G2G3G4G5G6, P. 2= GleG",'Gﬁ, and P 3= GIG2G3G4G8.
The feedback loops are
Ly = =GyG3G4GsHy, Ly = —=GsGeHy, Ly = =Gy, Ly = —G7HGy,
L5 = "G4H4, Lﬁ = —GleG3G4GSGGH3, L7 = _GleG7GﬁH3, and
Lg = —G1G:GG,GyHh.

Loop Ls does not touch loop L4 or loop L7, and loop L3 does not touch loop L; but
all other loops touch. Therefore, the determinant is

A—_—l—(L1+L2+L3+L4+L5+L6+L7+L8)+(L5L7+L5L4+L3L4).

(2.103)
The cofactors are
A1=A3:1 and A2=1_L5=1+G4H;.
Finally, the transfer function is
Y(s P+ PA, + P
T(s) = () _A+BA+HR (2.104) m

R(s) A

Signal-flow graphs and Mason’s signal-flow gain formula may be used prof-
itably for the analysis of feedback control systems, electronic amplifier circuits, sta-
tistical systems, and mechanical systems, among many other examples.

2.8 DESIGN EXAMPLES

In this section, we present six illustrative design examples. The first example describes
modeling of a photovoltaic generator in a manner amenable to feedback control to
achieve maximum power delivery as the sunlight varies over time. Using feedback
control to improve the efficiency of producing electricity using solar energy in areas



FIGURE 2.34
Equivalent circuit
of the photovoitaic
generator.
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of abundant sunlight is a valuable contribution to green engineering (discussed in
Chapter 1). In the second example, we present a detailed look at modeling of the fluid
level in a reservoir. The modeling is presented in a very detailed manner to emphasize the
effort required to obtain a linear model in the form of a transfer function. The design
process depicted in Figure 1.17 is highlighted in this example. The remaining four exam-
ples include an electric traction motor model development, a look at a mechanical ac-
celerometer aboard a rocket sled, an overview of a laboratory robot and the associated
hardware specifications, and the design of a low-pass filter.

EXAMPLE 2.12 Photovoltaic generators

Photovoltaic cells were developed at Bell Laboratories in 1954, Solar cells are one
example of photovoltaic cells and convert solar light to electricity. Other types of
photovoltaic cells can detect radiation and measure light intensity. The use of solar
cells to produce energy supports the principles of green engineering by minimizing
pollution. Solar panels minimize the depletion of natural resources and are effective
in areas where sunlight is abundant. Photovoltaic generators are systems that pro-
vide electricity using an assortment of photovoltaic modules comprised of intercon-
nected solar cells. Photovoltaic generators can be used to recharge batteries, they
can be directly connected to an electrical grid, or they can drive electric motors
without a battery [34-42].

The power output of a solar cell varies with available solar light, temperature,
and external loads. To increase the overall efficiency of the photovoltaic generator,
feedback control strategies can be employed to seek to maximize the power output.
This is known as maximum power point tracking (MPPT) [34-36]. There are certain
values of current and voltage associated with the solar cells corresponding to the
maximum power output. The MPPT uses closed-loop feedback control to seek the
optimal point to allow the power converter circuit to extract the maximum power
from the photovoltaic generator system. We will discuss the control design in later
chapters, but here we focus on the modeling of the system.

The solar cell can be modeled as an equivalent circuit shown in Figure 2.34
composed of a current generator, Ipy, a light sensitive diode, a resistance series, R;,
and a shunt resistance, Rp [34,36-38].

The output voltage, Vpy, is given by

Ipy — Ipy + MI
Vv = %m( FH AZO 0) - %RSIPV, (2.105)
where the photovoltaic generator is comprised of M parallel strings with N series
cells per string, I, is the reverse saturation current of the diode, I represents the
insolation level, and A is a known constant that depends on the cell material [34-36].

{py

II’H C‘
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FIGURE 2.35
Voltage versus
current and power
versus current

for an example
photovoltaic
generator at a
specific insolation
level.
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The insolation level is a measure of the amount of incident solar radiation on the
solar cells.

Suppose that we have a single silicon solar panel (M = 1) with 10 series cells
(N = 10) and the parameters given by 1/A = 0.05V, R; = 0.025 Q, Ipy = 3 A,
and I, = 0.001 A. The voltage versus current relationship in Equation (2.105) and
the power versus voltage are shown in Figure 2.35 for one particular insolation level
where Ip; = 3 A.In Figure 2.35, we see that when dP/dIpy = 0 we are at the max-
imum power level with an associated Vpy = V,,, and Ipy = I, the values of volt-
age and current at the maximum power, respectively. As the sunlight varies, the
insolation level, Ip;, varies resulting in different power curves.

The goal of the power point tracking is to seek the voltage and current condition
that maximizes the power output as conditions vary. This is accomplished by varying
the reference voltage as a function of the insolation level. The reference voltage is the
voltage at the maximum power point as shown in Figure 2.36. The feedback control
system should track the reference voltage in a rapid and accurate fashion.

Figure 2.37 illustrates a simplified block diagram of the controlled system. The
main components are a power circuit (e.g., a phase control IC and a thyristor
bridge), photovoltaic generator, and current transducer. The plant including the
power circuit, photovoltaic generator, and current transducer is modeled as a sec-
ond-order transfer function given by

_K
s(s + p)’
where K and p depend on the photovoltaic generator and associated electronics
[35]. The controller, G(s), in Figure 2.37 is designed such that as the insolation lev-

els varies (that is, as Ipy varies), the voltage output will approach the reference
input voltage, V,,, which has been set to the voltage associated with the maximum
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FIGURE 2,36 Maximum power point for varying values of /py specifies V.
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FIGURE 2.37 Block diagram of feedback control system for maximum power transfer with
parameters K and p.

power point resulting in maximum power transfer, If, for example, the controller is
the proportional plus integral controller

K
Ge(s) = Kp + =,

the closed-loop transfer function is

K(Kps + K;)
s+ ps® + KKps + KK,
We can select the controller gains in Equation (2.107) to place the poles of T(s)

in the desired locations (see Chapters 4 and 5) to meet the desired performance
specifications.

T(s) =

(2.107)
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the reservoir and output pipe. We can neglect viscosity in our model development.
We say our fluid is inviscid.

If each fluid element at each point in the flow has no net angular velocity about
that point, the flow is termed irrotational. Imagine a small paddle wheel immersed
in the fluid (say in the output port). If the paddle wheel translates without rotating,
the flow is irrotational. We will assume the water in the tank is irrotational. For an
inviscid fluid, an initially irrotational flow remains irrotational.

The water flow in the tank and output port can be either steady or unsteady. The
flow is steady if the velocity at each point is constant in time. This does not neces-
sarily imply that the velocity is the same at every point but rather that at any given
point the velocity does not change with time. Steady-state conditions can be
achieved at low fluid speeds. We will assume steady flow conditions. If the output
port area is too large, then the flow through the reservoir may not be slow enough to
establish the steady-state condition that we are assuming exists and our model will
not accurately predict the fluid flow motion.

To obtain a mathematical model of the flow within the reservoir, we employ
basic principles of science and engineering, such as the principle of conservation of
mass. The mass of water in the tank at any given time is

m = pAH, (2.108)

where A, is the area of the tank, p is the water density, and H is the height of the
water in the reservoir. The constants for the reservoir system are given in Table 2.7.

In the following formulas, a subscript 1 denotes quantities at the input, and a
subscript 2 refers to quantities at the output. Taking the time derivative of m in
Equation (2.108) yields

m= pAlH,

where we have used the fact that our fluid is incompressible (that is, p = 0) and that
the area of the tank, A, does not change with time. The change in mass in the reser-
voir is equal to the mass that enters the tank minus the mass that leaves the tank, or

m = pAH = Q) — pAy,, (2.109)

where Q) is the steady-state input mass flow rate, v, is the exit velocity, and A, is the
output port area. The exit velocity, v,, is a function of the water height. From
Bernoulli’s equation [39] we have

1 1
Spvi+ P+ pgH = —pvi+ B,

where v is the water velocity at the mouth of the reservoir, and P, and P, are the at-
mospheric pressures at the input and output, respectively. But P, and P, are equal to

Table 2.7 Water Tank Physical Constants
p g A, Az H* Q*
(kg/m?) (/s?) (m?) (m?) (m)  (kg/s)
1000 9.8 w/4 /400 1 34.77
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atmospheric pressure, and A, is sufficiently small (A, = A;/100),so the water flows
out slowly and the velocity v, is negligible. Thus Bernoulli’s equation reduces to

v, = V2gH. (2.110)
Substituting Equation (2.110) into Equation (2.109) and solving for H yields

g —[ﬁ\/{g}\/ﬁ + pLQI. (2.111)

Ay Ay
Using Equation (2.110), we obtain the exit mass flow rate
0, = pAw, = (pV2g4) VH. (2112)

To keep the equations manageable, define

_AV2%

k] = Al y
1
kyi=—+H,
2 pA;
k3 =pV ngz

Then, it follows that
H = kl\/ﬁ + kZQ],
0, = ksVH. (2.113)

Equation (2.113) represents our model of the water tank system, where the input is
Q1 and the output is Q,. Equation (2.113) is a nonlinear, first-order, ordinary differ-
ential equation model. The nonlinearity comes from the H'/? term. The model in
Equation (2.113) has the functional form

H = f(H,0),
0, = h(H,Q,),
where
f(H,0)) = kyVH + ko0, and h(H,Q)) = ks\VH.

A set of linearized equations describing the height of the water in the reservoir
is obtained using Taylor series expansions about an equilibrium flow condition.
When the tank system is in equilibrium, we have H = 0. We can define O* and H*
as the equilibrium input mass flow rate and water level, respectively. The relation-
ship between Q* and H* is given by

k
O* = —k—l\/H' = pV2gA,VH*. (2.114)
2

This condition occurs when just enough water enters the tank in A; to make up for
the amount leaving through A,. We can write the water level and input mass flow
rate as

H = H* + AH, (2.115)
0, = 0* + AQ,,
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where AH and AQ, are small deviations from the equilibrium (steady-state) values.
The Taylor series expansion about the equilibrium conditions is given by

: dJ
H=fULQo=ﬂHﬂQﬂ+4L (H - H%) (2.116)
OH [y
of
30, g;z:(Ql - Q%)+
where
of | _akVH+ k)| _1 Kk
oH | o i 2VEe
and
of ks VH + k01)
@ 1=H* = aQ He=ls = kz.
Ha=o 1 P
Using Equation (2.114), we have
o
H* = ———|
pV2A,
so that
al _ Alge
oH |a-u Ay Q%

It follows from Equation (2.115) that
H = AH,
since H* is constant. Also, the term f(H*, O*) is identically zero, by definition of
the equilibrium condition. Neglecting the higher order terms in the Taylor series ex-
pansion yields
. A gp 1
AH = ———AH + —AQ,. 2117

A O* pA; @1

Equation (2.117) is a linear model describing the deviation in water level AH from

the steady-state due to a deviation from the nominal input mass flow rate AQ;.
Similarly, for the output variable O, we have

0, = 05 + AQ; = h(H, Qy) (2.118)
oh oh
~ h(H*, Q*) + —| AH +——| AQ,
aH ZIZZ' an g;Z‘

where AQ, is a small deviation in the output mass flow rate and
oh gp*AY

W=t = ¥ 0
aH h=0* Q
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and
oh _
90, |- ho
Therefore, the linearized equation for the output variable Q, is
24.2
gp A,
AQ, = 0" AH. (2.119)

For control system design and analysis, it is convenient to obtain the input-output
relationship in the form of a transfer function. The tool to accomplish this is the
Laplace transform, discussed in Section 2.4. Taking the time-derivative of Equation
(2.119) and substituting into Equation (2.117) yields the input—output relationship

Algo
+ ———A
AQ, A Q" AQz 4,0 0.
If we define
Az2 8P
OQi=—= 2.120
4, 0* @120
then we have
AQ, + OAQ, = OAQ,. (2.121)

Taking the Laplace transform (with zero initial conditions) yields the transfer
function

AQ(s)/AQS) = 5 g (2.122)
Equation (2.122) describes the relationship between the change in the output mass
flow rate AQ,(s) due to a change in the input mass flow rate AQ,(s). We can also
obtain a transfer function relationship between the change in the input mass flow
rate and the change in the water level in the tank, A H(s). Taking the Laplace trans-
form (with zero initial conditions) of Eq. (2.117) yields

AH(s)/AQi(s) = (2.123)

2
s+ Q
Given the linear time-invariant model of the water tank system in Equation (2.121),
we can obtain solutions for step and sinusoidal inputs. Remember that our input
AQ(s) is actually a change in the input mass flow rate from the steady-state value Q*.

Consider the step input

AQI(S) = qo/sa

where g, is the magnitude of the step input, and the initial condition is AQ,(0) = 0.
Then we can use the transfer function form given in Eq. (2.122) to obtain

AQs(s) = s( i Q)
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The partial fraction expansion yields

—q q
8040 = Ty 4

Taking the inverse Laplace transform yields
AQy(t) = —ge™™ + g,

Note that Q > 0 (see Equation (2.120)), so the term e approaches zero as ¢ ap-
proaches oo. Therefore, the steady-state output due to the step input of magnitude

q,1s
AQZss = 4o-

We see that in the steady state, the deviation of the output mass flow rate from the
equilibrium value is equal to the deviation of the input mass flow rate from the equi-
librium value. By examining the variable () in Equation (2.120), we find that the
larger the output port opening A,, the faster the system reaches steady state. In
other words, as () gets larger, the exponential term e vanishes more quickly, and
steady state is reached faster.

Similarly for the water level we have

—qok 1 1
AH(s) = Tz(_+—ﬂ - ;)-

Taking the inverse Laplace transform yields

—q.k
AH(t) = L(‘;l(erﬂ' - 1).
The steady-state change in water level due to the step input of magnitude g, is
goks
AH = ;2 :

Consider the sinusoidal input
AQy(1) = g, sin wt,
which has Laplace transform

qow
2+ o

AQy(s) =
Suppose the system has zero initial conditions, that is, AQ,(0) = 0. Then from Equa-
tion (2.122) we have

gow(}
(s + Q)(s2 + wz)'

AQy(s) =

Expanding in a partial fraction expansion and taking the inverse Laplace trans-
form yields

ey N sin(wt — @) >’

A = g,{}
%) = 4 w(Qz + o? o(Q? + wz)l/2
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where ¢ = tan"(w/Q). So, as t — oo, we have

B
AQ() — o sin(wt — ).
The maximum change in output flow rate is
9082

AQ(t =— 124
l QZ( )Imax \/m (2 2 )

The above analytic analysis of the linear system model to step and sinusoidal
inputs is a valuable way to gain insight into the system response to test signals. An-
alytic analysis is limited, however, in the sense that a more complete representa-
tion can be obtained with carefully constructed numerical investigations using
computer simulations of both the linear and nonlinear mathematical models. A
computer simulation uses a model and the actual conditions of the system being
modeled, as well as actual input commands to which the system will be subjected.

Various levels of simulation fidelity (that is, accuracy) are available to the con-
trol engineer. In the early stages of the design process, highly interactive design soft-
ware packages are effective. At this stage, computer speed is not as important as the
time it takes to obtain an initial valid solution and to iterate and fine tune that solu-
tion. Good graphics output capability is crucial. The analysis simulations are gener-
ally low fidelity in the sense that many of the simplifications (such as linearization)
made in the design process are retained in the simulation.

As the design matures usually it is necessary to conduct numerical experiments
in a more realistic simulation environment. At this point in the design process, the
computer processing speed becomes more important, since long simulation times
necessarily reduce the number of computer experiments that can be obtained and
correspondingly raise costs. Usually these high-fidelity simulations are programmed
in FORTRAN, C, C++, Matlab, LabVIEW or similar languages.

Assuming that a model and the simulation are reliably accurate, computer sim-
ulation has the following advantages [13]:

1. System performance can be observed under all conceivable conditions.

2. Results of field-system performance can be extrapolated with a simulation model for
prediction purposes.

3. Decisions concerning future systems presently in a conceptual stage can be examined.
4. Trials of systems under test can be accomplished in a much-reduced period of time.
5. Simulation results can be obtained at lower cost than real experimentation.

6. Study of hypothetical situations can be achieved even when the hypothetical situation
would be unrealizable at present.

7. Computer modeling and simulation is often the only feasible or safe technique to
analyze and evaluate a system.

The nonlinear model describing the water level flow rate is as follows (using the
constants given in Table 2.7):

~0.0443VH + 12732 X 102 Q,, (2.125)

3477V H.

H
Q>
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FIGURE 2.40

The tank water level
time history ob-
tained by integrat-
ing the nonlinear
equations of motion
in Equation (2.125)
with H{0) = 0.5 m
and Q4(t) =

Q* = 34.77 kg/s.
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With H(0) = 0.5m and Q,(¢) = 34.77 kg/s, we can numerically integrate the non-
linear model given by Equation (2.125) to obtain the time history of H(#) and Q,(¢).
The response of the system is shown in Figure 2.40. As expected from Equation
(2.114), the system steady-state water level is H* = 1 m when Q* = 34.77 kg/m’.

It takes about 250 seconds to reach steady-state. Suppose that the system is at
steady state and we want to evaluate the response to a step change in the input mass
flow rate. Consider

AQ;(f) = 1kg/s.

Then we can use the transfer function model to obtain the unit step response. The
step response is shown in Figure 2.41 for both the linear and nonlinear models.
Using the linear model, we find that the steady-state change in water level is
AH = 5.75 cm. Using the nonlinear model, we find that the steady-state change in
water level is AH = 5.84 cm. So we see a small difference in the results obtained
from the linear model and the more accurate nonlinear model.

As the final step, we consider the system response to a sinusoidal change in the
input flow rate. Let

qow
52+ 0¥
where w = 0.05 rad/s and g, = 1. The total water input flow rate is
Qi(1) = QF + AQ(),
where Q* = 34.77 kg/s. The output flow rate is shown in Figure 2.42.

AQy(s) =
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The response of the water level is shown in Figure 2.43. The water level is sinu-
soidal, with an average value of H,, = H* = 1 m. As shown in Equation (2.124),
the output flow rate is sinusoidal in the steady-state, with

‘A

|AQy(#) I max = Voo 0.4 kg/s.
w
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FIGURE 2.43
The water level
response to a
sinusoidal variation
in the input flow.
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Thus in the steady-state (see Figure 2.42) we expect that the output flow rate will os-
cillate at a frequency of w = 0.05 rad/s, with a maximum value of

szax =Q*+ IAQZ(INmax = 3518kg/s. m

EXAMPLE 2.14 Electric traction motor control

A majority of modern trains and local transit vehicles utilize electric traction mo-
tors. The electric motor drive for a railway vehicle is shown in block diagram form in
Figure 2.44(a), incorporating the necessary control of the velocity of the vehicle. The
goal of the design is to obtain a system model and the closed-loop transfer function
of the system, w(s)/w4(s), select appropriate resistors R;, Ry, R3, and Ry, and then
predict the system response.

The first step is to describe the transfer function of each block. We propose the
use of a tachometer to generate a voltage proportional to velocity and to connect
that voltage, v,, to one input of a difference amplifier, as shown in Figure 2.44(b).
The power amplifier is nonlinear and can be approximately represented by
v, = 2¢°¥ = g(v;), an exponential function with a normal operating point,
v = 1.5 V. Using the technique in Section 2.3, we then obtain a linear model:

Av; = 2[3 exp(3vy0)] Avy = 2(270) Av; = 540 Av;,. (2.126)

L]

Then, discarding the delta notation and using the Laplace transform, we find that

Va(s) = 540V)(s).



FIGURE 2.44
Speed control of an
electric traction
motor.
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Also, for the differential amplifier, we have
1+ Ry/R, R,
V= m'l}m - E'I),.
We wish to obtain an input control that sets wy(t) = v;,, where the units of w,
are rad/s and the units of v, are volts. Then, when v;, = 10 V, the steady-state speed

is w = 10 rad/s. We note that v, = K,w, in steady state, and we expect, in balance,
the steady-state output to be

(2.127)

1+ Ry/R R
I RyR 2K i (2.128)

T TFR/R TR
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Table 2.8 Parameters of a Large DC Motor
10 J=2

1 =05

1 K, =01

]

XN
oy

I~

n
a
a

When the system is in balance, v, = 0, and when K, = 0.1, we have

1+ R,/R R
1+ RfRy _Rape .
1+ RJR, R,

This relation can be achieved when
Ry/R, =10 and Rs3/R,; = 10.

The parameters of the motor and load are given in Table 2.8. The overall system is
shown in Figure 2.44(b). Reducing the block diagram in Figure 2.44(c) or the signal-
flow graph in Figure 2.44(d) yields the transfer function

w(s) _ 540G,(5)Gy(s) _ _ 540G,G,
wy(s) 1+ 01GG, + 540G,G, 1 + 540.1G,G,
_ 5400 _ 5400
(s + 1)(2s + 0.5) + 5401 252 + 2.55 + 5401.5
2700

= . (2.129)
s + 1.25s + 2700.75
Since the characteristic equation is second order, we note that w, = 52 and
¢ = 0.012, and we expect the response of the system to be highly oscillatory (under-
damped). =

EXAMPLE 2.15 Mechanical accelerometer

A mechanical accelerometer is used to measure the acceleration of a rocket test
sled, as shown in Figure 2.45. The test sled maneuvers above a guide rail a small dis-
tance 8. The accelerometer provides a measurement of the acceleration a(t) of the
sled, since the position y of the mass M, with respect to the accelerometer case, is
proportional to the acceleration of the case (and the sled). The goal is to design an
accelerometer with an appropriate dynamic responsiveness. We wish to design an
accelerometer with an acceptable time for the desired measurement characteristic,
y(t) = qa(t), to be attained (g is a constant).
The sum of the forces acting on the mass is

dy d?
—Hh= = = +
bdt ky Mdtz(y x)

or
d’y  dy d’*x
— 4+ h— 4+ = — —_—. 2.130
M e b—r+ky=-M e ( )
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FIGURE 2.46
Accelerometer
response.
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We select the coefficients where b/M = 3, k/M = 2, F(t)/M, = Q(z), and we
consider the initial conditions y(0) = —1 and y(0) = 2. We then obtain the Laplace
transform equation, when the force, and thus Q(z), is a step function, as follows:

(s>Y(s) = sy(0) = $(0)) + 3(sY(s) — y(0)) + 2Y(s) = ~Q(s). (2.132)
Since Q(s) = P/s, where P is the magnitude of the step function, we obtain

(PY(s) + 5 = 2) + 3(s¥ () + 1) + 2Y(s) = —.

or

(s + 35 + 2)Y(s) = iiﬂ. (2.133)
Thus the output transform is
y(s) = —(sz2 + s+ P) _ —(s* + s+ P). (2.134)
s(s*+3s+2) s(s+1)(s+2)
Expanding in partial fraction form yields
Y(s) = k—: + % + . Ij_32. (2.135)
We then have ,
—(s*+ s+
ky = %H = —g. (2.136)
Similarly, k; = +P and k; = P =2 s,

—2¥(#)

Time (s)
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-P P —-P -2
Y(S)_K+s+1+2(s+2)'

(2.137)

Therefore, the output measurement is
1
y(@) = —2—[—P +2Pe — (P +2)e¥], t=0.

A plot of y(¢) is shown in Figure 2.46 for P = 3. We can see that y(z) is propor-
tional to the magnitude of the force after 5 seconds. Thus in steady state, after 5 sec-
onds, the response y(¢) is proportional to the acceleration, as desired. If this period is
excessively long, we must increase the spring constant, k, and the friction, b, while
reducing the mass, M. If we are able to select the components so that b/M = 12 and
k/M = 32, the accelerometer will attain the proportional response in 1 second. (It is
left to the reader to show this.) m

EXAMPLE 2.16 Design of a laboratory robot

In this example, we endeavor to show the physical design of a laboratory device and
demonstrate its complex design. We will also exhibit the many components com-
monly used in a contro] system.

A robot for laboratory use is shown in Figure 2.47. A laboratory robot’s work
volume must allow the robot to reach the entire bench area and access existing ana-
lytical instruments. There must also be sufficient area for a stockroom of supplies for
unattended operation.

The laboratory robot can be involved in three types of tasks during an ana-
lytical experiment. The first is sample introduction, wherein the robot is trained
to accept a number of different sample trays, racks, and containers and to intro-
duce them into the system. The second set of tasks involves the robot transport-
ing the samples between individual dedicated automated stations for chemical
preparation and instrumental analysis. Samples must be scheduled and moved
between these stations as necessary to complete the analysis. In the third set of
tasks for the robot, flexible automation provides new capability to the analytical
laboratory. The robot must be programmed to emulate the human operator or
work with various devices. All of these types of operations are required for an
effective laboratory robot.

The ORCA laboratory robot is an anthropomorphic arm, mounted on a rail, de-
signed as the optimum configuration for the analytical laboratory [14]. The rail can
be located at the front or back of a workbench, or placed in the middle of a table
when access to both sides of the rail is required. Simple software commands permit
moving the arm from one side of the rail to the other while maintaining the wrist po-
sition (to transfer open containers) or locking the wrist angle (to transfer objects in
virtually any orientation). The rectilinear geometry, in contrast to the cylindrical
geometry used by many robots, permits more accessories to be placed within the
robot workspace and provides an excellent match to the laboratory bench. Move-
ment of all joints is coordinated through software, which simplifies the use of the
robot by representing the robot positions and movements in the more familiar
Cartesian coordinate space.
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FIGURE 2.49

(a) Ladder network,
(b) its signal-flow
graph, and (c) its
block diagram.
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Vi(s) G R > G » z > Vy(s)

(c)

where G = 1/R, Z(s) = 1/Cs, and I,(s) = I; (we omit the (s)). The signal-flow
graph constructed for the four equations is shown in Figure 2.49(b), and the corre-
sponding block diagram is shown in Figure 2.49(c). The three loops are
Li=—-GR=-1,L,= —GR = —1,and L; = —GZ. All loops touch the forward
path. Loops L, and L; are nontouching. Therefore, the transfer function is
T(s) = v P, Gz
‘/1 1_(L[+L2+L3)+L1L3 3+2GZ
_ 1 _ 1/BRC)
"~ 3RCs +2 s+ 2/(3RC)

If one prefers to utilize block diagram reduction techniques, one can start at the out-
put with

Vi(s) = ZLy(s).
But the block diagram shows that
I(s) = G(V(s) = V5(s)).

Therefore,
Vi(s) = ZGVy(s) — ZGVs(s)



Section 2.9 The Simulation of Systems Using Control Design Software 113

so
1+ ZG
zG

We will use this relationship between V;(s) and V5(s) in the subsequent develop-
ment. Continuing with the block diagram reduction, we have

Vi(s) = —ZGVi(s) + ZGR(Ii(s) — Ifs)),
but from the block diagram, we see that

Va(s) = Va(s)-

I =GUAs) = s), b=

Therefore,
Vi(s) = —ZGWy(s) + ZG’R(Vi(s) — WA(5)) — GRV4(s).
Substituting for V4(s) yields

(GR)(GZ)
1 + 2GR + GZ + (GR)(GZ)

Vi(s) = Vi(s).

But we know that GR = 1; hence, we obtain

GZ
3+2GZ
Note that the DC gain is /5, as expected. The pole is desired at p = 27(106.1) =

666.7 = 2000/3. Therefore, we require RC = 0.001. Select R =1k and
C = 1 pF. Hence, we achieve the filter

Vi(s) = Vi(s).

3333

T6) = T+ 6667) ™

2.9 THE SIMULATION OF SYSTEMS USING CONTROL DESIGN SOFTWARE

Application of the many classical and modern control system design and analysis
tools is based on mathematical models. Most popular control design software pack-
ages can be used with systems given in the form of transfer function descriptions. In
this book, we will focus on m-file scripts containing commands and functions to an-
alyze and design control systems. Various commercial control system packages
are available for student use. The m-files described here are compatible with the
MATLAB' Control System Toolbox and the LabVIEW MathScript RT Module.*

'See Appendix A for an introduction to MATLAB.
!See Appendix B for an introduction to LabVIEW MathScipt RT Module.
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We begin this section by analyzing a typical spring-mass-damper mathematical
model of a mechanical system. Using an m-file script, we will develop an interac-
tive analysis capability to analyze the effects of natural frequency and damping
on the unforced response of the mass displacement. This analysis will use the fact
that we have an analytic solution that describes the unforced time response of the
mass displacement.

Later, we will discuss transfer functions and block diagrams. In particular, we
are interested in manipulating polynomials, computing poles and zeros of transfer
functions, computing closed-loop transfer functions, computing block diagram re-
ductions, and computing the response of a system to a unit step input. The section
concludes with the electric traction motor control design of Example 2.14.

The functions covered in this section are roots, poly, conv, polyval, tf, pzmap,
pole, zero, series, parallel, feedback, minreal, and step.

Spring-Mass-Damper System. A spring-mass-damper mechanical system is
shown in Figure 2.2. The motion of the mass, denoted by y(¢), is described by the dif-
ferential equation

My(t) + by(r) + ky(t) = r(z).

The unforced dynamic response y(¢) of the spring-mass-damper mechanical
system is

y() = —yf—((i) gze'f“’n‘ sin(w,,\/f——?t + 6).

where w, = Vk/M, ¢ = b/2VkM), and 6 = cos™* {. The initial displacement is
y(0). The transient system response is underdamped when { < 1, overdamped
when ¢ > 1, and critically damped when { = 1. We can visualize the unforced time
response of the mass displacement following an initial displacement of y(0). Consider
the underdamped case:

rad 1 k b
(W] = (. R = 2_, _-— = 2,_ _ 1 .
y(0) =015m, o \/—sec £ 2V2 (M M )

The commands to generate the plot of the unforced response are shown in Figure 2.50.
In the setup, the variables y(0), w,, ¢, and ¢ are input at the command level. Then the
script unforced.m is executed to generate the desired plots. This creates an interac-
tive analysis capability to analyze the effects of natural frequency and damping on
the unforced response of the mass displacement. One can investigate the effects of
the natural frequency and the damping on the time response by simply entering new
values of w, and ¢ at the command prompt and running the script unforced.m again.
The time-response plot is shown in Figure 2.51. Notice that the script automatically
labels the plot with the values of the damping coefficient and natural frequency. This
avoids confusion when making many interactive simulations. Using scripts is an im-
portant aspect of developing an effective interactive design and analysis capability.

For the spring-mass-damper problem, the unforced solution to the differential
equation was readily available. In general, when simulating closed-loop feedback



FIGURE 2.50
Script to analyze
the spring-mass-
damper.

FIGURE 2.51
Spring-mass-
damper unforced
response.
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>>y0=0.15;
>>wn=sqri(2); < o
>>zeta=1/(2*sqrt(2)); <—

>>1=[0:0.1:10]); { 7 l
>>unforced

unforced.m v

%Compute Uniorced Response to an Initial Condition
%

c=(y0/sqri(1-zetar2)); < yO/V1 - 22
y=c"exp(-zeta*wn*t).*sin(wn*sqrt(1-zeta"2)*t+acos(zeta));

%

bu=c*exp(-zeta*wn*t);bl=-bu; <« e~ 49 envelope

%

plot(t,y,t,bu,-'t,bl,--), grid

xlabel('Time (s)'), ylabel('y(t) (m)")
legend([\omega_n=',num2str(wn),' \zeta=",num2str(zeta)])

0.20 ;

| . |
OISR, T {—w,,=1.4142,;=0.3seﬂ»»~

0.05

¥(£) (m)
o

—-0.05

-0.10 |-—-

-0.15

—0.20
Time (s)

control systems subject to a variety of inputs and initial conditions, it is difficult to
obtain the solution analytically. In these cases, we can compute the solutions numer-
ically and to display the solution graphically.

Most systems considered in this book can be described by transfer functions.
Since the transfer function is a ratio of polynomials, we begin by investigating how to
manipulate polynomials, remembering that working with transfer functions means
that both a numerator polynomial and a denominator polynomial must be specified.
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FIGURE 2.52
Entering the
polynomial

pls) =s%+3s2+ 4
and calculating its
roots.

FIGURE 2.53
Using conv and
polyval to multiply
and evaluate the
polglnomials

(8s® + 2s + 1)

(s + 4).
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>>p=[1304]; « pis)=s5>+3s2+4

‘ >>r=roots(p)
r= \ Calculate roots of p(s) = 0.
-3.3653

0.1777+1.0773i
0.1777-1.0773i
>>p=poly(r) « Reassemble polynomial from roots.
p =

1.0000 3.0000 0.0000 4.0000

Polynomials are represented by row vectors containing the polynomial coeffi-
cients in order of descending degree. For example, the polynomial

p(s) =35> +3s + 4

is entered as shown in Figure 2.52. Notice that even though the coefficient of the s
term is zero, it is included in the input definition of p(s).

If p is a row vector containing the coefficients of p(s) in descending degree, then
roots(p) is a column vector containing the roots of the polynomial. Conversely, if r is
a column vector containing the roots of the polynomial, then poly(r) is a row vector
with the polynomial coefficients in descending degree. We can compute the roots of
the polynomial p(s) = 5* + 3s% + 4 with the roots function as shown in Figure 2.52.
In this figure, we show how to reassemble the polynomial with the poly function.

Multiplication of polynomials is accomplished with the conv function. Suppose
we want to expand the polynomial

n(s) = (3s* + 25 + 1)(s + 4).

The associated commands using the conv function are shown in Figure 2.53. Thus,
the expanded polynomial is

n(s) = 35 + 14s% + 95 + 4.

>>p=[3 2 1]; q=[1 4],

.
>>n=conv(p,q) ¢ ——— Multiply p and q.

n=
3 14 9 4 < n(s) =35 + 1452 + 95 + 4
>>value=polyval(n,-5)
value = « Evaluate n(s) ats = —5.
-66




FIGURE 2.54

(a) The tf function.
(b) Using the tf
function to create
transfer function
objects and adding
them using the “+”
operator.
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! >> num1=[10];den1=[1 2 5J;
>> sys1=tf(num1,dent)

| Transfer function:
; 10

Transfer function . _ hum < Gi(s)
‘ object G() = en #2+25+5
l T l >» num2=[1];den2=[1 1J;

> sys2=tf(num2,den2)
sys = f(num,den)
| Transfer function:
1
< Gofs)

{ s+1

>3 sys=sys1+sys2

Transfer function:
' M2 +125+15

1 Gyls) + Gyls)

s"3+3M2+7s+5

(a) (b)

The function polyval is used to e¢valuate the value of a polynomial at the given
value of the variable. The polynornial n(s) has the value n(—5) = —66, as shown in
Figure 2.53.

Linear, time-invariant system models can be treated as objects, allowing one to
manipulate the system models as single entities. In the case of transfer functions, one
creates the system models using the tf function; for state variable models one em-
ploys the ss function (see Chapter 3). The use of tf is illustrated in Figure 2.54(a).
For example, if one has the two system models

10
$2+2s+5

1
and Gy(s) = PRy

Gi(s) =
one can add them using the “+” operator to obtain

s*+ 125 + 15
S 32 +Ts+5

G(s) = Gi(s) = Gy(s) =

The corresponding commands are shown in Figure 2.54(b) where sys1 represents
G,(s) and sys2 represents G,(s). Computing the poles and zeros associated with a
transfer function is accomplished by operating on the system model object with the
pole and zero functions, respectively, as illustrated in Figure 2.55.

In the next example, we will obtain a plot of the pole—zero locations in the com-
plex plane. This will be accomplished using the pzmap function, shown in Figure 2.56.
On the pole-zero map, zeros are denoted by an “0” and poles are denoted by an “X”.
If the pzmap function is invoked without left-hand arguments, the plot is generated
automatically.
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FIGURE 2.55

(a) The pole and
zero functions.

{b) Using the pole
and zero functions
to compute the
pole and zero
locations of a linear
system.

FIGURE 2.56
The pzmap
function.
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>> sys=tf([1 10],[1 2 1))

Transfer function:
s+ 10
Poles <
2+2s+1 l
sys
p=pole(sys) Tromsfor >> p=pole(sys)
function p=

z=zero(sys) object

A -1

1 «4———— The system poles

Zeros >> z=zero(sys)

4————— The system zeros

(a) (b)

P: pole locations in column vector
Z: zero locations in column vector

A

num
G(s) = den =S

]
[P,Z]=pzmap(sys)

EXAMPLE 2.18 Transfer functions

Consider the transfer functions

652 + 1 and  H(s) = s+D(s+2)
s°+3s°+3s+1 s + 2i)(s — 2)(s + 3)
3 1 382 ¥ T s+ 20)(s - 20)(s + 3)

G(s) =

Using an m-file script, we can compute the poles and zeros of G(s), the characteris-
tic equation of H(s), and divide G(s) by H(s). We can also obtain a plot of the
pole—zero map of G(s)/H(s) in the complex plane.

The pole-zero map of the transfer function G(s)/H(s) is shown in Figure 2.57,
and the associated commands are shown in Figure 2.58. The pole-zero map shows
clearly the five zero locations, but it appears that there are only two poles. This



FIGURE 2.57
Pole-zero map for
G(sYH(s).

FIGURE 2.58
Transfer function
example for G(s)
and H(s).

Section 2.9 The Simulation of Systems Using Control Design Software

Imaginary Axis

Pole-Zero Map

-15
Real Axis

>>numg=[6 0 1); deng=[1 3 3 1];sysg=tf(numg,deng);

>>7=zero(sysg)

A

Z=
0 + 0.4082i
0 - 0.4082i

>>p=pole(sysg)

Compute poles and
zeros of G(s)

-1.0000
-1.0000 + 0.0000i
-1.0000 - 0.0000i

>>ni1=[1 1]; n2=[1 2]; d1=[1 2*i]; d2=[1 -2*i]; d3=[1 3];
>>numh=conv(n1,n2); denh=conv(d1,conv(d2,d3));

>>sysh=tf(numh,denh)
Transfer function:
sN2+3s+2

<

sA3+3sM2+4s5+12

<&

H(s)

>>sys=sysg/sysh <

Transter tunction:

65+ 18sM +25s"3+ 7552 +4s +12

SN6E+6sM +14sN3+16sM2+9s+2

<

Expand H(s)
Gl _
HG) sys

>>pzmap(sys)

Pole-zero map

119

cannot be the case, since we know that for physical systems the number of poles
must be greater than or equal to the number of zeros. Using the roots function, we
can ascertain that there are in fact four poles at s = —1. Hence, multiple poles or
multiple zeros at the same location cannot be discerned on the pole-zero map. m
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FIGURE 2.59
Open-loop control
system (without
feedback).

FIGURE 2.60
(a) Block diagram.
(b) The series
function.
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Controller | U(s) | Process

RO=H "G i )

—> Y(s)

Block Diagram Models. Suppose we have developed mathematical models in the
form of transfer functions for a process, represented by G(s), and a controller, repre-
sented by G,(s), and possibly many other system components such as sensors and ac-
tuators. Our objective is to interconnect these components to form a control system.

A simple open-loop control system can be obtained by interconnecting a
process and a controller in series as illustrated in Figure 2.59. We can compute the
transfer function from R(s) to ¥(s), as follows.

EXAMPLE 2.19 Series connection

Let the process represented by the transfer function G(s) be

and let the controller represented by the transfer function G,(s) be

s+1

G.(s) = -y

We can use the series function to cascade two transfer functions G,(s) and G(s), as
shown in Figure 2.60.

The transfer function G.(s)G(s) is computed using the series function as shown
in Figure 2.61. The resulting transfer function is

s+1

Gel9)G(S) = 55053 + 100082

= sys,

where sys is the transfer function name in the m-file script. ®

System | System 2
U(s) emmmmmmlpy| Gy(s) » Gals) > Y(5)
()

!

|

; =X _ - =

| T(s) = o) - sys G\(s) = sysl Go(s) = sys2

\

e

[sys]=series(sys1,sys2)

(b)



FIGURE 2.61
Application of the
series function.

FIGURE 2.62
(a) Block diagram.
(b) The parallel
function.

FIGURE 2.63 A
basic control
system with unity
feedback.
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Ris) —>

G.(s) =

s+ 1

U(s)

Ts+2

(a)

\ 4

G(s) =5—'— L i)

00 s°

>>numg=[1}; deng=[500 0 0); sysg=tf(numg,deng);
>>numh=[1 1]; denh=[1 2]; sysh=tf(numh,denh);
>>sys=series(sysg,sysh);

>>8ys
Transfer function:
s+ 1 P
50073 + 100052 Gd5)Gts)
(b)
System 1
" Gi(® +
Uls) Yis)
.| System 2 +
g G,(s)
(a)
= Y6) _ = svs] =
| T = ) sys Gy(s) = sysl Gy(s) = sys2
[sys]=parallel{sys1,sys2)
(b)
+ E(s) | Controller | U(S) | Pprocess L
R(s) A G(s) ™ G » Yix)
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Block diagrams quite often have transfer functions in parallel. In such cases, the
function parallel can be quite useful. The parallel function is described in Figure 2.62.
We can introduce a feedback signal into the control system by closing the loop
with unity feedback, as shown in Figure 2.63. The signal E,(s) is an error signal; the
signal R(s) is a reference input. In this control system, the controller is in the for-
ward path, and the closed-loop transfer function is

_ GL5)Gs)
T®) = 12 6.6060)
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FIGURE 2.64

{a) Block diagram.
{b) The feedback

function with unity
feedback.

FIGURE 2.65
(a) Block diagram.
(b) The feedback
function.
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) System 1 ~
Res) _’?_’ G.()G(s) > i)
(@)
Y(s) _ +1 - positive feedback
= = = gysl
T6) = Ry =98 || GG =sysT 4| ative feedback (default)
[sys]=teedback(sys1,[1],sign)
(b
R(s) | System 1 > ¥is)
+ G(s)
System 2 |
H(s)
@
_ ¥ _ _ . +1 - pos. feedback
T6$) =g = 8 G(s) = sysl H(s) = sys2 —1 - neg. feedback
'y (default)

o

[sys]=feedback(sys1,sys2,sign)

(b)

We can utilize the feedback function to aid in the block diagram reduction
process to compute closed-loop transfer functions for single- and multiple-loop
control systems.
It is often the case that the closed-loop control system has unity feedback, as il-
lustrated in Figure 2.63. We can use the feedback function to compute the closed-
loop transfer function by setting H(s) = 1. The use of the feedback function for
unity feedback is depicted in Figure 2.64.

The feedback function is shown in Figure 2.65 with the associated system con-
figuration, which includes H(s) in the feedback path. If the input “sign” is omitted,
then negative feedback is assumed.




FIGURE 2.66

(a) Block diagram.

(b) Application of
the feedback
function.

FIGURE 2.67
A basic control
system with the
controller in the
feedback loop.
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E(s) U(s) N

+ +1 1
R(.s)—»?—v Gs) = : = 69 =557 > ¥(s)

(a)

>>numg=[1]; deng=[500 0 0}; sys1=tf(numg,deng);
>>nume=[1 1]; denc=[1 2]; sys2=tf(numc,denc);
>>gys3=series(sys1,sys2);
>>sys=feedback(sys3,[1])

Transfer function:

s+1 Hs) _ _ GLAHGE)
50083 +1000s"2 +s+ 1 RGs) 1+ G (5)G(s)

(b)

+ E(s) Process

G(s)

R(s) —P Y(s)

| Controller |
H(s)

EXAMPLE 2.20 The feedback function with unity feedback

Let the process, G(s), and the controller, G.(s), be as in Figure 2.66(a). To apply the
feedback function, we first use the series function to compute G.(s)G(s), followed
by the feedback function to close the loop. The command sequence is shown in
Figure 2.66(b). The closed-loop transfer function, as shown in Figure 2.66(b), is

G (5)G(s) s+ 1
T(s) = = 3 2
1+ G(s)G(s) 500s* + 1000s* + s + 1

= sys. m

Another basic feedback control configuration is shown in Figure 2.67. In this case,
the controller is located in the feedback path. The closed-loop transfer function is

B G(s)
T6) = T3 G H @)

EXAMPLE 2.21 The feedback function

Let the process, G(s), and the controller, H(s), be as in Figure 2.68(a). To compute
the closed-loop transfer function with the controller in the feedback loop, we use
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FIGURE 2.68
Application of the

feedback function:

(a) block diagram,
(b) m-file script.
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+ o~ Ed) 1 .
R(s) 5 G(s) = 50052 » Y(s)
s+ 1 |
Hs) = s+ 2
(a)

>>numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng);

>>numh=[1 1}; denh=[1 2]; sys2=tf(numh,denh);

>>sys=feedback(sys1,sys2);

>>8YS

Transfer function:

s+2 «— 19 _ G(s)
500 s"3 + 1000 s"2 + s + 1 R(s) 1+ G()H(s)

(b

the feedback function. The command sequence is shown in Figure 2.68(b). The
closed-loop transfer function is

s+ 2
500s* + 1000s> + s + 1

T(s) = = sys. m

The functions series, parallel, and feedback can be used as aids in block dia-
gram manipulations for multiple-loop block diagrams.

EXAMPLE 2.22 Multiloop reduction

A multiloop feedback system is shown in Figure 2.26. Our objective is to compute
the closed-loop transfer function

Y(s)
T(s) = R(s)
when
1 1
Gy(s) = TT 10 Gy(s) = Py
241 s+ 1
Gals) = s+ 4s + 4 Gals) = s+6
and
Hs)=2TL H(s) =2, and Hi(s) = L

s+ 2



FIGURE 2.69
Multiple-loop block
reduction.
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>>ng1=[1]; dg1=[1 10]; sysg1=tf(ng1,dg1);
>>ng2=[1]; dg2=[1 1]; sysg2=tf(ng2,dg2);
>>ng3=[1 0 1]; dg3=[1 4 4]; sysg3=ti(ng3,dg3);
>>ng4=[1 1]; dg4=[1 6]; sysg4d=ti(ng4,dg4d);

>>nh1=[1 1]; dhi=[1 2]; sysh1=ti(nh1,dh1); Step 1
>>nh2=[2]; dh2=[1]; sysh2=ti{nh2,dh2);

>>nh3=[1]; dh3=[1]; sysh3=tf(nh3,dh3);
>>8ys1=sysh2/sysg4; Step 2
>>sys2=series(sysg3,sysg4);
>>sys3=feedback(sys2,sysh1,+1); Step 3
>>sys4=series(sysg2,sys3);
>>gysS=feedback(sys4,sys1); Step 4
>>sysb=series(sysg1,sys5);
>>sys=feedback(sys6,sysh3); Step 5

Transfer function:

N5 +4sM+6s"3+6s2+58+2
12 s"6 + 205 s"5 + 1066 s”4 + 2517 s"3 + 3128 s"2 + 2196 s + 712

For this example, a five-step procedure is followed:

Q Step 1. Input the system transfer functions.

Q Step 2. Move H, behind G,.

J Step 3. Eliminate the G;G4H, loop.

Q Step 4. Eliminate the loop containing /.

Q Step 5. Eliminate the remaining loop and calculate 7(s).

The five steps are utilized in Figure 2.69, and the corresponding block diagram
reduction is shown in Figure 2.27. The result of executing the commands is

_ 57+ 4s* + 65 + 652 + 55 + 2
1258 + 205s° + 1066s* + 25175 + 31285 + 2196s + 712°

sys

We must be careful in calling this the closed-loop transfer function. The transfer
function is defined as the input—output relationship after pole-zero cancellations.
If we compute the poles and zeros of 7(s), we find that the numerator and denom-
inator polynomials have (s + 1) as a common factor. This must be canceled before
we can claim we have the closed-loop transfer function. To assist us in the
pole—zero cancellation, we will use the minreal function. The minreal function,
shown in Figure 2.70, removes common pole-zero factors of a transfer function.
The final step in the block reduction process is to cancel out the common factors, as
shown in Figure 2.71. After the application of the minreal function, we find that the
order of the denominator polynomial has been reduced from six to five, implying
one pole-zero cancellation. m
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FIGURE 2.70
The minreal
function.

FIGURE 2.71
Application of the
minreal function.

FIGURE 2.72
Electric traction
motor block
reduction.
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No common factors Possible common factors
T(s) = sys G(s) = sysl

=

sys=minreal(sys1)

>>num=({1 4 6 6 5 2; den=[12 205 1066 2517 3128 2196 712];
>>sys1=tf(num,den);
>>sys=minreal(sys1); Cancel common factors.

Transfer function:

0.08333 s + 0.25 s"3 + 0.25 s"2 + 0.25 s + 0.1667
sNS + 16.08 s + 72.75 s"3 + 137 s”2 + 123.7 s + 59.33

EXAMPLE 2.23 Electric traction motor control

Finally, let us reconsider the electric traction motor system from Example 2.14. The
block diagram is shown in Figure 2.44(c). The objective is to compute the closed-loop
transfer function and investigate the response of w(s) to a commanded w(s). The
first step, as shown in Figure 2.72, is to compute the closed-loop transfer function
o(s)/w4(s) = T(s). The closed-loop characteristic equation is second order with
w, = 52 and { = 0.012. Since the damping is low, we expect the response to be high-
ly oscillatory. We can investigate the response w(t) to a reference input, w,(t), by uti-
lizing the step function. The step function, shown in Figure 2.73, calculates the unit
step response of a linear system. The step function is very important, since control
system performance specifications are often given in terms of the unit step response.

>>num1=[10]; den1=[1 1]; sys1=tf(num1,dent);
>>num2=[1]; den2=[2 0.5]; sys2=tf(num2,den2);
>>num3=[540]; den3=[1]; sys3=tf(num3,den3);

>>num4=[0.1}; dend=[1]; sys4=tf(num4,dend);
>>sys5=series(sysi,sys2); Eliminate
>>sysb=feedback(sys5,sys4); inner loop

>>sys7=sefries(sys3,sysb);

>>sys=feedback(sys7,[1]) 4—]_ Compute closed-loop

transfer function
Transfer function:
5400 P w(s)
2872 +25s+ 5402 wy(s)




FIGURE 2.73
The step function.
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u() A St Svsh ¥t
fep | System —
input G(s) Output
e t
@
t = T: user-supplied time vector
y(?) = output response at ¢ - or
T = simulation time Gls) = sys t = Tgnn: simulation final time
(optional)

|

[y, Tl=step(sys.,!)

()

2.0

18]

1.6 [itHH
214 SHHRA A —
2 12 -
s o UL A B !Wm
2 08 ‘UI W" y
£ 06

04 : |

O% P i’ | i

0 05 10 15 20 25 30
Time (s)

(a)

% This script computes the step

% response of the traclion motor

% wheel velocity

%

num=[5400]; den=[2 2.5 5402]; sys=tf(num,den);
t=[0:0.005:3];

[v.tl=step(sys.t);

plot{t,y),grid

xiabel('Time (s}))

ylabel('Wheel velocity')

(b)

FIGURE 2.74 (a) Traction motor wheel velocity step response. (b) m-file script.

If the only objective is to plot the output, y(z), we can use the step function with-
out left-hand arguments and obtain the plot automatically with axis labels. If we
need y(t) for any purpose other than plotting, we must use the step function with
left-hand arguments, followed by the plot function to plot y(¢). We define ¢ as a row
vector containing the times at which we wish the value of the output variable y(¢).
We can also select ¢ = tg, which results in a step response from ¢ = 0t0 ¢ = fgyq
and the number of intermediate points are selected automatically.

The step response of the electric traction motor is shown in Figure 2.74. As
expected, the wheel velocity response, given by y(t), is highly oscillatory. Note
that the output is y(z) = w(f). m







FIGURE 2.77
Block diagram of
closed-loop
system.
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Table 2.10 Typical Parameters for Disk Drive Reader

Parameter Symbol Typical Value
Inertia of arm and

read head J 1 Nms?/rad
Friction b 20 N m s/rad
Amplifier K, 10-1000
Armature resistance R 10
Motor constant K, SNm/A
Armature inductance L 1 mH

Figure 2.20 with K, = 0. The model shown in Figure 2.76(b) assumes that the flex-
ure is entirely rigid and does not significantly flex. In Chapter 4, we will consider the
model when the flexure cannot be assumed to be completely rigid.

Typical parameters for the disk drive system are given in Table 2.10. Thus, we have

Ko
Gls) = s(Js + b)(Ls + R)
5000
T (s + 20)(s + 1000)° (2.138)
‘We can also write
G(s) = K/ (OR) (2.139)

T s(rps + 1)(rs + 1)

where 7;, = J/b = 50 ms and 7 = L/R = 1 ms. Since 7 << 7, we often neglect 7.
Then, we would have

_ Kw/(bR) 025
GO~ s +1) ~ 5005 + 1)

or

5

G(S) = M

The block diagram of the closed-loop system is shown in Figure 2.77. Using the

block diagram transformation of Table 2.6, we have
Y(s) _ K.G(s)
R(s) 1+ K,G(s)

(2.140)

G(s) > Y(s)

v

R(s) K,
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FIGURE 2.78
The system
response of the
system shown in
Figure 2.77 for

1
Als) = 0?.
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0.12

0.1 ._‘w_.._ﬁ;,_, f——"b‘ N
0.08 : ' ‘

0.06

y(t) (rad)

0.04

002 NSy A N “_..T —

0 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

Using the approximate second-order model for G(s), we obtain

Y(s) 5K,
R(s) s*+20s + 5K,

When K, = 40, we have

200

Y(s) = — = R
() = 2 205 + 200

(s).

. 0.1 .
We obtain the step response for R(s) = e rad, as shown in Figure 2.78.

2.11 SUMMARY

In this chapter, we have been concerned with quantitative mathematical models of con-
trol components and systems. The differential equations describing the dynamic perfor-
mance of physical systems were utilized to construct a mathematical model. The
physical systems under consideration included mechanical, electrical, fluid, and thermo-
dynamic systems. A linear approximation using a Taylor series expansion about the op-
erating point was utilized to obtain a small-signal linear approximation for nonlinear
control components. Then, with the approximation of a linear system, one may utilize
the Laplace transformation and its related input-output relationship given by the trans-
fer function. The transfer function approach to linear systems allows the analyst to
determine the response of the system to various input signals in terms of the location
of the poles and zeros of the transfer function. Using transfer function notations, block dia-
gram models of systems of interconnected components were developed. The block
relationships were obtained. Additionally, an alternative use of transfer function models
in signal-flow graph form was investigated. Mason’s signal-flow gain formula was inves-
tigated and was found to be useful for obtaining the relationship between system variables
in a complex feedback system. The advantage of the signal-flow graph method was the
availability of Mason’s signal-flow gain formula, which provides the relationship
between system variables without requiring any reduction or manipulation of the flow
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graph. Thus, in Chapter 2, we have obtained a useful mathematical model for feedback
control systems by developing the concept of a transfer function of a linear system and
the relationship among system variables using block diagram and signal-flow graph
models. We considered the utility of the computer simulation of linear and nonlinear
systems to determine the response of a system for several conditions of the system pa-
rameters and the environment. Finally, we continued the development of the Disk Drive
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Read System by obtaining a model in transfer function form of the motor and arm.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems. Use the block diagram in Figure 2.79

as specified in the various problem statements.

Ty(s)

Controller Process
+ ~E() +
R(5) | G G(s)
- +
Measurement
H(s)

FIGURE 2.79 Block diagram for the Skills Check.

Y(s)

N(s)

In the following True or False and Multiple Cheice problems, circle the correct answer.

1. Very few physical systems are linear within some range of the variables.

2. The s-plane plot of the poles and zeros graphically portrays the character
of the natural response of a system.

3. The roots of the characteristic equation are the zeros of the closed-loop
system.

4. A linear system satisfies the properties of superposition and homogeneity.

5. The transfer function is the ratio of the Laplace transform of the output
variable to the Laplace transform of the input variable, with all initial
conditions equal to zero.

6. Consider the system in Figure 2.79 where
s+ 50

G.(s) =10, H(s)=1, and G(s) = 0V————.
(s) (s) an (s) 52 + 60s + 500

True or False
True or False
True or False

True or False

True or False

If the input R(s) is a unit step input, T4(s) = 0, and N(s) = 0, the final value of the out-

put Y(s) is:
a. y, = lim y(¢) = 100
t—0od

b ys; = lim () =1
€ yss = lim y(r) = 50

d. None of the above



132 Chapter 2 Mathematical Models of Systems

7. Consider the system in Figure 2.79 with

_st4

s — 125 — 65

‘When all initial conditions are zero, the input R(s) is an impulse, the disturbance
T4(s) = 0, and the noise N(s) = 0, the output y(z) is

a. y(t) = 10e™ + 10e7™>
b. y(t) = ¥ + 10
e y(t) = 10> — 10e™>
d. y(1) = 20e7¥ + 5¢71%
8. Consider a system represented by the block diagram in Figure 2.80.

G.(s) =20, H(s)=1, and G(s) =

\ 4

+
R(s)—bc‘?-—b SLOS % > Y(s)

5

:

€

FIGURE 2.80 Block diagram with an internal loop.

The closed-loop transfer function 7'(s) = Y (s)/R(s) is

s T(s) = ——
& T = 2 5507 50
10
b T(s) = ——0
)= 2 557 10
10
 T(s) = ——0
© T() = 2505 + 55

d. None of the above
Consider the block diagram in Figure 2.79 for Problems 9 through 11 where

S

G.(s)=4, H(s) =1, and G(s) = ERRT

9, The closed-loop transfer function T'(s) = Y (s)/R(s) is:

50
. T(s) = ———
& T() = 255 7 50
20
b. T(s) = ———mt——
() s+ 10s + 25
50
. T(s) = ———
©T() = 335+ 56
d. T(s) = 20

£+ 10s— 15
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10. The closed-loop unit step response is:

20 0
a y(t) = =t %e*‘ - e
b. y(t) =1 + 20te™™

2 2
e y(t) = % - Eoe‘s' — 4te™>

d y(t) =1-2e" — ate™

11. The final value of y(t) is:
a. y; = lim y(t) = 0.8
[— 00

b. ys = {i?wy(t) =10
¢ Y5 = lim y(z) = 2.0
=00
d y, = limy@®) = 1.25
11— 00

12, Consider the differential equation
y+2y+y=u
where y(0) = y(0) = 0 and u(r) is a unit step. The poles of this system are:
a s =-1,5=-1
b. s = 1j,5 = -1j
e sp=-1,5=-2
d. None of the above

13. A cart of mass m = 1000 kg is attached to a truck using a spring of stiffness
k = 20,000 N/m and a damper of constant b = 200 Ns/m, as shown in Figure 2.81.
The truck moves at a constant acceleration of @ = 0.7 m/s2.

FIGURE 2.81 Truck pulling a cart of mass m.

The transfer function between the speed of the truck and the speed of the cart is:

50
. T(s) = ———
a. T(s) 55 + s + 100
20+ s
b. T(s) = V—F———
(%)= 2 105 + 25
100 + s
T(s) = ————
¢ T(s) 58 + s + 100

d. None of the above
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14. Consider the closed-loop system in Figure 2.79 with

G.s) =15 H(s)=1, and G(s) =

1000
s + 505 + 45005 + 1000

Compute the closed-loop transfer function and the closed-loop zeros and poles.

15000

a. T(s) =

3 2 » 51
s° + 50s + 4500s + 16000

= —3.70, 5,3 = —23.15 + 61.59;

15000

b. T(s) =

5052 + 4500 + 16000'

1 = —3.70,s, = —86.29
1

c T(s)=

y S
$% + 50s% + 45005 + 16000

1= "3.70, §23 = -232 + 63.2j
15000

d. T(s) =

& + 5052 + 45005 + 16000 "

= —3.70,s5, = —23.2,53 = —63.2

15. Consider the feedback system in Figure 2.79 with

G(s) =

N

K(s +0.3) 1

H(s) =2s, and G(s) = (s = 2)(s* + 105 + 45)°

Assuming R(s) = 0and N{s) = 0, the closed-loop transfer function from the distur-
bance T4(s) to the output Y(s) is:

. Y(s) _ 1
T Tals) s+ 8%+ (2K + 25)s + (0.6K — 90)
b Y(s) _ 100

Y(s)

T Tus) &+ 852+ (2K + 25)s + (0.6K — 90)

1

C. =
Ta(s) 852 + (2K + 25)s + (0.6K — 90)

Y(s)

K(s +03)

d’

Ta(s) s*+ 85 + (2K + 25)5 + (0.6K — 90)s

In the following Word Match problems, match the term with the definition by writing the
correct letter in the space provided.

a. Actuator

b. Block diagrams

¢. Characteristic
equation

d. Critical damping
e. Damped oscillation
f. Damping ratio

g. DC motor

An oscillation in which the amplitude decreases with
time.

A system that satisfies the properties of superposition
and homogeneity. -

The case where damping is on the boundary between
underdamped and overdamped.

A transformation of a function f{¥) from the time

domain into the complex frequency domain

yielding F(s).

The device that provides the motive power to the

process.

A measure of damping. A dimensionless number

for the second-order characteristic equation. -

The relation formed by equating to zero the
denominator of a transfer function.



Exercises

h. Laplace transform

i. Linear
approximation

j. Linear system

k. Mason loop rule

1. Mathematical
models

m. Signal-flow graph

n. Simulation

0. Transfer function

Unidirectional, operational blocks that represent the
transfer functions of the elements of the system.

A rule that enables the user to obtain a transfer
function by tracing paths and loops within a system.

An electric actuator that uses an input voltage as

a control variable.

The ratio of the Laplace transform of the output
variable to the Laplace transform of the input variable.
Descriptions of the behavior of a system using
mathematics.

A model of a system that is used to investigate the
behavior of a system by utilizing actual input signals.

A diagram that consists of nodes connected by several
directed branches and that is a graphical representation
of a set of linear relations.

An approximate model that results in a linear relationship

between the output and the input of the device.

EXERCISES

Exercises are straightforward applications of the concepts

of the chapter.

E21 A unity, negative feedback system has a nonlinear
function y = f(e) = ¢?, as shown in Figure E2.1. For an
input  in the range of 0 to 4, calculate and plot the open-
loop and closed-loop output versus input and show that
the feedback system results in a more linear relationship.

r + e v
—»%)—» f© —>
oo

Close switch for closed loop

FIGURE E2.1 Open and closed loop.

E2.2 A thermistor has a response to temperature repre-
sented by
R = Roe—OJT’

where R, = 10,000 Q, R = resistance, and T = tem-
perature in degrees Celsius. Find the linear model for
the thermistor operating at T = 20°C and for a small
range of variation of temperature.
Answer: AR = —135AT

E2.3 The force versus displacement for a spring is shown
in Figure E2.3 for the spring-mass-damper system of
Figure 2.1. Graphically find the spring constant for the
equilibrium point of y = 0.5 cm and a range of opera-
tion of £1.5 cm.

Spring

breeks

Displacement
(cm)

Spring | _
compresses

FIGURE E2.3 Spring behavior.

E2.4 A laser printer uses a laser beam to print copy
rapidly for a computer. The laser is positioned by a
control input r(t), so that we have

Y(s) 4(s + 50) R(s)
5) = 5————————R(5).
5% + 30s + 200
The input r(¢) represents the desired position of the
laser beam.

(a) If r(¢) is a unit step input, find the output y(z).

(b) What is the final value of y(¢)?

Answer: (a) y(t) = 1 + 0.6e2" — 1.6e7'%, (b) y,, = 1
E2.5 A noninverting amplifier uses an op-amp as shown

in Figure E2.5. Assume an ideal op-amp model and
determine v,/vip.
R,

Vo
Answer: — =1+ —
Yin Rl








http://E2.ll
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E2.13 Consider the feedbz.lck system in Figure E2.13. Com- daf _ 060,
pute the transfer functions Y (s)/T,(s) and Y (s)/N(s). dt
E2.14 Find the transfer function vy = Ty
Yi(s) The variables involved are as follows:

Ry(s)

) ) r(t) = desired platform position
for the multivariable system in Figure E2.14.

) ] ) p(t) = actual platform position
E2.15 Obtain the differential equations for the circuit in cp .
Figure E2.15 in terms of i; and i,. i(t) = amplifier input voltage
E216 The position control system for a spacecraft plat- vy(t) = amplifier output voltage

form is governed by the following equations: 6(t) = motor shaft position

2

d_‘;’ + 2d_p +4p=20 Sketch a signal-flow diagram or a block diagram of
dt dt the system, identifying the component parts and de-

W =r—p termine the system transfer function P(s)/R(s).
Td(S)
Controller Plant
4 Ef9 + )
R{s) s | K .+u > 6+ 10) » Y(s)
+
v N(s)
FIGURE E2,13 Feedback system with measurement noise, N(s), and plant
disturbances, T4(s).
Hy(s}
N -
R\(5) =] G((s) > Gas) Gi(s) Y\(8)
+ +
Gy(s) Gg(s) e Gyls)
L 3
L ¥t
Ry(5) ===pp1 Gy(s) Gs(s) Gy($) [ ¥, (5)
Hz(!) [~

FIGURE E2.14

Multivariable system.
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E2.26 Determine the transfer function X,(s)/F(s) for the
system shown in Figure E2.26. Both masses slide on a
frictionless surface,and & = 1 N/m.

Xo(s) _ 1
F(s)  s%s*+2)

Answer:

FIGURE E2.23 Control system with three feedback loops.

k
ao—s o MWW

E2.24 The block diagram of a system is shown in
Figure E2.24. Determine the transfer function
T(s) = Y(s)/R(s).

FIGURE E2.26 Two connected masses on a frictionless

surface.
R(s) 10 o 1 > Y(s)
' s+ 1 e o E2.27 Find the transfer function Y(s)/7,(s) for the sys-
- tem shown in Figure E2.27.
: Answer: Y(s) = Gals)
TTi(s) 1+ Gi(s5)Ga(s)H (s)
N
U Ty(s)
FIGURE E2.24 Multiloop feedback system. +
+
R(s) Gy(s) > Gy(s) > Y(s)
E2.25 An amplifier may have a region of deadband as -
shown in Figure E2.25. Use an approximation that
uses a cubic equation y = ax® in the approximately
linear region. Select a and determine a linear approxi- Hs) |
mation for the amplifier when the operating point is
x = 06.

FIGURE E2.27 System with disturbance.

FIGURE E2.25
An amplifier with a
deadband region.




Problems

E2.28 Determine the transfer function V,(s)/V (s) for the
op-amp circuit shown in Figure E2.28 [1]. Let R, =
167k, Ry = 240kQ, R, = 1kQ, Ry = 100k, and
C = 1 uF. Assume an ideal op-amp.

E2.29 A system is shown in Fig. E2.29(a).

(a) Determine G(s) and H(s) of the block diagram
shown in Figure E2.29(b) that are equivalent to
those of the block diagram of Figure E2.29(a).

—

FIGURE E2.28
Op-amp circuit.

_té)__. !
s+5

R(s)

I”—-ol < +o

Tl s+ 10 y(;)

s
y

(a)

R(s) G(s) P Y(s)

r 3

H(s)

(b)
FIGURE E2.29 Block diagram equivalence.

PROBLEMS

Problems require an extension of the concepts of the chap-
ter to new situations.

P2.1 An electric circuit is shown in Figure P2.1. Obtain a
set of simultaneous integrodifferential equations rep-
resenting the network.

P2.2 A dynamic vibration absorber is shown in Figure
P2.2. This system is representative of many situations
involving the vibration of machines containing unbal-
anced components. The parameters M, and k;; may
be chosen so that the main mass M; does not vibrate
in the steady state when F(¢) = a sin(wqt). Obtain the
differential equations describing the system.

141

(b) Determine Y(s)/R(s) for Figure E2.29(b).
E2.30 A system is shown in Figure E2.30.

(a) Find the closed-loop transfer function Y(s)/R(s)
10

s2+ 25+ 10

(b) Determine Y{(s) when the input R(s) is a unit step.

(c) Compute y(¢).

when G(s) =

R(s) | G(s) > Y(s)

FIGURE E2.30 Unity feedback control system.

E2.31 Determine the partial fraction expansion for V(s)
and compute the inverse Laplace transform. The
transfer function V(s) is given by:

__ 40

s* + 8s + 400

Vis) =

FIGURE P2.1 Electric circuit.
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Terms and Concepts

T4(s) = 1/s) and co-plot the steady-state value of

the output Y (s) as a function of the controller gain
0 < K = 10 on the same plot as in (a) above.

FIGURE CP2.10 Controller
Block diagram of + E(s)
a unity feedback RUS) K
system with a -
reference input A(s)

and a disturbance

input Ty4(s).
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(c) Determine the value of K such that the steady-
state value of the output is equal for both the
input response and the disturbance response.

Tys)

Plant

1
+ s2+ 205 + 20

» Y(s)

ANSWERS TO SKILLS CHECK

v

(5) True

True or False: (1) False; (2) True; (3) False; (4) True;

Word Match (in order, top to bottom): e, j, d, h, a, f,
c,b,k,g,0,l,n,m,i

Multiple Choice: (6) b; (7) a; (8) b; (9) b; (10) ¢;

(11) a;(12) a; (13) c; (14) a; (15) a

TERMS AND CONCEPTS

Across-Variable A variable determined by measuring the
difference of the values at the two ends of an element.

Actuator The device that causes the pracess to provide
the output. The device that provides the motive power
to the process.

Analogous variables Variables associated with electrical,
mechanical, thermal, and fluid systems possessing
similar solutions providing the analyst with the ability
to extend the solution of one system to all analogous
systems with the same describing differential equations.

Assumptions Statements that reflect situations and con-
ditions that are taken for granted and without proof.
In control systems, assumptions are often employed to
simplify the physical dynamical models of systems
under consideration to make the control design
problem more tractable.

Block diagrams Unidirectional, operational blocks that
represent the transfer functions of the elements of the
system.

Branch A unidirectional path segment in a signal-flow
graph that relates the dependency of an input and an
output variable.

Characteristic equation The relation formed by equating
to zero the denominator of a transfer function.

Closed-loop transfer function A ratio of the output signal
to the input signal for an interconnection of systems
when all the feedback or feedfoward loops have been

closed or otherwise accounted for. Generally obtained
by block diagram or signai-flow graph reduction.

Coulomb damper A type of mechanical damper where the
model of the friction force is a nonlinear function of
the mass velocity and possesses a discontinuity around
zero velocity. Also know as dry friction.

Critical damping The case where damping is on the
boundary between underdamped and overdamped.

Damped oscillation An oscillation in which the ampli-
tude decreases with time.

Damping ratio A measure of damping. A dimensionless
number for the second-order characteristic equation.

DC motor An electric actuator that uses an input voltage
as a control variable.

Differential equation An equation including differentials
of a function.

Error signal The difference between the desired out-
put R(s) and the actual output Y(s); therefore
E(s) = R(s) = Y{(s).

Final value The value that the output achieves after ail
the transient constituents of the response have faded.
Also referred to as the steady-state value.

Final value theorem The theorem that states that
'Iinolo yt) = lin}) sY(s), where Y(s) is the Laplace
-y S

transform of y(¢).
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Homogeneity The property of a linear system in which
the system response, y(¢), to an input u(t) leads to the
response By(t) when the input is Bu(t).

Inverse Laplace transform A transformation of a function
F(s) from the complex frequency domain into the
time domain yielding f(t).

Laplace transform A transformation of a function f(t)
from the time domain into the complex frequency
domain yielding F(s).

Linear approximation An approximate model that re-
sults in a linear relationship between the output and
the input of the device.

Linear system A system that satisfies the properties of
superposition and homogeneity.

Linearized Made linear or placed in a linear form. Taylor
series approximations are commonly employed to
obtain linear models of physical systems.

Loop A closed path that originates and terminates on the
same node of a signal-flow graph with no node being
met twice along the path.

Mason loop rule A rule that enables the user to obtain
a transfer function by tracing paths and loops with-
in a system.

Mathematical models Descriptions of the behavior of a
system using mathematics.

Natural frequency The frequency of natural oscillation
that would occur for two complex poles if the damp-
ing were equal to zero.

Necessary condition A condition or statement that must
be satisfied to achieve a desired effect or result. For ex-
ample, for a linear system it is necessary that the input
u;(t) + uy(t) results in the response y(¢) + w(t),
where the input u(¢) results in the response y,(f) and
the input u,(¢) results in the response y(r).

Node The input and output points or junctions in a
signal-flow graph.

Nontouching Two loops in a signal-flow graph that do not
have a common node.

Overdamped The case where the damping ratiois { > 1.

Path A branch or a continuous sequence of branches
that can be traversed from one signal (node) to
another signal (node) in a signal-flow graph.

Poles The roots of the denominator polynomial (i.e.,
the roots of the characteristic equation) of the trans-
fer function.

Positive feedback loop Feedback loop wherein the output
signal is fed back so that it adds to the input signal.

Chapter 2 Mathematical Models of Systems

Principle of superposition The law that states that if two
inputs are scaled and summed and routed through a
linear, time-invariant system, then the output will be
identical to the sum of outputs due to the individual
scaled inputs when routed through the same system.

Reference input The input to a control system often
representing the desired output, denoted by R(s).

Residues The constants k; associated with the partial
fraction expansion of the output Y(s), when the out-
put is written in a residue-pole format.

Signal-flow graph A diagram that consists of nodes con-
nected by several directed branches and that is a
graphical representation of a set of linear relations.

Simulation A model of a system that is used to investigate
the behavior of a system by utilizing actual input signals.

Steady state The value that the output achieves after all
the transient constituents of the response have faded.
Also referred to as the final value.

s-plane The complex plane where, given the complex
number s = s + jw, the x-axis (or horizontal axis) is
the s-axis, and the y-axis (or vertical axis) is the jw-axis.

Taylor series A power series defined by g(x) =
&, 8" (x0)

—(x = xg)™. Form < 0o, the series is an
m=0 m:
approximation which is used to linearize functions

and system models.

Through-variable A variable that has the same value at
both ends of an element.

Time constant The time interval necessary for a system to
change from one state to another by a specified per-
centage. For a first order system, the time constant is
the time it takes the output to manifest a 63.2%
change due to a step input.

Transfer function The ratio of the Laplace transform of
the output variable to the Laplace transform of the
input variable.

Underdamped The case where the damping ratiois { < 1.

Unity feedback A feedback control system wherein the
gain of the feedback loop is one.

Viscous damper A type of mechanical damper where the
model of the friction force is linearly proportional to
the velocity of the mass.

Zeros The roots of the numerator polynomial of the
transfer function.
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PREVIEW

In this chapter, we consider system modeling using time-domain methods. As be-
fore, we will consider physical systems described by an nth-order ordinary differen-
tial equation. Utilizing a (nonunique) set of variables, known as state variables, we
can obtain a set of first-order differential equations. We group these first-order
equations using a compact matrix notation in a model known as the state variable
model. The time-domain state variable model lends itself readily to computer solu-
tion and analysis. The relationship between signal-flow graph models and state vari-
able models will be investigated. Several interesting physical systems, including a
space station and a printer belt drive, are presented and analyzed. The chapter con-
cludes with the development of a state variable model for the Sequential Design
Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 3, students should:

Q Understand state variables, state differential equations, and output equations.

Q  Recognize that state variable models can describe the dynamic behavior of physical
systems and can be represented by block diagrams and signal flow graphs.

O Know how to obtain the transfer function model from a state variable model, and vice
versa.

0O  Be aware of solution methods for state variable models and the role of the state transi-
tion matrix in obtaining the time responses.

Q Understand the important role of state variable modeling in control system design.

161
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Chapter 3 State Variable Models

INTRODUCTION

In the preceding chapter, we developed and studied several useful approaches to
the analysis and design of feedback systems. The Laplace transform was used to
transform the differential equations representing the system to an algebraic
equation expressed in terms of the complex variable s. Using this algebraic equa-
tion, we were able to obtain a transfer function representation of the input—output
relationship.

The ready availability of digital computers makes it practical to consider the time-
domain formulation of the equations representing control systems. The time-domain
techniques can be used for nonlinear, time-varying, and multivariable systems,

A time-varying control system is a system in which one or more of the
parameters of the system may vary as a function of time.

For example, the mass of a missile varies as a function of time as the fuel is ex-
pended during flight. A multivariable system, as discussed in Section 2.6, is a system
with several input and output signals.

The solution of a time-domain formulation of a control system problem is facili-
tated by the availability and ease of use of digital computers. Therefore we are in-
terested in reconsidering the time-domain description of dynamic systems as they
are represented by the system differential equation. The time domain is the mathe-
matical domain that incorporates the response and description of a system in terms
of time, £.

The time-domain representation of control systems is an essential basis for modern
control theory and system optimization. In Chapter 11, we will have an opportunity
to design an optimum control system by utilizing time-domain methods. In this
chapter, we develop the time-domain representation of control systems and illus-
trate several methods for the solution of the system time response.

3.2 THE STATE VARIABLES OF A DYNAMIC SYSTEM

The time-domain analysis and design of control systems uses the concept of the
state of a system [1-3, 5].

The state of a system is a set of variables whose values, together with the input
signals and the equations describing the dynamics, will provide the future state
and output of the system.

For a dynamic system, the state of a system is described in terms of a set of state
variables [x;(¢), x5(¢), . .., x,,(t)]. The state variables are those variables that deter-
mine the future behavior of a system when the present state of the system and the
excitation signals are known. Consider the system shown in Figure 3.1, where y(¢)



FIGURE 3.1
System block
diagram.

FIGURE 3.2
Dynamic system.
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Input signals Output signals
(1) — »(r)
System
(1) | > \,(7)

and y,(¢) are the output signals and u,(¢) and ,(¢) are the input signals. A set of
state variables (xq, x, ..., X,,) for the system shown in the figure is a set such that
knowledge of the initial values of the state variables [x;(t), x2(tp), - - - , Xn(to)] at the
initial time £y, and of the input signals «,(¢) and u,(t) for ¢t = t,, suffices to determine
the future values of the outputs and state variables [2].

The state variables describe the present configuration of a system and can be
used to determine the future response, given the excitation inputs and the
equations describing the dynamics.

The general form of a dynamic system is shown in Figure 3.2. A simple example
of a state variable is the state of an on—off light switch. The switch can be in either
the on or the off position, and thus the state of the switch can assume one of two
possible values. Thus, if we know the present state (position) of the switch at &,
and if an input is applied, we are able to determine the future value of the state of
the element.

The concept of a set of state variables that represent a dynamic system can be
illustrated in terms of the spring-mass-damper system shown in Figure 3.3. The num-
ber of state variables chosen to represent this system should be as small as possible
in order to avoid redundant state variables. A set of state variables sufficient to de-
scribe this system includes the position and the velocity of the mass. Therefore, we
will define a set of state variables as (x;, x;), where

50 = () and x() = 2L,

The differential equation describes the behavior of the system and is usually written as

d?*y dy
—= + b— + ky = u(t). .
M P2 b 0 ky = u(t) (3.1)

x(0) Initial
conditions

(1) |:____{> Dynamic system :> 1)
state x(1) Output

Input
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We can rewrite Equations (3.6) and (3.7) as a set of two first-order differential
equations in terms of the state variables x; and x; as follows:

dxl 1 1
—_— —— + - .
i c* Cu(t), (3.8)
and
dX2 i R
The output signal is then
y(t) = vo(t) = Rxa. (3.10)

Utilizing Equations (3.8) and (3.9) and the initial conditions of the network represented
by [x1(%), X2(y)], we can determine the system’s future behavior and its output.

The state variables that describe a system are not a unique set, and several alter-
native sets of state variables can be chosen. For example, for a second-order system,
such as the spring-mass-damper or RLC circuit, the state variables may be any two
independent linear combinations of x;(t) and x,(¢). For the RLC circuit, we might
choose the set of state variables as the two voltages, v.(t) and v, (¢), where v is the
voltage drop across the inductor. Then the new state variables, xi and x5, are related
to the old state variables, x; and x,, as

X =v, = x, (3.11)

and
x; =v, =v, — Rij = x; — Rx,. (3.12)

Equation (3.12) represents the relation between the inductor voltage and the former
state variables v, and i;. In a typical system, there are several choices of a set of state
variables that specify the energy stored in a system and therefore adequately de-
scribe the dynamics of the system. It is usual to choose a set of state variables that can
be readily measured.

An alternative approach to developing a model of a device is the use of the bond
graph. Bond graphs can be used for electrical, mechanical, hydraulic, and thermal de-
vices or systems as well as for combinations of various types of elements. Bond
graphs produce a set of equations in the state variable form [7].

The state variables of a system characterize the dynamic behavior of a sys-
tem. The engineer’s interest is primarily in physical systems, where the variables
are voltages, currents, velocities, positions, pressures, temperatures, and similar
physical variables. However, the concept of system state is not limited to the
analysis of physical systems and is particularly useful in analyzing biological, so-
cial, and economic systems. For these systems, the concept of state is extended be-
yond the concept of the current configuration of a physical system to the broader
viewpoint of variables that will be capable of describing the future behavior of
the system.
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3.3 THE STATE DIFFERENTIAL EQUATION

The response of a system is described by the set of first-order differential equations
written in terms of the state variables (x), x, ..., x,,) and the inputs (i, u,,. .., 4,,).
These first-order differential equations can be written in general form as

561 = anx; + [Z202.%) + o0+ A1nXn + bnul + -+ blm“m?
Xy = anxy + apxs + o+ X, + byuy + -+ byt
jcn =a,x tapx, + 0 +a,,x, + bnlul + o F bnmum’ (313)

where X = dx/dt. Thus, this set of simultaneous differential equations can be written
in matrix form as follows (2, 5]:

X1 a1 G- Gip || ¥t bii-ob
d| x a ay'  a x 1 m || %1
I 2= 2 2n 21+ : . (3.14)
: : : : by b y
nm m
Xn An Qp2 Aun Xn

The column matrix consisting of the state variables is called the state vector and is
written as

X1
x=|"2| (3.15)
Xn

where the boldface indicates a vector. The vector of input signals is defined as u.
Then the system can be represented by the compact notation of the state differential
equation as

x = Ax + Bu. (3.16)

The differential equation (3.16) is also commonly called the state equation.

The matrix A is an n X n square matrix, and B is an n X m matrix.! The state
differential equation relates the rate of change of the state of the system to the state
of the system and the input signals. In general, the outputs of a linear system can be
related to the state variables and the input signals by the output equation

y = Cx + Du, (3.17)

'Boldfaced lowercase letters denote vector quantities and boldfaced uppercase letters denote matri-
ces. For an introduction to matrices and elementary matrix operations, refer to the MCS website and
references [1] and [2].
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where y is the set of output signals expressed in column vector form. The state-space
representation (or state-variable representation) comprises the state differential
equation and the output equation.

We use Equations (3.8) and (3.9) to obtain the state variable differential equation
for the RLC of Figure 3.4 as

0 = 1
*“l1 r[T g u(t) (3.18)
L L
and the output as
y=1[0 RIx (3.19)

When R = 3,L = 1,and C = 1/2, we have
.10 -2 c + 2
X = 1 -3 0 u

y=10 3x

The solution of the state differential equation (Equation 3.16) can be obtained
in a manner similar to the method for solving a first-order differential equation.
Consider the first-order differential equation

X = ax + bu, (3.20)

where x(#) and u(¢) are scalar functions of time. We expect an exponential solution of
the form e”. Taking the Laplace transform of Equation (3.20), we have

and

sX(s) — x(0) = aX(s) + bU(s);

therefore,

x(O)_I_ b
s—a s-—a

X(s) = U(s). (3.21)

The inverse Laplace transform of Equation (3.21) can be shown to be
!
x(t) = e"x(0) + / e pu(r) dr. (3.22)
0

We expect the solution of the general state differential equation to be similar to
Equation (3.22) and to be of exponential form. The matrix exponential function is
defined as

22 k ok
eAt=exp(At)=I+At+A7't—+-~+é’;t—+-~, (3:23)
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which converges for all finite # and any A [2]. Then the solution of the state differential
equation is found to be

x(t) = exp(A1)x(0) + /l exp[A(t — 7)]Bu(7) dr. (3.24)
0

Equation (3.24) may be verified by taking the Laplace transform of Equation (3.16)
and rearranging to obtain

X(s) = [sI — A]'x(0) + [sI — A]'BU(s), (3.25)

where we note that [sI — A]™ = ®(s) is the Laplace transform of ®(f) = exp(At).
Taking the inverse Laplace transform of Equation (3.25) and noting that the second
term on the right-hand side involves the product ®(s)BU(s), we obtain Equation
(3.24). The matrix exponential function describes the unforced response of the sys-
tem and is called the fundamental or state transition matrix ®(¢). Thus, Equation
(3.24) can be written as

x(t) = ®(£)x(0) + A I(I>(t — 7)Bu(7) dr. (3.26)

The solution to the unforced system (that is, when u = 0) is simply

xy(t) du(®) - d1a(t) || x:1(0)
xz:(l) _ ¢21:(t) ¢2r:z(t) xz:(O)- (327)

xn(t) ‘bnl (t) U ¢mz(t) xn(o)

We note therefore that to determine the state transition matrix, all initial conditions
are set to 0 except for one state variable, and the output of each state variable is eval-
uated. That is, the term ¢;;(¢) is the response of the ith state variable due to an initial
condition on the jth state variable when there are zero initial conditions on all the
other variables. We shall use this relationship between the initial conditions and the
state variables to evaluate the coefficients of the transition matrix in a later section.
However, first we shall develop several suitable signal-flow state models of systems
and investigate the stability of the systems by utilizing these flow graphs.

EXAMPLE 3.1 Two rolling carts

Consider the system shown in Figure 3.5. The variables of interest are noted on the
figure and defined as: M,, M, = mass of carts, p, ¢ = position of carts, u = external
force acting on system, ky, k, = spring constants, and b;, b, = damping coefficients.
The free-body diagram of mass M, is shown in Figure 3.6(b), where p, § = velocity
of M; and M,, respectively. We assume that the carts have negligible rolling friction.
We consider any existing rolling friction to be lumped into the damping coefficients,
bl and bg.
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where we use the relationship for p given in Equation (3.28) and the relationship
for g given in Equation (3.29). But p = x3 and ¢ = x4, so Equation (3.32) can be
written as
k k b b 1
1 1 1 1 (3.34)

.if3 = —Mxl + Exz - le:; + E}q + ﬁlu

42, (3.35)

In matrix form, Equations (3.30), (3.31), (3.34), and (3.35) can be written as

X = Ax + Bu
where
X1 p
x —3 x2 = ? N
X3 pP
X4 q
0 0 1 0 0
0 0 0 1 0
A=| & ke _h b , and B=| | |,
M, M, M, M A
i _krk b bt 0
/A M, M, M,

and u is the external force acting on the system (see Figure 3.6). If we choose p as the
output, then

y=[1 0 0 O0O]x=Cx

Suppose that the two rolling carts have the following parameter values: k; = 150 N/m;
k, = 700N/m; b, = 15N s/m; b, = 30Ns/m; M; = Skg; and M, = 20kg. The

P

—— ki(g—p) ki(p—q) ¢—— "
——— bGP g -
(a) (b}

M,

FIGURE 3.6 Free-body diagrams of the two rolling carts. (a) Cart 2; (b) Cart 1.



FIGURE 3.7

Initial condition
response of the two
cart system.

Section 3.4 Signal-Flow Graph and Block Diagram Models 171

10 .
?
J
i

|

O = H - - : P, -

p (cm)

i

i .
0 1 2 3 4 5
Time (s)

g (cm)

Time (s)

response of the two rolling cart system is shown in Figure 3.7 when the initial condi-
tions are p(0) = 10 cm, g(0) = 0, and p(0) = ¢(0) = 0 and there is no input driving
force, thatis,u(t) = 0. m

3.4 SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS

The state of a system describes that system’s dynamic behavior where the dynamics
of the system are represented by a set of first-order differential equations. Alterna-
tively, the dynamics of the system can be represented by a state differential equation
as in Equation (3.16). In either case, it is useful to develop a graphical model of the
system and use this model to relate the state variable concept to the familiar transfer
function representation. The graphical model can be represented via signal-flow
graphs or block diagrams.

As we have learned in previous chapters, a system can be meaningfully de-
scribed by an input-output relationship, the transfer function G(s). For example, if
we are interested in the relation between the output voltage and the input voltage of
the network of Figure 3.4, we can obtain the transfer function

Va(s)

G(s) = m

The transfer function for the RLC network of Figure 3.4 is of the form

_ Vo(s) _ a
Ui) s>+ Bs+7y

G(s) (3.36)
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FIGURE 3.8
RLC network.
(a) Signal-flow
graph. (b) Block
diagram,
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where a, 3, and vy are functions of the circuit parameters R, L, and C, respectively.
The values of «, 8, and v can be determined from the differential equations that
describe the circuit. For the RLC circuit (see Equations 3.8 and 3.9), we have

. 1 1

Xy = "EXz + Eu(t), (3.37)

. 1 R

Xy = IX] - sz, (3.38)
and

v, = Rx,. (3.39)

The flow graph representing these simultaneous equations is shown in Figure 3.8(a),
where 1/s indicates an integration. The corresponding block diagram model is shown
in Figure 3.8(b). The transfer function is found to be

W(s) +R/(LCs?) B +R/(LC)
U(s) 1+ R/(Ls) + 1/(LCs?) s>+ (R/L)s + 1/(LC)’

Unfortunately many electric circuits, electromechanical systems, and other control
systems are not as simple as the RLC circuit of Figure 3.4, and it is often a difficult task
to determine a set of first-order differential equations describing the system. There-
fore, it is often simpler to derive the transfer function of the system by the techniques
of Chapter 2 and then derive the state model from the transfer function.

The signal-flow graph state model and the block diagram model can be readily
derived from the transfer function of a system. However, as we noted in Section 3.3,

(3.40)

U(s)

R
L
ot rl g AN X,
Us) = = st TRV

|-

®
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there is more than one alternative set of state variables, and therefore there is more
than one possible form for the signal-flow graph and block diagram models. There
are several key canonical forms of the state-variable representation, such as the
phase variable canonical form, that we will investigate in this chapter. In general, we
can represent a transfer function as

_Y(s)  bys" + by s 4 -+ s+ by
U(s) ST+ a, "N+ -+ ags + a

G(s) (3.41)

where n = m, and all the a and b coefficients are real numbers. If we multiply the
numerator and denominator by s™, we obtain

bms-(n—m) + bm_ls—(n—m‘*l) + -0+ bls-("—l) + bys™"
L+ a, s+ o + a5 D 4 gs™ ‘

G(s) = (3.42)

Our familiarity with Mason’s signal-flow gain formula allows us to recognize the famil-
iar feedback factors in the denominator and the forward-path factors in the numerator.
Mason’s signal-flow gain formula was discussed in Section 2.7 and is written as

_Y(s) _ 2B
Uis)y A

(3.43)

When all the feedback loops are touching and all the forward paths touch the
feedback loops, Equation (3.43) reduces to

I _ Sum of the forward-path factors
N - . .
1 - 2q=1 L, 1-sum of the feedback loop factors

G(s) = (3.44)

There are several flow graphs that could represent the transfer function. Two flow
graph configurations based on Mason’s signal-flow gain formula are of particular in-
terest, and we will consider these in greater detail. In the next section, we will consider
two additional configurations: the physical state variable model and the diagonal (or
Jordan canonical) form model.

To illustrate the derivation of the signal-flow graph state model, let us initially
consider the fourth-order transfer function

_Y(s) bo
U(s)  s* + ays® + ays® + ays + aq

G(s)

b -4
= i (3.45)

1+ ass! + a2+ aps™ + aps™

First we note that the system is fourth order, and hence we identify four state vari-
ables (xy, x3, X3, x4). Recalling Mason’s signal-flow gain formula, we note that the
denominator can be considered to be 1 minus the sum of the loop gains. Further-
more, the numerator of the transfer function is equal to the forward-path factor of
the flow graph. The flow graph must include a minimum number of integrators
equal to the order of the system. Therefore, we use four integrators to represent this
system. The necessary flow graph nodes and the four integrators are shown in
Figure 3.9. Considering the simplest series interconnection of integrators, we can
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FIGURE 3.9
Flow graph nodes
and integrators for
fourth-order
system.

FIGURE 3.10
Model for G(s) of
Equation (3.45).
(a) Signal-flow
graph. {b) Block
diagram.
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represent the transfer function by the flow graph of Figure 3.10. Examining this figure,
we note that all the loops are touching and that the transfer function of this flow
graph is indeed Equation (3.45). The reader can readily verify this by noting that the
forward-path factor of the flow graph is by/s* and the denominator is equal to 1
minus the sum of the loop gains.

We can also consider the block diagram model of Equation (3.45). Rearranging
the terms in Equation (3.45) and taking the inverse Laplace transform yields the
differential equation model

4 3 2
L0t | LOLE) | ST | A0y

dr* dar’ dr?
Define the four state variables as follows:
x1 = y/by
Xy = Xy = y/by
X3 = X3 = y/by
X4 = X3 = y/by.

2
A 4

U(s) - » by > Y(s)

“
“

(b)
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Then it follows that the fourth-order differential equation can be written equivalently
as four first-order differential equations, namely,

il = X,
.;62 = X3,
'.x3 = X4,
and
Xy = —apX) — @1X; — AxX3 — A3xy + U;

and the corresponding output equation is
= b()xl.

The block diagram model can be readily obtained from the four first-order differential
equations as illustrated in Figure 3.10(b).

Now consider the fourth-order transfer function when the numerator is a poly-
nomial in s, so that we have

bas® + bys? + bys + by

G(s)
( st + a3s3 + azs2 + a5 + ay

1l

_ bys™! + bys2 + bys™ + by (3.46)
1+ays™ ' + a2+ .:zls_3 + ags™ ’

The numerator terms represent forward-path factors in Mason’s signal-flow gain for-
mula. The forward paths will touch all the loops, and a suitable signal-flow graph real-
ization of Equation (3.46) is shown in Figure 3.11(a). The forward-path factors are
bs/s, by/s?, by/s>, and by/s* as required to provide the numerator of the transfer func-
tion. Recall that Mason’s signal-flow gain formula indicates that the numerator of the
transfer function is simply the sum of the forward-path factors. This general form of a
signal-flow graph can represent the general transfer function of Equation (3.46) by
utilizing n feedback loops involving the a,, coefficients and m forward-path factors in-
volving the b,, coefficients. The general form of the flow graph state model and the
block diagram model shown in Figure 3.11 is called the phase variable canonical form.

The state variables are identified in Figure 3.11 as the output of each energy stor-
age element, that is, the output of each integrator. To obtain the set of first-order differ-
ential equations representing the state model of Equation (3.46), we will introduce a
new set of flow graph nodes immediately preceding each integrator of Figure 3.11(a)
[5, 6]. The nodes are placed before each integrator, and therefore they represent the
derivative of the output of each integrator. The signal-flow graph, including the added
nodes, is shown in Figure 3.12. Using the flow graph of this figure, we are able to obtain
the following set of first-order differential equations describing the state of the model:

Xy = X, ;Yz = X3, /‘Y3 = X4,
X4 = TQpXy T 41X T QaX3 — A3Xy + u. (347)

In this equation, x,, x5, . .. x,, are the n phase variables.
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FIGURE 3.11
Model for Gfs)

of Equation (3.46)
in the phase
variable format.
{a) Signal-flow
graph. {b) Block
diagram.

FIGURE 3.12
Flow graph of

Figure 3.11 with
nodes inserted.
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The block diagram model can also be constructed directly from Equation (3.46).
Define the intermediate variable Z(s) and rewrite Equation (3.46) as

_ Y(s) _ b3s3 + bys® + bys + by Z(s)
U(s) 5"+ a8 + ays® + ays + ap Z(s)

Notice that, by multiplying by Z(s)/Z(s), we do not change the transfer function,
G(s). Equating the numerator and denominator polynomials yields

Y(s) = [bss® + bys® + bys + by Z(s)
and
U(s) = [s* + as5® + ars? + ays + aglZ(s).

Taking the inverse Laplace transform of both equations yields the differential
equations

d’ 2 d
y=b3?it_§+bzﬂ+bl

Z
d[z . + byz

dr
and

d*z d3z d*z dz
= _d 1 + a3—d 3 + ap + a;— + apz.
t t

" ar T Mar
Define the four state variables as follows:

X1 =2
x2=.i¢1=2

I
ai

.X'4—_—.k3

Then the differential equation can be written equivalently as

kl = X3,
XZ = X3,
..Y3 = X4,
and
X4 = —QgX) — a1Xy — X3 — A3xy + U,

and the corresponding output equation is
y= ngl + bIX2 + b2X3 + b3X4.

The block diagram model can be readily obtained from the four first-order differential
equations and the output equation as illustrated in Figure 3.11(b).
Furthermore, the output is simply

y([) = buxl + b1X2 + bzX3 + b3X4. (348)
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In matrix form, we can represent the system in Equation (3.46) as

X = Ax + Bu, (3.49)
or
Xy 0 1 0 0 || x 0
gt- 2 = 3 g (’) (1) Z + gu(t). (3.50)
X4 —ay, —a; —a, —a;]|| x4 1
The output is then
X1
W =Cx=b b b b5 (351)
X4

The graphical structures of Figure 3.11 are not unique representations of Equa-
tion (3.46); another equally useful structure can be obtained. A flow graph that rep-
resents Equation (3.46) equally well is shown in Figure 3.13(a). In this case, the
forward-path factors are obtained by feeding forward the signal U(s). We will call this
model the input feedforward canonical form.

Then the output signal y(¢) is equal to the first state variable x;(¢). This flow graph
structure has the forward-path factors by/s*, b/s?, by/s?, bsy/s, and all the forward
paths touch the feedback loops. Therefore, the resulting transfer function is indeed
equal to Equation (3.46).

Associated with the input feedforward format, we have the set of first-order
differential equations

;Yl = —azX) + X + b_;u, ,i'z = —ayx; + x3 + bzll,
—apXq + b()u. (3.52)

;Y3 =~ X + X4 + bllt, and ;Y4

Thus, in matrix form, we have

-a3; 1 0 0 bs

dx |—-a, 0 1 0 by

it |-a, 0 0 1 X + by u(t) (3.53)
—a, 0 0 O by

and
y@&)=[1 0 0 O]x + [0]u(r).

Although the input feedforward canonical form of Figure 3.13 represents the same
transfer function as the phase variable canonical form of Figure 3.11, the state vari-
ables of each graph are not equal. Furthermore we recognize that the initial condi-
tions of the system can be represented by the initial conditions of the integrators,
x1(0), x5(0),..., x,(0). Let us consider a control system and determine the state dif-
ferential equation by utilizing the two forms of flow graph state models.
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» Yis)

(b)

FIGURE 3.13 (a) Alternative flow graph state model for Equation (3.46). This model is called the
input feedforward canonical form. (b) Block diagram of the input feedforward canonical form.

EXAMPLE 3.2 Two state variable models
A single-loop control system is shown in Figure 3.14. The closed-loop transfer
function of the system is

Y(s) 257 +85+6
U(s) s>+ 85>+ 165+ 6

T(s) =
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FIGURE 3.15
(a) Phase variable
flow graph state
model for T{s).

{b) Block diagram
for the phase
variable canonical
form.
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Multiplying the numerator and denominator by s™*, we have

_Y(s) 25T+ 872+ 65
U(G) 1+ 8!+ 1652+ 657

T(s) (3.54)

The first model is the phase variable state model using the feedforward of the
state variables to provide the output signal. The signal-flow graph and block diagram
are shown in Figures 3.15(a) and (b), respectively. The state differential equation is

0 1 0 0
x=| 0 0 1 |x + | 0 |us), (3.55)
-6 —-16 -8 1
and the output is
X1
ygy=106 8 2]| x| (3.56)
X3

¥(s)

(b)
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(a)

Y

A4

> Y(s)

U(s)

A 4
=)}
++
1

FIGURE 3.16

(a) Alternative flow
graph state model
for T(s) using the
input feedforward 6 |
canonical form.

{b) Block diagram

model. (b)

The second model uses the feedforward of the input variable, as shown in
Figure 3.16. The vector differential equation for the input feedforward model is

-8 1 0 2
x=|-16 0 1|x+|8 [u®), (3.57)
-6 0 0 6

and the outputis y(t) = x,(¢). m

We note that it was not necessary to factor the numerator or denominator polyno-
mial to obtain the state differential equations for the phase variable model or the input
feedforward model. Avoiding the factoring of polynomials permits us to avoid the
tedious effort involved. Both models require three integrators because the system is
third order. However, it is important to emphasize that the state variables of the state
model of Figure 3.15 are not identical to the state variables of the state model of Figure
3.16. Of course, one set of state variables is related to the other set of state variables by
an appropriate linear transformation of variables. A linear matrix transformation is
represented by z = Mx, which transforms the x-vector into the z-vector by means of
the M matrix (see Appendix E on the MCS website). Finally, we note that the transfer

CQ function of Equation (3.41) represents a single-output linear constant coefficient
systemn; thus, the transfer function can represent an nth-order differential equation
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d"y d'ly d"u d" 'u

}F + a,, d[_—n—] + -0+ au)’([) = —dtm + bm_]_dtm_l + - + bgu(l'). (358)
Accordingly, we can obtain the # first-order equations for the nth-order differential
equation by utilizing the phase variable model or the input feedforward model of this
section.

3.5 ALTERNATIVE SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS

FIGURE 3.17

A block diagram
model of an open-
foop DC motor
control with velocity
as the output.

Often the control system designer studies an actual control system block diagram that
represents physical devices and variables. An example of a model of a DC motor with
shaft velocity as the output is shown in Figure 3.17 [9]. We wish to select the physical
variables as the state variables. Thus, we select: x; = y(¢), the velocity output; x, = i(t),
the field current; and the third state variable, x3, is selected to be x3 = %r(l) - %u(t),
where u(f) is the field voltage. We may draw the models for these physical variables, as
shown in Figure 3.18. Note that the state variables x;, x,, and x3 are identified on the
models. We will denote this format as the physical state variable model. This model is
particularly useful when we can measure the physical state variables. Note that the
model of each block is separately determined. For example, note that the transfer

Controller Motor and load
Field Field .
voltage 1 current 6 Velocity
+1
Ris) —>|  G(5) = 28D > > > ¥(s)

s+5 Uts) e s+ 2 i(s) g s+3

Y(s)

R(s)

(b)

FIGURE 3.18 (a) The physical state variable signal-flow graph for the block diagram of Figure 3.17.
(b} Physical state block diagram.
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function for the controller is

U(s)

RG) (s) =

5(s+1)_~5+55‘l
s+5 1+ 55V

and the flow graph between R(s) and U(s) represents G.(s).
The state variable differential equation is directly obtained from Figure 3.18 as

-3 6 0 0
X = 0 —2 =20 |x+ |5 | (3.59)
0 0 -5 1
and
y=[1 0 0] (3.60)

A second form of the model we need to consider is the decoupled response
modes. The overall input—output transfer function of the block diagram system
shown in Figure 3.17 is

Z(s_) — T(s) = 30(s + 1) _ q(s)
R(s) () = (s+5)(s+2)(s+3) (5= s)(s— 8)(s — s3)

and the transient response has three modes dictated by sy, s,, and s3. These modes
are indicated by the partial fraction expansion as

Y (s) kq ks ks
= = + + :
Re) 1O =3 5t 2 753

(3.61)

Using the procedure described in Chapter 2, we find that &, = —20, k£, = —10,
and k3 = 30. The decoupled state variable model representing Equation (3.61) is
shown in Figure 3.19. The state variable matrix differential equation is

-5 0 0 1
X = 0 -2 0fx+11|0
0 0 -3 1
and
¥t) =[-20 —10 30]x. (3.62)
Note that we chose x; as the state variable associated with s; = 5, x, associated
with s, = —2, and x; associated with s; = —3, as indicated in Figure 3.19. This choice

of state variables is arbitrary; for example, x; could be chosen as associated with the
factor s + 2.

The decoupled form of the state differential matrix equation displays the dis-
tinct model poles —s;, —s,,..., —s,, and this format is often called the diagonal
canonical form. A system can always be written in diagonal form if it possesses
distinct poles; otherwise, it can only be written in a block diagonal form, known as
the Jordan canonical form [24].
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v

20

Y(s) R(s) =t

(a) (b)

FIGURE 3.19 (a) The decoupled state variable flow graph model for the system shown in block
diagram form in Figure 3.17. (b) The decoupled state variable block diagram model.

EXAMPLE 3.3 Spread of an epidemic disease

The spread of an epidemic disease can be described by a set of differential equa-
tions. The population under study is made up of three groups, x,, x,, and x3, such
that the group x, is susceptible to the epidemic disease, group x, is infected with the
disease, and group x; has been removed from the initial population. The removal of
x3 will be due to immunization, death, or isolation from x,. The feedback system can
be represented by the following equations:

dxl

— = —ax; — Bx, + uy(t),
a ax; — Bx; 1(8)
dxz

— = Bx; — + 15(t),

dr Bx YX2 0]

dX3 n

— = ax X5,

dt 1T Y2

The rate at which new susceptibles are added to the population is equal to u;(¢),
and the rate at which new infectives are added to the population is equal to u,(z). For a
closed population, we have u;(r) = 1u,(¢) = 0. It is interesting to note that these equa-
tions could equally well represent the spread of information or a new idea through a
population.

The physical state variables for this system are x;, x,, and x;. The model that
represents this set of differential equations is shown in Figure 3.20. The vector
differential equation is equal to

X, —a —B 0| x 1 0
Al=l 8 =y ollm|+lo 1 i) | (3.63)
dt uy(t)

X3 @ vy 0]l x;3 0 0



FIGURE 3.20
Model for the
spread of an
epidemic disease.
(a) Signal-flow
graph. (b) Block
diagram model.
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(b)

By examining Equation (3.63) and the models depicted in Figure 3.20, we find that the
state variable x3 is dependent on x; and x, and does not affect the variables x; and x,.

Let us consider a closed population, so that u;(f) = u,(¢t) = 0. The equilibri-
um point in the state space for this system is obtained by setting dx/dt = 0. The
equilibrium point in the state space is the point at which the system settles in the
equilibrium, or rest, condition. Examining Equation (3.63), we find that the equi-
librium point for this system is x; = x, = 0. Thus, to determine whether the epidemic
disease is eliminated from the population, we must obtain the characteristic equation
of the system. From the signal-flow graph shown in Figure 3.20, we obtain the flow
graph determinant

A(s) =1 — (—as™! — ys7! = BE72) + (ays™), (3.64)
where there are three loops, two of which are nontouching. Thus, the characteristic
equation is

g(s) = s?A(s) = s> + (@ + y)s + (ay + %) = 0. (3.65)
The roots of this characteristic equation will lie in the left-hand s-plane when

@ + y > 0and ay + 82 > 0. When roots are in the left-hand plane, we expect the
unforced response to decay to zero as¢t — 0o, m
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FIGURE 3.21

An inverted
pendutum balanced
on a person’s hand
by moving the hand
to reduce 0(t).
Assume, for ease,
that the pendulum
rotates in the x-y
plane.

FIGURE 3.22
Acartand an
inverted pendulum.
The pendulum is
constrained to pivot
in the vertical plane.
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EXAMPLE 3.4 Inverted pendulum control

The problem of balancing a broomstick on a person’s hand is illustrated in Figure 3.21.
The only equilibrium condition is 6(t) = 0 and d6/d¢ = 0. The problem of balancing a
broomstick on one’s hand is not unlike the problem of controlling the attitude of a mis-
sile during the initial stages of launch. This problem is the classic and intriguing problem
of the inverted pendulum mounted on a cart, as shown in Figure 3.22. The cart must be
moved so that mass /n is always in an upright position. The state variables must be ex-
pressed in terms of the angular rotation 6(t) and the position of the cart y(¢). The differ-
ential equations describing the motion of the system can be obtained by writing the sum
of the forces in the horizontal direction and the sum of the moments about the pivot
point [2, 3, 10,23]. We will assume that M >> sn and the angle of rotation 6 is small so
that the equations are linear. The sum of the forces in the horizontal direction is

My + mlf — u(t) = 0, (3.66)

where u(f) equals the force on the cart, and / is the distance from the mass m to the
pivot point. The sum of the torques about the pivot point is

mly + ml?0 — mlgb = 0. (3.67)

The state variables for the two second-order equations are chosen as (xy, x5, X3, X4) =
(y,7,0,0). Then Equations (3.66) and (3.67) are written in terms of the state
variables as

My, + mixy —u(t) =0 (3.68)

u(t)
Hand movement

Mass m

M b 1(1)

Frictionless
surface

T e s d — :

(o)— >

B it e e ekt < < 4 e, ot B
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and
.‘¥2 + l..X4 — X3 = O (3.69)

To obtain the necessary first-order differential equations, we solve for /x, in Equa-
tion (3.69) and substitute into Equation (3.68) to obtain

Mx, + mgxs = u(t), (3.70)
since M >> m. Substituting x, from Equation (3.68) into Equation (3.69), we have
Mixy — Mgxs + u(t) = 0. (3.71)
Therefore, the four first-order differential equations can be written as
. . mg 1
Xy = X, Xy = — X + ﬁu(t),
t = 1 and kg = Sxs — —u() (3.72)
X3 X3, I 4 ] X3 Ml . )
Thus, the system matrices are
0 1 0 0 0
0 0 -mg/M O 1/M
A= , B = 3.73
o0 0 1 0 (3.73) =
0 0 g/! 0 =1/(M1)

3.6 THE TRANSFER FUNCTION FROM THE STATE EQUATION

Given a transfer function G(s), we can obtain the state variable equations using the
signal-flow graph model. Now we turn to the matter of determining the transfer
function G(s) of a single-input, single-output (SISO) system. Recalling Equations
(3.16) and (3.17), we have

Xx = Ax + Bu (3.74)

and
y=Cx + Du (3.75)

where y is the single output and « is the single input. The Laplace transforms of
Equations (3.74) and (3.75) are

sX(s) = AX(s) + BU(s) (3.76)
and
Y(s) = CX(s) + DU(s) (3.77)

where B is an n X 1 matrix, since u is a single input. Note that we do not include ini-
tial conditions, since we seek the transfer function. Rearranging Equation (3.76), we
obtain

(s — A)X(s) = BU(s).
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Since [sI — A]™! = ®(s), we have
X(s) = ®(s)BU(s).
Substituting X(s) into Equation (3.77), we obtain
Y(s) = [C®(s)B + DU(s). (3.78)
Therefore, the transfer function G(s) = Y(s)/U(s) is

G(s) = C®(s)B + D (3.79)

EXAMPLE 3.5 Transfer function of an RLC circuit

Let us determine the transfer function G(s) = Y(s)/U(s) for the RLC circuit of
Figure 3.4 as described by the differential equations (see Equations 3.18 and 3.19):

0o =L 1
% = Cls|Clu
1 -R
L
y=1[0 R]x
Then we have
s 1
C
[sT - A] = -1 r |l
L L
Therefore, we obtain
(s N _fi) -1
1 L C
= I _ -1 = —
®(s) = [sI — A] AG) 1 |
3 s
where
A(s)—sz+—s+i
L LC
Then the transfer function is
s + z 1 l
G(s) =10 R]| A(s) CA(s) || C
1 s 0

LAGs)  A(s)
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_RALC) __ R/(LC)
AGs) s+ %s + ZIE

which agrees with the result Equation (3.40) obtained from the flow graph model
using Mason’s signal-flow gain formula. m

3.7 THE TIME RESPONSE AND THE STATE TRANSITION MATRIX

It is often desirable to obtain the time response of the state variables of a control sys-
tem and thus examine the performance of the system. The transient response of a
system can be readily obtained by evaluating the solution to the state vector differ-
ential equation. In Section 3.3, we found that the solution for the state differential
equation (3.26) was

x(¢) = ®(0)x(0) + /0 rc:»(z — 7)Bu(7) dr. (3.80)

Clearly, if the initial conditions x(0), the input u(7), and the state transition ma-
trix ®(¢) are known, the time response of x(#) can be numerically evaluated. Thus
the problem focuses on the evaluation of ®(¢), the state transition matrix that
represents the response of the system. Fortunately, the state transition matrix can
be readily evaluated by using the signal-flow graph techniques with which we are
already familiar.

Before proceeding to the evaluation of the state transition matrix using signal-
flow graphs, we should note that several other methods exist for evaluating the
transition matrix, such as the evaluation of the exponential series

0 ka

®d(t) = exp(At) = /\-=07

(3.81)
in a truncated form [2, 8]. Several efficient methods exist for the evaluation of ®(t)
by means of a computer algorithm [21].

In Equation (3.25), we found that ®(s) = [sI — A]™". Therefore, if ®(s) is ob-
tained by completing the matrix inversion, we can obtain ®(#) by noting that
®(r) = £71{®(s)}. The matrix inversion process is generally unwieldy for higher-
order systems.

The usefulness of the signal-flow graph state model for obtaining the state tran-
sition matrix becomes clear upon consideration of the Laplace transformation
version of Equation (3.80) when the input is zero. Taking the Laplace transforma-
tion of Equation (3.80) when u(7) = 0, we have

X(s) = ®(s)x(0). (3.82)

Therefore, we can evaluate the Laplace transform of the transition matrix from the
signal-flow graph by determining the relation between a state variable X(s) and the
state initial conditions [x,(0), x5(0),..., x,(0)]. Then the state transition matrix is
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simply the inverse transform of ®(s); that is,

®() = LHB(s)). (3.83)

The relationship between a state variable X;(s) and the initial conditions x(0) is
obtained by using Mason’s signal-flow gain formula. Thus, for a second-order system,
we would have

Xi(s) = b11(s)x1(0) + d12(s)x2(0),
Xo(s) = $21(5)x1(0) + daa(s)x2(0), (3.84)

and the relation between X,(s) as an output and x,;(0) as an input can be evaluated
by Mason’s signal-flow gain formula. All the elements of the state transition matrix,
¢;i(s), can be obtained by evaluating the individual relationships between X;(s) and
x(0) from the state model flow graph. An example will illustrate this approach to de-
termining the transition matrix.

EXAMPLE 3.6 Evaluation of the state transition matrix

We will consider the RLC network of Figure 3.4. We seek to evaluate ®(s) by (1)
determining the matrix inversion ®(s) = [sI — A]™! and (2) using the signal-flow
diagram and Mason’s signal-flow gain formula.

First, we determine ®(s) by evaluating ®(s) = [sI — A]™'. We note from Equa-
tion (3.18) that

Then
s 2
s - A]= [_] 4+ 3} (3.85)
The inverse matrix is
1 [s+3 =2
) = — -1 - -
D(s) = [sI — A] A(s)li 1 s :|, (3.86)

where A(s) = s(s + 3) +2 =52+ 35 + 2 = (s + 1)(s + 2).

The signal-flow graph state model of the RLC network of Figure 3.4 is shown in
Figure 3.8. This RLC network, which was discussed in Sections 3.3 and 3.4, can be
represented by the state variables x; = v, and x, = i;. The initial conditions, x;(0)
and x,(0), represent the initial capacitor voltage and inductor current, respectively.
The flow graph, including the initial conditions of each state variable, is shown in
Figure 3.23. The initial conditions appear as the initial value of the state variable at
the output of each integrator.

To obtain ®(s), we set U(s) = 0. When R = 3, L = 1, and C = 1/2, we obtain
the signal-flow graph shown in Figure 3.24, where the output and input nodes are
deleted because they are not involved in the evaluation of ®(s). Then, using Mason'’s



FIGURE 3.23
Flow graph of the
RLC network.

FIGURE 3.24
Flow graph of the
RLC network with
Us) = 0.
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signal-flow gain formula, we obtain X;(s) in terms of x,(0) as
1+ Ay(s) - [x,(0)/s]
A(s) |

where A(s) is the graph determinant, and A(s) is the path cofactor. The graph
determinant is

Xi(s) = 3.87)

A(s) =1 + 357! + 2572

The path cofactor is A; = 1 + 357! because the path between x;(0) and X;(s) does
not touch the loop with the factor —3s!. Therefore, the first element of the transition
matrix is

(1 +3sH/s)  s+3
T+3571 42572 s2+3s+2

The element ¢;,(s) is obtained by evaluating the relationship between Xi(s) and
x,(0) as

on(s) = (3.88)

(=257)(x,(0)/s)

Xi(s) = .
109 = T3t 4 g2
Therefore, we obtain
ils) = 5——— (3.89)
12 s2+3s+2 ’
Similarly, for ¢,,(s) we have
(sH(1/s) 1
dn(s) = = (3.90)

1+357+252 2435 +2

Finally, for ¢,,(s), we obtain
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FIGURE 3.25
Time response
of the state
variables of the
RLC network for
x1(0) = x(0) = 1.

FIGURE 3.26
Trajectory of the
state vector in the
(x4, X2)-plane.
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1(1/s) _ s
14+3s"+267%2 243542

dn(s) = (3.91)

Therefore, the state transition matrix in Laplace transformation form is

B(s) = [(s +3)/(s2+ 35 +2) ~2/(s?+ 3s + 2)}

1/(s* + 35 + 2) s/(s2 + 35 + 2) (3.92)

The factors of the characteristic equation are (s + 1) and (s + 2), so that
(s + 1)(s+2)=s+3s+ 2.

Then the state transition matrix is

(e’ —e™) (=27 + 26—21)]. (3.93)

q)(t) = ‘92_1{(1)(5)} = l:(e—l _ e—Zt) (_e—l + 26—2’)

The evaluation of the time response of the RLC network to various initial condi-
tions and input signals can now be evaluated by using Equation (3.80). For example,
when x;(0) = x,(0) = 1 and u(¢) = 0, we have

.Y](t) _ 1 _ €_2r
[xz (IJ = CI>(t)|: 1] - L_Z'} (3.94)

The response of the system for these initial conditions is shown in Figure 3.25. The tra-
jectory of the state vector [x(¢), x5(¢)] on the (xy, x;)-plane is shown in Figure 3.26.
The evaluation of the time response is facilitated by the determination of the state
transition matrix. Although this approach is limited to linear systems, it is a powerful
method and utilizes the familiar signal-flow graph to evaluate the transition matrix. m
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scientific instruments pointing up will see deep space, as desired. To achieve earth-
pointing attitude, the spacecraft needs an attitude hold control system capable of
applying the necessary torques. The torques are the inputs to the system, in this case,
the space station. The attitude is the output of the system. The International Space
Station employs control moment gyros and reaction control jets as actuators to con-
trol the attitude. The control moment gyros are momentum exchangers and are
preferable to reaction control jets because they do not expend fuel. They are actua-
tors that consist of a constant-rate flywheel mounted on a set of gimbals, The fly-
whee] orientation is varied by rotating the gimbals, resulting in a change in direction
of the flywheel angular momentum. In accord with the basic principle of conserva-
tion of angular momentum, changes in control moment gyro momentum must be
transferred to the space station, thereby producing a reaction torque. The reaction
torque can be employed to control the space station attitude. However, there is a
maximum limit of control that can be provided by the control moment gyro. When
that maximum is attained, the device is said to have reached saturation. So, while
control moment gyros do not expend fuel, they can provide only a limited amount
of control. In practice, it is possible to control the attitude of the space station while
simultaneously desaturating the control moment gyros.

Several methods for desaturating the control moment gyros are available, but
using existing natural environmental torques is the preferred method because it mini-
mizes the use of the reaction control jets. A clever idea is to use gravity gradient
torques (which occur naturally and come free of charge) to continuously desaturate
the momentum exchange devices. Due to the variation of the earth’s gravitational
field over the International Space Station, the total moment generated by the gravita-
tional forces about the spacecraft’s center of mass is nonzero. This nonzero moment is
called the gravity gradient torque. A change in attitude changes the gravity gradient
torque acting on the vehicle. Thus, combining attitude control and momentum man-
agement becomes a matter of compromise.

The elements of the design process emphasized in this example are illustrated in
Figure 3.28. We can begin the modeling process by defining the attitude of the space
station using the three angles, 8, (the pitch angle), 8; (the yaw angle), and 8, (the roll
angle). These three angles represent the attitude of the space station relative to the
desired earth-pointing attitude. When 8; = 8, = 8; = 0, the space station is oriented
in the desired direction. The goal is to keep the space station oriented in the desired
attitude while minimizing the amount of momentum exchange required by the con-
trol momentum gyros (keeping in mind that we want to avoid saturation). The con-
trol goal can be stated as

Control Goal
Minimize the roll, yaw, and pitch angles in the presence of persistent external dis-
turbances while simultaneously minimizing the control moment gyro momentum.

The time rate of change of the angular momentum of a body about its center of
mass is equal to the sum of the external torques acting on that body. Thus the atti-
tude dynamics of a spacecraft are driven by externally acting torques. The main
external torque acting on the space station is due to gravity. Since we treat the
earth as a point mass, the gravity gradient torque [30] acting on the spacecraft is
given by
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attitude motion. The aerodynamic torque acting on the space station is generated by
the atmospheric drag force that acts through the center of pressure. In general, the cen-
ter of pressure and the center of mass do not coincide, so aerodynamic torques develop.
In low earth orbit, the aerodynamic torque is a sinusoidal function that tends to oscil-
late around a small bias. The oscillation in the torque is primarily a result of the earth’s
diurnal atmospheric bulge. Due to heating, the atmosphere closest to the sun extends
further into space than the atmosphere on the side of the earth away from the sun. As
the space station travels around the earth (once every 90 minutes or so), it moves
through varying air densities, thus causing a cyclic aerodynamic torque. Also, the space
station solar panels rotate as they track the sun. This results in another cyclic compo-
nent of aerodynamic torque. The aerodynamic torque is generally much smaller than
the gravity gradient torque. Therefore, for design purposes we can ignore the atmos-
pheric drag torque and view it as a disturbance torque. We would like the controller to
minimize the effects of the aerodynamic disturbance on the spacecraft attitude.

Torques caused by the gravitation of other planetary bodies, magnetic fields,
solar radiation and wind, and other less significant phenomena are much smaller
than the earth’s gravity-induced torque and aerodynamic torque. We ignore these
torques in the dynamic model and view them as disturbances.

Finally, we need to discuss the control moment gyros themselves. First, we will
lump all the control moment gyros together and view them as a single source of torque.
We represent the total control moment gyro momentum with the variable h. We need
to know and understand the dynamics in the design phase to manage the angular mo-
mentum. But since the time constants associated with these dynamics are much shorter
than for attitude dynamics, we can ignore the dynamics and assume that the control
moment gyros can produce precisely and without a time delay the torque demanded by
the control system.

Based on the above discussion, a simplified nonlinear model that we can use as
the basis for the control design is

® = RQ +n, (3.96)
I0 = -0 X1Q + 3n% X Ie — u, (3.97)
h=-Qxh+u, (3.98)

where

! cos §3 —cos B sin f; sin 0, sin O3

R(®) = cos 0, —sin 64
cos 85 .
) 0 sin ; cos 3  cos 6 cos 0
0 (O] 61 U
n=(n|, Q=lw|, O=|06,| u=|u|
0 w3 63 us

where u is the control moment gyro input torque, £ in the angular velocity, I is the
moment of inertia matrix, and n is the orbital angular velocity. Two good references
that describe the fundamentals of spacecraft dynamic modeling are [26] and [27].
There have been many papers dealing with space station control and momentum
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management. One of the first to present the nonlinear model in Equations
(3.96-3.98) is Wie et al. [28]. Other related information about the model and the
control problem in general appears in [29-33]. Articles related to advanced control
topics on the space station can be found in [34-40]. Researchers are developing non-
linear control laws based on the nonlinear model in Equations (3.96)-(3.98). Sever-
al good articles on this topic appear in [41-50].

Equation (3.96) represents the kinematics—the relationship between the Euler
angles, denoted by ®, and the angular velocity vector, (2. Equation (3.97) represents
the space station attitude dynamics. The terms on the right side represent the sum of
the external torques acting on the spacecraft. The first torque is due to inertia cross-
coupling. The second term represents the gravity gradient torque, and the last term is
the torque applied to the spacecraft from the actuators. The disturbance torques (due
to such factors as the atmosphere) are not included in the model used in the design.
Equation (3.98) represents the control moment gyro total momentum.

The conventional approach to spacecraft momentum management design is to de-
velop a linear model, representing the spacecraft attitude and control moment gyro
momentum by linearizing the nonlinear model. This linearization is accomplished by a
standard Taylor series approximation. Linear control design methods can then be readily
applied. For linearizalion purposes we assume that the spacecraft has zero products of
inertia (that is, the inertia matrix is diagonal) and the aerodynamic disturbances are
negligible. The equilibrium state that we linearize about is

0 =20,
0
Q=|-n
0
h=0
and where we assume that
I, 0 0
I = 0 ]2 0
0O 0 I;

In reality, the inertia matrix, I, is not a diagonal matrix. Neglecting the off-diagonal
terms is consistent with the linearization approximations and is a common assumption.
Applying the Taylor series approximations yields the linear model, which as it turns
out decouples the pitch axis from the roll/yaw axis.

The linearized equations for the pitch axis are

6, 0 1 o]le 0
W | =308 0 0| w|+]| -5 |u (3.99)
hy 0 0 0] h 1
where
Azi— 13_ 11
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The subscript 2 refers to the pitch axis terms, the subscript 1 is for the roll axis terms,
and 3 is for the yaw axis terms. The linearized equations for the roll/yaw axes are

6,7 [ o0 noo1 0 0 o] 6]
03 -n 0 0 1 0 0} 6,
oy | _| =3 0 0 —nA; 0 0| o
d)_q 0 0 —IZA3 0 0 0 w3
’}l 0 0 0 0 0 n h1
LAy | | O 0 0 0 -n 0| hs |
- o 0
0 0
1
Y 0 u,
+ b ,
0 _Il [1.13]’ (3.100)
1 0
L0 1]
where
L — T L -
A‘_za and A;=‘132
Consider the analysis of the pitch axis. Define the state-vector as
6(1)
x(6) == | wa(?) |,
(1)

and the output as

y(€) = 6,() =[1 0 Ox().
Here we are considering the spacecraft attitude, 6,(¢), as the output of interest. We

can just as easily consider both the angular velocity, w,, and the control moment gyro
momentum, /5, as outputs. The state variable model is

x = Ax + Bu, (3.101)
y = Cx + Du,
where
0 1 0 0
A=|32%4, 0 0| B=| -]
0 0 0 1

C=[1 0 0}, D=][0},
and where u is the control moment gyro torque in the pitch axis. The solution to the
state differential equation, given in Equation (3.101),is

1

x(t) = ®()x(0) + /@(t - 7)Bu(7) dr,
0
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where
®(1) = exp(Ar) = L7Y(sI — AT}
1 . ) _
= —~V3n* Ayt InT Ayt N mn 0
(e\/?m Azl+e ~) _—_(e n® A, _e\/ .)
2 2V3n? A,
=1 V3nZA
_%_2(6 I Ayt e-Vs,,?Azz) %(e Int Ayt + e“/_—3"zAz!) ol
0 0 1—|

‘We can see that if A, > 0, then some elements of the state transition matrix will have
terms of the form e%, where a > 0. As we shall see (in Chapter 6) this indicates that
our system is unstable. Also, if we are interested in the output, y(¢) = 8,(t), we have

y(1) = Cx(2).
With x(¢) given by

x(t) = ®(£)x(0) + /0 rc1>(r — 1)Bu(r)dr,

it follows that

y(t) = CO()x(0) + fo Cd(t — 7)Bu(r)dr.

The transfer function relating the output Y(s) to the input U(s) is

YO - AYiB = -
G(s -—U(s)—C(sI A)B =

1
12(32 - 3”2A2) '

The characteristic equation is
s? = 3n%A, = (s + VSnZAz)(s - \/3n2A2) = 0.

If A, > 0 (thatis,if /3 > I} ), then we have two real poles—one in the left half-plane
and the other in the right half-plane. For spacecraft with /5 > I}, we can say that an
earth-pointing attitude is an unstable orientation. This means that active control is
necessary.

Conversely, when A, < 0 (thatis, when I; > I3), the characteristic equation has
two imaginary roots at

s = +\V3rA).

This type of spacecraft is marginally stable. In the absence of any control moment
gyro torques, the spacecraft will oscillate around the earth-pointing orientation for
any small initial deviation from the desired attitude. m
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provides an output voltage 2,, where v, is a function of v,. The voltage v, is connected
to the field of the motor. Let us assume that we can use the linear relationship

dv
m = “[kzd_[l + k3vl}

and elect to use k, = 0.1 and k3 = 0 (velocity feedback).

'The inertia of the motor and pulleyis J = Jyoor + Jpuitey- We plan to use a moderate-
DC motor. Selecting a typical 1/8-hp DC motor, we find that J/ = 0.01 kg m?, the field
inductance is negligible, the field resistance is R = 2 (), the motor constant is
K,, = 2Nm/A, and the motor and pulley friction is b = (.25 Nms/rad. The radius of
the pulley is 7 = 0.15 m. The system parameters are summarized in Table 3.1.

We now proceed to write the equations of the motion for the system; note that
y = r6,. Then the tension from equilibrium 7 is

L =k(ro —r9,) = k(re — y).

The tension from equilibrium 7 is

L= k(y — r9).
The net tension at the mass m is
a'zy
T, — 1L =m—~ 3.102
1 2= m dr ( )
and
T — 15 =k(r0 —y) — k(y — r0) = 2k(r6 — y) = 2kx,, (3.103)

where the first state variable is x; = r8 — y. Let the second state variable be
X, = dy/dt, and use Equations (3.102) and (3.103) to obtain

dy _ 2k

& m X]. (3.104)
The first derivative of x; is
dx, de dy
A =R - .10
PP £ B (3.105)

Table 3.1 Parameters of Printing Device

Mass m = 02kg
Light sensor ki =1V/m
Radius r=015m
Motor
Inductance L=0
Friction b = 0.25Nms/rad
Resistance R=2Q
Constant K, =2Nm/A

Inertia J = Jpowor T Jputey: / = 0.01 kg m?
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when we select the third state variable as x; = df/dt. We now require a differential
equation describing the motor rotation. When L = (), we have the field current
i = v,/ R and the motor torque 7,, = K,,i. Therefore,

and the motor torque provides the torque to drive the belts plus the disturbance or
undesired load torque, so that

T.=T+T,.

The torque T drives the shaft to the pulley, so that

d’0 de
T=Jdt2 +b-E+r(7{—7i).
Therefore,
dry _ d%
dr  di¥
Hence,
@y _T,-T b 2k
dt 7 A
where
K dy
I, = ?"vg and v, = _k1k25 = —kikax.

Thus, we obtain

dx _Kmklkz b 2kr 7,;
Gy _“hee B L _ 4 3.106
dt JR T R T ATy (3.106)

Equations (3.104)—(3.106) are the three first-order differential equations required to
describe this system. The matrix differential equation is

0 -1 r

0 (3.107)
. % 0 0 0
X = m X + 1 Ty
—2kr _K,nklkz :Q 7

J JR J



FIGURE 3.31
Printer belt drive.
(a) Signal-flow
graph. (b) Block
diagram model.
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The signal-flow graph and block diagram models representing the matrix differential
equation are shown in Figure 3.31, where we include the identification of the node for
the disturbance torque 7.

We can use the flow graph to determine the transfer function X{(s)/7;(s). The
goal is to reduce the effect of the disturbance 7T, and the transfer function will show
us how to accomplish this goal. Using Mason’s signal-flow gain formula, we obtain

L
Xi(s) _ J
7:1(3) 1 - (L1 + L2 + L3 + L4) + LILZ,
where
_=b =2k =2k’ _ —2kK,kikyrs™
Li=—ps Ly=— s Ly=—"— and L,= mIR

_kal
(a)
. Tm K, L Vv, feok s g X> _l_ P %
R | 2T s | m
. ]t RN + X 1 N
T A8 7 3 > r 5 ‘ » X\(s)
L4
J
2rf,_
VBN

(b)
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FIGURE 3.32
Printer belt drive
block diagram
reduction.
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We therefore have

X(s) ‘(5)"‘

Ti(s)

n J Jm

s+ (2>S2 w2k 2r s+ 2y 2K kskor |
J JmR

We can also determine the closed-loop transfer function using block diagram reduction
methods, as illustrated in Figure 3.32. Remember, there is no unique path to follow in re-
ducing the block diagram; however, there is only one correct solution in the end. The

original block diagram is shown in Figure 3.31(b). The result of the

first step is shown in

Figure 3.32(a), where the upper feedback loop has been reduced to a single transfer

2ka"ﬁkl &
mRs |
mrs _ _
Tt ms? + 2k > X
(a)
% |,
] <
2kK111k2kl <
mRs N
mrs
- - X\(s
®) Tyts) ms? + 2k 1
b + knrs
J o Jms? + 2k)
kK, koky P
mRs N
(c) B
s ‘ mrs > X.(s)
ols) - Jms? + mbs® + 2k(J + mrd)s + 2bk A
—(r/d)s
(@) Tt == T /0152 + (2kfm + ke /s + 2bkJm) + 20kK ek JomdR) [ X1
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function. The second step illustrated in Figure 3.32(b) then reduces the two lower feed-
back loops to a single transfer function. In the third step shown in Figure 3.32(c), the lower
feedback loop is closed and then the remaining transfer functions in series in the lower
loop are combined. The final step closed-loop transfer function is shown in Figure 3.32(d).
Substituting the parameter values summarized in Table 3.1, we obtain

Xi(s) —15s
Ti(s)  s* + 25s% + 14.5ks + 1000k(0.25 + 0.15k)’

(3.108)

We wish to select the spring constant k and the gain k;, so that the state variable x; will
quickly decline to a low value when a disturbance occurs. For test purposes, consider a
step disturbance T;(s) = a/s. Recalling that x; = r6 — y, we thus seek a small magni-
tude for x; so that y is nearly equal to the desired r6. If we have a perfectly stiff belt
with k — oo, then y = r@ exactly. With a step disturbance, T;(s) = a/s, we have

—15a
X.(s) = : 3.109
1) s3 + 25s% + 14.5ks + 1000k(0.25 + 0.15k,) ( )
The final value theorem gives
,ll,%xl(t) = gl_r:%sX](s) =0, (3.110)

and thus the steady-state value of x;(¢) is zero. We need to use a realistic value for k
in the range 1 = k =< 40. For an average value of X = 20 and &, = 0.1, we have

_ —15a

"~ s% + 2552 + 2905 + 5300

B —~15a

(s + 22.56)(s + 2.44s + 234.93)

X(s)

(3.111)

The characteristic equation has one real root and two complex roots. The partial frac-
tion expansion yields

X(s) A . Bs + C
a s +2256 (s + 1.22)* + (15.28)*°

(3.112)

where we find A = —0.0218, B = 0.0218, and C = —0.4381. Clearly with these
small residues, the response to the unit disturbance is relatively small. Because 4 and
B are small compared to C, we may approximate X(s) as

X(8) _ —0.4381
a (s + 1227+ (15283

Using Table 2.3, we obtain

11
x17() = —0.0287¢ %% sin 15.281. (3.113)
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The actual response of x; is shown in Figure 3.33. This system will reduce the ef-
fect of the unwanted disturbance to a relatively small magnitude. Thus we have
achieved our design objective. m

3.9 ANALYSIS OF STATE VARIABLE MODELS USING CONTROL DESIGN SOFTWARE

FIGURE 3.33
Response of x;(t)
to a step
disturbance: peak
value = —0.0325.

The time-domain method utilizes a state-space representation of the system model,
given by

Xx=Ax+Bu and y=Cx+ Du (3.114)

The vector x is the state of the system, A is the constant # X 11 system matrix, B is the
constant n X s input matrix, C is the constant p X »n output matrix,and D is a constant
p X mmatrix. The number of inputs, #, and the number of outputs, p, are taken to be
one, since we are considering only single-input, single-output (SISO} problems.
Therefore y and u are not bold (matrix) variables.

The main elements of the state-space representation in Equation (3.114) are
the state vector x and the constant matrices (A, B, C, D). Two new functions cov-
ered in this section are ss and Isim. We also consider the use of the expm function
to calculate the state transition matrix.

Given a transfer function, we can obtain an equivalent state-space representation
and vice versa. The function tf can be used to convert a state-space representation to a
transfer function representation; the function ss can be used to convert a transfer
function representation to a state-space representation. These functions are shown in
Figure 3.34, where sys_tf represents a transfer function model and sys_ss is a state-
space representation.

For instance, consider the third-order system

Y(s) 252 + 85 + 6
T(s) = == 3 . (3.115)
R(s) s +8s*+16s+6
0.03
0.02
0.01
0
10
—-0.01
-0.02
-0.03
—-0.04
0 0.5 I 1.5 2 2.5 3 35 4 4.5 5
Time (s)
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We can obtain a state-space representation using the ss function, as shown in
Figure 3.35. A state-space representation of Equation (3.115) is given by Equation

(3.114), where

FIGURE 3.34
(a) The ss function.

(b) Linear system
model conversion.

convert.m

% Convert G(s) = (25"2+8s+6)/(s"3+8s"2+165+6)

% to a state-space representation
%

num=[2 8 6]; den=[1 8 16 6}; sys_tf=tf(num,den);

sys_ss=ss(sys_{f);

-8 -4 -15 2
A= 4 0 0, B=|0|
0 1 0 0
C=[1 1 075, and D = [0].
. X = Ax + Bu % = Ax + Bu e
State-space object y=Cx + Du y=Cx+Du Y(s) = G(s)U(s)
‘ r sys_ss=ss(sys_Lf) |
I [ sys_ti=tf(sys_ss) '
sys=ss(A,B,C,D) l T
_ x = Ax + Bu
¥s) = GEUls) y=Cx+ Du
(a) (b)
>>convert
a=
x1 x2 x3
x1 -8 -4 -1.5
x2 4 0 0
x3 0 1 0
b=
ul
x1 2
x2 0
x3 0
C=
x1 x2 x3
y1 1 1 0.75
d=
ul
Al 0

(a)

(b)

FIGURE 3.35 Conversion of Equation (3.115) to a state-space representation. (a) m-file script.

(b) Output printout.
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The state-space representation of the transfer function in Equation (3.115) is depicted
in Figure 3.36.

The state variable representation is not unique. For example, another equally
valid state variable representation is given by

-8 -2 075 0.125
A=[8 0 o0 |\B=| 0 |,C=[16 8 6],D=]0]
0 1 0 0

It is possible that when using the ss function, the state variable representation pro-
vided by your control design software will be different from the above two examples
depending on the specific software and version.

The time response of the system in Equation (3.114) is given by the solution to
the vector integral equation

x(t) = exp(As)x(0) + / exp[A(t — 7)]Bu(r) d7. (3.116)
0

The matrix exponential function in Equation (3.116) is the state transition matrix,
®(t), where (Equation 3.23)

®(1) = exp(Ar).

We can use the function expm to compute the transition matrix for a given time, as
illustrated in Figure 3.37. The expm(A) function computes the matrix exponential. In
contrast, the exp(A) function calculates e for each of the elements a;; € A.

For example, let us consider the RLC network of Figure 3.4 described by the
state-space representation of Equation (3.18) with

0 -2 2
A—[l _3], B—[O:I, C=[1 0], and D =0.

:! 1 i

L1

;I 1 l

L1
R(s) 1|~ 1 [~ 1 |¥3 Y(s)
—_ 2 < :4—»7‘71—-»; > 0.75

=

4 |«
Jj

FIGURE 3.36 Block diagram with x; defined as the leftmost state variable.



FIGURE 3.37
Computing the
state transition
matrix for a given
time, At = dt.
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>>A=[0 -2; 1 -3]; dt=0.2; Phi=expm(A~dt)

Phi =

State transition matrix

0.9671 for a Ar of 0.2 second

0.1484

-0.2968 +——
0.5219

The initial conditions are x;(0) = x,(0) = 1 and the input u(t) = 0. At ¢t = 0.2, the
state transition matrix is as given in Figure 3.37. The state at ¢ = 0.2 is predicted by

the state transition methods to be
X _ 109671 —0.2968 || x; _ 1 0.6703
X3 l—0n | 0.1484 05219 || x5 [,=o [ 0.6703 |
The time response of the system of Equation (3.115) can also be obtained by
using the Isim function. The Isim function can accept as input nonzero initial condi-
tions as well as an input function, as shown in Figure 3.38. Using the Isim function, we
can calculate the response for the RLC network as shown in Figure 3.39.
The state at ¢+ = 0.2 is predicted with the Isim function to be x;(0.2) = x,(0.2) =
0.6703. If we can compare the results obtained by the Isim function and by multiplying
the initial condition state vector by the state transition matrix, we find identical results.

3.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

FIGURE 3.38
The Isim function
for calculating the
output and state
response.

Advanced disks have as many as 5000 tracks per cm. These tracks are typically
1 um wide. Thus, there are stringent requirements on the accuracy of the reader
head position and of the movement from one track to another. In this chapter, we

(1) ¥
System
Arbitrar: .
input ! % = Ax + Bu [ Quiput o
y=Cx + Du
! H
(a)

y(£) = output response at 7 1 = times at which Initial

T: time vector response is conditions

x(r) = state response at ¢ computed (optional)

—

[y, T.x]=lIsim(sys,u,t,x0)

(b)
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FIGURE 3.39
Computing the time
response for
nonzero initial
conditions and zero
input using Isim.
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1.0

10
0.8 0.8
0.6 06 - Ne—
< o
04 04
0.2 ‘ 0.2 ‘
f ‘ |

0 ‘
0 010203040506 07080910

!

0 S —
0 0.102 03 04 05 06 0.7 0.8 09 1.0

Time (s)

Time (s)

A=[0 -2;1 -3); B=[2;0]; C=[1 0]; D=[0];
sys=ss(A,B,C,D); <«

| State-space model

x0=[1 1]; Initial conditions
t=[0:0.01:1];

[y, T,x]=Isim(sys,u,t,x0);
subptlot(121), plot(T,x(:,1))
xlabel('Time (s)"), ylabel({'x_1")
subplot(122), plot(T,x(:,2))
xlabel('Time (s)'), ylabel('x_2")

will develop a state variable model of the disk drive system that will include the
effect of the flexure mount.

Consider again the head mount shown in Figure 2.71. Since we want a light-
weight arm and flexure for rapid movement, we must consider the effect of the flex-
ure, which is a very thin mount made of spring steel. Again, we wish to accurately
control the position of the head y(¢) as shown in Figure 3.40(a). We will attempt to
derive a model for the system shown in Figure 3.40(a). Here we identify the motor
mass as M; and the head mount mass as M,. The flexure spring is represented by the
spring constant k. The force u(t) to drive the mass M is generated by the DC motor.
If the spring is absolutely rigid (nonspringy), then we obtain the simplified model
shown in Figure 3.40(b). Typical parameters for the two-mass system are given in
Table 3.2.

Let us obtain the transfer function model of the simplified system of Figure 3.40(b).
Note that M = M| + M, = 20.5 g = 0.0205 kg. Then we have

dy &y
MF + blz = u(r).

(3.117)
Therefore, the transfer function model is

Y(s) 1
U(s)  s(Ms + b))




FIGURE 3.40

{a) Mode! of the
two-mass system
with a spring
flexure.

{b) Simplified model
with a rigid spring.

FIGURE 3.41
Transfer function
model of head
reader device with
a rigid spring.
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Parameter Symbol Value

Motor mass M, 20g = 0.02kg
Flexure spring k 0=k =

Head mounting mass M, 0.5 g = 0.0005 kg
Head position (1) variable in mm
Friction at mass 1 by 410 X 1072 N/(m/s)
Field resistance R 10

Field inductance L 1 mH

Motor constant K, 0.1025 N m/A
Friction at mass 2 b, 4.1 X 107 N/(m/s)

Head
position
Motor  ¢(¥) Head :—»,W) :—» ¥
mass . mass |
Flexure spring
Flll)(:e — M \Nk\/\/\/ — M wn —>| M =M + M,

by by b,

(@ (b}

For the parameters of Table 3.2, we obtain

Y(s) 1 4878
U(s)  s(0.0205s + 0.410)  s(s + 20)°

The transfer function model of the head reader, including the effect of the motor coil,
is shown in Figure 3.41.When R = 1 Q, L = 1 mH, and K,, = 0.1025, we obtain

_Y(s) 5000
T V(s) (s + 20)(s + 1000)’

G(s) (3.118)

which is exactly the same model we obtained in Chapter 2.
Now let us obtain the state variable model of the two-mass system shown in
Figure 3.40(a). Write the differential equations as

d’q dq
Mass My: My— + by— + k(g — = u(t
e L (- ()
Motor
coil Mass
K, Us) ]
Vi) = iR Force > s(Ms + by) > Y(s5)
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d’y  dy

— + by— + -q)=0.

2 Ty k(y — q)

To develop the state variable model, we choose the state variables as x; = ¢ and
x; = y. Then we have

Mass M,: M,

dq d dy
X = — (g = —.
Yo anc x4 dt
Then, in matrix form,
x = AX + Bu,
and we have
q
X = %) 3
q
y
0
0
B = s
1/M,
0
and
0 0 1 0
0 0 0 1
A= . .
—k/M, k/My —by/M, 0 (3.119)
k/M, —k/M, 0 ~b,/ M,

Note that the output is y(¢) = x4 Also, for L = 0 or negligible inductance, then
u(t) = K, v(t). For the typical parameters and for k = 10, we have

0
0
B=14
0
and
0 0 1 0
Azl O 0 0 1
-500 +500 —-20.5 0
420000 —20000 0 —-8.2

The response of y for «(¢) = 1,¢ > 0 is shown in Figure 3.42. This response is quite
oscillatory, and it is clear that we want a very rigid flexure with k > 100.



FIGURE 3.42
Response of y for a
step input for the
two-mass model
with k = 10.

3.11 SUMMARY
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% Model Parameters

k=10; Units
M1=0.02; M2<0.0005; k: kg/m
b1=410e-03; b2=4.1e-03; <+——— b: kg/m/s
1=[0:0.001:1.5]; m: kg

% State Space Model
A=[0010;000 1;-k/M1 k/M1 -b1/M1 0; k/M2 -k/M2 0 -b2/M2];
B=[0;0;1/M1;0]; C=[0 0 0 1}; D=[0}; sys=ss(A,B,C,D);
% Simulated Step Response

=step(sys,t); plot(t,y); grid
xlabel('Time (s)'), ylabel('y dot (m/s)')

y dot (m/s)

position rate

|
osl - |

0 0.5 1 1.5
Time (s)

In this chapter, we have considered the description and analysis of systems in the
time domain. The concept of the state of a system and the definition of the state
variables of a system were discussed. The selection of a set of state variables of a sys-
tem was examined, and the nonuniqueness of the state variables was noted. The
state differential equation and the solution for x(¢) were discussed. Alternative sig-
nal-flow graph and block diagram model structures were considered for represent-
ing the transfer function (or differential equation) of a system. Using Mason's
signal-flow gain formula, we noted the ease of obtaining the flow graph model. The
state differential equation representing the flow graph and block diagram models
was also examined. The time response of a linear system and its associated transition
matrix was discussed, and the utility of Mason’s signal-flow gain formula for obtain-
ing the transition matrix was illustrated. A detailed analysis of a space station model
development was presented for a realistic scenario where the attitude control is ac-
complished in conjunction with minimizing the actuator control. The relationship
between modeling with state variable forms and control system design was estab-
lished. The use of control design software to convert a transfer function to state vari-
able form and calculate the state transition matrix was discussed and illustrated. The
chapter concluded with the development of a state variable model for the Sequen-
tial Design Example: Disk Drive Read System.
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SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key

provided at the conclusion of the end-of-chapter problems.

1. The state variables of a system comprise a set of variables that
describe the future response of the system, when given the present
state, all future excitation inputs, and the mathematical model

2. The matrix exponential function describes the unforced response of
the system and is called the state transition matrix.

3

4.

7.

In the following True or False and Multiple Choice problems, circle the correct answer.

describing the dynamics.

The outputs of a linear system can be related to the state variables
and the input signals by the state differential equation.

A time-invariant control system is a system for which one or more
of the parameters of the system may vary as a function of time.

. A state variable representation of a system can always be written

in diagonal form.

True or False

True or False

True or False

True or False

True or False

Consider a system with the mathematical model given by the differential equation:

d* y
ar d d

A state variable representation of the system is:

(-2 -1 -04 M1
a X = 1 0 0 x+|0|u
Lo 1 o ] |[o
y=0[0 0 02k
-5 -1 -0.7] -1
b.x=| 1 0 0 |x+| 0u
0 1t o4 Lo

y=1{1 0
-2 -1 -04 1
dx={ 1 0 0 |x+|0|u
0 1 o0 0

y=[1 0 02x

For Problems 7 and 8, consider the system represented by

x = Ax + Bu,
where
0 5 1
A—[O 0} and B—lo].
The associated state-transition matrix is:

a. ®(,0) = [51]

b. B(1.0) = [(1) ‘I”]

d’y  dy
55+ 105 + 5—7 + 2y = u(t).
t
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¢ ®(1,0) = [1 5‘]

I 1

1 58 2
d &(r,0)=]0 1 1

0 0 1
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For the initiat conditions x;(0) = x,(0) = 1, the response x(¢) for the zero-input response is:

a. xi(t) = (1 +1),x()=1fort =0

b. x(t) = (5+ 1), x(t) =tfort =0

e xi(t) = (5t + 1), x(2) = 1fort =0
d. x(t) = x(t) =1fort =0

A single-input, single-output system has the state variable representation

= [—2 —;o]" ’ {(1)]“

y=1[0 10}x
The transfer function of the system 7'(s) = Y (s5)/U(s) is:
-50
T(s)=T—5——
a T(s) 5 + 55 + 505
-50
b. T(s) = 54—
)= 0s+ s
-5
T =
e T(s) s+5
—50
d T(s) = 5V———
(s) s>+ 55 +5
The differential equation model for two first-order systems in series is

X(t) + 4x(1) + 3x(1) = u(1),

where u(t) is the input of the first system and x(z) is the output of the second system.

The response x(t) of the system to a unit impulse u(r) is:
a x(t) =€’ — 27

1
b. x(t) = ‘2—8_2[ - le_3'

3
1 1
e x(t) = -2-e"‘ - Ee"3’

d x(t)=e'~e?

A first-order dynamic system is represented by the differential equation
S5x(r) + x(¢) = u(t).

The corresponding transfer function and state-space representation are

1 X =-02x + 0.5u
a. G(s) = 1+ Ss and y = 04x
10 x=-02x +u
b. G(s)—1+ss and y=x
i x=-5x+u
3 = d
e G(s) - an y=x

d. None of the above
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Consider the block diagram in Figure 3.43 for Problems 12 through 14:

T,[(S)
Controller Process
+ E(s) + 10
(O] . A T )

FIGURE 3.43 Block diagram for the Skills Check.

12. The effect of the input R(s) and the disturbance T 4(s) on the output Y (s) can be
considered independently of each other because:

a. This is a linear system, therefore we can apply the principle of superposition.
b. The input R(s) does not influence the disturbance T 4(s).

¢. The disturbance T,(s) occurs at high frequency, while the input R(s) occurs at low
frequency.

d. The system is causal.
13. The state-space representation of the closed-loop system from R(s) to Y (s) is:

a0 ¥= ~10x + 10Kr
. y=x
x=-(10 + 10K)x + r
b.
y = 10x
. X =—(10 + 10K)x + 10Kr
y=x

d. None of the above
14. The steady-state error E(s) = Y(s) — R(s) due to a unit step disturbance T,(s) = 1/s is:
a. ex = lime(r) = o0
—C0o

b. e5 = ,l—i-“cloe([) =1

il

C e ’lﬂe(t) =X+

d e, = 'll"rgoe(z) =K+1

15. A system is represented by the transfer function
Y(s) B 5(s + 10)

R(s) T6) = 5 702 + 205 + 50°
A state variable representation is:
[-10 -20 -507] [1]
a. x = 1 0 0 |x+|1ju
L 0 1 0 [ 0
y=[0 5 50]x
[[-10 -20 -50 [17]
b. x = 1 0 0 ix+ |0 Ju
L 1 0 | 1 0]




Exercises
-10 -20 =50 1
c X = 1 0 0 Ix+10iu
0 1 0 0
y=[0 5 50k
dox=| 0 Oy
) 0 1 0
y=[0 Sk
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In the following Word Match problems, match the term with the definition by writing the

a, State vector

b. State of a
system

¢. Time-varying
system

d. Transition
matrix

e, State
variables

f. State
differential
equation

g. Time domain

correct letter in the space provided.

The differential equation for the state vector x = Ax + Bu.

The matrix exponential function that describes the unforced
response of the system.

The mathematical domain that incorporates the time
response and the description of a system in terms of time, f.

Vector containing all z state variables, xq, x3,..., X,.

A set of numbers such that the knowledge of these numbers
and the input function will, with the equations describing the
dynamics, provide the future state of the system.

A system for which one or more parameters may vary with
time.

The set of variables that describe the system.

EXERCISES

E3.1 For the circuit shown in Figure E3.1 identify a set of
state variables.

FIGURE E3.1 RLC circuit.

E3.2 A robot-arm drive system for one joint can be repre-
sented by the differential equation [8]
du(r)
dt

= —'kﬂ)(f) - kzy(t) + k}i(f)-

where v(t) = velocity, ¥(t) = position, and i(¢) is the
control-motor current. Put the equations in state vari-
able form and set up the matrix form for k; = k; = 1.

E3.3 A system can be represented by the state vector dif-
ferential equation of Equation (3.16), where

0 1
A= .
Find the characteristic roots of the system.

Answer: —1, -1

E3.4 Obtain a state variable matrix for a system with a
differential equation
dy dy
—~+4—+ 6= +8y=2 .
7 12 6 i 8y Ou(r)

E3.5 A system is represented by a block diagram as
shown in Figure E3.5. Write the state equations in the
form of Equations (3.16) and (3.17).

ol

FIGURE E3.5 Biock diagram.
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A system is represented by Equation (3.16), where

0 1
A"l:o 0]'

(a) Find the matrix ®(t). (b) For the initial conditions
x1(0) = x5(0) = 1. find x(¢).
Answer;:(b)x; =1+t x,=1,t=0

E3.7 Consider the spring and mass shown in Figure 3.3
where M = 1kg,k = 100 N/m, and b = 20 Ns/m.
(a) Find the state vector differential equation. (b)
Find the roots of the characteristic equation for this

system.
. 0 1 0
s = +
Answer: (a) x |:_100 _20]7( [l :|u
(b)s = =10, -10

E3.8 The manual, low-altitude hovering task above a
moving landing deck of a small ship is very demand-
ing, particularly in adverse weather and sea condi-
tions. The hovering condition is represented by the
matrix

I
o o o
D e
W=

Find the roots of the characteristic equation.

E3.9 A multi-loop block diagram is shown in Figure
E3.9.The state variables are denoted by x; and x». (a)
Determine a state variable representation of the
closed-loop system where the output is denoted by
y(¢) and the input is #(¢). (b) Determine the character-

istic equation.
X, 1
s
R(s) »(O— -> ¥(s)
+ —
LI P «
2 X, s |
FIGURE E3.9 Multi-loop feedback control system.

E3.10 A hovering vehicle control system is represented
by two state variables, and [13]

-0

(a) Find the roots of the characteristic equation.
(b) Find the state transition matrix ®(¢).

Answer: (a) s = —3,-2

37 — 2¢7Y

__6(_,—31 + 66_2’
e—Zr

373 — 272

(b)e() = [

0—31 _

E3.11 Determine a state variable representation for the
system described by the transfer function

_Y(s) A +3)
TR(s)  (s+2)(s+6)

Is)

E3.12 Use a state variable model to describe the circuit
of Figure E3.12. Obtain the response to an input unit
step when the initial current is zero and the initial
capacitor voltage is zero.

R=30 L=02H

C = 800 uF 7~

FIGURE E3.12 RLC series circuit.

E3.13 A system is described by the two differential

equations
& + 2u + =0
atY u + aw =0,
and
i
(d—w—by+4u—0,

where w and y are functions of time, and « is an input
u(?). (a) Select a set of state variables. (b) Write the
matrix differential equation and specify the elements
of the matrices. (¢) Find the characteristic roots of the
system in terms of the parameters a and b.
Answer: (c) s = —1/2 £ V1 — 4ab/2

E3.14 Develop the state-space representation of a
radioactive material of mass M to which additional

radioactive material is added at the rate r(t) = Ku(t),
where K is a constant. Identify the state variables.


E3.ll
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Obtain the transfer function G(s) = Y (s)/U(s) and
determine the response of the system to a unit step
input.
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E3.22 Consider the system in state variable form

X = Ax + Bu
y=Cx+ Du
with

A=l =] ]e-n

(a) Compute the transfer function G(s) = Y(s)/U(s).
(b) Determine the poles and zeros of the system. (c) If
possible, represent the system as a first-order system

0], and D = [0].

PROBLEMS

P3.1 An RLC circuit is shown in Figure P3.1. (a) Identify
a suitable set of state variables. (b) Obtain the set of
first-order differential equations in terms of the state
variables. (c) Write the state differential equation.

_._/VW__,.__KYYY\__
R i L
(1) + +
Voltage CN) v, "/J"\"C
source - -
FIGURE P3.1 RLC circuit.

P3.2 A balanced bridge network is shown in Figure P3.2.
(a) Show that the A and B matrices for this circuit are

Ao [—2/((:?1 + R)C) 0 ]
0 “2RiRo/(Ry + R)L) |
SRVCRTS B

(b) Sketch the block diagram. The state variables are
(x1, x2) = (v i)

- YY) —
L i
AN\ NV
Rs R>
R, R
+
+ v AC +

[N - Us

FIGURE P3.2 Balanced bridge network.

X =ax + bu
y =cx + du

where a, b, ¢, and d are scalars such that the transfer
function is the same as obtained in (a).

E3.23 Consider a system modeled via the third-order dif-
ferential equation
x(8) + 3%(1) + 3x(2) + x(¢)
= u(r) + 2u(r) + 4a(t) + (r).
Develop a state variable representation and obtain a

block diagram of the system assuming the output is
x(1) and the input is «(t).

P33 An RLC network is shown in Figure P3.3. Define
the state variables as x; = {; and x, = v,.. Obtain the

state differential equation.
1/L
-1/(RC) |

Partial answer:

0
A= [—1/c

)

FIGURE P3.3 RLC circuit.

P3.4 The transfer function of a system is

o sP+25+10
s+ 452 + 65 + 10

Sketch the block diagram and obtain a state variable
model.

P3.5 A closed-loop control system is shown in Figure
P3.5. (a) Determine the closed-loop transfer function
T(s) = Y(s)/R(s). (b) Sketch a block diagram model
for the system and determine a state variable model.

P3.6 Dectermine the statc variable matrix equation for the
circuit shown in Figure P3.6. Let x; = v, x; = %, and
X3 = i.

P3.7 An automatic depth-control system for a robot sub-
marine is shown in Figure P3.7. The depth is measured
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K, =05. (a) Determine the closed-loop transfer
function

(b) Determine a state variable representation. (c) De-
termine the characteristic equation obtained from the
A matrix.

P3.10 Many control systems must operate in two dimen-
sions, for example, the x- and the y-axes. A two-axis
control system is shown in Figure P3.10, where a set of
state variables is identified. The gain of each axis is K
and K, respectively. (a) Obtain the state differential
equation. (b) Find the characteristic equation from
the A matrix. (¢) Determine the state transition ma-
trix for K}, = land K; = 2.

P3.11 A system is described by

x = Ax + Bu

SIS

and x;(0) = x,(0) = 10. Determine x,(¢r) and x,(2).
P3.12 A system is described by its transfer function

where
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(a) Determine a state variable model.
(b) Determine ®(¢), the state transition matrix.

P3.13 Consider again the RLC circuit of Problem
P3.1 when R = 25,L = 1/4, and C = 1/6. (a) De-
termine whether the system is stable by finding the
characteristic equation with the aid of the A ma-
trix. (b) Determine the transition matrix of the
network, (c) When the initial inductor current is 0.1
amp, v.(0) =0, and w(¢t) = 0, determine the re-
sponse of the system. (d) Repeat part (c) when the
initial conditions are zero and v(t) = E, for ¢+ > 0,
where E is a constant.

P3.14 Determine a state variable representation for a sys-
tem with the transfer function

Y (s) () s+ 50
—==T() = .
R(s) st + 125 + 1057 + 345 + 50

P3.15 Obtain a block diagram and a state variable repre-

sentation of this system.

Y(s) 3 14(s + 4)
R(s) s* + 1052 + 315 + 16

P3.16 The dynamics of a controlled submarine are signifi-
cantly different from those of an aircraft, missile, or
surface ship. This difference results primarily from

T(s) =

+
& =T(s) = 8(s + ) . the moment in the vertical plane due to the buoyancy
R(s) s* + 1257 + 445 + 48 effect. Therefore, it is interesting to consider the control
(a)
+ Y +
Ry K, = — ¥, (5)
5 X]
+
Ry(s) K | - > ¥o(s)
FIGURE P3.10 - + f X

Two-axis system.
(a) Signal-flow

graph. (b) Block
diagram model. (bh)
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Problems

of the depth of a submarine. The equations describing
the dynamics of a submarine can be obtained by using
Newton’s laws and the angles defined in Figure P3.16.
To simplify the equations, we will assume that 6 is a
small angle and the velocity v is constant and equal to
25 ft/s. The state variables of the submarine, considering
only vertical control, are x; = 6, x, = d/dt, and
x3 = a, where a is the angle of attack. Thus the state
vector differential equation for this system, when the
submarine has an Albacore type hull, is

0 1 0 0
x =| —0.0071 -0.111 0.12 |x + [ —0.095 Ju(z),
0 007 -03 +0.072

where u(t) = 8,(t), the deflection of the stern plane. (a)
Determine whether the system is stable. (b) Determine
the response of the system to a stern plane step com-
mand of 0.285° with the initial conditions equal to zero.

Center of
gravity

* surface

FIGURE P3.16  Submarine depth control.

P3.17 A systemis described by the state variable equations

1 1 -1 0
X = 4 3 0x+]0 |
-2 1 10 4
y=[1 0 0]

Determine G(s) = Y(s)/U(s).

P3.18 Consider the control of the robot shown in Figure
P3.18. The motor turning at the elbow moves the wrist
through the forearm, which has some flexibility as
shown [16]. The spring has a spring constant k and fric-
tion-damping constant b. Let the state variables be
X, = ¢ — ¢, and x; = w/wy, where

2 _
wy =

k(Jy + Jy)
My

Write the state variable equation in matrix form when
X3 = 0)2/(()0‘

Elbow & 2 Wrist
—— Motor = AMANS —_—%’
ir) ™ kb
C @) ’ @
urrent A 5

FIGURE P3.18 An industrial robot. (Courtesy of GCA
Corporation.)

P3.19 Consider the system described by

x(1) = l:_oz _13:lx(t),

where x(t) = [x;(t) x,(t)]. (a) Compute the state
transition matrix ®(r, 0). (b) Using the state transition
matrix from (a) and for the initial conditions x;(0) = 1
and x,(0) = —1, find the solution x(r) for ¢t = 0.

P3.20 A nuclear reactor that has been operating in equi-
librium at a high thermal-neutron flux level is suddenly
shut down. At shutdown, the density X of xenon 135
and the density I of iodine 135 are 7 x 10" and
3 x 10 atoms per unit volume, respectively. The half-
lives of 1,35 and Xe,35 nucleides are 6.7 and 9.2 hours,
respectively. The decay equations are [15,19]

. 0.693 . Rk
I=—71 X=—7X-1

Determine the concentrations of 1,35 and Xeq3; as
functions of time following shutdown by determining
(a) the transition matrix and the system response.
(b) Verify that the response of the system is that
shown in Figure P3.20.

P3.21 Consider the block diagram in Figure P3.21.
(a) Verify that the transfer function is

Y(S) _ h]S + hu + alhl
U(s) s +as+ay

G(s) =

(b) Show that a state variable model is given by

X = x + i,
—ay —a hy
y=101 0

P3.22 Determine a state variable model for the circuit
shown in Figure P322. The state variables are
x; = i,x; = v, and x3 = »,. The output variable is
vy(1).

P3.23 The two-tank system shown in Figure P3.23(a)
is controlled by a motor adjusting the input valve and












Advanced Problems

motor friction is negligible. The motor and valve iner-
tia is J = 0.006, and the area of the tank is 50 m%
Note that the motor is controlled by the armature cur-
rent i,. Let x; = h, x, = 0, and x; = d6/dt. Assume
that g, = 808, where 8 is the shaft angle. The output
flow is go = 50h(r).

P3.36 Consider the two-mass system in Figure P3.36. Find
a state variable representation of the system. Assume
the output is x.

P3.37 Consider the block diagram in Figure P3.37. Using

the block diagram as a guide, obtain the state variable
model of the system in the form

x = Ax + Bu
y=Cx+ Du

Using the state variable model as a guide, obtain
a third-order differential equation model for the FIGURE P3.36
system.
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CAMAMAAAAAA

i)

Two-mass system with two springs and

one damper.

A\ 4
—_—
v
S—

10

A

FIGURE P3.37 A block diagram model of a third-order system,

ADVANCED PROBLEMS

AP3.1 Consider the electromagnetic suspension system
shown in Figure AP3.1. An electromagnet is located at
the upper part of the experimental system. Using the
electromagnetic force f, we want to suspend the iron
ball. Note that this simple electromagnetic suspension
system is essentially unworkable. Hence feedback
control is indispensable. As a gap sensor, a standard
induction probe of the type of eddy current is placed
below the ball [20].

Y(5)

+Vv

Assume that the state variables are x; = x,
X, = dx/dt, and x3 = i. The electromagnet has an in-
ductance L = 0.508 H and a resistance R = 23.2 ().
Use a Taylor series approximation for the electromag-
netic force. The current is i, = [y + i, where
I, = 1.06 A is the operating point and i is the variable.
The mass m is equal to 1.75 kg. The gap is
x, = Xy + x, where X, = 4.36 mm is the operating
point and x is the variable. The electromagnetic force












Computer Problems
DP3.5 Consider the single-input, single-output system de-
scribed by
x(¢) = Ax(¢) + Bu(r)
y(t) = Cx(1)
where

0 1 0
N P L P

Assume that the input is a linear combination of the
states, that is,

COMPUTER PROBLEMS

CP3.1 Determine a state variable representation for the
following transfer functions (without feedback) using
the SS function:

(@ 66 =15
s+ 55 +3

® 0= s

© G(s) = 1

S +3s7+ 35+ 1

CP3.2 Determine a transfer function representation for the
following state variable models using the tf function:

0 1 0
(®A=[28}B=L}c=u 0]

11 0 -1
(b) A=| -2 0 4| B=| o[ c=[01 0
5 4 -7 1

@)A=L§ ;}B=B}c=p21}

CP3.3 Consider the circuit shown in Figure CP3.3. Deter-
mine the transfer function V(s)/Vi,(s). Assume an ideal
op-amp.

(a) Determine the state variable representation
when Ry = 1k}, R, = 10k}, C; = 0.5 mF, and

(b) Using the state variable representation from
part (a), plot the unit step response with the step
function.
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u(t) = —Kx(t) + r(0),
where r(¢) is the reference input. Determine K =
[Ky Kj] so that the closed-loop system
x(r) = [A ~ BK]x(r) + Br(z)
y() = Cx(1)
possesses closed-loop eigenvalues at r; and r,. Note that

if , = 0 + jo is a complex number, then r, = 0 - jw
is its complex conjugate.

G

|¢

I\

Ry

- AAA—
R, G

JRAEL
Vin(s) Vals)
o o—

FIGURE CP3.3 An op-amp circuit.

CP3.4 Consider the system

0 1 0 0
X = 0 0 1{x+ 10 lo,
-3 -2 -5 1
y=[1 0 0O}

(a) Using the tf function, determine the transfer func-
tion Y(s)/U(s).

(b) Plot the response of the system to the initial con-
ditionx(0) = [0 -1 1) for0 =<t = 10.

(c) Compute the state transition matrix using the
expm function, and determine x(¢) at¢ = 10 for the
initial condition given in part (b). Compare the re-
sult with the system response obtained in part (b).

CP3.5 Consider the two systems

0 1 0 0
x;=f 0 0 1%, +]0 |,
-4 -5 -8 4

y=[ 0 0k €]
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and
0.5000 0.5000 0.7071 0
X, = | —0.5000 —0.5000 0.7071 |x5 + | O |u,
—6.3640 -—-0.7071 -8.000 4
y =[07070 —0.7071 Olx,. @)

(a) Using the tf function, determine the transfer func-
tion Y(s)/U(s) for system (1).

(b) Repeat part (a) for system (2).

(c) Compare the results in parts (a) and (b) and
comment.

CP3.6 Consider the closed-loop control system in Figure
CP3.6.

(a) Determine a state variable representation of the
controller.

(b) Repeat part (a) for the process.

(c) With the controller and process in state variable
form, use the series and feedback functions to
compute a closed-loop system representation in
state variable form and plot the closed-loop system
impulse response.

CP3.7 Consider the following system:

ST

y=1[1 0]

x(0) = ((1))

Using the Isim function obtain and plot the system
response (for x;(¢) and x,(¢)) when u(¢) = 0.

with

CP3.8 Consider the state variable model with parameter
KX given by

0 1 0 0
x=|0 0 1 |x+ |0 |u

-2 —-K =2 1
y=[1 0 O0]x

Plot the characteristic values of the system as a func-
tion of K in the range 0 = K = 100. Determine that
range of K for which all the characteristic values lie in
the left half-plane.

Controller Process
+ 3 I
Ris) h s+3 P42+ 5 > 1)

FIGURE CP3.6 A closed-loop feedback control system.

ANSWERS TO SKILLS CHECK

(5) False

True or False: (1) True; (2) True; (3) False; (4) False;

Word Match (in order, top to bottom): f, d, g, a,
b,c,e

Multiple Choice: (6) a; (7) b; (8) c; (9) b; (10) c;

(11) a; (12) a; (13) c; (14) c; (15) ¢

TERMS AND CONCEPTS

Canonical form A fundamental or basic form of the state
variable model representation, including phase variable
canonical form, input feedforward canonical form, di-
agonal canonical form, and Jordan canonical form.

Diagonal canonical form A decoupled canonical form
displaying the n distinct system poles on the diagonal
of the state variable representation A matrix.

Fundamental matrix See Transition matrix.

Input feedforward canonical form A canonical form
described by n feedback loops involving the a, coef-
ficients of the ath order denominator polynomial of
the transfer function and feedforward loops obtained
by feeding forward the input signal.



Terms and Concepts

Jordan canonical form A block diagonal canonical form
for systems that do not possess distinct system poles.

Matrix exponential function An important matrix func-
tion, defined as e =1+ Ar+ (AD¥2! + - +
(Ae)k1k! + ---, that plays a role in the solution of lin-
ear constant coefficient differential equations.

Output equation The algebraic equation that relates the
state vector x and the inputs u to the outputs y
through the relationshipy = Cx + Du.

Phase variable canonical form A canonical form described
by n feedback loops involving the a,, coefficients of the
nth order denominator polynomial of the transfer func-
tion and m feedforward loops involving the b,, coeffi-
cients of the mth order numerator polynomial of the
transfer function.

Phase variables The state variables associated with the
phase variable canonical form.

Physical variables The state variables representing the
physical variables of the system.

233

State differential equation The differential equation for
the state vector: x = Ax + Bu.

State of a system A set of numbers such that the knowl-
edge of these numbers and the input function will,
with the equations describing the dynamics, provide
the future state of the system.

State-space representation A time-domain model com-
prising the state differential equation x = Ax + Bu
and the output equation, y = Cx + Du.

State variables The set of variables that describe the system.
State vector The vector containing all n state variables,
Xy X250y Xppe

Time domain The mathematical domain that incorpo-
rates the time response and the description of a sys-
tem in terms of time ¢.

Time-varying system A system for which one or more pa-
rameters may vary with time.

Transition matrix ®(+) The matrix exponential function
that describes the unforced response of the system.
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PREVIEW

In this chapter, we explore the role of error signals to characterize feedback control
system performance. The areas of interest include the reduction of sensitivity to
model uncertainties, disturbance rejection, measurement noise attenuation, steady-
state errors and transient response characteristics. The error signal is used to control
the process by negative feedback. Generally speaking, the goal is to minimize the
error signal. We discuss the sensitivity of a system to parameter changes, since it is
desirable to minimize the effects of parameter variations and uncertainties. We also
wish to diminish the effect of unwanted disturbances and measurement noise on the
ability of the system to track a desired input. We then describe the transient and
steady-state performance of a feedback system and show how this performance can
be readily improved with feedback. Of course, the benefits of a control system come
with an attendant cost. The chapter concludes with a system performance analysis of
the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 4, students should:

Q Be aware of the central role of error signals in analysis of control systems.

O Recognize the improvements afforded by feedback control in reducing system
sensitivity to parameter changes, disturbance rejection, and measurement noise
attenuation.

Q Understand the differences between controlling the transient response and the steady-
state response of a system.

') Have a sense of the benefits and costs of feedback in the control design process.
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An open-loop system operates without feedback and directly generates the
output in response to an input signal.

By contrast, a closed-loop, negative feedback control system is shown in Figure 4.3.

A closed-loop system uses a measurement of the output signal and a
comparison with the desired ontput to generate an error signal that is used
by the controller to adjust the actuator.

The two forms of control systems are shown in both block diagram and signal-flow
graph form. Despite the cost and increased system complexity, closed-loop feedback
control has the following advantages:

QO Decreased sensitivity of the system to variations in the parameters of the process.
Q Improved rejection of the disturbances.

QO Improved measurement noise attenuation.

Q Iimproved reduction of the steady-state error of the system.

QO Easy control and adjustment of the transient response of the system.

Td(S)

R(s) =
I
N(s)
—H(s)
(@)
TAs)
Controller Process
+ E(s) p
R(s) G(5) — ‘ G(s) > Y(s)
N(s)
Sensor
FIGURE 4.3
A closed-loop
control system. H(s) <
(a) Signal-flow

graph. (b) Block
diagram. )
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In this chapter, we examine how the application of feedback can result in the bene-
fits listed above. Using the notion of a tracking error signal, it will be readily appar-
ent that it is possible to utilize feedback with a controller in the loop to improve
system performance.

4.2 ERROR SIGNAL ANALYSIS

The closed-loop feedback control system shown in Figure 4.3 has three inputs—
R(s), Ty(s), and N(s)—and one output, ¥(s). The signals T,(s) and N(s) are the
disturbance and measurement noise signals, respectively. Define the tracking
€rror as

E(s) = R(s) — Y (). (4.1)

For ease of discussion, we will consider a unity feedback system, that is, H(s) = 1,in
Figure 4.3. In Section 5.5 of the following chapter, the influence of a nonunity feed-
back element in the loop is considered.

After some block diagram manipulation, we find that the output is given by

G(s)G(s) G(s) G(5)G(s)

YO T Gmem Y T TR Gmem M) T T amem T 42

Therefore, with E(s) = R(s) — Y(s), we have

1 G(s) G(5)G(s)

EQ) = 136,660 " T T3 6660 O T T+ 6.6)60)

N(s). (4.3)

Define the function
L(s) = G (s)G(s).

The function, L(s),is known as the loop gain and plays a fundamental role in control
system analysis [12]. In terms of L(s) the tracking error is given by

G L
- T;(%)(ET({(S) + LN(S). (4.4)

E(sy = 1+ L(s)

1+ L) )

We can define the function

F(s) =1+ L(s).
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Then, in terms of F(s), we define the sensitivity function as

11
F(s) 1+ L(s)

S(s) = (4.5)

Similarly, in terms of the loop gain, we define the complementary sensitivity function as
Cis)=——. (4.6)

In terms of the functions S(s) and C(s), we can write the tracking error as
E(s) = S(s)R(s) — S(5)G(s)T (s) + C(s)N(s). 4.7)

Examining Equation (4.7), we see that (for a given G(s)), if we want to minimize the
tracking error, we want both S(s) and C(s) to be small. Remember that S(s) and C(s)
are both functions of the controller, G.(s), which the control design engineer must
select. However, the following special relationship between S(s) and C(s) holds

S(s) + C(s) = 1. (4.8)

We cannot simultaneously make S(s) and C(s) small. Obviously, design compromises
must be made.

To analyze the tracking error equation, we need to understand what it means for
a transfer function to be “large” or to be “small.” The discussion of magnitude of a
transfer function is the subject of Chapters 8 and 9 on frequency response methods.
However, for our purposes here, we describe the magnitude of the loop gain L(s) by
considering the magnitude | L(jw)| over the range of frequencies, w, of interest.

Considering the tracking error in Equation (4.4), it is evident that, for a given
G(s), to reduce the influence of the disturbance, T (s), on the tracking error, E(s),
we desire L(s) to be large over the range of frequencies that characterize the distur-
bances. That way, the transfer function G(s)/(1 + L(s)) will be small, thereby re-
ducing the influence of T,(s). Since L(s) = G.(s)G(s), this implies that we need to
design the controller G.(s) to have a large magnitude. Conversely, to attenuate the
measurement noise, N(s), and reduce the influence on the tracking error, we desire
L(s) to be small over the range of frequencies that characterize the measurement
noise. The transfer function L(s)/(1 + L(s)) will be small, thereby reducing the in-
fluence of N(s). Again, since L(s) = Gs) G(s), that implies that we need to design
the controller G.(s) to have a small magnitude. Fortunately, the apparent conflict
between wanting to make G.(s) large to reject disturbances and the wanting to
make G.(s) small to attenuate measurement noise can be addressed in the design
phase by making the loop gain, L(s), large at low frequencies (generally associated
with the frequency range of disturbances), and making L(s) small at high frequen-
cies (generally associated with measurement noise).

More discussion on disturbance rejection and measurement noise attenuation
follows in the subsequent sections. Next, we discuss how we can use feedback to re-
duce the sensitivity of the system to variations and uncertainty in parameters in the
process, G(s). This is accomplished by analyzing the tracking error in Equation (4.2)
when Ty(s) = N(s) = 0.
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4.3 SENSITIVITY OF CONTROL SYSTEMS TO PARAMETER VARIATIONS

A process, represented by the transfer function G(s), whatever its nature, is subject
to a changing environment, aging, ignorance of the exact values of the process para-
meters, and other natural factors that affect a control process. In the open-loop sys-
tem, all these errors and changes result in a changing and inaccurate output.
However, a closed-loop system senses the change in the output due to the process
changes and attempts to correct the output. The sensitivity of a control system to pa-
rameter variations is of prime importance. A primary advantage of a closed-loop
feedback control system is its ability to reduce the system’s sensitivity [1-4, 18].

For the closed-loop case, if G.(s)G(s) >> 1 for all complex frequencies of inter-
est, we can use Equation (4.2) to obtain (letting T,(s) = 0 and N(s) = 0)

Y(s) = R(s).

The output is approximately equal to the input. However, the condition G.(s)G(s) >> 1
may cause the system response to be highly oscillatory and even unstable. But the fact
that increasing the magnitude of the loop gain reduces the effect of G(s) on the output
is an exceedingly useful result. Therefore, the first advantage of a feedback system is
that the effect of the variation of the parameters of the process, G(s), is reduced.

Suppose the process (or plant) G(s) undergoes a change such that the true plant
model is G(s) + AG(s). The change in the plant may be due to a changing external
environment or natural aging, or it may just represent the uncertainty in certain
plant parameters. We consider the effect on the tracking error E(s) due to AG(s).
Relying on the principle of superposition, we can let T (s) = N(s) = 0 and consid-
er only the reference input R(s). From Equation (4.3), it follows that

1
1 + G.(5)(G(s) + AG(s))

E(s) + AE(s) = R(s).

Then the change in the tracking error is
—G(s) AG(s) R
(1 + G5)G(s) + G(s) AG(5))(1 + G(5)G(5))

AE(s) = (s).

Since we usually find that G.(s)G(s) >> G.(s) AG(s), we have

—G(s) AG(9)
(1 + L(s))’
We see that the change in the tracking error is reduced by the factor 1 + L(s),

which is generally greater than 1 over the range of frequencies of interest.

For large L(s), we have 1 + L(s) = L(s), and we can approximate the change
in the tracking error by

AE(s) = R(s).

1 AG(s)
L(s) G(s)

Larger magnitude L(s) translates into smaller changes in the tracking error (that is,
reduced sensitivity to changes in AG(s) in the process). Also, larger L(s) implies

AE(s) = —

R(s). (4.9)
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smaller sensitivity, S(s). The question arises, how do we define sensitivity? Since our
goal is to reduce system sensitivity, it makes sense to formally define the term.

The system sensitivity is defined as the ratio of the percentage change in the sys-
tem transfer function to the percentage change of the process transfer function. The
system transfer function is

¥(s)

T(s) = R(s)’

(4.10)

and therefore the sensitivity is defined as

_ AT(s)/T(s)

"~ AG(s5)/G(s)’ “11)

In the limit, for small incremental changes, Equation (4.11) becomes

_3T/T _ 3InT
0G/G dlnG’

(4.12)

System sensitivity is the ratio of the change in the system transfer function
to the change of a process transfer function (or parameter) for a small
incremental change.

The sensitivity of the open-loop system to changes in the plant G(s) is equal to 1.
The sensitivity of the closed-loop is readily obtained by using Equation (4.12). The
system transfer function of the closed-loop system is

G.(s)G(s
P = CdIGE)
1 + G(s5)G(s)
Therefore, the sensitivity of the feedback system is
r_9oT G _ G, G

56 =36 T~ 1 + GGy GGJ + GO)

or

1

6 =17 G(5)G(s)’

(4.13)

We find that the sensitivity of the system may be reduced below that of the open-
loop system by increasing L(s) = G.(s)G(s) over the frequency range of interest.
Note that S% in Equation (4.12) is exactly the same as the sensitive function S(s)
given in Equation (4.5). In fact, these functions are one and the same.

Often, we seek to determine S7, where « is a parameter within the transfer
function of a block G. Using the chain rule, we find that

Sy = SESS. (4.14)



FIGURE 4.4
(a) Open-loop
amplifier.

(b) Amplifier with
feedback.
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Very often, the transfer function of the system 7(s) is a fraction of the form [1]
N(s, a)

T(s,a) = ——, .
(s, @) DGs, ) (4.15)
where a is a parameter that may be subject to variation due to the environment.

Then we may obtain the sensitivity to a by rewriting Equation (4.11) as

_9InT _9lnN _ dln D

= = = N _ ¢D
dlna  dlal, olna Sa = Sa (4.16)

Sa

ag

where « is the nominal value of the parameter,

Animportant advantage of feedback control systems is the ability to reduce the effect
of the variation of parameters of a control system by adding a feedback loop. To obtain
highly accurate open-loop systems, the components of the open-loop, G(s), must be
selected carefully in order to meet the exact specifications. However, a closed-loop
system allows G(s) to be less accurately specified, because the sensitivity to changes or
errors in G(s) is reduced by the loop gain L(s). This benefit of closed-loop systems is a
profound advantage for the electronic amplifiers of the communication industry. A
simple example will illustrate the value of feedback for reducing sensitivity.

EXAMPLE 4.1 Feedback amplifier
An amplifier used in many applications has a gain —K,, as shown in Figure 4.4(a).
The output voltage is

vy = —K V. 4.17)
We often add feedback using a potentiometer R, as shown in Figure 4.4(b). The
transfer function of the amplifier without feedback is

T = -K,, (4.18)
and the sensitivity to changes in the amplifier gain is
sk =1 (4.19)

The block diagram model of the amplifier with feedback is shown in Figure 4.5,
where

R,
= — .20
=% (420)
+o—— + Uin vp
Gain Gain R
Vin -k, Yo -K, R, !

(a) (b)
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_KH
1+K(B+1) + E s -K,

Vials) > Vi(s) Vin(s) - . > Vol
1 1+K,(B+1)

(a) (b)

FIGURE 4.5 Block diagram model of feedback amplifier assuming R, >> R, of the amplifier.

and
R, =R, + R, (4.21)
The closed-loop transfer function of the feedback amplifier is
-K
T = 1—+7l3 (4.22)
The sensitivity of the closed-loop feedback amplifier is
Sk, = S&S%, = 1_+1?J§‘ (4.23)
If K, is large, the sensitivity is low. For example, if
K, = 10*
and
B =01, (4.24)
we have
Sk, = —1—3 (4.25)
1+ 10

or the magnitude is one-thousandth of the magnitude of the open-loop amplifier.

We shall return to the concept of sensitivity in subsequent chapters. These chap-
ters will emphasize the importance of sensitivity in the design and analysis of con-
trol systems. m

4.4 DISTURBANCE SIGNALS IN A FEEDBACK CONTROL SYSTEM

An important effect of feedback in a control system is the control and partial elimi-
nation of the effect of disturbance signals. A disturbance signal is an unwanted input
signal that affects the output signal. Many control systems are subject to extraneous
disturbance signals that cause the system to provide an inaccurate output. Electronic
amplifiers have inherent noise generated within the integrated circuits or transistors;



FIGURE 4.6
Steel rolling mill.

FIGURE 4.7
Open-loop speed
control system
(without tachometer
feedback).
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radar antennas are subjected to wind gusts; and many systems generate unwanted
distortion signals due to nonlinear elements. The benefit of feedback systems is that
the effect of distortion, noise, and unwanted disturbances can be effectively reduced.

Disturbance Rejection
When R(s) = N(s) = 0, it follows from Equation (4.4) that

( ) Td(S).

E(s) = ~SOGOTUS) = 17 1)

For a fixed G(s) and a given T(s), as the loop gain L(s) increases, the effect of T,(s)
on the tracking error decreases. In other words, the sensitivity function S(s) is small
when the loop gain is large. We say that large loop gain leads to good disturbance re-
jection. More precisely, for good disturbance rejection, we require a large loop gain
over the frequencies of interest associated with the expected disturbance signals.

In practice, the disturbance signals are often low frequency. When that is the
case, we say that we want the loop gain to be large at low frequencies. This is equiv-
alent to stating that we want to design the controller G.(s) so that the sensitivity
function S(s) is small at low frequencies.

As a specific example of a system with an unwanted disturbance, let us consider
again the speed control system for a steel rolling mill. The rolls, which process steel,
are subjected to large load changes or disturbances. As a steel bar approaches the
rolls (see Figure 4.6), the rolls are empty. However, when the bar engages in the rolls,
the load on the rolls increases immediately to a large value. This loading effect can be
approximated by a step change of disturbance torque. Alternatively, the response can
be seen from the speed-torque curves of a typical motor, as shown in Figure 4.8.

The transfer function model of an armature-controlled DC motor with a load
torque disturbance was determined in Example 2.5 and is shown in Figure 4.7,
where it is assumed that L, is negligible. Let R(s) = 0 and examine E(s) = —w(s),
for a disturbance Ty(s).

Rolls

Steel bar @
T ()

Conveyor

Disturbance

Ty(s)

Vi) + 1,(8) X T,.(s) Ty(s) 1
(s — > >
a R, " + Js+ b Speed

—_—

A

Motor back electromotive force
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FIGURE 4.8
Motor
speed-torque
curves.

FIGURE 4.9
Closed-loop speed
tachometer control
system.
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100

Motor torque (N-m)

The change in speed due to the load disturbance is then

1

E@s) = ~ol9) = 3T T K KR,

TA(s). (4.26)

The steady-state error in speed due to the load torque, T,(s) = D/s, is found by
using the final-value theorem. Therefore, for the open-loop system, we have

. o o 1 D
Hm E(r) = HmsE(s) = lim s 7= K,,,K,,/Ra( s)
- b _
b+ Kme/Ra

The closed-loop speed control system is shown in block diagram form in Figure 4.9.

The closed-loop system is shown in signal-flow graph and block diagram form in

Figure 4.10, where G;(s) = K,K,,/R,, G.(s) = 1/(Js + b), and H(s) = K, + K,/K,.
The error, E(s) = —w(s), of the closed-loop system of Figure 4.10 is:

Ga(s)
1 + Gi(s)Gy(s)H(s)

—wp(0). (4.27)

E(s) = —w(s) =

TAs). (4.28)

Then, if G,G,H (s) is much greater than 1 over the range of s, we obtain the approx-
imate result

1
E(s) ® ————=T4(s). (4.29)
Gi(s)H(s)
Tu(s)
Amplifier
+ o~ Eys) + K, | Tul® _é Ty(s) 1
Rs K | o > ¢
(T) _ ‘ _ R, + Js+b —> w(s)
Kb <
Tachometer
Vi(s)
K, <




R(s)
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Ty(5)

Ty(s)

+ E(s)

w(s) Rm—»?—v Gyls) Gy(s) > w(s)
+
—H(s) H(s) |

(a) (b)

FIGURE 4.10 Closed-loop system. (a} Signal-flow graph mode!. (b) Block diagram model.

Therefore, if G;(s)H(s) is made sufficiently large, the effect of the disturbance can
be decreased by closed-loop feedback. Note that

& ~ K“KI”KI
K,] R,

a

KoK
Gi(s)H(s) = T'—(K, +
since K, >> K,. Thus, we strive to obtain a large amplifier gain, K,, and keep
R, < 2 Q. The error for the system shown in Figure 4.10 is

E(s) = R(s) — o(s),
and R(s) = wy(s), the desired speed. For calculation ease, we let R(s) = 0 and ex-
amine w(s).
To determine the output for the speed control system of Figure 4.9, we must
consider the load disturbance when the input R(s) = 0. This is written as

B —1/(Js + b) -
) = T KR K/ R Us + )] + (KK R/ s + )] )
- —1 T(s). (4.30)

Js + b+ (K, /R)K.K, + Kp)
The steady-state output is obtained by utilizing the final-value theorem, and we have

-1

li = i 5)) = ; .
A = el = R KK+ Ky 4D
when the amplifier gain K|, is sufficiently high, we have
w(OO) =~ ml) = wL.(OO). (432)

The ratio of closed-loop to open-loop steady-state speed output due to an undesired
disturbance is

wL,(OO) _ Rub + KmKh
w(](OO) KuKmKr

(4.33)

and is usually less than 0.02.
This advantage of a feedback speed control system can also be illustrated by
considering the speed—torque curves for the closed-loop system, which are shown in
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FIGURE 4.11
The speed-torque
curves for the
closed-loop
system.
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Figure 4.11. The improvement of the feedback system is evidenced by the almost
horizontal curves, which indicate that the speed is almost independent of the load
torque.

Measurement Noise Attenuation

When R(s) = Ty(s) = 0, it follows from Equation (4.4) that
L(s)

1+ L(s)

As the loop gain L(s) decreases, the effect of N(s) on the tracking error decreases. In

other words, the complementary sensitivity function C(s) is small when the loop gain

L(s) is small. If we design G,(s) such that L(s) << 1, then the noise is attenuated
because

E(s) = C(s)N(s) = N(s).

C(s) =~ L(s).

We say that small loop gain leads to good noise attenuation. More precisely, for ef-
fective measurement noise attenuation, we need a small loop gain over the frequen-
cies associated with the expected noise signals.

In practice, measurement noise signals are often high frequency. Thus we want
the loop gain to be low at high frequencies. This is equivalent to a small comple-
mentary sensitivity function at high frequencies. The separation of disturbances (at
low frequencies) and measurement noise (at high frequencies) is very fortunate be-
cause it gives the control system designer a way to approach the design process: the
controller should be high gain at low frequencies and low gain at high frequencies.
Remember that by low and high we mean that the loop gain magnitude is low/high
at the various high/low frequencies. It is not always the case that the disturbances
are low frequency or that the measurement noise is high frequency. For example, an
astronaut running on a treadmill on a space station may impart disturbances to the
spacecraft at high frequencies. If the frequency separation does not exist, the design
process usually becomes more involved (for example, we may have to use notch fil-
ters to reject disturbances at known high frequencies). A noise signal that is preva-
lent in many systems is the noise generated by the measurement sensor. This noise,
N(s), can be represented as shown in Figure 4.3. The effect of the noise on the out-
put is

—G(5)G(s)

Y = 17 6.(5960)

N(s), (4.34)
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which is approximately
Y(s) = —N(s), (4.35)

for large loop gain L(s) = G.(s)G(s). This is consistent with the earlier discussion
that smaller loop gain leads to measurement noise attentuation. Clearly, the design-
er must shape the loop gain appropriately.

The equivalency of sensitivity, S5, and the response of the closed-loop system
tracking error to a reference input can be illustrated by considering Figure 4.3. The
sensitivity of the system to G(s) is

o 1 1
ST 14 GAs)G(s) 1+ L(s)

(4.36)

The effect of the reference on the tracking error (with 7,(s) = 0 and N(s) = 0) is

E(s) 1 1
R(s) 1+ G.()G(s) 1+ L(s)

(4.37)

In both cases, we find that the undesired effects can be alleviated by increasing the
loop gain. Feedback in control systems primarily reduces the sensitivity of the system
to parameter variations and the effect of disturbance inputs. Note that the measures
taken to reduce the effects of parameter variations or disturbances are equivalent,
and fortunately, they reduce simultaneously. As a final illustration, consider the
effect of the noise on the tracking error:

E(s)  Gs)G(s) L(s)
Tus) 1+ GAs)G(s) 1+ L(s)

(4.38)

We find that the undesired effects of measurement noise can be alleviated by de-
creasing the loop gain. Keeping in mind the relationship

S(s) + C(s) = 1,

the trade-off in the design process is evident.

4.5 CONTROL OF THE TRANSIENT RESPONSE

One of the most important characteristics of control systems is their transient re-
sponse. The transient response is the response of a system as a function of time. Be-
cause the purpose of control systems is to provide a desired response, the transient
response of control systems often must be adjusted until it is satisfactory. If an open-
loop control system does not provide a satisfactory response, then the process, G(s),
must be replaced with a more suitable process. By contrast, a closed-loop system can
often be adjusted to yield the desired response by adjusting the feedback loop para-
meters. It is often possible to alter the response of an open-loop system by inserting a
suitable cascade controller, G.(s), preceding the process, G(s), as shown in Figure 4.12.
Then it is necessary to design the cascade transfer function, G.(s)G(s), so that the re-
sulting transfer function provides the desired transient response.



248

FIGURE 4.12
Cascade controller
system (without
feedback).

(a) Signal-flow graph.

(b) Block diagram.

FIGURE 4.13
Open-loop speed
control system
(without feedback).
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Controller Process
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h 4

(a) (b)

To make this concept more comprehensible, consider a specific control system,
which may be operated in an open- or closed-loop manner. A speed control system,
as shown in Figure 4.13, is often used in industrial processes to move materials and
products. Several important speed control systems are used in steel mills for rolling
the steel sheets and moving the steel through the mill [19]. The transfer function of
the open-loop system (without feedback) was obtained in Equation (2.70). For
w(s)/V,(s), we have

o(s) K,
=G(s) = ———— 4.39
v O T “3)
where
K R,J

K| and T =

—- m
" Rb + KK, Rb + KpK,,

In the case of a steel mill, the inertia of the rolls is quite large, and a large armature-
controlled motor is required. If the steel rolls are subjected to a step command for a
speed change of

Vis) = 2 (4.40)

)
the output response is
w(s) = G(s)V,(s). (4.41)
The transient speed change is then
o(t) = Ki(kE)(1 — e7/M). (4.42)

If this transient response is too slow, we must choose another motor with a dif-
ferent time constant 7y, if possible. However, because 7, is dominated by the load
inertia, J, it may not be possible to achieve much alteration of the transient response.

= Constant field current

b
Load




FIGURE 4.14

(a) Closed-loop
speed control
system.

{b) Transistorized
closed-loop speed
control system.

Section 4.5 Control of the Transient Response 249

+ | Amplifier Vals) | Motor . Speed

K, G(s) T wl)

A

koL
R(s) = “Y

Vi(s) | Tachometer
Kf

7 3

(a)

Tachometer Motor

(b)

A closed-loop speed control system is easily obtained by using a tachometer
to generate a voltage proportional to the speed, as shown in Figure 4.14(a). This
voltage is subtracted from the potentiometer voltage and amplified as shown in
Figure 4.14(a). A practical transistor amplifier circuit for accomplishing this feed-
back in low-power applications is shown in Figure 4.14(b) [1, 5, 7]. The closed-loop
transfer function is

w(s)  KG(s)
R(s) 1+ K,KG(s)
KK, K.Ki/7,

= = ) 4.43
s+ 1+ KKK, s+ 1+ K,KK,)/m (443)
The amplifier gain, K,, may be adjusted to meet the required transient response
specifications. Also, the tachometer gain constant, K,, may be varied, if necessary.
The transient response to a step change in the input command is then

KnKl

e _ ,mpt
1 KaK1K1(k2E)(1 e™Ph), (4.44)

w(t) =
where p = (1 + K,K,K,)/7;. Because the load inertia is assumed to be very large,
we alter the response by increasing K. Thus, we have the approximate response

w(t) ~ Klt(sz)[l - exp(M)J. (4.45)

T1

For a typical application, the open-loop pole might be 1/7; = 0.10, whereas the
closed-loop pole could be at least (K,K,K;)/T; = 10, a factor of one hundred in
the improvement of the speed of response. To attain the gain K, K, K, the ampli-
fier gain K, must be reasonably large, and the armature voltage signal to the
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FIGURE 4.15
The response of the
open-loop and
closed-ioop speed
control system
when 7 = 10 and
KKK = 100. The
time to reach 98%
of the final value for
the open-loop and
closed-loop system
is 40 seconds and
0.4 seconds,
respectively.
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motor and its associated torque signal must be larger for the closed-loop than for
the open-loop operation. Therefore, a higher-power motor will be required to
avoid saturation of the motor. The responses of the closed-loop system and the
open-loop system are shown in Figure 4.15. Note the rapid response of the
closed-loop system.

While we are considering this speed control system, it will be worthwhile to de-
termine the sensitivity of the open- and closed-loop systems. As before, the sensitivity
of the open-loop system to a variation in the motor constant or the potentiometer
constant k, is unity. The sensitivity of the closed-loop system to a variation in K, is

[s + (1/7y)]

T = gT¢C :
Sk = 5658~ TERKK, + Tym

Using the typical values given in the previous paragraph, we have

s~ (s + 0.10)
Kn ™ s 4+10

We find that the sensitivity is a function of s and must be evaluated for various values of
frequency. This type of frequency analysis is straightforward but will be deferred until a
later chapter. However, it is clearly seen that at a specific low frequency—for example,
s = jw = jl—the magnitude of the sensitivity is approximately |Sk | = 0.1.

4.6 STEADY-STATE ERROR

A feedback control system is valuable because it provides the engineer with the
ability to adjust the transient response. In addition, as we have seen, the sensitivity
of the system and the effect of disturbances can be reduced significantly. However,
as a further requirement, we must examine and compare the final steady-state error
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for an open-loop and a closed-loop system. The steady-state error is the error after
the transient response has decayed, leaving only the continuous response.
The error of the open-loop system shown in Figure 4.2 is

Ey(s) = R(s) — Y(s) = (1 — G(s))R(s), (4.46)

when T,(s) = 0. Figure 4.3 shows the closed-loop system. When T,(s) = 0 and
N(s) = 0, and we let H(s) = 1, the tracking error is given by (Equation 4.3)

1

Els) =17 G.)0Go) X

(s). (4.47)

To calculate the steady-state error, we use the final-value theorem
lime(t) = lim sE(s). (4.48)
{—00 s—0

Therefore, using a unit step input as a comparable input, we obtain for the open-
loop system

e,(00) = lim s(1 — G(s))G) =lm(1-G(s) =1-GO). (449

For the closed-loop system we have

- 1 B_ v
e(00) = lim “(1 + Gc(s)G(s))(s) "1+ G0)G(0) (4.50)

The value of G(s) when s = 0 is often called the DC gain and is normally greater
than one. Therefore, the open-loop system will usually have a steady-state error of
significant magnitude. By contrast, the closed-loop system with a reasonably large
DC loop gain L(0) = G(0)G(0) will have a small steady-state error. In Chapter 5,
we discuss steady-state error in much greater detail.

Upon examination of Equation (4.49), we note that the open-loop control sys-
tem can possess a zero steady-state error by simply adjusting and calibrating the
system’s DC gain, G(0), so that G(0) = 1. Therefore, we may logically ask, What is
the advantage of the closed-loop system in this case? To answer this question, we
return to the concept of the sensitivity of the system to parameter changes. In the
open-loop system, we may calibrate the system so that G(0) = 1, but during the
operation of the system, it is inevitable that the parameters of G(s) will change
due to environmental changes and that the DC gain of the system will no longer
be equal to 1. Because it is an open-loop system, the steady-state error will not
equal zero until the system is maintained and recalibrated. By contrast, the closed-
loop feedback system continually monitors the steady-state error and provides an
actuating signal to reduce the steady-state error. Because systems are susceptible
to parameter drift, environmental effects, and calibration errors, negative feed-
back provides benefits. An example of an ingenious feedback control system is
shown in Figure 4.16.

The advantage of the closed-loop system is that it reduces the steady-state error
resulting from parameter changes and calibration errors. This may be illustrated by
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or 10%. By contrast, the steady-state error of the closed-loop system, with
AK/K = 0.1,is e.(c0) = 1/91 if the gain decreases. Thus, the change is

Ae(00) = %01 - 91—1 (4.55)
and the relative change is
Aef) = 0.0011, (4.56)
Ir(@®)|

or 0.11%. This is a significant improvement, since the closed-loop relative change is
two orders of magnitude lower than that of the open-loop system.

4.7 THE COST OF FEEDBACK

Adding feedback to a control system results in the advantages outlined in the previ-
ous sections. Naturally, however, these advantages have an attendant cost. The first
cost of feedback is an increased number of components and complexity in the sys-
tem. To add the feedback, it is necessary to consider several feedback components;
the measurement component (sensor) is the key one. The sensor is often the most
expensive component in a control system. Furthermore, the sensor introduces noise
and inaccuracies into the system.

The second cost of feedback is the loss of gain. For example, in a single-loop sys-
tem, the open-loop gain is G.(s)G(s) and is reduced to G(s)G(s)/(1 + G.(s)G(s))
in a unity negative feedback system. The closed-loop gain is smaller by a factor of
1/(1 + G.(s)G(s)), which is exactly the factor that reduces the sensitivity of the sys-
tem to parameter variations and disturbances. Usually, we have extra open-loop
gain available, and we are more than willing to trade it for increased control of the
system response.

We should note that it is the gain of the input—output transmittance that is
reduced. The control system does retain the substantial power gain of a power
amplifier and actuator, which is fully utilized in the closed-loop system.

The final cost of feedback is the introduction of the possibility of instability.
Whereas the open-loop system is stable, the closed-loop system may not be always
stable. The question of the stability of a closed-loop system is deferred until Chapter 6,
where it can be treated more completely.

The addition of feedback to dynamic systems causes more challenges for the
designer. However, for most cases, the advantages far outweigh the disadvantages,
and a feedback system is desirable. Therefore, it is necessary to consider the addi-
tional complexity and the problem of stability when designing a control system.

Clearly, we want the output of the system, Y(s), to equal the input, R(s). How-
ever, upon reflection, we might ask, Why not simply set the transfer function
G(s) = Y(s)/R(s) equal to 1? (See Figure 4.2, assuming T,(s) = 0.) The answer to
this question becomes apparent once we recall that the process (or plant) G(s)
was necessary to provide the desired output; that is, the transfer function G(s) rep-
resents a real process and possesses dynamics that cannot be neglected. If we set
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G(s) equal to 1, we imply that the output is directly connected to the input. We must
recall that a specific output (such as temperature, shaft rotation, or engine speed), is
desired, whereas the input can be a potentiometer setting or a voltage. The process
G(s) is necessary to provide the physical process between R(s) and Y(s). Therefore,
a transfer function G(s) = 1 is unrealizable, and we must settle for a practical trans-
fer function.

4.8 DESIGN EXAMPLES

FIGURE 4.17

A block diagram
model of a boring
machine control
system.

In this section we present three illustrative examples: the English Channel boring
machine, the Mars rover, and a blood pressure control problem during anesthesia.
The English Channel boring machine example focuses on the closed-loop system
response to disturbances. The Mars rover example highlights the advantages of
closed-loop feedback control in decreasing system sensitivity to plant changes. The
final example on blood pressure control is a more in-depth look at the control
design problem. Since patient models in the form of transfer functions are diffi-
cult to obtain from basic biological and physical principles, a different approach
using measured data is discussed. The positive impact of closed-loop feedback control
is illustrated in the context of design.

EXAMPLE 4.2 English Channel boring machines

The construction of the tunnel under the English Channel from France to Great
Britain began in December 1987. The first connection of the boring tunnels from
each country was achieved in November 1990. The tunnel is 23.5 miles long and is
bored 200 feet below sea level. The tunnel, completed in 1992 at a total cost of $14
billion, accommodates 50 train trips daily. This construction is a critical link between
Europe and Great Britain, making it possible for a train to travel from London to
Paris in three hours.

The machines, operating from both ends of the channel, bored toward the mid-
dle. To link up accurately in the middle of the channel, a laser guidance system kept
the machines precisely aligned. A model of the boring machine control is shown in
Figure 4.17, where Y(s) is the actual angle of direction of travel of the boring machine
and R(s) is the desired angle. The effect of load on the machine is represented by the
disturbance, T,(s).

The design objective is to select the gain K so that the response to input angle
changes is desirable while we maintain minimal error due to the disturbance. The

Ty(s)

Gs) G(s)
Controller Boring machine
R(s) + E“(s) + 1
. s J05)
o + >
Desired K+ 1ls ? GED Angle
angle -




FIGURE 4.18

The response y(f) to
(a) a unit input step
r(t) and (b) a unit
disturbance step
input with

T4s) = 1/s for

K = 100.
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output due to the two inputs is

Y(s) = ——K—+1”—R(s) +

= Tq(s). .
P+ 125 + K a(s) (457)

s+ 12s + K
Thus, to reduce the effect of the disturbance, we wish to set the gain greater than 10.
When we select K = 100 and let the disturbance be zero, we have the step response for
a unit step input #(¢), as shown in Figure 4.18(a). When the input #(t) = 0 and we deter-
mine the response to the unit step disturbance, we obtain y() as shown in Figure 4.18(b).
The effect of the disturbance is quite small. If we set the gain K equal to 20, we ob-
tain the responses of y(f) due to a unit step input #(¢) and disturbance T(¢) displayed
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FIGURE 4.19

The response y(t)
for a unit step input
(solid line) and for a
unit step
disturbance
(dashed line) for

K = 20.
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together in Figure 4.19. Since the overshoot of the response is small (less than 4%)
and the steady state is attained in 2 seconds, we would prefer that X = 20. The
results are summarized in Table 4.1.

The steady-state error of the system to a unit step input R(s) = 1/sis

. 1
lime(¢) = lim s =0. (4.58)
1—00

s=0 K+1is(1
1+——1=
ss + 1) \s
The steady-state value of y(z) when the disturbance is a unit step, T (s) = 1/s,
and the desired value is r(t) = O is

. . 1 1
Jm y() = }‘—%L(S +12) + K} K (4.59)
Thus, the steady-state value is 0.01 and 0.05 for K = 100 and 20, respectively.

Finally, we examine the sensitivity of the system to a change in the process G(s)
using Equation (4.12). Then

r_ s(s +1) (4.60)
¢ ss+12) + K '
Table 4.1 Response of the Boring System for Two Gains
Time for
response to Steady-state
r{t) = step response Steady-state error
Overshoot of to reach y(f) for unit of response to
Gain response to steady state step disturbance r(t) = step with
K r(t) = step (2% criterion) withr(t) = 0 zero disturbance
100 22% 0.7s 0.01 0

20 4% 1.0s 0.05 0
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FIGURE 4.21
Control system for
the rover. (a) Open-
loop (without
feedback).

(b) Closed-loop
with feedback.
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TAs)
Controller Rover
+ Y(s)
K(s + 1)(s + 3) 1 .
R(y) =——b| —————— ————————— [P Vehicle
sc+4s+5 + s+ (s +3)
position

(a)

T4

position

Rover
¥ + ) Y(s)
R(s)—»_?—» K — Y » Vehicle

(b)

and the transfer function for the closed-loop system is
Y(s) _ K
R(s) s+4s+3+K

T.(s) = (4.63)

Then, for K = 2,
2
s2+4s+5
Hence, we can compare the sensitivity of the open-loop and closed-loop systems for

the same transfer function.
The sensitivity for the open-loop system is

T(s) = T(s) = T(s) =

Sh=—"2—=1, (4.64)

and the sensitivity for the closed-loop system is
ST._dTCE_ s2+4s+3
KTdKT, P +45+3+K

(4.65)

To examine the effect of the sensitivity at low frequencies, we let s = jw to obtain
(3 - o) + jdo
B+ K - o) + jho

Sk = (4.66)

For K = 2, the sensitivity at low frequencies, w < 0.1, is IS,%I == (.6.
A frequency plot of the magnitude of the sensitivity is shown in Figure 4.22.
Note that the sensitivity for low frequencies is

|SE| <08, for o =1.

The effect of the disturbance can be determined by setting R(s) = 0 and letting
T,(s) = 1/s. Then, for the open-loop system, we have the steady-state value

, 1 11
y(e0) = !‘-»n:‘)s{(s + (s + 3)}? E (4.67)



FIGURE 4.22

The magnitude of
the sensitivity of the
closed-loop system
for the Mars rover
vehicle.
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Magnitude of sensitivity vs. frequency

Magnitude of sensitivity

Frequency (rad/s)

As shown in Section 4.4, the output of the closed-loop system with a unit step
disturbance, Ty(s) = 1/s, is

1 11
= i ~ = . 4.68
¥(*) slglos{(s2+4s+3+K)}S 3+ K (4.68)

When K = 2, y(00) = 1/5. Because we seek to minimize the effect of the distur-
bance, it is clear that a larger value of K would be desirable. An increased value of
K, such as K = 50, will further reduce the effect of the disturbance as well as reduce
the magnitude of the sensitivity (Equation 4.66). However, as we increase K beyond
K = 50, the transient performance of the system for the ramp input, 7(¢), begins to
deteriorate. m

EXAMPLE 4.4 Blood pressure control during anesthesia

The objectives of anethesia are to eliminate pain, awareness, and natural reflexes so
that surgery can be conducted safely. Before about 150 years ago, alcohol, opium
and cannabis were used to achieve these goals, but they proved inadequate [23].
Pain relief was insufficient both in magnitude and duration; too little pain medica-
tion and the patient felt great pain, too much medication and the patient died or be-
came comatose. In the 1850s ether was used successfully in the United States in
tooth extractions, and shortly thereafter other means of achieving unconsciousness
safely were developed, including the use of chloroform and nitrous oxide.

In a modern operating room, the depth of anesthesia is the responsibility of
the anesthetist. Many vital parameters, such as blood pressure, heart rate, tem-
perature, blood oxygenation, and exhaled carbon dioxide, are controlled within
acceptable bounds by the anesthetist. Of course, to ensure patient safety, ade-
quate anesthesia must be maintained during the entire surgical procedure. Any
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Control Goal
Regulate the mean arterial pressure to any desired set-point and maintain the
prescribed set-point in the presence of unwanted disturbances.

Associated with the stated control goal, we identify the variable to be controlled:

Variable to Be Controlled
Mean arterial pressure (MAP).

Because it is our desire to develop a system that will be used in clinical appli-
cations, it is essential to establish realistic design specifications. In general terms
the control system should have minimal complexity while satisfying the control
specifications. Minimal complexity translates into increased system reliability and
decreased cost.

The closed-loop system should respond rapidly and smoothly to changes in the
MAP set-point (made by the anesthetist) without excessive overshoot. The closed-
loop system should minimize the effects of unwanted disturbances. There are two
important categories of disturbances: surgical disturbances, such as skin incisions
and measurement errors, such as calibration errors and random stochastic noise. For
example, a skin incision can increase the MAP rapidly by 10 mmHg [26]. Finally,
since we want to apply the same control system to many different patients and we
cannot (for practical reasons) have a separate model for each patient, we must have
a closed-loop system that is insensitive to changes in the process parameters (that is,
it meets the specifications for many different people).

Based on clinical experience [24], we can explicitly state the control specifica-
tions as follows:

Control Design Specifications
DS1 Settling time less than 20 minutes for a 10% step change from the MAP set-point.

DS2 Percent overshoot less than 15% for a 10% step change from the MAP set-point.
DS3 Zero steady-state tracking error to a step change from the MAP set-point.

DS4 Zero steady-state error to a step surgical disturbance input (of magnitude
|d(¢)] = 50) with a maximum response less than +5% of the MAP set-point.

DS5 Minimum sensitivity to process parameter changes.

We cover the notion of percent overshoot (DS1) and settling time (DS2) more thor-
oughly in Chapter 5. They fall more naturally in the category of system perfor-
mance. The remaining three design specifications, DS3-DSS5, covering steady-state
tracking errors (DS3), disturbance rejection (DS4), and system sensitivity to para-
meter changes (DSS5) are the main topics of this chapter. The last specification, DSS5,
is somewhat vague; however, this is a characteristic of many real-world specifica-
tions. In the system configuration, Figure 4.24, we identify the major system ele-
ments as the controller, anesthesia pump/vaporizer, sensor, and patient.

The system input R(s) is the desired mean arterial pressure change, and the out-
put Y(s) is the actual pressure change. The difference between the desired and the
measured blood pressure change forms a signal used by the controller to determine
value settings to the pump/vaporizer that delivers anesthesia vapor to the patient.

The model of the pump/vaporizer depends directly on the mechanical design.
We will assume a simple pump/vaporizer, where the rate of change of the output
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R(s)
Desired blood
pressure
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Val‘ve Surgical
setting disturbance
Td(-i')
Controller Pump Patient
W(s) + 9 Y(s)
GJ(s) »> Gpls) G(s) Actual blood
U(s) pressure
N N(s)
Vapor Measurement
Sensor + noise
Measured blood Ao °
pressure change
FIGURE 4.24 Blood pressure control system configuration.
vapor is equal to the input valve setting, or
u(t) = v(2).
The transfer function of the pump is thus given by
Uis) 1
G(s) = ——=—. 4.69

This is equivalent to saying that, from an input/output perspective, the pump has the
impulse response

hit)=1 t=0.

Developing an accurate model of a patient is much more involved. Because the
physiological systems in the patient (especially in a sick patient) are not easily mod-
eled, a modeling procedure based on knowledge of the underlying physical processes
is not practical. Even if such a model could be developed, it would, in general, be a
nonlinear, time-varying, multi-input, multi-output model. This type of model is not
directly applicable here in our linear, time-invariant, single-input, single-output sys-
tem setting.

On the other hand, if we view the patient as a system and take an input/output
perspective, we can use the familiar concept of an impulse response. Then if we
restrict ourselves to small changes in blood pressure from a given set-point (such
as 100 mmHg), we might make the case that in a small region around the set-point
the patient behaves in a linear time-invariant fashion. This approach fits well into
our requirement to maintain the blood pressure around a given set-point (or baseline).
The impulse response approach to modeling the patient response to anesthesia has
been used successfully in the past [27].

Suppose that we take a black-box approach and obtain the impulse response in
Figure 4.25 for a hypothetical patient. Notice that the impulse response initially has
a time delay. This reflects the fact that it takes a finite amount of time for the patient
MAP to respond to the infusion of anesthesia vapor. We ignore the time-delay in



FIGURE 4.25
Mean arterial
pressure (MAP)
impulse response
for a hypothetical
patient.
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our design and analysis, but we do so with caution, In subsequent chapters we will
learn to handle time delays. We keep in mind that the delay does exist and should be
considered in the analysis at some point.

A reasonable fit of the data shown in Figure 4.25 is given by

y(t) = te™™ t =0,

where p = 2 and time (¢¥) is measured in minutes. Different patients are associated
with different values of the parameter p. The corresponding transfer function is

1
G(s) = ——. 4.70
OR e (4.70)
For the sensor we assume a perfect noise-free measurement and
H(s) = 1. (4.71)

Therefore, we have a unity feedback system.
A good controller for this application is a proportional-integral-derivative
(PID) controller:
K[ KDSZ + KpS + K[

GC(S) = Kp + SKD + T = B s (472)

where Kp, K, and K are the controller gains to be determined to satisfy all design
specifications. The selected key parameters are as follows:

Select Key Tuning Parameters
Controller gains Kp, K, and K.

We begin the analysis by considering the steady-state errors. The tracking error
(shown in Figure 4.24 with Ty(s) = 0 and N(s) = 0) is
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1
1+ G(,(s)Gp(s)G(s)R

E(s) = R(s) — Y(s) = (5),

or
s+ 2ps3 + p2s2

E(s) =
(s) s+ 2ps® + (p° + Kp)s? + Kps + K;

R(s).

Using the final-value theorem, we determine that the steady-state tracking
error is

Ry(s* + 2ps* + p*s’
lim sE(s) = lim ols” + 2ps” + ps’) 0,
s%

s—=0st + 2ps® + (p* + Kp)s® + Kps + K| B
where R(s) = Ry/s is a step input of magnitude Ry. Therefore,
lime(t) = 0.

=00

With a PID controller, we expect a zero steady-state tracking error (to a step input)
for any nonzero values of Kp, Kp, and K. As we will see in Chapter 5, the integral
term, K, /s, in the PID controller is the reason that the steady-state error to a unit
step is zero. Thus design specification DS3 is satisfied.

When considering the effect of a step disturbance input, we let R(s) = 0 and
N(s) = 0. We want the steady-state output Y(s) to be zero for a step disturbance.
The transfer function from the disturbance T;(s) to the output ¥(s) is

Y(s) = —G(s) T.(5)
® = T3 Gm6,6m0m ¢
- s T(s)
s+ 2pst + (p* + Kp)st + Kps + K, a3
When
Ty(s) = B
[¢ s ?
we find that
“'D()SZ

lim sY(s) = lim =
lim s (s) s—0s + 2ps® + (p® + Kp)s? + Kps + K

Therefore,
Jim () = 0.

Thus a step disturbance of magnitude D, will produce no output in the steady-state,
as desired.
The sensitivity of the closed-loop transfer function to changes in p is given by

ST = SGSS.
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We compute S as follows:

§G = aG(s) P -2p
r ap G(s) s+p
and
ST = 1 _ s* (s + p)?
1+ G(s)G,(5)G(s)  s* + 2ps® + (p* + Kp)s® + Kps + K|
Therefore,

2p(s + p)s?
s+ 2ps3 + (p* + Kp)s? + Kps + K

S} = SGS§ =~ (4.73)

We must evaluate the sensitivity function S?, at various values of frequency. For low
frequencies we can approximate the system sensitivity S; by

S‘[‘ N 2p252
P Kl :

So at low frequencies and for a given p we can reduce the system sensitivity to varia-
tions in p by increasing the PID gain, K;. Suppose that three PID gain sets have been
proposed, as shown in Table 4.2. With p = 2 and the PID gains given as the cases 1-3 in
Table 4.2, we can plot the magnitude of the sensitivity S}: as a function of frequency for
each PID controller. The result is shown in Figure 4.26. We see that by using the PID 3
controller with the gains Kp = 6, Kp = 4, and K; = 4, we have the smallest system
sensitivity (at low frequencies) to changes in the process parameter, p. PID 3 is the
controller with the largest gain K;. As the frequency increases we see in Figure 4.26
that the sensitivity increases, and that PID 3 has the highest peak sensitivity.
Now we consider the transient response. Suppose we want to reduce the MAP
by a 10% step change. The associated input is
Ry 10
R(s) = Pl
The step response for each PID controller is shown in Figure 4.27. PID 1 and PID 2
meet the settling time and overshoot specifications; however PID 3 has excessive
overshoot. The overshoot is the amount the system output exceeds the desired
steady-state response. In this case the desired steady-state response is a 10% decrease
in the baseline MAP. When a 15% overshoot is realized, the MAP is decreased by

Table 4.2 PID Controller Gains and System Performance Results

Input response Settling Disturbance response
PID Kp Kp K; overshoot (%) time (min) overshoot (%)
1 6 4 1 14.0 10.9 5.25
2 5 7 2 14.2 8.7 439
3 6 4 4 39.7 11.1 5.16
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11.5%, as illustrated in Figure 4.27. The settling time is the time required for the sys-
tem output to settle within a certain percentage (for example, 2%) of the desired
steady-state output amplitude. We cover the notions of overshoot and settling time
more thoroughly in Chapter 5. The overshoot and settling times are summarized in

————————— -

10—~ I T
R =
PID2 | _- !

Table 4.2.
14 = .
SN | 1
’ \ PID 3 \ |
[\ | |
12 [-——+ -\~ —— | - = 15% overshoot —|

Percent decrease in mean arterial pressure (%)
N
. ] i ; :
o} !
Bt £ S Vo i
= i i

e }
\

FIGURE 4.27 !

Mean arterial ‘ ,

pressure (MAP) % 5 10 15 20

step input response ) )
with R(s) = 10/s. Time (min)



FIGURE 4.28
Mean arterial
pressure (MAP)
disturbance step
response.
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We conclude the analysis by considering the disturbance response. From previous
analysis we know that the transfer function from the disturbance input T,(s) to the
output Y(s) is

-G(s)

T+ G.)G,(5)0G)
_52

= T4(s).
st + 2ps® + (p* + Kp)s® + Kps + K, s)

To investigate design specification DS4, we compute the disturbance step response
with

Y(s) =

Dy 50
Td(S) = T = ?

This is the maximum magnitude disturbance (|T,(¢)| = D, = 50). Since any step
disturbance of smaller magnitude (that is, |T,(t)] = Dy < 50) will result in a
smaller maximum output response, we need only to consider the maximum mag-
nitude step disturbance input when determining whether design specification DS4
is satisfied.

The unit step disturbance for each PID controller is shown in Figure 4.28. Con-
troller PID 2 meets design specification DS4 with a maximum response less than
+5% of the MAP set-point, while controllers PID 1 and 3 nearly meet the specifica-
tion. The peak output values for each controller are summarized in Table 4.2.

In summary, given the three PID controllers, we would select PID 2 as the con-
troller of choice. It meets all the design specifications while providing a reasonable
insensitivity to changes in the plant parameter. =

Percent decrease in mean arterial pressure (%)

Time (min)
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4.9 CONTROL SYSTEM CHARACTERISTICS USING CONTROL DESIGN SOFTWARE

In this section, the advantages of feedback will be illustrated with two examples. In
the first example, we will introduce feedback control to a speed tachometer system
in an effort to reject disturbances. The tachometer speed control system example
can be found in Section 4.5. The reduction in system sensitivity to process variations,
adjustment of the transient response, and reduction in steady-state error will be
demonstrated using the English Channel boring machine example of Section 4.8,

EXAMPLE 4.5 Speed control system

The open-loop block diagram description of the armature-controlled DC motor
with a load torque disturbance 7,(s) is shown in Figure 4.7. The values for the vari-
ous parameters (taken from Figure 4.7) are given in Table 4.3. We have two inputs to
our system, V,(s) and T,(s). Relying on the principle of superposition, which applies
to our linear system, we consider each input separately. To investigate the effects of
disturbances on the system, we let V,(s) = 0 and consider only the disturbance
T,(s). Conversely, to investigate the response of the system to a reference input, we
let T,(s) = 0 and consider only the input V,(s).

The closed-loop speed tachometer control system block diagram is shown in
Figure 4.9. The values for K, and K| are given in Table 4.3.

If our system displays good disturbance rejection, then we expect the distur-
bance T,(s) to have a small effect on the output w(s). Consider the open-loop sys-
tem in Figure 4.11 first. We can compute the transfer function from T,(s) to w(s) and
evaluate the output response to a unit step disturbance (that is, T,(s) = 1/s). The
time response to a unit step disturbance is shown in Figure 4.29(a). The script shown
in Figure 4.29(b) is used to analyze the open-loop speed tachometer system.

The open-loop transfer function (from Equation (4.26)) is

w(is) -~
T,s) 2s+ 15

= sys_o,

where sys_o represents the open-loop transfer function in the script. Since our desired
value of w(t) is zero (remember that V,(s) = 0), the steady-state error is just the final
value of w(t), which we denote by w,(¢) to indicate open-loop. The steady-state error,
shown on the plot in Figure 4.29(a), is approximately the value of the speed when
t = 7 seconds. We can obtain an approximate value of the steady-state error by look-
ing at the last value in the output vector y,, which we computed in the process of gen-
erating the plot in Figure 4.29(a). The approximate steady-state value of w,, is

@,(00) = w,(7) = —0.66 rad/s.

The plot verifies that we have reached steady state.

Table 4.3 Tachometer Control System Parameters
R, Knm J b Ky K, K;
10 10 Nm/A 2 kg m? 0.5Nms 0.1Vs 54 1Vs




FIGURE 4.29
Analysis of the
open-loop speed
control system.
(a) Response.

(b) m-file script.
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Open-Loop Disturbance Step Response

-0.1
-0.2
-0.3
—04} - : Steady-state error
-05
—0.6
-0.7

0 I 2 3 4 5 6 7
Time (s)

(a)

%Speed Tachomeler Example

O,

Yo

Ra=1; Km=10; J=2; {=0.5; Kb=0.1;

num1=[1]; den1=[J,b); sys1=tf(hum1,den1);
num2=[Km*Kb/Ra]; den2=[1]; sys2=tf(num2,den2);

sys_o=feedback(sys1,sys2); - —
% Change sign of transfer function since the

Sys_o=-8ys_0 I disturbance has negative sign in the diagram.

%

[yo, T}=step(sys_o); <
plot(T,yo)
title('Open-Loop Disturbance Step Response')
xlabel('Time (s)"),ylabel("omega_o"), grid

%

yo(length(T}) <_—[ Steady-state error — last value of output yo. J

(b)

Compute response to
step disturbance.

In a similar fashion, we begin the closed-loop system analysis by computing the
closed-loop transfer function from T,(s) to w(s) and then generating the time-
response of w(f) to a unit step disturbance input. The output response and the
script cltach.m are shown in Figure 4.30. The closed-loop transfer function from the
disturbance input (from Equation (4.30)) is

w(s) -1

T(s) 2s + 5415
As before, the steady-state error is just the final value of w(¢), which we denote by
w.(t) to indicate that it is a closed-loop. The steady-state error is shown on the plot in
Figure 4.30(a). We can obtain an approximate value of the steady-state error by look-

ing at the last value in the output vector y,, which we computed in the process of gen-
erating the plot in Figure 4.30(a). The approximate steady-state value of w is

w.(0) = 0. (0.02) = ~0.002 rad/s.

= sys_c.

We generally expect that w (00)/w,(00) < 0.02. In this example, the ratio of closed-
loop to open-loop steady-state speed output due to a unit step disturbance input is

@ (0)

@y(0)

= 0.003.
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x 1073 x Closed-Loop Disturbance Step Response
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(a)

w, (radfs)

%Speed Tachometer Example

%

Ra=1; Km=10; J=2; b=0.5; Kb=0.1; Ka=54; Kt=1;
num1=[1]; den1=[J,b}; sys1=tf(num1,dent);
num2=[Ka*Kt); den2=[1]; sys2=tf(num2,den2);
num3={Kb]; den3=[1]; sys3=tf(num3,den3);
num4=[Km/Ra]}; den4=[1]; sys4=tf(num4,den4);

Sysa=para llel(sys2,sysS); 4——-{ Block diagram reduction
sysb=series(sysa,sys4);

sys_c=feedback(sys1,sysb);
%

SYS_C=-Sys_C
%
{yc,T]=step(sys_c); <+

plot(T,yc)

title('Closed-Loop Disturbance Step Response')
FIGURE 4.30 xIabeI('Tlme {s)"), ylabel(\omega_c (rad/s)'), grid
Analysis of the

closed-loop speed y0(length(T)) <——-{ Steady-state error — last value of output yc.
control system.
(a) Response.

(b) m-file script. (b)

Change sign of transfer function since the
disturbance has negative sign in the diagram.

Compute response to
step disturbance.

We have achieved a remarkable improvement in disturbance rejection. It is clear
that the addition of the negative feedback loop reduced the effect of the disturbance
on the output. This demonstrates the disturbance rejection property of closed-loop
feedback systems. =

EXAMPLE 4.6 English Channel boring machines

The block diagram description of the English Channel boring machines is shown
in Figure 4.17. The transfer function of the output due to the two inputs is
(Equation (4.57))

K + 11s 1
Y(s) = ———R(s) + ———T4(s).
() 24+ 12s + K ) 2+ 12s + K (%)



FIGURE 4.31
The response to a
step input when
(@) K = 100 and
(b) K = 20.

(c) m-file script.
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Step Response for K=100
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Step Response for K=20
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(b)

%

numg=[1]; deng=[1 1 0]; sysg=tf(numg,deng);
K1=100; K2=20;

numi=[11 K1]; num2=[11 K2]; den=[0 1];
sys1=tf(num1,den);

sys2=tf(num2,den);

%

% Response to a Unit Step Input R(s)=1/s for K=20 and K=100

sysa=series(sys1,sysg); sysb=series(sys2,sysg);
sysc=feedback(sysa,[1]); sysd=feedback(sysb,[1]);

Closed-loop
transfer functions.

%

I

1=[0:0.01:2.0]; <

1 Choose time interval.

|

[y1.tl=step(sysc.t); [y2,t)=step(sysd,t);

subplot(211),plot(t,y1), titte("Step Response for K=100")
xlabel('Time (s)'),ylabel('y(t)"), grid —

Create subplots
with x and y

subplot(212),plot(t,y2), litle('Step Response for K=20")

axis labels.

xlabel('Time (s)'),ylabel('y(t)"), grid

©)

271

The effect of the control gain, K, on the transient response is shown in Figure 4.31
along with the script used to generate the plots. Comparing the two plots in parts (a)
and (b), it is apparent that decreasing K decreases the overshoot. Although it is not
as obvious from the plots in Figure 4.31, it is also true that decreasing K increases
the settling time. This can be verified by taking a closer look at the data used
to generate the plots. This example demonstrates how the transient response
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FIGURE 4.32
The response to a
step disturbance
when (a) K = 100
and (b) K = 20.
(c) m-file script.

Chapter 4 Feedback Control System Characteristics

can be altered by feedback control gain, K. Based on our analysis thus far, we would
prefer to use K = 20. Other considerations must be taken into account before we
can establish the final design.

Before making the final choice of K, it is important to consider the system response
to a unit step disturbance, as shown in Figure 4.32. We see that increasing X reduces the

Disturbance Response for K=100
0.012 - ;

0.010
0.008
0.006
0.004
0.002

0

Mo

0 0.5 1.0 1.5 2.0 2.5
Time (s)

(@)

Disturbance Response for K=20
0.05

0.04
0.03
0.02
0.01

M)

0 0.5 1.0 1.5 2.0 2.5
Time (s)

(b)

% Response to a Disturbance T4{s)=1/s for K=20 and K=100
%

numg=[1}; deng=[1 1 O];
sysg=tf(numg,deng);

K1=100; K2=20;

numi=[11 K1]; num2=[11 K2}; den={0 1];
sys1=tf(num1,den); sys2=tf(num2,den);
%

sysa=feedback(sysg,sys1); sysa=minreal(sysa); ¢ Closed-loop
sysb=Ffeedback(sysg,sys2); sysb=minreal(sysb); transfer functions.
%

1=[0:0.01:2.5];

[y1,t]=step(sysa,t); [y2,t]=step(sysb,t);

subplot(211),plot(t,y1), title('Disturbance Response for K=100')
xlabel('Time (s)"),ylabel('y(t)"), grid

subplot(212),plot(t,y2), title('Disturbance Response for K=20")
xlabel('Time (s)'),ylabel('y(t)), grid —

Create subplots with
x and y labels.

(<)
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Table 4.4 Response of the Boring Machine Control System
forK = 20and K = 100

K =20 K =100
Step Response
Overshoot 4% 22%
Ty 1.0s 0.7s
Disturbance Response
€ 5% 1%

steady-state response of y(¢) to the step disturbance. The steady-state value of y(z)
is 0.05 and 0.01 for K = 20 and 100, respectively. The steady-state errors, percent
overshoot, and settling times (2% criteria) are summarized in Table 4.4. The
steady-state values are predicted from the final-value theorem for a unit distur-
bance input as follows:

iyt = tims] L Y11
A TR s+ 1)+ K[s K

If our only design consideration is disturbance rejection, we would prefer to use
K = 100.

We have just experienced a very common trade-off situation in control system
design. In this particular example, increasing K leads to better disturbance rejection,
whereas decreasing K leads to better performance (that is, less overshoot). The final
decision on how to choose K rests with the designer. Although control design soft-
ware can certainly assist in the control system design, it cannot replace the engi-
neer’s decision-making capability and intuition.

The final step in the analysis is to look at the system sensitivity to changes in the
process. The system sensitivity is given by (Equation 4.60),

T _ s(s +1)
T s(s+12) + K

We can compute the values of S5(s) for different values of s and generate a plot of the
system sensitivity. For low frequencies, we can approximate the system sensitivity by

s
SL ==,

7K
Increasing the gain K reduces the system sensitivity. The system sensitivity plots
when s = jo are shown in Figure 4.33 for K = 20. m

4.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

=

The design of a disk drive system is an exercise in compromise and optimization. The
disk drive must accurately position the head reader while being able to reduce the
effects of parameter changes and external shocks and vibrations. The mechanical arm
and flexure will resonate at frequencies that may be caused by excitations such as a
shock to a notebook computer. Disturbances to the operation of the disk drive include
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System Sensitivity to Plant Variations

0.6

0.4

Imag(S)
4

&
to

—0.2 0 0.2 04 0.6 0.8 1.0
Real (S)

3

102 56 = & \ ]

el S \
',”” __s(s+ 1D
1072 : SO =T s+ k

Abs(S)

1074 ; l
107! 10 10" 102 10°
w (rad/s)

(a)

% System Sensitivity Plot
% Set up vector of s = jw

K=20; num=[1 1 0]; den=[1 12 K]; | to evaluate the sensitivity.
w=logspace(-1,3,200); s=w"i;

n=s.A2 + §; d= 8.2 + 12"s+K; S=n./d; 4——| System sensitivity. I

n2=s; d2=K; S2=n2./d2;
% — - i Approximate sensitivily.—l
subplot(211), plot(real(S),imag(S))
title("System Sensitivity to Plant Variations')
xlabel('Real(S)'), ylabel('Imag(S})'), grid
FIGURE 4.33 subplot(212), loglog(w,abs(S),w,abs(S2))

(a) System xlabel('\omega(rad/s)"), ylabel('Abs(S)"), grid
sensitivity to plant
variations (s = jw).
(b) m-file script.

()

physical shocks, wear or wobble in the spindle bearings, and parameter changes due to
component changes. In this section, we will examine the performance of the disk drive
system in response to disturbances and changes in system parameters. In addition, we
examine the steady-state error of the system for a step command and the transient
response as the amplifier gain K, is adjusted. Thus, in this section, we are carrying out
the last two steps of the design process shown in Figure 1.15.

Let us consider the system shown in Figure 4.34. This closed-loop system uses an
amplifier with a variable gain as the controller. Using the parameters specified in
Table 2.10, we obtain the transfer functions as shown in Figure 4.35. First, we will
determine the steady states for a unit step input, R(s) = 1/s, when T (s) = 0.
When H(s) = 1, we obtain

! R
1+ KHGI(S)GZ(S)

E(s) = R(s) — Y(s) = (s).



FIGURE 4.34
Control system for
disk drive head
reader.

FIGURE 4.35
Disk drive head
control system with
the typical
parameters of
Table 2.10.
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Disturbance
T t8)
Ris) Amplifier Coil _ Load e
Desired T Vis) K 1 N
— K » P Actus
head N R+ Ls + s(Js + b) Aﬁ“? .
e - position
p()smon
Sensor
His)=1 |4—
Disturbance
T(s)
Coil _ Load
+ 5000 1
3 K > $) = W) = > 3
Ris) @ G =000 [ 1 69 = ) Yy
Therefore,
lim e(?) li ! L 4.74)
um e =lms - .
=00 s=0 1+ KrtGI(S)GZ(S) s

Then the steady-state error is e(o0) = 0 for a step input. This performance is
obtained in spite of changes in the system parameters.

Now let us determine the transient performance of the system as K|, is adjusted.
The closed-loop transfer function (with Ty(s) = 0) is

T(s) = Y(s) __ KGi(s)Gas)
l R(s) 1+ K.Gi(s)Gas)
5000 K,

= — . 4.75
s + 1020s® + 20000s + 5000K, (473)

Using the script shown in Figure 4.36(a), we obtain the response of the system
for K, = 10 and K, = 80, shown in Figure 4.36(b). Clearly, the system is faster in
responding to the command input when K, = 80, but the response is unacceptably
oscillatory.

Now let us determine the effect of the disturbance T,(s) = 1/s when R(s) = 0.
We wish to decrease the effect of the disturbance to an insignificant level. Using
the system of Figure 4.35, we obtain the response Y(s) for the input 7,(s) when
K,=80as

Gy(s) )
1+ K,Gy(5)Gos) )

Y(s) = (4.76)

Using the script shown in Figure 4.37(a), we obtain the response of the system when
K, = 80 and T (s) = /s, as shown in Figure 4.37(b). In order to further reduce the



276

FIGURE 4.36
Closed-loop
response. (a) m-file
script. (b) Step
response for

K, = 10 and

K, = 80.
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y(t)

y(©)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.8

0.6

04

0.2

Ka=10; <« Select K.
nf={5000]; df=[1 1000]; sysf=tf(nfdf);

ng=[1]; dg=[1 20 0]; sysg=tf(ng,dg);
sysa=series{Ka*sysf,sysg);
sys=feedback(sysa,[1]);

t=[0:0.01:2];

y=step(sys.t); plot(t,y)

ylabel('y(t)"), xlabel('Time (s)"), grid

(a)

1 i : } | . |

02 04 06 08 10 12 14 16 18

2.0
Time (s)
i
‘ f
|
f K, = 80
|
; —
02 04 06 08 10 12 4 16 18 20

Time (s)
(b)



FIGURE 4.37
Disturbance step
response. (a) m-file
script.

(b) Disturbance
response for

K, = 80.
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Ka=80; < —{ Select X .

nf=[5000]; df=[1 1000]; sysf=tf(nf,df);
ng=[1]; dg=[1 20 0J; sysg=ti(ng,dg);

sys=feedback(sysg,Ka*sysf); Disturbance enters
Sys=—8ys; *— summer with a
1=[0:0.01:2]; negative sign.

y=step(sys,t);
plot(t,y), grid
ylabel('y(t)'), xlabel('Time (s)), grid

(a)

x 1073
0
-0.5 : ;
-1pY- [ - . .
! { K, = 80.
T 15 i ——i- e
-2 L
\ \
\ | |
-25 :
-3 .
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time (s)
(b)

effect of the disturbance, we would need to raise K, above 80. However, the response
to a step command r(r) = 1,7 > 0 is unacceptably oscillatory. In the next chapter,
we attempt to determine the best value for K, given our requirement for a quick,
yet nonoscillatory response.

4.11 SUMMARY

The fundamental reasons for using feedback, despite its cost and additional com-
plexity, are as follows:
1. Decrease in the sensitivity of the system to variations in the parameters of the process.
2. Improvement in the rejection of the disturbances.
3. Improvement in the attenuation of measurement noise.
4. Improvement in the reduction of the steady-state error of the system.
5. Ease of control and adjustment of the transient response of the system.
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FIGURE 4.38

(a) A single-loop
feedback control
system. (b) The
error response for a
unit step
disturbance when
R(s) = 0.

Chapter 4 Feedback Control System Characteristics

The loop gain L(s) = G.(s)G(s) plays a fundamental role in control system
analysis. Associated with the loop gain we can define the sensitivity and comple-
mentary sensitivity functions as

L(s)

S(s) = T+ L)

1
l+—L(S) and C(S) =

respectively. The tracking error is given by
E(s) = S(s)R(s) — S(s)G(5)T4(s) + C(s)N(s).

In order to minimize the tracking error, E(s), we desire to make S(s) and C(s) small.
Because the sensitivity and complementary sensitivity functions satisfy the con-
straint

S(s) + C(s) =1,

we are faced with the fundamental trade-off in control system design between
rejecting disturbances and reducing sensitivity to plant changes on the one hand,
and attenuating measurement noise on the other hand.

The benefits of feedback can be illustrated by considering the system shown in
Figure 4.38(a). This system can be considered for several values of gain K. Table 4.5
summarizes the results of the system operated as an open-loop system (with the
feedback path disconnected) and for several values of gain, K, with the feedback
connected. It is clear that the rise time and sensitivity of the system are reduced as

TA5)

+ + ¥ 1
Rm—»?—» K | > > Y(s)
- (s + 1)?

(@

1.40

1.00

0.70
0.50

e(1)
0.08

Time

(b)
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Table 4.5 System Response of the System Shown in Figure 4.38(a)

279

Open Loop* Closed Loop
K=1 K=1 K=28 K =10
Rise time (s) (10% to 90% of final value) 335 1.52 0.45 0.38
Percent overshoot (%) 0 4.31 33 40
Final value of ¥(¢) due to a disturbance, T;(s) = 1/s 1.0 0.50 0.11 0.09
Percent steady-state error for unit step input 0 50% 11% 9%
Percent change in steady-state error due to 10% 10% 5.3% 1.2% 0.9%
decrease in K

*Response only when K = 1 exactly.

the gain is increased. Also, the feedback system demonstrates excellent reduction of
the steady-state error as the gain is increased. Finally, Figure 4.38(b) shows the re-
sponse for a unit step disturbance (when R(s) = 0) and shows how a larger gain will
reduce the effect of the disturbance.

Feedback control systems possess many beneficial characteristics. Thus, it is not
surprising that there is a multitude of feedback control systems in industry, govern-

ment, and nature.

/ SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple

Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems. Use the block diagram in Figure
4.39 as specified in the various problem statements.

Controller

+ E(s)
R(s) | G

T4(5)
Process
+
G(s)
+

FIGURE 4.33  Block diagram for the Skills Check.

» Y(s)

In the following True or False and Multiple Choice problems, circle the correct answer.

1. One of the most important characteristics of control systems is their

transient response.

True or False

2. The system sensitivity is the ratio of the change in the system transfer
function to the change of a process transfer function for a small

incremental change.

True or False

3. A primary advantage of an open-loop control system is the ability to

reduce the system’s sensitivity.

True or False

4. A disturbance is a desired input signal that affects the system output

signal.

True or False
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5. An advantage of using feedback is a decreased sensitivity of the system

to variations in the parameters of the process. True or False
6. The loop transfer function of the system in Figure 4.39 is
50
G s5)G(s) = .
R T
The sensitivity of the closed-loop system to small changes in 7 is:
TS
a. ST(s) = -
)= ST e
T _ T
b. 57(s) s + 10
T(s) =
¢ §:(s) 75 + 60
T __ T8
d. S (s) 7s + 10
7. Consider the two systems in Figure 4.40.
+
R(s) K > K, > Y(s5)
0.0099

@)

+ +
rin —> —> K, K, | ¥(s)

0.09 0.09

(ii)
FIGURE 4.40 Two feedback systems with gains Ky and K.

These systems have the same transfer function when K; = K, = 100. Which system is
most sensitive to variations in the parameter K;? Compute the sensitivity using the nom-
inal values K; = K; = 100.

a. System (i) is more sensitive and Sk, = 0.01
b. System (ii) is more sensitive and 5172. =01

¢. System (ii) is more sensitive and S’,}l = 0.01

d. Both systems are equally sensitive to changes in K;.

8. Consider the closed-loop transfer function

AI + kAz
T(s) = ——F>
Az + kA,
where A4;, A,, A;,and A, are constants. Compute the sensitivity of the system to
variations in the parameter k.

k(AA; — AAy)
(A3 + kA4)(A1 + kAg)

k(AyA; + A1Ay)
(Az + kAY(A, + kAy)

a. Sk=

b. ST =
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- k(A + kdy)

e S =—"-"7"7-7--—7-
(A3 + kAs)

4 o7 = K4s + kAy)

K7 (A + kAy)
Consider the block diagram in Figure 4.39 for Problems 9-12 where G.(s) = K, and

K
G(s) = TTKK KK,
9. The closed-loop transfer function is:

KK}

& T() = 7oK (K ¥ Ky
KK,

b. T(s) =TT R(RT KN KK + Ky
KK,

© T0) = TR (K + Ky
KK,

d. T(s) =

£+ KKs + K|K,

10. The sensitivity S of the closed-loop system to variations in K is:
Y Ok, P Sy

a. Sk(s) = (s + Kl(’;:+ K;))?
b. Sk,(s) = m
e Sk(s) = m
d. Sk (s) = e

(S + KI(K + K2))2

11 The sensitivity Sk of the closed-loop system to variations in K is:
y p sy

Ty o ST KiK2
a. SK(S) s+ K](K + Kz)
Ks
b. Sk(s) =
KO T YRR+ KDY
T - s+ KK1
© Sk() = Tk K,
Kis + KK
d. S-’,-((S) _ 1( 1 2)

(s + Ky(K + K))?
12. The steady-state tracking error to a unit step input R(s) = 1/s with T,(s) = 0 is:

K
a e = K + K2
K,
b. e, = K+ K,
“ & T KK + Ky)
K,
d. e

TK+K,
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14

s

15.

Consider the block diagram in Figure 4.39 for Problems 13-14 with G.(s) = K and
G(s) =

s+ 1
The sensitivity S7 is:
1
T = —
a5 = T Rp A1
O S
b S = kb1
r_ s+1
S =i kb2
T - s
¢ 5= Tkpe2
Compute the minimal value of K so that the steady-state error due to a unit step distur-
bance is less than 10%.
1
. K=1-—
a. K b
b. K=5b
1
, K =10 - —
[ 0 b

d. The steady-state error is o© for any K

A process is designed to follow a desired path described by
r(t) = (5 - t + 0.5%)u(1)

where r(¢) is the desired response and «(z) is a unit step function. Consider the unity
feedback system in Figure 4.39. Compute the steady-state error (E(s) = R(s) — Y(s)
with Ty(s) = 0) when the loop transfer function is

10(s + 1)

L(s) = G{s)G(s) = ?(s—+—5)

a. e = ’lig.xoe(t)—*oo
b. e, = 'l_i_.rroloe(l) =1
€ e = rl_i_.ngce(r) =05
d. e, = l]ingo e(t) =0

In the following Word Match problems, match the term with the definition by writing the

correct letter in the space provided.

a.

b.

C.

Instability An unwanted input signal that affects the system output
signal.
Steady-state The difference between the desired output, R(s), and the
error actual output, Y(s). o
System A system without feedback that directly generates the
sensitivity output in response to an input signal.
Components The error when the time period is large and the transient

response has decayed leaving the continuous response.
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e. Disturbance The ratio of the change in the system transfer function to the
signal change of a process transfer function (or parameter) for a
small incremental change. -
f. Transient The response of a system as a function of time.
response
g. Complexity A system with a measurement of the output signal and a

comparison with the desired output to generate an error
signal that is applied to the actuator.

h. Error signal A measure of the structure, intricateness, or behavior of a
system that characterizes the relationships and interactions
between various components.

i. Closed-loop The parts, subsystems, or subassemblies that comprise a
system total system.
J- Loss of gain An attribute of a system that describes a tendency of the

system to depart from the equilibrium condition when
initially displaced.

k. Open-loop A reduction in the amplitude of the ratio of the output
system signal to the input signal through a system, usually
measured in decibels.
EXERCISES
E4.1 A closed-loop system is used to track the sun to obtain which controls the arm [8, 9]. The transfer function for
maximum power from a photovoltaic array. The track- the process is
ing system may be represented by Figure 4.3 with
= K
H(s) = | and G(s) = ——.
100 (s + 5)2
G(s) = , (a) Calculate the expected steady-state error of the grip-
75 + 1 .
. . per for a step command A as a function of XK. (b) Name
vyh.ere T= 3 seconds nominally. (a) C:alculate the sensi- a possible disturbance signal for this system.
tivity of this system for a small change in 7. (b) Calculate
the time constant of the closed-loop system response. _ A
Answers: (a) e, = ——————
Answers: § = —3s/(3s + 101); 7. = 3/101 seconds 1 + K/25

E4.4 A magnetic disk drive requires a motor to position a
read/write head over tracks of data on a spinning disk,
as shown in Figure E4.4. The motor and head may be
represented by the transfer function

E4.2 A digital audio system is designed to minimize the
effect of disturbances as shown in Figure E4.2. As
an approximation, we may represent G(s) = Kj.
(a) Calculate the sensitivity of the system due to Ko.
(b) Calculate the effect of the disturbance noise 7(s) G(s) = 10

on V,,. (¢) What value would you select for K to min- - s(rs + 1)°

imize the effect of the disturbance? .

tmze the eliect of the disturbance where 7 = 0.001 second. The controller takes the dif-
E4.3 A robotic arm .and camera could be used to pick ference of the actual and desired positions and gener-

fruit, as shown in Figure E4.3(a). The camera is ates an crror. This error is multiplied by an amplifier

used to close the feedback loop to a microcomputer, K. (a) What is the steady-state position error for a

I‘dh)
Amplifier
+ +
V,a(s) K G(s » V(5)

FIGURE E4.2 " A ‘ It . ‘

Digital audio
system.
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Disturbance
T/
R(‘) + E(S) + - 1 Y(s)
Desired —»| K K, s . » Aclual
depth - - + depth
K,
Sensor
FIGURE E4.9
Depth control K <
system.
Controller Process
+ K(s + 50) 46.24
$) —p » Vs
Rlsy = 5+ 200 ST+ 1675 + 729 )
Sensor
FIGURE E4.10 425 -
Feedback control s+425 |
system.
T +
R(s) G(s) > G(s) > Y(5)
&
R(s) G(s) —> ¥(s) Hs)
+
- +
) | M)

FIGURE E4.11 Closed-loop system with nonunity
feedback.

(a) Compute the transfer function 7'(s) = Y (s)/R(s).
(b) Define the tracking error to be E(s)=
R(s) — Y(s). Compute E(s) and determine the
steady-state tracking error due to a unit step
input, that is, let R(s) = 1/s.

Compute the transfer function Y (s)/T4(s) and
determine the steady-state error of the output
due to a unit step disturbance input, that is, let
Ty(s) = 1/s. .

(d) Compute the sensitivity Sk.

(©

E4.12 In Figure E4.12, consider the closed-loop system
with measurement noise N(s), where
100 K,
G(s) = T 100° G.(s)=K;. and H(s)= P

In the following analysis, the tracking error is defined

tobe £(s) = R(s) — Y(s):

(a) Compute the transfer function T'(s) = Y (s)/R(s)
and determine the steady-state tracking error due

FIGURE E4.12 Closed-loop system with nonunity

feedback and measurement noise.

to a unit step response, that is, let R(s) = 1/s and
assume that N(s) = 0.
Compute the transfer function Y(s)/N(s) and deter-
mine the steady-state tracking error due to a unit
step disturbance response, that is, let N(s) = 1/s
and assume that R(s) = 0. Remember, in this case,
the desired output is zero.
If the goal is to track the input while rejecting the
measurement noise (in other words, while mini-
mizing the effect of N(s) on the output), how
would you select the parameters K| and K3?
E4.13 A closed-loop system is used in a high-speed steel
rolling mill to control the accuracy of the steel strip
thickness. The transfer function for the process shown
in Figure E4.13 can be represented as

1
s(s + 20)

Calculate the sensitivity of the closed-loop transfer
function to changes in the controller gain K.

(b)

(c)

G(s) =
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T (5)

R(s) Yis)
Desired Actual
thickness thickness

(@)
I“,(s)
Controller Process
+
+
Ris) K G(s) > ¥(s)
el \l + it

FIGURE E4.13 Desirec - Actual

Control system for ~ thickness thickness

a steel rolling mill.

(a) Signal flow

graph. (b) Block

diagram. (b)

E4.14 Consider the unity feedback system shown in E4.15 Reconsider the unity feedback system discussed in
Figure E4.14. The system has two parameters, the E4.14. This time select K = 120 and K, = 10. The
controller gain K and the constant K; in the closed-loop system is depicted in Figure E4.15.
process. (a) Calculate the steady-state error of the closed-

(a) Calculate the sensitivity of the closed-loop trans-
fer function to changes in K.

loop system due to a unit step input, R(s) = 1/s,
with 7,(s) = 0. Recall that the tracking error is
defined as E(s) = R(s) — Y(s).

(b) lillowf;vould fyou selec]:tdg valge for ]; to‘ n;inimize (b) Calculate the steady-state response, y,, = ,l_i.rgo (1),
the effects of external disturbances, 7;{s)? when T(s) = 1/5 and R(s) = 0.
Tis)
Controller Process
+
FIGURE E4.14 - + . j L
Closed-loop Ris) * ey > ¥(s)
feedback system -
with two
parameters, K and
K1.
T([(.\ )
Controller Process
FIGURE E4.15 + | + .
Closed-loop R(x) K=120 . —> Y(x)
feedback system - + s(s+10)

with K = 120 and
K1 = 10.
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PROBLEMS

P4.1 The open-loop transfer function of a fluid-flow sys-
tem can be written as

AQxs) _ 1
AQi(s) Ts+ 1

where 7 = RC, R is a constant equivalent to the resis-
tance offered by the orifice so that 1/R = 'LkH ;V/2,
and C = the cross-sectional area of the tank. Since
AH = R AQ),, we have the following for the transfer
function relating the head to the input change:

AH(s) _ R
AQ,(s)  RCs+ 1

For a closed-loop feedback system, a float-level sen-
sor and valve may be used as shown in Figure P4.1.
Assuming the float is a negligible mass, the valve is
controlled so that a reduction in the flow rate, AQ,, is
proportional to an increase in head, AH, or
AQy = —KAH. Draw a closed-loop flow graph or
block diagram. Determine and compare the open-
loop and closed-loop systems for (a) sensitivity to
changes in the equivalent coefficient R and the feed-
back coefficient K, (b) the ability to reduce the effects
of a disturbance in the level AH(s), and (c) the
steady-state error of the level (head) for a step change
of the input AQ(s).

G(s) =

Gi(s) =

IH @+ A0

,(5)

FIGURE P4.2
Ship stabilization
system. The effect %
of the waves is a \
torque Ty4(s) on the

ship. (a)

287

P4.2 Ttis important to ensure passenger comfort on ships

by stabilizing the ship’s oscillations due to waves [13].
Most ship stabilization systems use fins or hydrofoils
projecting into the water to generate a stabilization
torque on the ship. A simple diagram of a ship stabi-
lization system is shown in Figure P4.2. The rolling
motion of a ship can be regarded as an oscillating pen-
dulum with a deviation from the vertical of § degrees
and a typical period of 3 seconds. The transfer function
of a typical ship is
2

Wy

G(s)= 55—,
) 5%+ 2fw,s + ‘”121

where w, = 3rad/s and ¢ = 0.20. With this low
damping factor ¢, the oscillations continue for sever-
al cycles, and the rolling amplitude can reach 18° for
the expected amplitude of waves in a normal sea.
Determine and compare the open-loop and closed-
loop system for (a) sensitivity to changes in the actu-
ator constant K, and the roll sensor X, and (b) the
ability to reduce the effects of step disturbances of
the waves. Note that the desired roll 8,(s) is zero
degrees.

P43 One of the most important variables that must be

controlled in industrial and chemical systems is temper-
ature. A simple representation of a thermal control sys-
tern is shown in Figure P4.3 [14]. The temperature J of
the process is controlled by the heater with a resistance
R. An approximate representation of the dynamic lin-
early relates the heat loss from the process to the
temperature difference § — J,. This relation holds if
the tempecrature difference is relatively small and
the energy storage of the heater and the vessel walls
is negligible. Also, it is assumed that the voltage ¢,
applied to the heater is proportional to ¢gegreq OT
en = kE, = k,Ee(t), where k, is the constant of the

Wave effect

Tyt
E (s) Fin ] ‘
i actuator Ship > )
K G(s) Roli

&
Roll
SENSOT [«
K;

(b)
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E,—

J_ +
kE[) (.2'

Heater
R 7 T,
Process Environment

Actuator

FIGURE P4.3
Temperature control
system.

actuator. Then the linearized open-loop response of
the system is

kik.Ep
s+ 1

T )
s+ 1

I(s) =

E(s) +

where

T = MC/(pA),

M = mass in tank,

A = surface area of tank,

p = heat transfer constant,

C = specific heat constant,

k; = a dimensionality constant, and
e, = output voltage of thermocouple.

Determine and compare the open-loop and closed-
loop systems for (a) sensitivity to changes in the con-
stant K = k\k,E,; (b) the ability to reduce the
effects of a step disturbance in the environmental
temperature AJ (s); and (c) the steady-state error of
the temperature controller for a step change in the

Eqesired

Thermocouple

Kll{

A

P44 A control system has two forward paths, as shown in

Figure P4.4. (a) Determine the overall transfer function
T(s) = Y(s)/R(s). (b) Calculate the sensitivity, S&.
using Equation (4.16). (c) Does the sensitivity depend
on U(s) or M(s)?

P45 Large microwave antennas have become increas-

ingly important for radio astronomy and satellite
tracking. A large antenna with a diameter of 60 ft, for
example, is subject to large wind gust torques. A pro-
posed antenna is required to have an error of less
than 0.10° in a 35 mph wind. Experiments show that
this wind force exerts a maximum disturbance at the
antenna of 200,000 ft Ib at 35 mph, or the equivalent
to 10 volts at the input 7,(s) to the amplidyne. One
problem of driving large antennas is the form of the
system transfer function that possesses a structural
resonance. The antenna servosystem is shown in
Figure P4.5. The transfer function of the antenna,
drive motor, and amplidyne is approximated by
2

wl!
input, egegrea- G(s) = s
P destred ) s(s? + 2fw,s + Wh)
M(s)
+
R(s) . + _ o Y(s)
Input g S A o) e Gts) " Output
FIGURE P4.4 { | e
Two-path system.
Ty(5)
+ Power - - é(s)
R(s) amplifier | Antenna. ‘?’ Ive motor, —p Position
R Gyls) + and amplidyne G(s) (radians)
FIGURE P4.5 Sensor
Antenna control =1 [*

system.
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where { = 0.707 and w, = 15. The transfer function
of the power amplifier is approximately

Gi(s ko

1(s) s + 17

where 7 = (.15 second. (a) Determine the sensitivity
of the system to a change of the parameter k,. (b) The
system is subjected to a disturbance 7,(s) = 10/s.
Determine the required magnitude of k, in order to
maintain the steady-state error of the system less than
0.10° when the input R(s) is zero. (¢) Determine the
error of the system when subjected to a disturbance
T4(s) = 10/s when it is operating as an open-loop sys-
tem (k, = 0) with R(s) = 0.

An automatic speed control system will be neces-
sary for passenger cars traveling on the automatic
highways of the future. A model of a feedback speed
control system for a standard vehicle is shown in
Figure P4.6. The load disturbance due to a percent
grade AT,(s) is also shown. The engine gain K,
varies within the range of 10 to 1000 for various mod-
els of automobiles. The engine time constant 7, is 20
seconds. (a) Determine the sensitivity of the system
to changes in the engine gain K. (b) Determine the
effect of the load torque on the speed. (c) Determine
the constant percent grade AT,(s) = Ad/s for which
the vehicle stalls (velocity V(s) = 0) in terms of the
gain factors. Note that since the grade is constant, the
steady-state solution is sufficient. Assume that
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R(s) = 30/s km/hr and that K.K, >> 1. When
K,/Ky = 2, what percent grade Ad would cause the
automobile to stall?

P4.7 A robot uses feedback to control the orientation

of each joint axis. The load effect varies due to vary-
ing load objects and the extended position of the
arm. The system will be deflected by the load carried
in the gripper. Thus, the system may be represented
by Figure P4.7, where the load torque is
T,(s) = D/s. Assume R(s) = 0 at the index posi-
tion. (a) What is the effect of T,(s) on Y(s)? (b) De-
termine the sensitivity of the closed loop to &,. (c)
What is the steady-state error when R(s) = 1/s and
Tyls) = 0?

P4.8 Extreme temperature changes result in many fail-

ures of electronic circuits [1]. Temperature control
feedback systems reduce the change of temperature
by using a heater to overcome outdoor low tempera-
tures. A block diagram of one system is shown in
Figure P4.8. The effect of a drop in environmental
temperature is a step decrease in T,(s). The actual
temperature of the electronic circuit is Y(s). The dy-
namics of the electronic circuit temperature change
are represented by the transfer function.

180
s2 + 205 + 180

(a) Determine the sensitivity of the system to K. (b)
Obtain the effect of the disturbance 74(s) on the out-
put Y(s).

G(s) =

Load torque

AT Ls)
KR
Throttle controller | Throttle Engine and vehicle
R(s) + K (s . K
Speed — Gi(s) = _L 1 ) > G(s) = ;_ ] —> SV(S)d
setting A TS + 7,$ pee
FIGURE P4.6 Tachometer
Automobile speed K =1 <
control. !
Load disturbance
Ty(s)
R(s) Controller B Y(s)
Desired  + X ks R Actual
joint 1 +' ‘ s+ ) 7 joint
angle - angle
FIGURE P4.7 thes lem
Robot control kot ks

system.
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Heater control

_kK
O.ls+ 1

R(x)

FIGURE P4.8
Temperature control
system.

Tis)

+

+

Electronic circuit

G(s) —> Y(5)

P4.9 A usecful unidirectional sensing device is the pho-
toemitter sensor [15]. A light source is sensitive to the
emitter current flowing and alters the resistance of the

(a) Determine the closed-loop transfer function of the
system. (b) Determine the sensitivity of the system to
changes in the gain, K.

photosensor. Both the light source and the photocon-  p4.1p For a paper processing plant, it is important to

ductor are packaged in a single four-terminal device.
This device provides a large gain and total isolation.
A feedback circuil utilizing this device is shown in
Figure P4.9(a), and the nonlinear resistance—current
characteristic is shown in Figure P4.9(b) for the
Raytheon CK1116. The resistance curve can be repre-
sented by the equation

0.175
(i — 0.005)'7*

where i is the lamp current. The normal operating
point is obtained when v, = 35 V, and v, = 2.0 V.

logyy R =

R

maintain a constant tension on the continuous sheet
of paper between the wind-off and wind-up rolls. The
tension varies as the widths of the rolls change, and an
adjustment in the take-up motor speed is necessary, as
shown in Figure P4.10. If the wind-up motor speed is
uncontrolled, as the paper transfers from the wind-off
roll to the wind-up roll. the velocity vy decreases and
the tension of the paper drops [10, 14]. The three-
roller and spring combination provides a measure of
the tension of the paper. The spring force is equal to
k,y. and the linear differential transformer, rectifier,

m

R, = 5000 Q)

Photoemitter
sensor

Constant current

source =/
FIGURE P4.9 —_—
Photosensor
system. (a)
Wind-off TS

—> T

and amplifier may be represented by e, = ~kay.

= 10M[—
E .

(3 -g
T IM ‘*
£ |
5 -
=
:g 100 k
g
2
a 10k
kS .
8 1
§ Tkl ¢
o N i
& 100

0123456718910
Lamp current (mA)

(b)

vy
roll

‘@3{0[0[‘ L‘
FIGURE P4.10 inear

Paper tension dlff(-:‘rennal
control. transformer

(7

Rectifier

Amplifier
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Water
l Desired consistency = R(s)
__I
> _
Uts) M(s) sistenc!
Valve Controller - Consistency
measurement
A
Pulp To paper
mixing l making
(a)
+ U(s)
R(s) G,(s) —» G(5) Yis)
H(s)
FIGURE P4.11 M(s)
Paper-making
control. (b)

Therefore, the measure of the tension is described by
the relation 27°(s) = k;y, where y is the deviation
from the equilibrium condition, and 7(s) is the vertical
component of the deviation in tension from the equi-
librium condition. The time constant of the motor is
7 = L,/R,. and the linear velocity of the wind-up roll
is twice the angular velocity of the motor, that is,
vo(t) = 2wp(t). The equation of the motor is then

1
Ey(s) = K_[T~"‘1’()(S) + wy(s)] + kAT (s),

where AT = a tension disturbance. (a) Draw the
closed-loop block diagram for the system, including
the disturbance AT (s). (b) Add the effect of a distur-
bance in the wind-off roll velocity AV (s} to the block
diagram. (c) Determine the sensitivity of the system to
the motor constant K,,. (d) Determine the steady-
state error in the tension when a step disturbance in
the input velocity, AV|(s) = A/s, occurs.

P4.11 One important objective of the paper-making

process is to maintain uniform consistency of the
stock output as it progresses to drying and rolling. A
diagram of the thick stock consistency dilution con-
trol system is shown in Figure P4.11(a). The amount
of water added determines the consistency. The block
diagram of the system is shown in Figure P4.11(b).
Let H(s) = 1 and

G(s) = G(s) =

8 + 1 35+ 17

Determine (a) the closed-loop transfer function
T(s) = Y(s)/R(s), (b) the sensitivity $%, and (c) the
steady-state error for a step change in the desired
consistency R(s) = A/s. (d) Calculate the value of K
required for an allowable steady-state error of 2%.

P4.12 Two feedback systems are shown in Figures P4.12(a)

R(s)

and (b). (a) Evaluate the closed-loop transfer functions
7, and T, for each system. (b) Compare the sensitivities
of the two systems with respect to the parameter K for
the nominal valuesof Ky = K, = 1.

R(s) = Y(s)

s—1

Y.‘
s~ | )

(b)

FIGURE P4.12 Two feedback systems.
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FIGURE P4.13
Closed-loop
system.

FIGURE P4.14
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R(s)

R(s)

Hypersonic airplane

speed control.

P4.13 One form of a closed-loop transfer function is
Gi(s) + kGy(s)
 Ga(s) + kGy(s)

T(s) =

(a) Use Equation (4.16) to show that [1]

st =

k(GLGy —

G,G4)

(Gs + kGy)(Gy + kG2)

> M(s)
+ +
> U(s) k G(s) Y(s)
_ +
H(s)
10(s + 4) 1)
G tae -» Flight
_ s(s + a)s ) speed

P4.15 The steering control of a modern ship may be rep-

resented by the system shown in Figure P4.15 [16, 20].
(a) Find the steady-state effect of a constant wind force
represented by T,(s) = 1/s for K = 10 and K = 2§.
Assume that the rudder input R(s) is zero, without any
disturbance, and has not been adjusted. (b) Show that
the rudder can then be used to bring the ship deviation
back to zero.

P4.16 Figure P4.16 shows the model of a two-tank sys-

(b) Determine the sensitivity of the system shown
in Figure P4.13, using the equation verified in

part (a).

P4.14 A proposed hypersonic plane would climb to
100,000 feet. fly 3800 miles per hour, and cross the Pa-
cific in 2 hours. Control of the aircraft speed could be
represented by the model in Figure P4.14. Find the
sensitivity of the closed-loop transfer function 7(s) to
a small change in the parameter a.

FIGURE P4.15
Ship steering
control.

FIGURE P4.16
Two-tank
temperature
control.

tem containing a heated liquid, where T is the tem-
perature of the fluid flowing into the first tank and 7,
is the temperature of the liquid flowing out of the sec-
ond tank. The system of two tanks has a heater in the
first tank with a controllable heat input Q. The time
constants are 74 = 10s and 7, = 50 s. (a) Determine
T,(s) in terms of Ty(s) and T4(s). (b) If Tr4(s). the
desired output temperature, is changed instanta-
neously from Thy(s) = A/s to Tr,(s) = 2A/s, where

Wind disturbance

TAs)
Y(5)
R(s) + + 75 S.hll?
Rudder K 5 $» deviation
input - + $+ 105+ 75 from
prescribed
course
T(5) ————p ]
o (15 + )75 + 1)
+
Q) [/100
> G.($) > Ta(s)
(75 + D(ras + 1) +
E(s)
Tau(s)
+
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Controller

h(n)

—

/3]

ol

, A b\ oritice
Capacitance C l v ] -
Constant = R
(a)
0s(s)
Hs) =0 Controller
d(‘v)' + Hi(s)
Desired + Error G(s) - R ot
height E(s) ' > Res+ 1 I > Heicht
variation - variation
FIGURE AP4.1
A tank level
regulator. (b}
Load
disturbance
T(s)
Controller
BAs)  + 6. + Ky | Tuls) X | S 01
Desired _ Lys + R, + s(Js + b) Actwal
angle of angle
Lat <
FIGURE AP4.2 rotatn K,

Robot joint control.

effect is T,(s) = M/s, determinc the steady-state

error when (a) G.(s) = K and (b) G(s) = K/s.

AP4.3 A machine tool is designed to follow a desired

path so that
r(t) = (1 — Du(r),

where w(t) is the unit step function. The machine tool

control system is shown in Figure AP4.3.

(a) Determine the steady-state error when r(¢) is the
desired path as given and T,(s) = 0.

(b) Plot the error e(t) for the desired path for part (a)
for0 < ¢ = 10 seconds.

(c) If the desired input is r(¢) = 0, find the steady-
state error when Ty(s) = 1/s.

(d) Plot the error e(¢) for part (c) for0 < ¢ =< 10 sec-
onds.

Load effect

Controller
R(s) +
Tool ——4 + 2
7 +
command -
FIGURE AP4.3
Machine tool

Ty(s)
Motor and
tool
- 10 R Y(s)
w1 > T('u_)]
position

feedback.
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Power
Integrator Amplifier
Vis) + Error I - w(s)
Control ‘ - > K >
s Speed
voltage -
FIGURE AP4.4 Tachometer
DC motor with K=1 |e
feedback.
Surgical
disturbance
Ty(5)
Rs) Valve ~ Patient Yis)
Desired + X setting | Vapor - 1 C Actunl
FIGURE AP4.5 % A s ¥ (s +27 blood
Blood pressure pressure pressure
control.
AP4.4 An armature-controlled DC motor with tachome- C
ter feedback is shown in Figure AP4.4. Assume that __le_‘
K, =10/ =1l,and R = 1.
(a) Determine the required gain, K, to restrict the i ‘\/l\?/\, ‘_?_
steady-state error to a ramp input (v(t) = ¢ for v R o
t > 0)to (1.1 (assume that T(s) = 0). °
(b) For the gain selected in part (a), determine and o— —- o

plot the error, e(¢), due to a ramp disturbance for
0 =t = 5seconds.

AP4.5 A system that controls the mean arterial pressure

during anesthesia has been designed and tested [12).

The level of arterial pressure is postulated to be a

proxy for depth of anesthesia during surgery. A block

diagram of the system is shown in Figure AP4.5, where

the impact of surgery is represented by the distur-

bance Ty(s).

(a) Determine the steady-state error due to a distur-
bance T,(s) = 1/s (let R(s) = 0).

(b) Determine the steady-state error for a ramp input
r(t) = £t > 0 (let Ty(s) = 0).

(c) Select a suitable value of K less than or equal to
10, and plot the response y(¢) for a unit step dis-
turbance input (assume () = 0).

AP4.6 A useful circuit, called a lead network, which we

discuss in Chapter 10, is shown in Figure AP4.6.

(a) Determine the transfer function G(s) =Vy(s)/
V(s).

(b) Determine the sensitivity of G(s) with respect to
the capacitance C.

FIGURE AP4.6 A lead network.

(c) Determine and plot the transient response vy(¢)
for a step input V(s) = 1/s.

AP4.7 A feedback control system with sensor noise and a
disturbance input is shown in Figure AP4.7.The goal is
to reduce the effects of the noise and the disturbance.
Let R(s) = 0.

(a) Determine the effect of the disturbance on Y(s).

(b) Determine the effect of the noise on Y(s).

(c) Select the best value for K when1 = K = 100 so
that the effect of steady-state error due to the dis-
turbance and the noise is minimized. Assume
Ty(s) = A/s, and N(s) = B/s.

AP4.8 The block diagram of a machine-tool control sys-
tem is shown in Figure AP4.8.

(a) Determine the transfer function T'(s) =Y (s)/R(s).
(b) Determine the sensitivity S7.

(c) Select K when 1 = K = 50 so that the effects of
the disturbance and S} are minimized
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Disturbance
T
Controller Dynamics
K N é . I .
R(s) - * p -> Y(s)
Sensor
+
K=1 |e
FIGURE AP4.7
Feedback system N(s)
with noise. Sensor noise
T A8
Controller Machine
R + K y b R
(s) > Py - Y(s)
FIGURE AP4.8
Machine-tool Ky=1 |«
control. Laser sensor
DESIGN PROBLEMS
CDP4.1 A capstan drive for a table slide is described in  DP4.1 A closed-loop speed control system is subjected to
r~ O\ CDP2.1. The position of the slide x is measured with a a disturbance due to a load, as shown in Figure DP4.1,
\"“*J capacitance gauge, as shown in Figure CDP4.1, which The desired speed is w,(t) = 100 rad/s, and the load
is very linear and accurate. Sketch the model of the disturbance is a unit step input T,(s) = 1/s. Assume
feedback system and determine the response of the that the speed has attained the no-load speed of 100
system when the controller is an amplifier and rad/s and is in steady state. (a) Determine the steady-
H(s) = 1. Determine the step response for several state effect of the load disturbance, and (b) plot w(t)
selected values of the amplifier gain G.(s) = K. for the step disturbance for selected values of gain so
T s)
Controller _ Motor and slide
+
R(s) G .(s) G,(s) > % —_— 0
FIGURE CDP4.1 -f N
The mode! of the -
feedback system Tachometer
i 2 opeciance NIk
sensor. The Switch
tachometer may be normally
mounted on the open Capacitance sensor
motor (optional),
and the switch will His) =1 <+
normally be open.
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disturbance

Controller Gls)
@,(s) + % 1 w(s)
FIGURE DP4.1  Desred T 7 > Actal
Speed control speed - speed
system.

that 10 = K =< 25. Determine a suitable value for
the gain K.

DP4.2 The control of the roll angle of an airplane is

achieved by using the torque developed by the ailerons.
A linear model of the roll control system for a small
experimental aircraft is shown in Figure DP4.2, where

1
G(s) T a1 9
The goal is to maintain a small roll angle 8 due to dis-
turbances. Select an appropriate gain KK, that will
reduce the effect of the disturbance while attaining a
desirable transient response to a step disturbance, with
8,4(¢) = 0.To obtain a desirable transient response, let

KK, < 35.

DP4.3 The speed control system of Figure DP4.1 is altered
so that G(s) = 1/(s + 5) and the feedback is K, as
shown in Figure DP4.3.

(a) Determine the range of K allowable so that the
steady state is ey = 1%.
(b) Determine a suitable value for K; and K so that
the magnitude of the steady-state error to a wind
disturbance T,(¢) = 2t mrad/s,(0 = ¢t < S5s, is
less than 0.1 mrad.

DP4.4 Lasers have been used in eye surgery for more
than 25 years. They can cut tissue or aid in coagulation

[17). The laser allows the ophthalmologist to apply
heat to a location in the eye in a controlled manner.
Many procedures use the retina as a laser target. The
retina is the thin sensory tissue that rests on the inner
surface of the back of the eye and is the actual trans-
ducer of the eye. converting light energy into electrical
pulses. On occasion, this layer will detach from the
wall, resulting in death of the detached area from lack
of blood and leading to partial or total blindness in
that eye. A laser can be used to “weld” the retina into
its proper place on the inner wail.

Automated control of position enables the oph-
thalmologist to indicate to the controller where lesions
should be inserted. The controller then mounitors the
retina and controls the laser’s position so that each
lesion is placed at the proper location. A wide-angle
video-camera system is required to monitor the
movement of the retina, as shown in Figure DP4.4(a).
If the eye moves during the irradiation, the laser
must be either redirected or turned off. The position-
control system is shown in Figure DP4.4(b). Select an
appropriate gain for the controller so that the tran-
sient response to a step change in r(f) is satisfactory
and the effect of the disturbance due to noise in the
system is minimized. Also, ensure that the steady-state
error for a step input command is zero. To ensure
acceptable transient response, require that X < 10.

Tyls)

Ty X
FIGURE DP4.2 0,(5) K > K | G(s) y» 0
Control of the roll s + Roll angle
angle of an
airplane.
T )
G(s)
. _IE y 1_ s @(5)

@A) s 4 s+5 v S(pecd
FIGURE DP4.3
Speed control K, |le—
system. Tachometer
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A closed-loop control system for the system is shown
in Fignre CP4.7(b). Suppose the desired angle
8;=0%k =5b=09andJ =1.
(a) Determine the open-loop response #(¢) of the
system for a unit step disturbance (set r(¢) = 0).
(b) With the controller gain Ky = 50, determine the
closed-loop response, 8(t) to a unit step distur-
bance.
Plot the open-loop versus the closed-loop response
to the disturbance input. Discuss your results and
make an argument for using closed-loop feedback
control to improve the disturbance rejection prop-
erties of the system.

(©)

CP4.8 A negative feedback control system is depicted in
Figure CP4.8. Suppose that our design objective is to
find a controlier G.(s) of minimal complexity such
that our closed-loop system can track a unit step input
with a steady-state error of zero.

(a) As a first try, consider a simple proportional
controller
G.(s) =K,
where K is a fixed gain. Let K = 2. Plot the unit
step response and determine the steady-state
error from the plot.
(b) Now consider a more complex controller
K,
G(s) = Ky + 5

where Kq = 2 and K, = 20. This controller is
known as a proportional, integral (PI) controller.
Plot the unit step response, and determine the
steady-state error from the plot.

Compare the results from parts (a) and (b). and
discuss the trade-off between controller complex-
ity and steady-state tracking error performance.

CP4.9 Consider the closed-loop system in Figure CP4.9,
whose transfer function is

(©)

10s 5
s 2 A=
(a) Obtain the closed-loop transfer function T'(s) =

Y (s)/R(s)and the unit step response: that is, let
R(s) = 1/s and assume that N(s) = 0.

G(s) =

Chapter 4 Feedback Control System Characteristics

+

R(s) G(s) Y(s)

H(s) N(s)

FIGURE CP4.9 Closed-loop system with nonunity
feedback and measurement noise.

(b) Obtain the disturbance response when

is a sinusoidal input of frequency w = 10 rad/s.
Assume that R(s) = 0.

(¢) In the steady-state, what is the frequency and
peak magnitude of the disturbance response from
part (b)?

CP4.10 Consider the closed-loop system is depicted in
Figure CP4.10. The controller gain K can be modified
to meet the design specifications.

(a) Determine the closed-loop transfer function
T(s) = Y(s)/R(s).

(b) Plot the response of the closed-loop system for
K = 5.10.and 50.

(c) When the controller gain is K = 10, determine
the steady-state value of y(r) when the distur-
bance is a unit step, that is, when T 4(s) = 1/s and
R(s) = 0.

CP4.11 Consider the non-unity feedback system is depicted
in Figure CP4.11.

(a) Determine the closed-loop transfer function
T(s) = Y(s)/R(s).

(b) For K = 10, 12,and 15, plot the unit step responses.
Determine the steady-state errors and the settling
times from the plots.

For parts (a) and (b). develop an m-file that computes
the closed-loop transfer function and generates the
plots for varying K.

Controller Process
FIGURE CP4.8 R G(s) o 0 — )
A simple single- -
loop feedback

control system.
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Ty(s)
Controller Process
+
R + s+1 1 -~
FIGURE CP4.10 R | s 2 71763 > ¥(s)
Closed-loop - o
feedback system
with external
disturbances.
Controller Process
+ 20
R(s | K —_ - Y.
m A sT+4.55+64 )
S o
FIGURE CP4.11 il
Closed-loop system s
with a sensor in the s+1
feedback loop.
ANSWERS TO SKILLS CHECK

/

(8) True

True or False: (1) True; (2) True; (3) False; (4) False;

Word Match (in order, top to bottom): e, h,k, b, c, f,
i,g.d,a,j

Multiple Choice: (6) a; (7) b; (8) a; (9) b; (10) c;

(11) a; (12) b; (13) b; (14) ¢; (15) ¢

TERMS AND CONCEPTS

Closed-loop system A system with a measurement of the
output signal and a comparison with the desired out-
put to generate an error signal that is applied to the
actuator.

Complexity A measure of the structure, intricateness, or
behavior of a system that characterizes the relation-
ships and interactions between various components.

Components  The parts, subsystems, or subassemblies
that comprise a total system.

Disturbance signal  An unwanted input signal that affects
the system’s output signal.

Error signal  The difference between the desired output
R(s) and the actual output Y(s). Therefore,
E(s) = R(s) — Y{(s).

Instability  An attribute of a system that describes a ten-
dency of the system to depart from the equilibrium
condition when initially displaced.

Loop gain The ratio of the feedback signal to the con-
troller actuating signal. For a unity feedback system
we have L(s) = G(s)G(s).

Loss of gain A reduction in the amplitude of the ratio of
the output signal to the input signal through a system,
usually measured in decibels.

Open-loop system A system without feedback that directly
generates the output in response to an input signal.

Steady-state error The crror when the time period is
large and the transient response has decayed, leaving
the continuous response.

System sensitivity The ratio of the change in the system
transfer function to the change of a process transfer
function (or parameter) for a small incremental
change.

Tracking error  See error signal.

Transient response  The response of a system as a func-

tion of time.
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PREVIEW

The ability to adjust the transient and steady-state response of a control system is a
beneficial outcome of the design of control systems. In this chapter, we introduce
the time-domain performance specifications and we use key input signals to test the
response of the control system. The correlation between the system performance
and the location of the transfer function poles and zeros is discussed. We will develop
relationships between the performance specifications and the natural frequency and
damping ratio for second-order systems. Relying on the notion of dominant poles,
we can extrapolate the ideas associated with second-order systems to those of higher
order. The concept of a performance index will be considered. We will present a set
of popular quantitative performance indices that adequately represent the perfor-
mance of the control system. The chapter concludes with a performance analysis of
the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 5, students should:

Q Beaware of key test signals used in controls and of the resulting transient response
characteristics of second-order systems to test signal inputs.

O Recognize the direct relationship between the pole locations of second-order systems
and the transient response.

Q  Be familiar with the design formulas that relate the second-order pole locations to per-

cent overshoot, settling time, rise time, and time to peak.

Be aware of the impact of a zero and a third pole on the second-order system response.

Gain a sense of optimal control as measured with performance indices.

oo
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5.1 INTRODUCTION

The ability to adjust the transient and steady-state performance is a distinct advan-
tage of feedback control systems. To analyze and design a control system, we must
define and measure its performance. Based on the desired performance of the con-
trol system, the system parameters may be adjusted to provide the desired response.
Because control systems are inherently dynamic, their performance is usually speci-
fied in terms of both the transient response and the steady-state response. The
transient response is the response that disappears with time. The steady-state response
is the response that exists for a long time following an input signal initiation.

The design specifications for control systems normally include several time-
response indices for a specified input command, as well as a desired steady-state
accuracy. In the course of any design, the specifications are often revised to effect a
compromise. Therefore, specifications are seldom a rigid set of requirements, but
rather a first attempt at listing a desired performance. The effective cornpromise and
adjustment of specifications are graphically illustrated in Figure 5.1. The parameter
p may minimize the performance measure M, if we select p as a very small value.
However, this results in large measure M;, an undesirable situation. If the perfor-
mance measures are equally important, the crossover point at py;, provides the best
compromise. This type of compromisc is normally encountered in control system
design. It is clear that if the original specifications called for both M, and M, to be
zero, the specifications could not be simultaneously met; they would then have to be
altered to allow for the compromise resulting with p, [1, 10, 15, 20].

The specifications, which are stated in terms of the measures of performance,
indicate the quality of the system to the designer. In other words, the performance
measures help to answer the question, How well does the system perform the task
for which it was designed?

5.2 TEST INPUT SIGNALS

FIGURE 5.1
Two performance
measures versus
parameter p.

The time-domain performance specifications are important indices because control
systems are inherently time-domain systems. That is, the system transient or time
performance is the response of prime interest for control systems. It is necessary to

Performance Performance
measure, M, measure. M,

/ |

|
0 1
0 | 2 Pmin 3 4
Parameler, p

0
5
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FIGURE 5.2

Test input signals:
(a) step, (b) ramp,
and (c) parabolic.
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determine initially whether the system is stable; we can achieve this goal by using
the techniques of ensuing chapters. If the system is stable, the response to a specific
input signal will provide several measures of the performance. However, because
the actual input signal of the system is usually unknown, a standard test input signal
is normally chosen. This approach is quite useful because there is a reasonable cor-
relation between the response of a system to a standard test input and the system’s
ability to perform under normal operating conditions. Furthermore, using a stan-
dard input allows the designer to compare several competing designs. Many control
systems experience input signals that are very similar to the standard test signals.

The standard test input signals commonly used are the step input, the ramp input,
and the parabolic input. These inputs are shown in Figure 5.2. The equations repre-
senting these test signals are given in Table 5.1, where the Laplace transform can be
obtained by using Table 2.3 and a more complete list of Laplace transform pairs can
be found at the MCS website. The ramp signal is the integral of the step input, and the
parabola is simply the integral of the ramp input. A unit impulse function is also use-
ful for test signal purposes. The unit impulse is based on a rectangular function

/e, -

==

£
>

N m

f0) =

0, otherwise,

where € > 0. As € approaches zero, the function f,(¢) approaches the unit impulse
function §(¢), which has the following properties:

[ 8(t)dr =1 and [ 8(t — a)g(t) dr = gla). (5.1)

00

() r(t) r(t)

A
0 0 0
0 t—> r—> 0 t—»
(a) (b) ()
Table 5.1 Test Signal Inputs
Test Signal r(t) R(s)
Step r(¢) =A.t>0 R(s) = A/s
=0,r<0
Ramp r(t) = At >0 R(s) = A/s
=0,t<0
Parabolic r(r) = AP 1 >0 R(s) = 24/s°

=0,t<0




FIGURE 5.3
Open-loop control
system.
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G(s)

&) O~ O——=>— v»1 Ry = G(s) > V)
1

(a) (b)

The impulse input is useful when we consider the convolution integral for the out-
put y(¢) in terms of an input r(¢), which is written as

y(t) = [ 8= )r(r) dr = £7HG()R(s)}. (52)

This relationship is shown in block diagram form in Figure 5.3. If the input is a unit
impulse function, we have

y(t) = [mg(t - 1)8(7) dr. (5.3)

The integral has a value only at r = 0; therefore,
y(t) = g(0),

the impulse response of the system G(s). The impulse response test signal can often
be used for a dynamic system by subjecting the system to a large-amplitude, narrow-
width pulse of area A.

The standard test signals are of the general form

r(t) =17, (54)
and the Laplace transform is
n!
R(s) = T (5.5)

Hence, the response to one test signal may be related to the response of another test
signal of the form of Equation (5.4). The step input signal is the easiest to generate
and evaluate and is usually chosen for performance tests.

Consider the response of the system shown in Figure 5.3 for a unit step input when

9
Gls) = s+ 10°
Then the output is
9
Y(s) = s(s + 10y

the response during the transient period is

y(t) = 0.9(1 — 1),
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and the steady-state response is
y(o0) = 0.9.
If the error is E(s) = R(s) — Y(s), then the steady-state error is

e, = lim sE(s) = 0.1.
s—0

5.3 PERFORMANCE OF SECOND-ORDER SYSTEMS

FIGURE 5.4
Second-order
closed-loop control
system.

Let us consider a single-loop second-order system and determine its response to a
unit step input. A closed-loop feedback control system is shown in Figure 5.4. The
closed-loop system is

(‘S) 1 4 G(q) (‘S) ( * )
We may rewrite Equation (56) as
(s) 2o p (s). (5.7)

With a unit step input, we obtain

2
W,
S(Sz + 25“’;15 + wIZ,)’

Y(s) = (5.8)

for which the transient output, as obtained from the Laplace transform table in
Table 2.3, is

yo)=1- %ﬂw sin(w, Bt + 6), (5.9)

where 8 = V1 — £2,0 = cos™' ¢, and 0 < £ < 1. The transient response of this
second-order system for various values of the damping ratio ¢ is shown in Figure 5.5.

w; 2™_order system
GG) = ————
sts + 2{w,) 4 P
R(s) + ¥(s R G(s) = u > Y(s)
l §) (s) \ 3(5) 5+ 2wy (
-1
() (b)
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FIGURE 5.5

(a) Transient
response of a
second-order
system (Equation
5.9) for a step input.
{b) The transient
response of a
second-order
system (Equation
5.9) for a step input
as a function of 7
and w,t. (Courtesy
of Professor R.
Jacquot, University
of Wyoming.) (b)
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FIGURE 5.6
Response of a
second-order
system for an
impulse function
input.
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As ¢ decreases, the closed-loop roots approach the imaginary axis, and the response
becomes increasingly oscillatory. The response as a function of ¢ and time is also
shown in Figure 5.5(b) for a step input.

The Laplace transform of the unit impulse is R(s) = 1, and therefore the output
for an impulse is

2
W,

Y(s) = (5.10)

SZ + 2{(1),,.&' + wlzl‘

which is T(s) = Y(s)/R(s), the transfer function of the closed-loop system. The
transient response for an impulse function input is then

y(t) = %e'{“’"’ sin(w,,B7), (5.11)

which is the derivative of the response to a step input. The impulse response of the
second-order system is shown in Figure 5.6 for several values of the damping ratio {.
The designer is able to select several alternative performance measures from the
transient response of the system for either a step or impulse input.

Standard performance measures are usually defined in terms of the step response
of a system as shown in Figure 5.7. The swiftness of the response is measured by the
rise time 7, and the peak time 7, For underdamped systems with an overshoot, the
0-100% rise time is a useful index. If the system is overdamped, then the peak time
is not defined, and the 10-90% rise time T, is normally used. The similarity with
which the actual response matches the step input is measured by the percent over-
shoot and settling time 7. The percent overshoot is defined as

MJ - JU
po. =M =10 09 (5.12)

fo



FIGURE 5.7
Step response of a
control system
{Equation 5.9).
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for a unit step input, where M,, is the peak value of the time response, and fv is the
final value of the response. Normally, fv is the magnitude of the input, but many sys-
tems have a final value significantly different from the desired input magnitude. For
the system with a unit step represented by Equation (5.8), we have fv = 1.

The settling time, T;, is defined as the time required for the system to settle with-
in a certain percentage & of the input amplitude. This band of +8 is shown in Figure
5.7. For the second-order system with closed-loop damping constant {w,, and a re-
sponse described by Equation (5.9), we seek to determine the time 7; for which the
response remains within 2% of the final value. This occurs approximately when

e~bends < 0.02,
or
é’w!lTX = 4‘
Therefore, we have
4
T, =4r = zw—" (5.13)

Hence, we will define the settling time as four time constants (that is, 7 = 1/{w,,) of

the dominant roots of the characteristic equation. The steady-state error of the sys-

tem may be measured on the step response of the system as shown in Figure 5.7.
The transient response of the system may be described in terms of two factors:

1. The swiftness of response, as represented by the rise time and the peak time.

2. The closeness of the response to the desired response, as represented by the overshoot
and settling time.
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FIGURE 5.8
Percent overshoot
and normalized
peak time versus
damping ratio ¢
for a second-order
system (Equation
5.8).
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As nature would have it, these are contradictory requirements; thus, a compro-
mise must be obtained. To obtain an explicit relation for M,, and T, as a function of
£, one can differentiate Equation (5.9) and set it equal to zero. Alternatively, one
can utilize the differentiation property of the Laplace transform, which may be writ-

ten as
dy()|
EB{ i }— sY(s)

when the initial value of y(¢) is zero. Therefore, we may acquire the derivative of y(¢)
by multiplying Equation (5.8) by s and thus obtaining the right side of Equation
(5.10). Taking the inverse transform of the right side of Equation (5.10), we obtain
Equation (5.11), which is equal to zero when w, ¢ = . Thus, we find that the peak
time relationship for this second-order system is

™
T, = —F—— (5.14)

W,V 1- {2’

and the peak response is
My =1+ V178, (5.15)

Therefore, the percent overshoot is

P.O. = 100e~4"/V1-¢, (5.16)

The percent overshoot versus the damping ratio, £, is shown in Figure 5.8. Also, the
normalized peak time, w,7), is shown versus the damping ratio, {, in Figure 5.8. The
percent overshoot versus the damping ratio is listed in Table 5.2 for selected values of
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FIGURE 5.9
Normalized rise
time, T,;, versus {
for a second-order
system.
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Table 5.2 Percent Peak Overshoot Versus Damping Ratio for a
Second-Order System

Damping ratio 0.9 0.8 0.7 0.6 0.5 0.4 0.3
Percent overshoot 0.2 1.5 4.6 9.5 16.3 254 37.2

the damping ratio. Again, we are confronted with a necessary compromise between
the swiftness of response and the allowable overshoot.

The swiftness of step response can be measured as the time it takes to rise from
10% to 90% of the magnitude of the step input. This is the definition of the rise time,
T,,, shown in Figure 5.7. The normalized rise time, 0,7}, versus £(0.05 = ¢ = 0.95)
is shown in Figure 5.9. Although it is difficult to obtain exact analytic expressions for
7,1, we can utilize the linear approximation

2.16{ + 0.60

Wy

T, (5.17)

which is accurate for 0.3 < ¢ = 0.8. This linear approximation is shown in
Figure 5.9.

The swiftness of a response to a step input as described by Equation (5.17) is
dependent on { and w,,. For a given ¢, the response is faster for larger w,,, as shown
in Figure 5.10. Note that the overshoot is independent of w,,.

For a given w,, the response is faster for lower ¢, as shown in Figure 5.11. The
swiftness of the response, however, will be limited by the overshoot that can be
accepted.
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|
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FIGURE 5.10
The step response
for¢ = 0.2 for

w, = 1and

w, = 10.

FIGURE 5.11
The step response
for w, = 5 with

{=07and? =1.
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5.4 EFFECTS OF A THIRD POLE AND A ZERO ON THE SECOND-ORDER
SYSTEM RESPONSE

The curves presented in Figure 5.8 are exact only for the second-order system of
Equation (5.8). However, they provide a remarkably good source of data because
many systems possess a dominant pair of roots, and the step response can be esti-
mated by utilizing Figure 5.8. This approach, although an approximation, avoids the
evaluation of the inverse Laplace transformation in order to determine the percent
overshoot and other performance measures. For example, for a third-order system
with a closed-loop transfer function

l

: 5.18
(s + 2¢s + D(ys + 1) (5.18)

T(s) =
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FIGURE 5.12

An s-plane diagram
of a third-order
system.
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the s-plane diagram is shown in Figure 5.12. This third-order system is normalized
with w,, = 1. It was ascertained experimentally that the performance (as indicated
by the percent overshoot, P.O., and the settling time, T;), was adequately represented
by the second-order system curves when [4]

[1/7] = 10l¢w,|.

In other words, the response of a third-order system can be approximated by the
dominant roots of the second-order system as long as the real part of the dominant
roots is less than one tenth of the real part of the third root [15, 20].

Using a computer simulation, we can determine the response of a system to a
unit step input when ¢ = 0.45. When y = 2.25, we find that the response is over-
damped because the real part of the complex poles is —0.45, whereas the real pole is
equal to —0.444. The settling time (to within 2% of the final value) is found via the
simulation to be 9.6 seconds. If y = 0.90 or 1/y = 1.11 is compared with {w,, = 0.45
of the complex poles, the overshoot is 12% and the settling time is 8.8 seconds. If the
complex roots were dominant, we would expect the overshoot to be 20% and the
settling time to be 4/{w, = 8.9 seconds. The results are summarized in Table 5.3.

The performance measures of Figure 5.8 are correct only for a transfer function
without finite zeros. If the transfer function of a system possesses finite zeros and
they are located relatively near the dominant complex poles, then the zeros will
materially affect the transient response of the system [5].

Table 5.3 Effect of a Third Pole (Equation 5.18) for { = 0.45

1 I

— Percent Settling
Y Y Overshoot Time’
225 0.444 0 9.63
1.5 0.666 39 6.3
0.9 1.111 12.3 8.81
0.4 2.50 18.6 8.67
0.05 20.0 20.5 8.37
000 20.5 8.24

*Note: Settling time is normalized time, w, T, and uses a 2% criterion.
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Percent overshoot

(@)

Output

Time (w,t)

(b)

FIGURE 5.13 (a) Percent overshoot as a function of ¢ and w, when a second-order transfer
function contains a zero. Redrawn with permission from R. N. Clark, /ntroduction to Automatic
Contro! Systems (New York: Wiley, 1962). (b) The response for the second-order transfer function
with a zero for four values of the ratio a/{w,: A = 5,B = 2,C = 1,and D = 0.5 when { = 0.45.
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FIGURE 5.14
Single-loop
feedback control
system.

Table 5.4 The Response of a Second-Order
System with a Zero and £ = 0.45

Percent Settling Peak
a/lw, Overshoot Time Time
5 23.1 8.0 3.0
2 397 7.6 22
1 89.9 10.1 1.8
0.5 210.0 10.3 1.5

Note: Time is normalized as w,¢, and settling time is based on a 2%
criterion.

The transient response of a system with one zero and two poles may be affected
by the location of the zero [5]. The percent overshoot for a step input as a function
of a/{w,, when { = 1, is given in Figure 5.13(a) for the system transfer function

(wi/a)(s + a)
52+ 2l{w,s + w:",’

T(s) =

The actual transient response for a step input is shown in Figure 5.13(b) for selected
values of a/{w,. The actual response for these selected values is summarized in
Table 5.4 when £ = 0.45.

The correlation of the time-domain response of a system with the s-plane loca-
tion of the poles of the closed-loop transfer function is very useful for selecting the
specifications of a system. To illustrate clearly the utility of the s-plane, let us consid-
er a simple example.

EXAMPLE 5.1 Parameter selection

A single-loop feedback control system is shown in Figure 5.14. We select the gain K
and the parameter p so that the time-domain specifications will be satisfied. The
transient response to a step should be as fast as is attainable while retaining an over-
shoot of less than 5%. Furthermore, the settling time to within 2% of the final value
should be less than 4 seconds. The damping ratio, ¢, for an overshoot of 4.3% is
0.707. This damping ratio is shown graphically as a line in Figure 5.15. Because the
settling time is

4
T, = — = 4s5,

{w,
+ K
R(s) _—’?—‘ G » Yis)
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FIGURE 5.15
Specifications and
root locations on
the s-plane.
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we require that the real part of the complex poles of 7(s) be
{w, = L

This region is also shown in Figure 5.15. The region that will satisfy both time-
domain requirements is shown cross-hatched on the s-plane of Figure 5.15.

When the closed-loop roots are r; = —1 + j1 and 7, = —1 — j1, we have
T, = 4 s and an overshoot of 4.3%. Therefore, { = 1/ V2 and w, = 1/{ = V2. The
closed-loop transfer function is

G(s) K _ wp
1+G(Gs) S2+ps+K §+2w,s+ ol

T(s) =

Hence, we require that K = w? = 2 and p = 2{w, = 2. A full comprehension of the
correlation between the closed-loop root location and the system transient response
is important to the system analyst and designer. Therefore, we shall consider the mat-
ter more completely in the following sections. m

EXAMPLE 5.2 Dominant poles of 7(s)

Consider a system with a closed-loop transfer function

2
wll
—(s + a
o ( )

Y(s) _
R(s)

T(s) =

T+ 2w,s + 02X+ 7s)

Both the zero and the real pole may affect the transient response. If @« >> {w, and
7 << 1/{w,, then the pole and zero will have little effect on the step response.
Assume that we have
62.5(s + 2.5)
(s + 65 + 25)(s + 6.25)

Note that the DC gain is equal to 1 (7(0) = 1), and we expect a zero steady-state
error for a step input. We have {w, = 3,7 = 0.16, and a = 2.5. The poles and the

T(s) =
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FIGURE 5.16
The poles and
zeros on the
s-plane for a
third-order system.
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zero are shown on the s-plane in Figure 5.16. As a first approximation, we neglect
the real pole and obtain

10(s + 2.5)

T(s) 8 5¥——m—.
(s) s> + 6s + 25

We now have { = 0.6 and w,, = 5 for dominant poles with one accompanying zero
for which a/({w,) = 0.833. Using Figure 5.13(a), we find that the percent overshoot
is 55%. We expect the settling time to within 2% of the final value to be

4 4

T‘ 3 _— —— . .
5= e, 06(5) B

Using a computer simulation for the actual third-order system, we find that the per-
cent overshoot is equal to 38% and the settling time is 1.6 seconds. Thus, the effect
of the third pole of T(s) is to dampen the overshoot and increase the settling time
(hence the real pole cannot be neglected). m

The damping ratio plays a fundamental role in closed-loop system performance.
As seen in the design formulas for settling time, percent overshoot, peak time, and
rise time, the damping ratio is a key factor in determining the overall performance.
In fact, for second-order systems, the damping ratio is the only factor determining
the value of the percent overshoot to a step input. As it turns out, the damping ratio
can be estimated from the response of a system to a step input [12]. The step re-
sponse of a second-order system for a unit step input is given in Equation (5.9),
which is

1
yit)=1- Ee“‘""‘ sin(w,Bt + 0),

where B = V1 — 2, and 6 = cos™! {. Hence, the frequency of the damped sinu-
soidal term for { < 1is

= wn(l - £2)1/2 = w.B,

and the number of cycles in 1 second is w/(27).
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The time constant for the exponential decay is * = 1/({w,) in seconds. The
number of cycles of the damped sinusoid during one time constant is

w w,B _ B
2ml{w, 2wlw, 2w

(cycles/time) X 7 =

Assuming that the response decays in # visible time constants, we have

les visible =~ 5.19)
cycles visible = —. .
ycles vis 2t (

For the second-order system, the response remains within 2% of the steady-state
value after four time constants (47). Hence,n = 4, and

o 48 41 - 055
cycles visible = — = ~

27 2wl 4

(5.20)

for02 = ¢ = 0.6.

As an example, examine the response shown in Figure 5.5(a) for ¢ = 0.4. Use
y(¢) = 0 as the first minimum point and count 1.4 cycles visible (until the response
settles with 2% of the final value). Then we estimate

_ 0.55 _ 0.55 _ 0.39.
cycles 1.4

We can use this approximation for systems with dominant complex poles so that

j

$* 4+ 2w,s + wf,

T(s) =

Then we are able to estimate the damping ratio ¢ from the actual system response of
a physical system.

An alternative method of estimating ¢ is to determine the percent overshoot for
the step response and use Figure 5.8 to estimate {. For example, we determine an
overshoot of 25% for { = 0.4 from the response of Figure 5.5(a). Using Figure 5.8,
we estimate that { = 0.4, as expected.

5.5 THE s-PLANE ROOT LOCATION AND THE TRANSIENT RESPONSE

The transient response of a closed-loop feedback control system can be described in
terms of the location of the poles of the transfer function. The closed-loop transfer
function is written in general as

_Y(s)  ZBi(s) As)
T R(s) A()

T(s)

where A(s) = 0 is the characteristic equation of the system. For the single-loop sys-
tem of Figure 5.4, the characteristic equation reduces to 1 + G(s) = 0. It is the



FIGURE 5.17
Impulse response
for various root
locations in the
s-plane. (The
conjugate root is
not shown.)

Section 5.5 The s-Plane Root Location and the Transient Response 321

poles and zeros of 7(s) that determine the transient response. However, for a
closed-loop system, the poles of 7(s) are the roots of the characteristic equation
A(s) = 0 and the poles of 2P;(s) A{(s). The output of a system (with gain = 1)
without repeated roots and a unit step input can be formulated as a partial fraction
expansion as

Bis + C;

1 ¥ A
+ 2 2 2
§°+ 2045 + (ap + wy)

Y(i)=—-+
() S i=1S+0’,‘

\ (5.21)

N
2
k=1

where the A;, By, and C; are constants. The roots of the system must be either

s = —g; or complex conjugate pairs such ass = —a; * jw,. Then the inverse trans-
form results in the transient response as the sum of terms
M N
y(t) =1+ D Ae " + > Die " sin(wyt + 6;), (5.22)
= k=1

where D, is a constant and depends on By, Cy, ¢y, and w;. The transient response is
composed of the steady-state output, exponential terms, and damped sinusoidal
terms. For the response to be stable—that is, bounded for a step input—the real part
of the roots, —o; and —a;, must be in the left-hand portion of the s-plane. The im-
pulse response for various root locations is shown in Figure 5.17. The information
imparted by the location of the roots is graphic indeed, and usually well worth the
effort of determining the location of the roots in the s-plane.

It is important for the control system analyst to understand the complete rela-
tionship of the complex-frequency representation of a linear system, the poles and
zeros of its transfer function, and its time-domain response to step and other inputs.
In such areas as signal processing and control, many of the analysis and design
calculations are done in the complex-frequency plane, where a system model is

e
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represented in terms of the poles and zeros of its transfer function 7(s). On the other
hand, system performance is often analyzed by examining time-domain responses,
particularly when dealing with control systems.

The capable system designer will envision the effects on the step and impulse
responses of adding, deleting, or moving poles and zeros of 7(s) in the s-plane. Like-
wise, the designer should visualize the necessary changes for the poles and zeros of
T(s), in order to effect desired changes in the model’s step and impulse responses.

An experienced designer is aware of the effects of zero locations on system
response. The poles of 7(s) determine the particular response modes that will be
present, and the zeros of T(s) establish the relative weightings of the individual
mode functions. For example, moving a zero closer to a specific pole will reduce
the relative contribution of the mode function corresponding to the pole.

A computer program can be developed to allow a user to specify arbitrary sets
of poles and zeros for the transfer function of a linear system. Then the computer
will evaluate and plot the system’s impulse and step responses individually. It will
also display them in reduced form along with the pole-zero plot.

Once the program has been run for a set of poles and zeros, the user can modify the
locations of one or more of them. Plots may then be presented showing the old and new
poles and zeros in the complex plane and the old and new impulse and step responses.

5.6 THE STEADY-STATE ERROR OF FEEDBACK CONTROL SYSTEMS

One of the fundamental reasons for using feedback, despite its cost and increased
complexity, is the attendant improvement in the reduction of the steady-state error
of the system. As illustrated in Section 4.6, the steady-state error of a stable closed-
loop system is usually several orders of magnitude smaller than the error of an
open-loop system. The system actuating signal, which is a measure of the system
error, is denoted as E,(s). Consider the closed-loop feedback system shown in
Figure 5.18. According to the discussions in Chapter 4, we know from Equation (4.3)
that with N(s) = 0, Ty(s) = 0, the tracking error is

E(s) = (s).

1+ G0

Using the final value theorem and computing the steady-state tracking error yields

(s). (5.23)

. o 1
Jime(r) = es = lims T 5 566

It is useful to determine the steady-state error of the system for the three standard
test inputs for the unity feedback system. Later in this section we will consider
steady-state tracking errors for non-unity feedback systems.

Step Input. The steady-state error for a step input of magnitude A is therefore

s(A/s) _ A
1 + G(5)G(s) 1+ lim G()G(s)’

€y =



FIGURE 5.18
Closed-loop control
system with unity
feedback.
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GJs) G(s)
. I

R(s) Y(s)

Controller Process

+ E,(s)
R(s) Gs)

A 4

G(s) -+ Y(s)

)

It is the form of the loop transfer function G.(s)G(s) that determines the steady-
state error. The loop transfer function is written in general form as

M
KH(S + z)

G.(s)G(s) = —Ql—— (5.24)

Nl—[(g + Pr)

where [ ] denotes the product of the factors and z; # 0, p;, # Oforanyl <i =< M
and i = k = Q. Therefore, the loop transfer function as s approaches zero depends
on the number of integrations, N. If N is greater than zero, then hm G (5)G(s)
approaches infinity, and the steady-state error approaches zero. The number of inte-
grations is often indicated by labeling a system with a type number that simply is
equal to N.

Consequently, for a type-zero system, N = 0, the steady-state error is

. A B A
71+ G0)G(0) Mo Q9
¢ 1+KHZJ/IEPI<

(5.25)

The constant G.(0)G(0) is denoted by K, the position error constant, and is given by

K, = lim G.(s)G(s).
s—0




324

Chapter 5 The Performance of Feedback Control Systems

The steady-state tracking error for a step input of magnitude A is thus given by

A
1+ K,

e (5.26)

Hence, the steady-state error for a unit step input with one integration or more,
N = 1, is zero because

A
= lim
=01 + K[Tz/(M T pe)

AsN
= lim — =
s=0¢7 + KHZ,‘/Hpk

eSS

0. (5.27)

Ramp Input. The steady-state error for a ramp (velocity) input with a slope A is

. s(A/s%) . = 5.28
s T 0T + G.(5)G(s) s + sG()G(s) -‘I—II‘I'SGC(S)G(S). (-28)

Again, the steady-state error depends upon the number of integrations, N. For a
type-zero system, N = 0, the steady-state error is infinite. For a type-one system,
N =1, the error is

. A
,ll—lﬂvsKH(s + 2)/sTI(s + p)

€y =

or

A A

s e et 5.29
“TKw/In K 2

where K, is designated the velocity error constant. The velocity error constant is
computed as

K, = lin()) sG(8)G(s).

When the transfer function possesses two or more integrations, N = 2, we obtain a
steady-state error of zero. When N = 1, a steady-state error exists. However, the
steady-state velocity of the output is equal to the velocity of input, as we shall see
shortly.

Acceleration Input. When the system input is r(¢) = Ar?/2, the steady-state error is

S(A/s) . A

A A 530
\l—l;n().l + Gc(S)G(S) "-E{(})SZGC(S)G(S) ( )

Css =



FIGURE 5.19
Block diagram of
steering control
system for a mobile
robot.
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Table 5,5 Summary of Steady-State Errors

Number of
Integrations Input
in G.(s)G(s), Type Step, r(t) = A, Ramp, At, Parabola,
Number R(s) = A/s A/s? At%/2, A/s®
A . -
0 & =T X, Infinite Infinite
A

1 e =0 — Infinite

58 Kv )
2 es =0 0 E

The steady-state error is infinite for one integration. For two integrations, N = 2,
and we obtain

(5.31)

where K, is designated the acceleration error constant. The acceleration error con-
stant is

K, = lim G (5)G(s).
A d

When the number of integrations equals or exceeds three, then the steady-state
error of the system is zero.

Control systems are often described in terms of their type number and the error
constants, K, K,, and K. Definitions for the error constants and the steady-state
error for the three inputs are summarized in Table 5.5. The usefulness of the error
constants can be illustrated by considering a simple example.

EXAMPLE 5.3 Mobile robot steering control

A mobile robot may be designed as an assisting device or servant for a severely dis-
abled person [7]. The steering control system for such a robot can be represented by
the block diagram shown in Figure 5.19. The steering controller is

G.(s) = K1 + Ky/s. (5.32)
Controller Vehicle dynamics
R(s) + K Y(s)
Desired Gs) —p  G(s) = - Actual
heading angle - s+ heading angle
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FIGURE 5.20
Triangular wave
response.
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Therefore, the steady-state error of the system for a step input when K, = 0 and
Gc.(S) = K] 1s

A

€ss = 1+ Kp, (5.33)

where K, = KK,. When K is greater than zero, we have a type-1 system,

Kls + K2
Gels) = ———
and the steady-state error is zero for a step input.

If the steering command is a ramp input, the steady-state error is

ey = —— (5.34)

where

K, = Iin}) sG(5)G(s) = K5K.

The transient response of the vehicle to a triangular wave input when
G.(s) = (K5 + K,)/s is shown in Figure 5.20. The transient response clearly shows
the effect of the steady-state error, which may not be objectionable if K, is suffi-
ciently large. Note that the output attains the desired velocity as required by the
input, but it exhibits a steady-state error. m

The control system’s error constants, K, K,, and K|, describe the ability of a
system to reduce or eliminate the steady-state error. Therefore, they are utilized as
numerical measures of the steady-state performance. The designer determines the
error constants for a given system and attempts to determine methods of increasing
the error constants while maintaining an acceptable transient response. In the case
of the steering control system, we want to increase the gain factor KX in order
to increase K, and reduce the steady-state error. However, an increase in KX,
results in an attendant decrease in the system’s damping ratio { and therefore a

¥
Input
_— Output

teg,




FIGURE 5.21
A nonunity
feedback system.

FIGURE 5.22
A speed control
system.

FIGURE 5.23

The speed control

system of
Figure 5.22 with
K1 = K2.
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Controller Process

+ E(s)
R(s) —» K, Gs)

G(s) — Y5}

v

Sensor

H(s)

:

more oscillatory response to a step input. Thus, we want a compromise that provides
the largest K, based on the smallest { allowable.

In the preceding discussions, we assumed that we had a unity feedback system
where H(s) = 1. Now we consider nonunity feedback systems. A general feedback
system with nonunity feedback is shown in Figure 5.21. For a system in which the
feedback is not unity, the units of the output Y(s) are usually different from the
output of the sensor. For example, a speed control system is shown in Figure 5.22,
where H(s) = K,. The constants K; and K, account for the conversion of one set
of units to another set of units (here we convert rad/s to volts). We can select K,
and thus we set K; = K, and move the block for K; and K, past the summing
node. Then we obtain the equivalent block diagram shown in Figure 5.23. Thus, we
obtain a unity feedback system as desired.

Let us return to the system of Figure 5.21 with H(s). In this case, suppose

K>
Hs) = s + 1
which has a DC gain of
lirrb H(s) = K,.

The factor K, is a conversion-of-units factor. If we set K, = K|, then the system is
transformed to that of Figure 5.23 for the steady-state calculation. To see this, con-
sider error of the system E(s), where

E(s) = R(s) — Y(s) = [l = T(s)]R(s), (5.35)
Controller Process
R(s) Yis)
ssire Volts + Volts . '
DL..SII'L(I K, G (s) > G(s) - Speed
speed )
_ (rad/s)
(rad/s)
Sensor
Volts 3 <
R(s) + Ey9) Volts . ¥(s)
K —p G ()G(s >
(rad/s) ! dG) (rad/s)
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since Y (s) = T(s)R(s). Note that

K,G.(5)G(s) _ (rs + DK G (s)G(s)

T = TR HWOGMG® ~ 75 + 1+ KiGL5)G(s)

and therefore,

_ 1 + 7s(1 — K;G(5)G(s))

ES) = T T K G(9G(s) R

Then the steady-state error for a unit step input is

1
1+ Ky 1im G(9)G(s)
x—)

e = }i_r,r%]s E(s) = (5.36)

We assume here that

li_r)x}) sG(5)G(s) = 0.

EXAMPLE 5.4 Steady-state error

Let us determine the appropriate value of K, and calculate the steady-state error
for a unit step input for the system shown in Figure 5.21 when

G.(s) =40 and G(s) =

s+5
and
20
H(s) =
) =TT 10
We can rewrite H(s) as
2
HE) =0 +1

Selecting K, = K, = 2, we can use Equation (5.36) to determine

1 1 1
€ss T

“1+ K, lim G(5)G(s) T 1+ 2040)(1/5) 17

or 5.9% of the magnitude of the step input. m

EXAMPLE 5.5 Feedback system

Let us consider the system of Figure 5.24, where we assume we cannot insert a gain
K, following R(s) as we did for the system of Figure 5.21. Then the actual error is
given by Equation (5.35), which is



FIGURE 5.24
A system with a
feedback Hi(s).
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Controller Process

+ E (s) 1
Ris) K
s+2

~» Y(5)

A4

Sensor

2
s+4

E(s) = [1 — T(s)]R(s).

Let us determine an appropriate gain K so that the steady-state error to a step input
is minimized. The steady-state error is

. 1
€ss = El_% s[1 = T(S)];,

where
T(s) = G (5)G(s) _ K(s +4)
(6) = 1+ Gs)G(s)H(s) (s + 2)(s + 4) + 2K~

Then we have

4K

0 =375k

The steady-state error for a unit step input is
es =1 —T(0).
Thus, to achieve a zero steady-state error, we require that

4K

TO) =852k~

11

or8 + 2K = 4K.Thus, K = 4 will yield a zero steady-state error. m

The determination of the steady-state error is simpler for unity feedback systems.
However, it is possible to extend the notion of error constants to nonunity feedback sys-
tems by first appropriately rearranging the block diagram to obtain an equivalent unity
feedback system. Remember that the underlying system must be stable, otherwise our
use of the final value theorem will be compromised. Consider the nonunity feedback
system in Figure 5.21 and assume that K; = 1. The closed-loop transfer function is

Y(s) G (s)G(s)

e Y T T HEGHG6)

By manipulating the block diagram appropriately we can obtain the equivalent
unity feedback system with

Y(s) Z(s) G(s)G(s)

— = = ————where Z(s) = .

R(s) 1+ Z(s) 1+ GA(s)G(s)(H(s) — 1)

T(s)
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The loop transfer function of the equivalent unity feedback system is Z(s). It follows
that the error constants for nonunity feedback systems are given as:

K,= lin(l) Z(s).,K, = lim sZ(s), and K, = limUSZZ(s).
Niand R iand Riand
Note that when H(s) = 1, then Z(s) = G.(s)G(s) and we maintain the unity feedback

error constants. For example, when H(s) = 1, then K, = lim Z(s) = lim G.(s)G(s),
as expected. s=0 50

5.7 PERFORMANCE INDICES

Increasing emphasis on the mathematical formulation and measurement of control
system performance can be found in the recent literature on automatic control.
Modern control theory assumes that the systems engineer can specify quantitatively
the required system performance. Then a performance index can be calculated or
measured and used to evaluate the system’s performance. A quantitative measure of
the performance of a system is necessary for the operation of modern adaptive con-
trol systems, for automatic parameter optimization of a control system, and for the
design of optimum systems.

Whether the aim is to improve the design of a system or to design a control sys-
tem, a performance index must be chosen and measured.

A performance index is a quantitative measure of the performance
of a system and is chosen so that emphasis is given
to the important system specifications.

A system is considered an optimum control system when the system parameters
are adjusted so that the index reaches an extremum, commonly a minimum value.
To be useful, a performance index must be a number that is always positive or zero.
Then the best system is defined as the system that minimizes this index.

A suitable performance index is the integral of the square of the error, ISE,
which is defined as

.
ISE = / e(t) dt. (5.37)
JO

The upper limit 7 is a finite time chosen somewhat arbitrarily so that the integral
approaches a steady-state value. It is usually convenient to choose T as the settling
time 7. The step response for a specific feedback control system is shown in Figure
5.25(b), and the error in Figure 5.25(c). The error squared is shown in Figure 5.25(d),
and the integral of the error squared in Figure 525(e). This criterion will discriminate
between excessively overdamped and excessively underdamped systems. The mini-
mum value of the integral occurs for a compromise value of the damping. The perfor-
mance index of Equation (5.37) is easily adapted for practical measurements because a
squaring circuit is readily obtained. Furthermore, the squared error is mathematically
convenient for analytical and computational purposes.



FIGURE 5.25

The calculation of
the integral squared
error.
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Another readily instrumented performance criterion is the integral of the
absolute magnitude of the error, IAE, which is written as

T
IAE = / le(n)] de. (5.38)
0
This index is particularly useful for computer simulation studies.
To reduce the contribution of the large initial error to the value of the perfor-

mance integral, as well as to emphasize errors occurring later in the response, the
following index has been proposed [6]:

T
ITAE = / tle(t)] dt. (5.39)
0

This performance index is designated the integral of time multiplied by absolute error,
ITAE. Another similar index is the integral of time multiplied by the squared error, or

7
ITSE = / te*(t) dt. (5.40)
0
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FIGURE 5.26
Single-loop
feedback control
system. (a) Signal-
flow graph.

{b) Block diagram
model.
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The performance index ITAE provides the best selectivity of the performance
indices; that is, the minimum value of the integral is readily discernible as the system
parameters are varied. The general form of the performance integral is

T
I=/f(e(t),r(t),y(t),t)dt, (5.41)
0

where f is a function of the error, input, output, and time. We can obtain numerous
indices based on various combinations of the system variables and time. Note that
the minimization of 1AE or ISE is often of practical significance. For example, the
minimization of a performance index can be directly related to the minimization of
fuel consumption for aircraft and space vehicles.

Performance indices are useful for the analysis and design of control systems.
Two examples will illustrate the utility of this approach.

EXAMPLE 5.6 Performance criteria

A single-loop feedback control system is shown in Figure 5.26, where the natural
frequency is the normalized value, w,, = 1. The closed-loop transfer function is then

1
T(s) = 5——7"—. 542
() P+ 2s+ 1 (542)

Three performance indices—ISE, ITAE, and ITSE—calculated for various values
of the damping ratio £ and for a step input are shown in Figure 5.27. These curves
show the selectivity of the ITAE index in comparison with the ISE index. The value
of the damping ratio ¢ selected on the basis of ITAE is 0.7. For a second-order sys-
tem, this results in a swift response to a step with a 4.6% overshoot. =

R(s) O—v—(@) ¥(s)
-1
(@
+ 1 1 L
R(S) "\ ] s+ 2{ L ‘; > Y(s)

(b)



FIGURE 5.27
Three performance
criteria for a
second-order
system.

FIGURE 5.28

A space telescope
pointing control
system. (a) Block
diagram. (b) Signal-
flow graph.
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EXAMPLE 5.7 Space telescope control system

The signal-flow graph and block diagram of a space telescope pointing control
system are shown in Figure 5.28 [9]. We desire to select the magnitude of the
gain, K3, to minimize the effect of the disturbance, T (s). In this case, the distur-
bance is equivalent to an initial attitude error. The closed-loop transfer function

Disturbance
Tls)
+
+ K I K2 X(‘) Y(s)
Ris) —»{ ) > ! » 2 :
) — s s + Attitude
_ A
Damping
K3 <+
Position feedback
K, <
)
Disturbance
Td(.ﬂ
1
K L]
s s [
> >— »—— Auitude

Position feedback

(b)
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for the disturbance is obtained by using Mason’s signal-flow gain formula as
follows:

Y(s) _ Pi(s) Ai(s)
Ti(s) A(s)
-1
- 1- * KiKss™) - (5.43)
+ K Kys™! + K KoK,s
s(s + KiK3)
st + KiKss + KiKoK,

Typical values for the constants are K; = 0.5 and K,K,K,, = 2.5. Then the natural
frequency of the vehicle is f, = V2.5/(2w) = 0.25 cycles/s. For a unit step distur-
bance, the minimum ISE can be analytically calculated. The attitude is

y@) = \ga[e—"'zw sin(gt + 4,)} (5.44)

where 8 = V10 — K%/4. Squaring y(¢) and integrating the result, we have

I =/ 1—2e‘°'5’<3’ sin? Et + | dr
o B 2

T10 gskyf1 1
e 0Kl — — = + .
A Bze > 2cos(Bt 2¢) | de (5.45)
1
= — + 0.1K;.
K }

Differentiating 7 and equating the result to zero, we obtain

dl -
K K3+ 0.1 =0. (5.46)
Therefore, the minimum ISE is obtained when K; = V10 = 3.2. This value of K;
corresponds to a damping ratio { of 0.50. The values of ISE and IAE for this system
are plotted in Figure 5.29. The minimum for the IAE performance index is obtained
when K; = 4.2 and ¢{ = 0.665. While the ISE criterion is not as selective as the IAE
criterion, it is clear that it is possible to solve analytically for the minimum value of
ISE. The minimum of IAE is obtained by measuring the actual value of IAE for sev-
eral values of the parameter of interest. m

A control system is optimum when the selected performance index is mini-
mized. However, the optimum value of the parameters depends directly on the
definition of optimum, that is, the performance index. Therefore, in Examples 5.6



FIGURE 5.29
The performance
indices of the
telescope control

system versus K3.
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1 2 3 4 5 6 78910

and 5.7, we found that the optimum setting varied for different performance
indices.

The coefficients that will minimize the ITAE performance criterion for a step
input have been determined for the general closed-loop transfer function [6]

_Y(s) by
R(s) "+ b,_1s" '+ - +bis+ by

T(s) (5.47)

This transfer function has a steady-state error equal to zero for a step input. Note
that the transfer function has » poles and no zeros. The optimum coefficients for the
ITAE criterion are given in Table 5.6. The responses using optimum coefficients for
a step input are given in Figure 5.30 for ISE, IAE, and ITAE. The responses are pro-
vided for normalized time w,t. Other standard forms based on different perfor-
mance indices are available and can be useful in aiding the designer to determine
the range of coefficients for a specific problem. A final example will illustrate the
utility of the standard forms for ITAE.

EXAMPLE 5.8 Two-camera control

A very accurate and rapidly responding control system is required for a system that
allows live actors to appear as if they are performing inside of complex miniature
sets. The two-camera system is shown in Figure 5.31(a), where one camera is trained
on the actor and the other on the miniature set. The challenge is to obtain rapid and
accurate coordination of the two cameras by using sensor information from the

Table 5.6 The Optimum Coefficients of T{s) Based on the
ITAE Criterion for a Step Input

s+ w,
2 2
s“ + lbw,s + vy,
$ + 1.75w,5% + 2.150ks +
st + 21w,s® + 340k + 27ws + o)
5+ 28w, + 50035’ + 5.5wis? + 34wls + w)
s8 + 3.250,5° + 6.60wis’ + 8.60wls® + 7.45wis? + 3.95w)s +
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FIGURE 5.30
Step responses of a
normalized transfer
function using
optimum
coefficients for

(a) ISE, {b) IAE, and
(c) ITAE. The
response is for
normalized time,
wpt.

Normalized response
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foreground camera to control the movement of the background camera. The block
diagram of the background camera system is shown in Figure 5.31(b) for one axis of

movement of the background camera. The closed-loop transfer function is

2
Knme()
s+ 2{«)052 + wis + KK, w?

T(s) =

(5.48)



FIGURE 5.30
(Continued)
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The standard form for a third-order system given in Table 5.6 requires that
2{wy = 1.75w,, w} =21502, and K, K,w§ = o).
Examining Figure 5.30(c) for n = 3, we estimate that the settling time is approxi-
mately 8 seconds (normalized time). Therefore, we estimate that
w1, = 8.

Because a rapid response is required, a large w, will be selected so that the settling
time will be less than 1 second. Thus, w, will be set equal to 10 rad/s. Then, for an
ITAE system, it is necessary that the parameters of the camera dynamics be

wy = 14.67 rad/s

and
¢ = 0.597.
The amplifier and motor gain are required to be
P L B R
W 21502 15

Then the closed-loop transfer function is

1000
s* + 17.55* + 2155 + 1000
1000

T (s + 7.08)(s + 521 + j10.68)(s + 521 — j10.68)’ (5:49)

Il

T(s)
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Table 5.7 The Optimum Coefficients of T(s) Based
on the ITAE Criterion for a Ramp Input
2+ 320,5 + o
5+ 175,58 + 3.25wks + o]
st + 2.41w,s7 + 4.93w2s? + 5.1403s + o
$° + 2.190,s" + 6.50w;s’ + 630w}’ + 524wks + w)

The locations of the closed-loop roots dictated by the ITAE system are shown
in Figure 5.32. The damping ratio of the complex roots is { = 0.44. However, the
complex roots do not dominate. The actual response to a step input using a comput-
er simulation showed the overshoot to be only 2% and the settling time (to within
2% of the final value) to be equal to 0.75 second.

For a ramp input, the coefficients have been determined that minimize the
ITAE criterion for the general closed-loop transfer function [6]

bls + b()
ST+ by ST+ o+ bys + by

T(s) = (5.50)

This transfer function has a steady-state error equal to zero for a ramp input. The
optimum coefficients for this transfer function are given in Table 5.7. The transfer
function, Equation (5.50), implies that the process G(s) has two or more pure inte-
grations, as required to provide zero steady-state error. m

5.8 THE SIMPLIFICATION OF LINEAR SYSTEMS

It is quite useful to study complex systems with high-order transfer functions by
using lower-order approximate models. For example, a fourth-order system could be
approximated by a second-order system leading to a use of the performance indices
in Figure 5.8. Several methods are available for reducing the order of a systems
transfer function.

One relatively simple way to delete a certain insignificant pole of a transfer
function is to note a pole that has a negative real part that is much more negative
than the other poles. Thus, that pole is expected to affect the transient response
insignificantly.

For example, if we have a system with transfer function

K
G = A
(s) s(s + 2)(s + 30)
we can safely neglect the impact of the pole at s = —30. However, we must retain

the steady-state response of the system, so we reduce the system to

(K/30)

Gl = s(s +2)
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A more sophisticated approach attempts to match the frequency response of
the reduced-order transfer function with the original transfer function frequency
response as closely as possible. Although frequency response methods are covered
in Chapter 8, the associated approximation method strictly relies on algebraic ma-
nipulation and is presented here. We will let the high-order system be described by
the transfer function

as” + am-lsm_l + o tastl
bys" + bys" o b+ 17

Gy(s) = K (5.51)

in which the poles are in the left-hand s-plane and m = n. The lower-order approx-
imate transfer function is

cpsP + - s + 1
dyst + - +dis + 1

G.(s) = K (5.52)

where p = g < n. Notice that the gain constant, K, is the same for the original
and approximate system,; this ensures the same steady-state response. The method
outlined in Example 5.9 is based on selecting c; and d; in such a way that G, (s) has
a frequency response (see Chapter 8) very close to that of Gy(s). This is equiva-
lent to stating that Gy(jw)/G, (jw) is required to deviate the least amount from
unity for various frequencies. The ¢ and d coefficients are obtained by using the
equations

MK s) = dd—; M(s) (5.53)

and
dk
AK(s) = o A(s), (5.54)
S

where M(s) and A(s) arc the numerator and denominator polynomials of
Gy (s)/Gy(s), respectively. We also define

e = %(—1>*‘*‘7M“"(0)M‘24‘“(0)
& k!(2q — k)! ’

g=012... (5.55)

and an analogous equation for A,,. The solutions for the ¢ and d coefficients are
obtained by equating

qu = AZq (556)

for ¢ = 1,2,... up to the number required to solve for the unknown coefficients.
Let us consider an example to clarify the use of these equations.
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EXAMPLE 5.9 A simplified model

Consider the third-order system

6 1
Gy(s) = = 5 = . (5.57)
57+ 65+ 1ls + 6 1+ES+S2+153
6 6
Using the second-order model
1
§) = —"—, 5.58
G (5) 1+ dys + dys? (5-58)
we determine that
2 11 2,13
M(s) =1+ dis + dps®, and A(s) =1+ FS + 57 + gs
Then we know that
MO(s) =1+ dis + dps?, (5.59)
and M‘(0) = 1. Similarly, we have
m-d . 2 - _
MY = 1—(1 + dis + dys®) = dy + 2ds. (5.60)
ds
Therefore, M‘(0) = ;. Continuing this process, we find that
MY0) =1 A™) =1,
11
M0y = d, AY©) = o
MP0) = 2d,  APD(0) = 2, (5.61)

and
M0y =0  A¥O0) =1

We now equate M,, = A,, for ¢ = 1 and 2. We find that,for g = 1,

MOO)MD©0)  MDO)MDO MP0)M 0
-1) ()2 © ()l ()+(—1) ()2 ©

_dz + (112 - (12 = —2(1‘2 + (1]2. (5.62)

il

M,

Since the equation for A, is similar, we have
AWy AP©)  AL(0) ATY0) AP(0) AYY(0)
+ +(-)————
2 1 2
=-l+—-1=—. (5.63)

Ay = (=1
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Equation (5.56) with ¢ = 1 requires that M, = A,; therefore,

49
-2d, + d} =—. :
2d, + df = o (5.64)

Completing the process for My = A,, we obtain
7
d = —.
2718

Solving Equations (5.64) and (5.65) yields d; = 1.615 and d, = 0.624. (The other
sets of solutions are rejected because they lead to unstable poles.) The lower-order
system transfer function is

(5.65)

1 1.60
G (s) = = . 5.66
() 1 + 1.615s + 0.6245> s> + 2.590s + 1.60 (5.66)

It is interesting to see that the poles of Gy(s) are s = —1, —2, —3, whereas the poles
of G, (s) are s = —1.024 and —1.565. Because the lower-order model has two poles,
we estimate that we would obtain a slightly overdamped step response with a set-
tling time to within 2% of the final value in approximately 3 seconds. m

It is sometimes desirable to retain the dominant poles of the original system,
Gy(s). in the low-order model. This can be accomplished by specifying the denomi-
nator of Gj(s) to be the dominant poles of Gy(s) and allowing the numerator of
G, (s) to be subject to approximation.

Another novel and useful method for reducing the order is the Routh approxi-
mation method based on the idea of truncating the Routh table used to determine
stability. The Routh approximants can be computed by a finite recursive algorithm
that is suited for programming on a digital computer [19].

A robot named Domo was developed to investigate robot manipulation in unstruc-
tured environments [22-23]. The robot shown in Figure 5.33 has 29 degrees of freedom,
making it a very complex system. Domo employs two six-degree-of-freedom arms and
hands with compliant and force-sensitive actuators coupled with a behavior-based sys-
tem architecture to achieve robotic manipulation tasks in human environments. Design-
ing a controller to control the motion of the arm and hands would require significant
model reduction and approximation before the methods of design discussed in the sub-
sequent chapters (e.g., root locus design methods) could be successfully applied.

5.9 DESIGN EXAMPLES

In this section we present two illustrative examples. The first example is a simplified
view of the Hubble space telescope pointing control problem. The Hubble space tele-
scope problem highlights the process of computing controller gains to achieve de-
sired percent overshoot specifications, as well as meeting steady-state error
specifications. The second example considers the control of the bank angle of an air-
plane. The airplane attitude motion control example represents a more in-depth look
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FIGURE 5.34

(a) The Hubble
telescope pointing
system, (b) reduced
block diagram,

(c) system design,
and (d) system
response to a unit
step input
command and a
unit step
disturbance input.
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The goal of the design is to choose K and K so that (1) the percent overshoot
of the output to a step command, r(f), is less than or equal to 10%, (2) the steady-
state error to a ramp command is minimized, and (3) the effect of a step disturbance
is reduced. Since the system has an inner loop, block diagram reduction can be used
to obtain the simplified system of Figure 5.34(b).

The output due to the two inputs of the system of Figure 5.34(b) is given by

Y(s) = T()R(s) + [T(s)/K]Ta(s), (5.67)
where
_ KG(s)  L(s)
T6) =1 TKGe) ~ 1+ LGy
The error is
G
E(s) = 1+—1L(;)-R(s) - 1—+(—2)(§Td(s). (5.68)

First, let us select K and K| to meet the percent overshoot requirement for a step
input, R(s) = A/s. Setting T;(s) = 0, we have

KG(s)

Y() = T kG RO

K A K A
S () [ S . 5.69
s(s+K1)+K(S) s2+1<,s+1<(s> (5.69)

To set the overshoot less than 10%, we select { = 0.6 by examining Figure 5.8 or
using Equation (5.16) to determine that the overshoot will be 9.5% for ¢ = 0.6.
We next examine the steady-state error for a ramp, r(t) = Bt,t = 0, using (Equa-
tion 5.28):

il

B B
=i = . 5.
bss f—‘—’f‘o{sKG(s)} K/K, (5:70)

The steady-state error due to a unit step disturbance is equal to —1/K. (The
student should show this.) The transient response of the error due to the step dis-
turbance input can be reduced by increasing K (see Equation 5.68). In summary,
we seek a large K and a large value of K/K to obtain a low steady-state error for
the ramp input (see Equation 5.70). However, we also require ¢ = 0.6 to limit the
overshoot.

For our design, we need to select K. With ¢ = 0.6, the characteristic equation of
the system is

§2 + 2w,s + b = 52 + 2(0.6)w,s + K. (5.71)
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FIGURE 5.35
Control of the bank
angle of an airplane
using differential
deflections of the
ailerons.
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Therefore, ®, = \/I?, and the second term of the denominator of Equation (5.69)
requires K; = 2(0.6)w,,. Then K; = 1.2VK, so the ratio K /K, becomes

K K VK
K 12vVk 127

Selecting K = 25, we have K; = 6 and K/K; = 4.17. If we select K = 100, we have
K; = 12 and K/K; = 8.33. Realistically, we must limit K so that the system’s opera-
tion remains linear. Using K = 100, we obtain the system shown in Figure 5.34(c).
The responses of the system to a unit step input command and a unit step distur-
bance input are shown in Figure 5.34(d). Note how the effect of the disturbance is
relatively insignificant.

Finally, we note that the steady-state error for a ramp input (see Equation 5.70) is

B

s =333 = 0.12B.

This design, using K = 100, is an excellent system. m

EXAMPLE 5.11  Attitude control of an airplane

Each time we fly on a commercial airliner, we experience first-hand the benefits of
automatic control systems. These systems assist pilots by improving the handling
qualities of the aircraft over a wide range of flight conditions and by providing pilot
relief (for such emergencies as going to the restroom) during extended flights. The
special relationship between flight and controls began in the early work of the
Wright brothers. Using wind tunnels, the Wright brothers applied systematic
design techniques to make their dream of powered flight a reality. This systematic
approach to design contributed to their success.

Another significant aspect of their approach was their emphasis on flight
controls; the brothers insisted that their aircraft be pilot-controlled. Observing
birds control their rolling motion by twisting their wings, the Wright brothers
built aircraft with mechanical mechanisms that twisted their airplane wings.
Today we no longer use wing warping as a mechanism for performing a roll ma-
neuver; instead we control rolling motion by using ailerons, as shown in Figure
5.35. The Wright brothers also used elevators (located forward) for longitudinal

Bank angle, ¢
\
e

Plane of symmetry

Aileron

=

Bank angle, ¢

Aileron
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We begin by considering the model of the lateral dynamics of an airplane moving
along a steady, wings-level flight path. By lateral dynamics, we mean the attitude motion
of the aircraft about the forward velocity. An accurate mathematical model describing
the motion (translational and rotational) of an aircraft is a complicated set of highly
nonlinear, time-varying, coupled differential equations. A good description of the
process of developing such a mathematical model appears in Etkin and Reid [25].

For our purposes a simplified dynamic model is required for the autopilot de-
sign process. A simplified model might consist of a transfer function describing the
input/output relationship between the aileron deflection and the aircraft bank
angle. Obtaining such a transfer function would require many prudent simplifica-
tions to the original high-fidelity, nonlinear mathematical model.

Suppose we have a rigid aircraft with a plane of symmetry. The airplane is as-
sumed to be cruising at subsonic or low supersonic (Mach < 3) speeds. This allows
us to make a flat-earth approximation. We ignore any rotor gyroscopic effects due to
spinning masses on the aircraft (such as propellors or turbines). These assumptions
allow us to decouple the longitudinal rotational (pitching) motion from the lateral
rotational (rolling and yawing) motion.

Of course, we also need to consider a linearization of the nonlinear equations of
motion. To accomplish this, we consider only steady-state flight conditions such as

QO Steady, wings-level flight
Q Steady, level turning flight
1 Steady, symmetric pull-up
Q Steady roll.

For this example we assume that the airplane is flying at low speed in a steady,
wings-level attitude, and we want to design an autopilot to control the rolling mo-
tion. We can state the control goal as follows:

Control Goal
Regulate the airplane bank angle to zero degrees (steady, wings level) and
maintain the wings-level orientation in the presence of unpredictable external
disturbances.

We identify the variable to be controlled as

Variable to Be Controlled
Airplane bank angle (denoted by ¢).

Defining system specifications for aircraft control is complicated, so we do not
attempt it here. It is a subject in and of itself, and many engineers have spent signifi-
cant efforts developing good, practical design specifications. The goal is to design a
control system such that the dominant closed-loop system poles have satisfactory
natural frequency and damping [24]. We must define satisfactory and choose test
input signals on which to base our analysis.

The Cooper-Harper pilot opinion ratings provide a way to correlate the feel of
the airplane with control design specifications [26]. These ratings address the han-
dling qualities issues. Many flying qualities requirements are specified by govern-
ment agencies, such as the United States Air Force [27]. The USAF MIL-F-8785C is
a source of time-domain control system design specifications.
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For example we might design an autopilot control system for an aircraft in
steady, wings-level flight to achieve a 20% overshoot to a step input with minimal
oscillatory motion and rapid response time (that is, a short time-to-peak). Subse-
quently we implement the controller in the aircraft control system and conduct flight
tests or high-fidelity computer simulations, after which the pilots tell us whether they
liked the performance of the aircraft. If the overall performance was not satisfactory,
we change the time-domain specification (in this case a percent overshoot specifica-
tion) and redesign until we achieve a feel and performance that pilots (and ultimately
passengers) will accept. Despite the simplicity of this approach and many years of
research, precise-control system design specifications that provide acceptable air-
plane flying characteristics in all cases are still not available [24].

The control design specifications given in this example may seem somewhat
contrived. In reality the specifications would be much more involved and, in many
ways, less precisely known. But recall in Chapter 1 we discussed the fact that we
must begin the design process somewhere. With that approach in mind, we select
simple design specifications and begin the iterative design process. The design spec-
ifications are

Control Design Specifications
DS1 Percent overshoot less than 20% for a unit step input.

DS2 Fast response time as measured by time-to-peak.

By making the simplifying assumptions discussed above and linearizing about
the steady, wings-level flight condition, we can obtain a transfer function model
describing the bank angle output, ¢(s), to the aileron deflection input, §,(s). The
transfer function has the form

¢(S) _ k(S - Co)(SZ + bls + bo)
8,4(s) B s(s + do)(s + eg)(s® + f15 + fo)

(5.72)

The lateral (roll/yaw) motion has three main modes: Dutch roll mode, spiral
mode, and roll subsidence mode. The Dutch roll mode, which gets its name from its
similarities to the motion of an ice speed skater, is characterized by a rolling and
yawing motion. The airplane center of mass follows nearly a straightline path, and a
rudder impulse can excite this mode. The spiral mode is characterized by a mainly
yawing motion with some roll motion. This is a weak mode, but it can cause an air-
plane to enter a steep spiral dive. The roll subsidence motion is almost a pure roll
motion. This is the motion we are concerned with for our autopilot design. The
denominator of the transfer function in Equation (5.72) shows two first-order
modes (spiral and roll subsidence modes) and a second-order mode (Dutch roll mode).

In general the coefficients cy, by, by, dy, €o, fo, f1 and the gain k are complicated
functions of stability derivatives. The stability derivatives are functions of the flight
conditions and the aircraft configuration; they differ for different aircraft types. The
coupling between the roll and yaw is included in Equation (5.72).

In the transfer function in Equation (5.72), the pole at s = —dj is associated
with the spiral mode. The pole at s = —eq is associated with the roll subsidence
mode. Generally, e, >> d. For an F-16 flying at 500 ft/s in steady, wings-level flight,
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we have e, = 3.57 and d, = 0.0128 [24]. The complex conjugate poles given by the
term s* + fis + f, represent the Dutch roll motion.

For low angles of attack (such as with steady, wings-level flight), the Dutch roll
mode generally cancels out of the transfer function with the s> + b;s + b, term. This
is an approximation, but it is consistent with our other simplifying assumptions. Also,
we can ignore the spiral mode since it is essentially a yaw motion only weakly cou-
pled to the roll motion. The zero at s = ¢, represents a gravity effect that causes the
aircraft to sideslip as it rolls. We assume that this cffect is negligible, since it is most
pronounced in a slow roll maneuver in which the sideslip is allowed to build up, and
we assume that the aircraft sideslip is small or zero. Therefore we can simplify the
transfer function in Eq. (5.72) to obtain a single-degree-of-freedom approximation:

&(s) _ k
8,(5)  s(s + )

(5.73)

For our aircraft we select ¢y = 1.4 and & = 11.4. The associated time-constant of the
roll subsidence is = 1/¢;, = 0.7s. These values represent a fairly fast rolling mo-
tion response.

For the aileron actuator model, we typically use a simple first-order system
model,

S(s) _ _p
e(s) s+ p

(5.74)

where ¢(s) = ¢4(s) — ¢(s). In this case we select p = 10. This corresponds to a time
constant of * = 1/p = 0.1s. This is a typical value consistent with a fast response. We
need to have an actuator with a fast response so that the dynamics of the actively con-
trolled airplane will be the dominant component of the system response. A slow actuator
is akin to a time delay that can cause performance and stability problems.

For a high-fidelity simulation, we would need to develop an accurate model of the
gyro dynamics. The gyro, typically an integrating gyro, is usually characterized by a very
fast response. To remain consistent with our other simplifying assumptions, we ignore
the gyro dynamics in the design process. This mecans we assume that the sensor mea-
sures the bank angle precisely. The gyro model is given by a unity transfer function,

K =1 (5.75)

Thus our physical system model is given by Equations (5.73), (5.74), and (5.75).
The controller we select for this design is a proportional controller,

G(s) = K.
The system configuration is shown in Figure 5.37. The select key parameter is as follows:

Select Key Tuning Parameter
Controller gain K.
The closed-loop transfer function is

() 114K
da(s)  §° 4+ 1145% + 145 + 114K

T(s) (5.76)



FIGURE 5.37
Bank angle control
autopilot.
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We want to determine analytically the values of K that will give us the desired
response, namely, a percent overshoot less tian 20% and a fast time-to-peak.
The analytic analysis would be simpler if our closed-loop system were a second-
order system (since we have valuable relations hips between settling time, percent
overshoot, natural frequency and damping rat o); however we have a third-order
system, given by T(s) in Equation (5.76). We could consider approximating the
third-order transfer function by a second-order ransfer function—this is sometimes
a very good engineering approach to analysis. T 1ere are many methods available to
obtain approximate transfer functions. Here we use the algebraic method described
in Section 5.8 that attempts to match the freqiiency response of the approximate
system as closely as possible to the actual syster .
Our transfer function can be rewritten as

1
14 14 2 1 3°
ek’ T ek S 1 ke

I(s) =

1+

by factoring the constant term out of the numer itor and denominator. Suppose our
approximate transfer function is given by the second-order system

1

Gi(s) = ——m.
2(s) 1 + dis + dys?

The objective is to find appropriate values of d; and d,. As in Section 5.8, we define
M(s) and A(s) as the numerator and denominator of T(s)/G,(s). We also define

2q (_1)k+t/M(k)(0)M(211-k)(0)
M = k4
Sl k'(2q — k)!

g=12.... (5.77)

and
2¢ (_1)k+q A“")(O) A(2q-l~')(0)
k=0 k!'(2q - k)!

Ay, = . g=1,2..... (5.78)

Then, forming the set of algebraic equations

qu = Azq, q = 1, 2,..., (579)
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we can solve for the unknown parameters of the approximate function. The index g
is incremented until sufficient equations are obtained to solve for the unknown
coefficients of the approximate function. In this case, g = 1, 2 since we have two
parameters d; and d, to compute.

We have

M(s) =1 + dis + dys?
am
MOD(s) = — = d; + 2d,s
ds
d*M

M@(s) = e 2d,

MO)(s) = M¥s) = -+ = 0.

Thus evaluating at s = ( yields

M(”(O) = dl
M3(0) = 2d,
M) = MB0) = --- =0.
Similarly,
VR L | O s*
) =1+ 12k Y 1ak® * 14K
dA 14 22.8 3
(s) = — = + + 2
AT =y T Tak T 1iak T Tkt

A 228 6

oy =42 _ £=5 9
ATG)Y =2 T Tiak T T1ak’
’;
3) = ﬂ = _ﬁ_
AT) =45 T Tk
AW(s) = A(s) = - =0
Evaluating at s = 0, it follows that
14
(8Y] -
ATNO0) = TR
22.8
(2) = ==
6
BQ) = ——
ARO) =Tk

A“)(O) = A(S)(O) = ... = (.
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Using Equation (5.77) for ¢ = 1 and ¢ = 2 yields

MOMP©0) MOYOMDO) MD0)M©O
L= - ()2 ()+ ()1 © (2)()=_2dz+d13

and

MO)MHD©0)  MOO)MI0)  MBO)MP(0)
T Toar T et T o
_ MB©0)M (D) N MPO)M©O) _
3 410!

(122.

Similarly using Equation (5.78). we find that

A28 196 o 1019
PU14K T (114K)? Y14k

Thus forming the set of algebraic equations in Equation (5.79),
M2 = Az and M4= A4.
we obtain

—228 1% 101.96
—2d;, + dy? = + s and di’ = ———.
CTOT ek T gy Y T (aky?

Solving for d; and d, yields

. _ V19 — 296.96K (550)
M= 114K ' 2
10.097
= =7 581
& 114K’ (5.81)

where we always choose the positive values of d; and d, so that G, (s) has poles in the
left half-plane. Thus (after some manipulation) the approximate transfer function is

11.29K

G, (s) = .
! & + V192 — 291Ks + 1129K

We require that K < 0.65 so that the coefficient of the s term remains a real num-
ber (we do not want to have a transfer function with complex valued parameters).
Our desired second-order transfer function can be written as

(5.82)

2
wy,

§° + 2w, + o

Gi(s) = (5.83)



354

Chapter 5 The Performance of Feedback Control Systems
Comparing coefficients in Equations (5.82) and (5.83) yields

0.04
o =1129K and ¢’ = 73 — 0.065. (5.84)
The design specification that the percent overshoot PO. is to be less than 20%
implies that we want { = 0.45. This follows from solving Equation (5.16)

P.O. = 100 ™VI-¢

for {. Setting { = 0.45 in Equation (5.84) and solving for X yields

K =0.16.
With K = 0.16 we compute

w, = V11.29K = 1.34.

Then we can estimate the time-to-peak 7, from Equation (5.14) to be

T =— 2 =262

¢ wn“l—{z

We might be tempted at this point to select { > 0.45 so that we reduce the percent
overshoot even further than 20%. What happens if we decide to try this approach?
From Equation (5.84) we see that K decreases as { increases. Then, since

w, = V11.29K,

as K decreases, then w,, also decreases. But the time-to-peak, given by

o
W, V 1 - 4‘2’

increases as w, decreases. Since our goal is to meet the specification of percent over-
shoot less than 20% while minimizing the time-to-peak, we use the initial selection
of { = 0.45 so that we do not increase T, unnecessarily.

The second-order system approximation has allowed us to gain insight into the
relationship between the parameter K and the system response, as measured by per-
cent overshoot and time-to-peak. Of course, the gain K = 0.16 is only a starting
point in the design because we in fact have a third-order system and must consider
the effect of the third pole (which we have ignored so far).

A comparison of the third-order aircraft model in Equation (5.76) with the
second-order approximation in Equation (5.82) for a unit step input is shown in
Figure 5.38. The step response of the second-order system is a good approximation
of the original system step response, so we would expect that the analytic analysis
using the simpler second-order system to provide accurate indications of the rela-
tionship between K and the percent overshoot and time-to-peak.

With the second-order approximation, we estimate that with K = 0.16 the per-
cent overshoot P.O. = 20% and the time-to-peak T, = 2.62 seconds. As shown in

T, =



FIGURE 5.38
Step response
comparison of
third-order aircraft
model versus
second-order
approximation.

FIGURE 5.39
Step response of
the 39-order aircraft
model with

K = 0.10, 0.16, and
0. 20 showing that,
as predicted, as K
decreases percent
overshoot
decreases while the
time-to-peak
increases.
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Figure 5.39 the percent overshoot of the original third-order system is P.O. = 20.5%
and the time-to-peak 7, = 2.73 s. Thus, we see that that analytic analysis using the ap-
proximate system is an excellent predictor of the actual response. For comparison pur-
poses, we select two variations in the gain and observe the response. For K = 0.1, the
percent overshoot is 9.5% and the time-to-peak 7, = 3.74 s.For K = 0.2, the percent
overshoot is 26.5% and the time-to-peak 7, = 2.38 5.50 as predicted, as K decreases
the damping ratio increases, leading to a reduction in the percent overshoot. Also as
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Table 5.8 Performance Comparison for K = 0.10,

0.16, and 0.20.

K P.O. (%) T,(s)
0.10 9.5 3.74
0.16 20.5 273
0.20 26.5 2.38

predicted, as the percent overshoot decreases the time-to-peak increases. The results
are summarized in Table 5.8. =

5.10 SYSTEM PERFORMANCE USING CONTROL DESIGN SOFTWARE

FIGURE 5.40
The impulse
function.

In this section, we will investigate time-domain performance specifications given in
terms of transient response to a given input signal and the resulting steady-state track-
ing errors. We conclude with a discussion of the simplification of linear systems. The
function introduced in this section is impulse. We will revisit the Isim function (intro-
duced in Chapter 3) and sec how these functions are used to simulate a linear system.

Time-Domain Specifications. Time-domain performance specifications are gen-
erally given in terms of the transient response of a system to a given input signal.
Because the actual input signals are generally unknown, a standard test input signal is
used. Consider the second-order system shown in Figure 5.4. The closed-loop output is

2
Wy

4 2w,s + o}

Y(s) = R(s). (5.85)

We have already discussed the use of the step function to compute the step
response of a system. Now we address another important test signal: the impulse.
The impulse response is the time derivative of the step response. We compute the
impulse response with the impulse function shown in Figure 5.40.

u(1) ()

Impulse System

input Gis) —> Output

1t = T: user-supplied

¥(1) = output response at G(s) = sys .
time vector

T = simulation time

or
4 t = Tp,.q: simulation
final time (optional)

! 28

[y, Tl=impulse(sys,t)




FIGURE 5.41
(a) Response of a
second-order
system to a step
input. (b) m-file
script.
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£=10.1,02,04,0.7.10,2.0
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(a)
%Compute step response for a second-order system
%Duplicate Figure 5.5 (a)
%o
t=[0:0.1:12]; num=[1};
zeta1=0.1; den1=[1 2"zeta1 1]; sys1=tf(num,dent);
zeta2=0.2; den2=[1 2*zeta2 1}]; sys2=tf(num,den2);
zeta3=0.4; den3=[1 2*zeta3 1]; sys3=tf(num,den3);
zeta4=0.7; den4=[1 2*zeta4 1]; sys4=t{{(num,dend);
zetab5=1.0; den5={1 2*zeta5 1]; sys5=tf(num,den5);
zetab=2.0; den6=[1 2*zeta6 1]; sysb=tf(num,dené);
% Compute
[y1.T1]=step(sys1,t); [y2, T2]=step(sys2t); —nu—" = sep
[y3,T3}=step(sys3.t); [y4,T4]=step(sys4,t); response.
[y5,T5)=step(sys5.t); [y6,T6]=step(sys6,t);
%
PIOWT1,y1,T2,y2,T3,y3,T4,y4,T5.y5,T6,y6) +— G;':ﬁ;‘;‘;}:]‘"
xlabel(' \omega_n t'), ylabel('y(t)') :
title(\zeta = 0.1, 0.2, 0.4, 0.7, 1.0, 2.0"), grid

(b)
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We can obtain a plot similar to that of Figure 5.5(a) with the step function, as
shown in Figure 5.41. Using the impulse function, we can obtain a plot similar to
that of Figure 5.6. The response of a second-order system for an impulse function
input is shown in Figure 5.42. In the script, we set w, = 1, which is equivalent to
computing the step response versus w,t. This gives us a more general plot valid for

any w, > 0.

In many cases, it may be necessary to simulate the system response to an arbi-
trary but known input. In these cases, we use the Isim function. The Isim function is


file:///omega_n
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¢=0.1,025.05.1.0

L0

0.8

0.6

0.4

yn/w,

-0.4

-0.6

-0.8

%Compute impulse response for a second-order system
%Duplicate Figure 5.6

%

t=[0:0.1:10}; num=[1];

zeta1=0.1; den1=[1 2*zetal 1}; sys1=tf(num,dent);
zeta2=0.25; den2=[1 2*zeta2 1J; sys2=tf(num,den2);
zeta3=0.5; den3=[1 2*zeta3 1]; sys3=tf(num,den3);
zeta4=1.0; dend=[1 2*zeta4d 1]; sys4=ti(num,dend);

%
[y1,T1}=impulse(sys1,t);

[y2,T2]=impuIse(sys2,t): 4_.{ Compute impulse resporgc;l
[y3,T3]=impulse(sys3,t);

FIGURE 5.42 Ez4,T4]=|mpu|se(sys4,t); H Generate plot and labels. I
(a) Response of a plot(t,y1,t.y2,t,y3,t,y4)

second-order xlabel(' \omega _nt'), ylabel(’y(t)/\omega_n')
system to an title(\zeta = 0.1, 0.25, 0.5, 1.0"), grid
impulse function
input. (b) m-file
script. (b)

shown in Figure 5.43. We studied the Isim function in Chapter 3 for use with state-
variable models; however, now we consider the use of Isim with transfer function
models. An example of the use of Isim is given in Example 5.12.

EXAMPLE 5.12 Mobile robot steering control

The block diagram for a steering control system for a mobile robot is shown in
Figure 5.19. Suppose the transfer function of the steering controller is

K
GAs) = K, + Tz


file:///omega

FIGURE 5.43
The Isim function.
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u(r) hita)

Arbitrary System
input. ] )(I:;(s) Output
t
y(t) = output response at ¢ G(s) = sys u = input t = times at which
T = sirnulation time response o u is
vector computed

»

W

[y, Tl=lsim(sys,u,t)

When the input is a ramp, the steady-state error is

A
P = —, 5.86
= (5.86)
where
K, = KbK

The effect of the controller constant, K5, on the steady-state error is evident from
Equation (5.86). Whenever K, is large, the steady-state error is small.

We can simulate the closed-loop system response to a ramp input using the
Isim function. The controller gains, K; and K;, and the system gain K can be rep-
resented symbolically in the script so that various values can be selected and sim-
ulated. The results are shown in Figure 544 for K, = K =1,K;, =2, and
T=1/10. m

Simplification of Linear Systems. It may be possible to develop a lower-order
approximate model that closely matches the input-output response of a high-order
model. A procedure for approximating transfer functions is given in Section 5.8. We
can use computer simulation to compare the approximate model to the actual
model, as illustrated in the following example.

EXAMPLE 5.13 A simplified model

Consider the third-order system

6
T+ 652+ 1ls + 6

Gu(s) =
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Time (s)

(a)

%Compute the response of the Mobile Robot Control
%System to a triangular wave input

%

numg=[10 20]; deng=[1 10 0]; sysg=tf(numg,deng); «———G(5)G.(s)
[sys]=feedback(sysg, [1]);

1=[0:0.1:8.21 Compute triangular
=[0: D1 -\y2=[2:- <201y 3=[-2- -01-
FIGURE 5.44 vl [0..0.1..2] -,v2 [2:-0.1:-2]";v3=[-2:0.1:0]'; <4 wave input.
- u=[v1;v2;v3j;
(a) Transient . L ; " -
response of the [y, Tl=Isim(sys,u.t); < } Linear simulation.
mobile robot plot(T.y.Lu,"-),
steering control xlabel("Time (s)'), ylabel(\theta (rad)’), grid

system to a ramp
input. (b} m-file
script.

(b)
A second-order approximation (see Example 5.9) is

1.60
s% + 2.590s + 1.60°

G(s) =

A comparison of their respective step responses is given in Figure 5.45. =

5.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In Section 4.10, we considered the response of the closed-loop reader head control
system. Let us further consider the system shown in Figure 4.35. In this section, we
further consider the design process. We will specify the desired performance for the
system. Then we will attempt to adjust the amplifier gain X, in order to obtain the
best performance possible.




FIGURE 5.45
(a) Step response
comparison for an
approximate
transfer function
versus the actual
transfer function.
(b) m-file script.
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1.0
0.9
0.8 |
0.7
0.6
0.5
04
03
0.2
0.1

Second-order |
approximation | _~%

Third-order
system R

Step Response

Time (s)
(a)

% Compare step response for second-order approximation
%

num1=[6]; den1=[1 6 11 6]; sys1=tf{(numi,den1);
num2=[1.6); den2=[1 2.594 1.6}; sys2=(tf(num2,den2);

t={0:0.1:8];
[y1,T1]=step(sys1.t), Gy(s) =
[y2,T2]=step(sys2,t);

6
S +6s2+ 1ls+6

plot(T1,y1,T2,y2,--"), grid
xlabel('Time (s)'), ylabel('Step Response') Gy(s) = __ 16
L 5242595+ 1.6

(b)

Table 5.9 Specifications for the Transient Response

Performance Measure Desired Value
Percent overshoot Less than 5%
Settling time Less than 250 ms
Maximum value of response Lessthan§ X 107°

to a unit step disturbance

361

Our goal is to achieve the fastest response to a step input r(z) while (1) limiting
the overshoot and oscillatory nature of the response and (2) reducing the effect of a
disturbance on the output position of the read head. The specifications are summa-

rized in Table 5.9.

Let us consider the second-order model of the motor and arm, which neglects
the effect of the coil inductance. We then have the closed-loop system shown in

Figure 5.46. Then the output when Ty(s) = 0 is
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FIGURE 5.46
Control system
mode! with a
second-order
model of the motor
and load.

FIGURE 5.47
Response of the
system to a unit
step input,

ty =1,t> 0.
(a) m-file script.
(b) Response for
K, = 30 and 60.

Chapter 5 The Performance of Feedback Control Systems

Motor Ty(s)
Amplifier constant Load
+ R ¥ 1 >
R(s) ——»_?—» K, > 5 ? 0 > Vi)
Y(5) = ot R(s)
) =3 + 20) + SKR6
5K, R(s)
=— R(s
s2 + 20s + 5K,
- i R(s) (5.87)
5 R(s). .

2+ 2w,s + o

Therefore, w?> = 5K,, and 2{w, = 20. We then determine the response of the system
as shown in Figure 5.47. Table 5.10 shows the performance measures for selected
values of K,,.

{ Select X,.

Ka=30;, <

1=[0:0.01:1];

nc=[Ka*5];dc=[1]; sysc=tf(nc,dc);
ng=[1};dg=[1 20 0}; sysg=tf(ng,dg);
sys1=series(sysc,sysg);

Compute the

sys=feedback(sys1, [1]); (¢ closed-loop
y=step(sys.t); transfer function.
plot(t,y), grid
xlabel('Time (s)')
ylabel('y(t)')
(a)
1.2
K, = 60.
1
0.8
K, = 30.
06
0.4
0.2
0
0 01 02 03 04 05 06 07 08 09 |
Time (s)
(b)



Section 5.11 Sequential Design Example: Disk Drive Read System 363

Table 5.10 Response for the Second-Order Model for a Step Input

K, 20 30 40 60 80
Percent overshoot 0 1.2% 4.3% 10.8% 16.3%
Settling time (s) 0.55 0.40 0.40 0.40 0.40
Damping ratio 1 0.82 0.707 0.58 0.50
Maximum value of the ~ —10 X 1073 -6.6 X 1073 -52 x 107 -3.7 x 107° -29 x 1073
response y(f) to a unit
disturbance
When K, is increased to 60, the effect of a disturbance is reduced by a factor of
2. We can show this by plotting the output, y(¢), as a result of a unit step disturbance
input, as shown in Figure 5.48. Clearly, if we wish to meet our goals with this system,
we need to select a compromise gain. In this case, we select K, = 40 as the best com-
promise. However, this compromise does not meet all the specifications. In the next
chapter, we consider again the design process and change the configuration of the
control system.
Ka=30; <« { Select K,
t=[0:0.01:1];
nc=[Ka*5};dc=[1]; sysc=tf(nc,dc};
ng=[1};dg=[1 20 0]; sysg=tf(ng,dg);
zz:ilee/:.back(sysg,sysc), Disturbance enters summer
=-5YS; 4——————— - S
y=step(sys.); plot(t,y) with a negative sign.
xlabel('Time (s)'), ylabel('y(t)"), grid
(@
x 1072
0 1
| |
— l i b
N | |
s \\\\J_/" i
- i
- i
-4 _..lL, ] "
| |
sl N !
FIGURE 5.48 » A L | -
Response of the K, =30

system to a unit
step disturbance,
T4(s) = 1/s.

(@) m-file script.
(b) Response for
K, = 30 and 60.

0 01 02 03 04 05 06 07 08 09 1
Time (s)

(b)
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FIGURE 5.49

The response of a
feedback system to
a ramp input with
K=1,2,and 8
when G(s) =

K/[sts + 1}(s + 3)].
The steady-state
error is reduced as
K is increased, but
the response
becomes oscillatory
atK = 8.

5.12 SUMMARY
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In this chapter, we have considered the definition and measurement of the perfor-
mance of a feedback control system. The concept of a performance measure or index
was discussed, and the usefulness of standard test signals was outlined. Then, several
performance measures for a standard step input test signal were delineated. For exam-
ple, the overshoot, peak time, and settling time of the response of the system under test
for a step input signal were considered. The fact that the specifications on the desired
response are often contradictory was noted, and the concept of a design compromise
was proposed. The relationship between the location of the s-plane root of the system
transfer function and the system response was discussed. A most important measure
of system performance is the steady-state error for specific test input signals. Thus, the
relationship of the steady-state error of a system in terms of the system parameters was
developed by utilizing the final-value theorem. The capability of a feedback control
system is demonstrated in Figure 5.49. Finally, the utility of an integral performance
index was outlined, and several design examples that minimized a system’s perfor-
mance index were completed. Thus, we have been concerned with the definition and
usefulness of quantitative measures of the performance of feedback controi systems.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems. Use the block diagram in Figure
5.50 as specified in the various problem statements.

Controller Process

\4

R(s) Gs) G(s) > ¥(s)

FIGURE 56.50 Biock diagram for the Skills Check.
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In the following True or False and Multiple Choice problems, circle the correct answer.

L. In general, a third-order system can be approximated by a second-order
system’s dominant roots if the real part of the dominant roots is less than

1/10 of the real part of the third root. True or False
2. The number of zeros of the forward path transfer function at the origin is

called the type number. True or False
3. The rise time is defined as the time required for the system to settle within

a certain percentage of the input amplitude. True or False
4. For a second-order system with no zeros, the percent overshoot to a unit

step is a function of the damping ratio only. True or False
5. A type-1 system has a zero steady-state tracking error to a ramp input. True or False

Consider the closed-loop control system in Figure 5.50 for Problems 6 and 7 with

L) = G6006) = 3137

f

The steady-state error to a unit step input R(s) = 1/s is:
a, e = 11irg) e(r) =1
b. e, = 'li’rg,e(t) =1/2
¢ e, = lime(t) = 1/6
{—00
d. e5 = Ilin;loe(t) = 0

7. The percent overshoot of the output to a unit step input is:

a. PO.=9%
b. PO. =1%
¢. PO.=20%

d. No overshoot

Consider the block diagram of the control system shown in Figure 5.50 in Problems 8 and 9
with the loop transfer function

L(s) = G.(s)G(s) = WL]O)

bl

Find the value of K so that the system provides an optimum ITAE response.
a. K =110

b. K = 12.56

¢ K =51.02

d. K =104.7

Compute the expected percent overshoot to a unit step input.
a. PO.=14%

b. P.O.=46%

¢ P.O.=108%

d. No overshoot expected

10. A system has the closed-loop transfer function 7'(s) given by

Y(s) 2500
R(s) (s + 20)(s® + 10s + 125)'

»

T(s) =
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Using the notion of dominant poles, estimate the expected percent overshoot.
a. PO.=5%

b, P.O. = 20%

¢ P.O. = 50%

d. No overshoot expected

11. Consider the unity feedback control system in Figure 5.50 where
K
L(s) = G(s)G(s) = G Ay

The design specifications are:

i. Peaktime7, = 1.0

ii. Percent overshoot P.O. < 10%.

With K as the design parameter, it follows that

a. Both specifications can be satisfied.

b. Only the first specification T, = 1.0 can be satisfied.

¢. Only the second specification P.O. = 10% can be satisfied.
d. Neither specification can be satisfied.

. K
12. Consider the feedback control system in Figure 5.51 where G(s) = pRrTS
Tts)
Controller Process
+ Ey(s) 1 p
R(s) - > G(s) > Y(s)
Measurement

FIGURE 5.51 Feedback system with integral controller and derivative measurement.

The nominal value of K = 10. Using a 2% criterion, compute the settling time, 7 for a
unit step disturbance, T;(s) = 1/s.

a 7,=002s
b. T, = 0.19s
¢ T,=103s
d. T,=483s
13. A plant has the transfer function given by

1
(1 + 5)(1 +0.5s)
and is controlled by a proportional controller G.(s) = K, as shown in the block diagram
in Figure 5.50. The value of K that yields a steady-state error E(s) = Y(s) — R(s) with a
magnitude equal to 0.01 for a unit step input is:
a. K =49
b. K =99

G(s) =
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¢ K =169
d. None of the above
In Problems 14 and 15, consider the control system in Figure 5.50, where

6
G(s) = ——-—(s TG 2) and G.(s) = T 50

14. A second-order approximate model of the loop transfer function is:

o (3/25)K

a. G(s)G(s) = 2+ 75+ 10
o (1/25)K

b. G(s)G(s) = 7 =10
o (3/25)K

. G(s)G(s) = s2—+7s—lsm
. 6K

d. G(s)G() = 57T o

15. Using the second-order system approximation (see Problem 14), estimate the gain K so
that the percent overshoot is approximately P.O. = 15%.

a. K=10
b. K =300
¢. K =1000

d. None of the above

In the following Word Match problems, match the term with the definition by writing the
correct letter in the space provided.

a. Unit impulse The time for a system to respond to a step input and
rise to a peak response.

b. Rise time The roots of the characteristic equation that cause the
dominant transient response of the system.

¢. Settling time The number N of poles of the transfer function, G(s),
at the origin.

d. Type number The constant evaluated as lina sG(s).

—

e. Percent overshoot An input signal used as a standard test of a system’s
ability to respond adequately.

f. Position error The time required for the system output to settle within
constant, K, a certain percentage of the input amplitude.

g. Velocity error A set of prescribed performance criteria.
constant, K,

h. Steady-state - A system whose parameters are adjusted so that the
response performance index reaches an extremum value.

i. Peak time A quantitative measure of the performance of a system.

j- Dominant roots The time for a system to respond to a step input and
attain a response equal to a percentage of the magnitude
of the input.

k. Test input signal The amount by which the system output response
proceeds beyond the desired response.

l. Acceleration error The constant evaluated as lirr(} $°G(s).
K d
constant, K,
m. Transient response The constant evaluated as lina G(s). -
Riand






FIGURE E5.5
Feedback system
with proportional
controller

Gels) = K.

ES.5 Consider the feedback system in Figure ES.S. Find

Exercises

R(s)
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Controller

Process

K

» Y
s(s + 4) s)

R(s)

K such that the closed-loop system minimizes the
ITAE performance criterion for a step input.

ES.6 Consider the block diagram shown in Figure ES.6 [16].

(a) Calculate the steady-state error for a ramp input.
(b) Select a value of K that will result in zero over-
shoot to a step input. Provide the most rapid response
that is attainable.

Plot the poles and zeros of this system and dis-
cuss the dominance of the complex poles. What over-
shoot for a step input do you expect?

100 > Y
5? Position
: Ks |
Velocity

Position feedback

FIGURE E5.6 Block diagram with position and velocity
feedback.

ES.7 Effective control of insulin injections can result in

better lives for diabetic persons. Automatically con-
trolled insulin injection by means of a pump and a
sensor that measures blood sugar can be very effec-
tive. A pump and injection system has a feedback con-
trol as shown in Figure E5.7. Calculate the suitable
gain K so that the overshoot of the step response due
to the drug injection is approximately 7%. R(s) is the
desired blood-sugar level and Y(s) is the actual blood-

ES.8 A control system for positioning the head of a floppy

disk drive has the closed-loop transfer function

11.1(s + 18)
T(s) = P .
(s + 20)(s* + 45 + 10)
Plot the poles and zeros of this system and discuss the

dominance of the complex poles. What overshoot for a
step input do you expect?

ES.9 A unity negative feedback control system has the

loop transfer function

L(s) = Gu(s)G(s) = ——
Y

o+ V)

(a) Determine the percent overshoot and settling
time (using a 2% settling criterion) due to a unit
step input.

(b) For what range of K is the settling time less than
1 second?

E5.10 A second-order control system has the closed-loop

transfer function 7'(s) = Y (s)/R(s). The system spec-
ifications for a step input follow:

(1) Percent overshoot P.O. = 5%.

(2) Settling time 7, < 4s.

(3) Peak time T, < ls.

Show the permissible area for the poles of 7(s) in

order to achieve the desired response. Use a 2% set-
tling criterion to determine settling time.

ES.11 A system with unity feedback is shown in Figure

ES5.11. Determine the steady-state error for a step and
a ramp input when

FIGURE E5.7
Blood-sugar level
control.

sugar level. (Hint: Use Figure 5.13a.) G(s) = 5(s + 8)
Answer: K = 1.67 s(s + 1)(s + 4)(s + 10)
Pump Human body
+ Insuli + M)
R(s) K = s +2 » Blood-sugar
- s+ D level )
Sensor
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+
Ris) G(s) » Y(s)
FIGURE E5.11 -
Unity feedback
system.
Disturbance
Ty(s)
Wheel and
Controller motor dynamics
Ry 4 K - 46 ¥(s)
Desired —» Speed of
+ +
FIGURE E5.12 speed - il * s+ s+ rotation
Speed control of a
Ferris wheel.

ES.12 We are all familiar with the Ferris wheel featured
at state fairs and carnivals. George Ferris was born in
Galesburg, Illinois, in 1859; he later moved to Neva-
da and then graduated from Rensselaer Polytechnic
Institute in 1881. By 1891, Ferris had considerable
experience with iron, steel, and bridge construction.
He conceived and constructed his famous wheel for
the 1893 Columbian Exposition in Chicago [8]. To
avoid upsetting passengers, set a requirement that
the steady-state speed must be controlled to within
5% of the desired speed for the system shown in
Figure E5.12.

(a) Determine the required gain K to achieve the
steady-state requirement.

(b) For the gain of part (a), determine and plot the
error e(¢) for a disturbance T;(s) = 1/s. Does the
speed change more than 5%7? (Set R(s) = 0 and
recall that E(s) = R(s) — T(s).)

E5.13 For the system with unity feedback shown in
Figure ES.11, determine the steady-state error for a
step and a ramp input when

20

G(s) = ——
)= 2 145 7 50

Answer: e, = 0.71 for astep and ey, =

ES5.14 A feedback system is shown in Figure E5.14.

(a) Determine the steady-state error for a unit step
when K = 0.4 and G,(s) = 1.

oo for a ramp.

+ K

R(s) =
) s(s + 2)

(AD) ¥is)

s+3
s+ 0.1

FIGURE E5.14 Feedback system.

(b) Select an appropriate value for G,(s) so that the
steady-state error is equal to zero for the unit step
input.

ES.15 A closed-loop control system has a transfer func-
tion 7(s) as follows:

Y6) _
R(s)

T(s) = 22500 g
(s + 50)(s* + 10s + 50)

Plot y(z) for a step input R(s) when (a) the actual 7(s)
is used, and (b) using the relatively dominant complex
poles. Compare the results.

ES.16 A second-order system is

Y(s) _ (10/z)(s + 2)
R(s) T (s + 1)(s +8)°

T(s)

Consider the case where 1 < z < 8. Obtain the par-
tial fraction expansion, and plot y(z) for a step input
r(f) for z = 2,4,and 6.

E5.17 A closed-loop control system transfer function 7(s)
has two dominant complex conjugate poles. Sketch the
region in the left-hand s-plane where the complex poles
should be located to meet the given specifications.

(a) 0.6 =7 =038, w, =10
(b) 0.5 =¢ = 0.707, w, =10
(c) £ =05, 5w, =10
(d) ¢ = 0.707, S=w,=10
(e) ¢ = 0.6, w, =6

ES.18 A system is shown in Figure ES5.18(a). The response
to a unit step, when K = 1, is shown in Figure
ES5.18(b). Determine the value of K so that the steady-
state error is equal to zero.
Answer: K = 1.25.

E5.19 A second-order system has the closed-loop trans-
fer function

Y(s) w} 7

T35+ 71

T(s) = = =
() R(s) 2+ 2{w,s + w,z,
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Problems

(a) Show that I = (A — Q)%/(2K). (b) Determine
the gain K that will minimize the performance index /.
Is this gain a practical value? (c) Select a practical
value of gain and determine the resulting value of the
performance index.

P5.12 Train travel between cities will increase as trains are
developed that travel at high speeds, making the travel
time from city center to city center equivalent to air-
line travel time. The Japanese National Railway has a
train called the Bullet Express that travels between
Tokyo and Osaka on the Tokaido line. This train travels
the 320 miles in 3 hours and 10 minutes, an average
speed of 101 mph {17]. This speed will be increased as
new systems are used, such as magnetically levitated
systems to float vehicles above an aluminum guideway.
To maintain a desired speed, a speed control system is
proposed that yields a zero steady-state error to a
ramp input. A third-order system is sufficient. Deter-
mine the optimum system transfer function 7{(s) for an
ITAE performance criterion. Estimate the settling
time (with a 2% criterion) and overshoot for a step
input when w, = 10.

P5.13 We want to approximate a fourth-order system by
a lower-order model. The transfer function of the orig-
inal system is

s+ 7s® + 245 + 24
s+ 1057 + 3552 + 505 + 24
sP+ 752 + 245 + 24
(s + 1)(s +2)s + 3)(s + 4)

Gu(s)

Show that if we obtain a second-order model by the
method of Section 5.8, and we do not specify the poles
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and the zero of G, (s), we have

0.2917s + 1
0.399s? + 1.375s + 1
_ 0.731(s + 3.428)
T (s + 1.043)(s + 2.4)

Gi(s) =

P5.14 For the original system of Problem P5.13, we want
to find the lower-order model when the poles of the
second-order model are specified as —1 and —2 and
the model has one unspecified zero. Show that this
low-order model is

0.986s + 2 _ 0.986(s + 2.028)
s2+35+2 (s+D(s+2)

Gls) =
P5.15. Consider a unity feedback system with loop trans-
fer function
K(s+1)
(s + 4)(s* + s + 10)

L(s) = G(5)G(s) =

Determine the value of the gain K such that the per-
cent overshoot to a unit step is minimized.

P5.16 A magnetic amplifier with a low-output impedance
is shown in Figure P5.16 in cascade with a low-pass fil-
ter and a preamplifier. The amplifier has a high-input
impedance and a gain of 1 and is used for adding the
signals as shown. Select a value for the capacitance C
so that the transfer function Vi(s)/Vi.(s) has a damp-
ing ratio of 1/\/2_. The time constant of the magnetic
amplifier is equal to 1 second, and the gain is K = 10.
Calculate the settling time (with a 2% criterion) of the
resulting system.

Magnetic
amplifier
-1 e R=508
N\ 0V (5)
Vinl($) +1 75+ 1
Amplifier ‘ T~¢
FIGURE P5.16 I

Feedback ampilifier.

P5.17 Electronic pacemakers for human hearts regulate
the speed of the heart pump. A proposed closed-loop
system that includes a pacemaker and the measure-
ment of the heart rate is shown in Figure P5.17 [2, 3].
The transfer function of the heart pump and the pace-
maker is found to be

K

GE) = Sz v 1)

Design the amplifier gain to yield a system with a set-
tling time to a step disturbance of less than 1 second.
The overshoot to a step in desired heart rate should be
less than 10%. (a) Find a suitable range of K. (b) If the
nominal value of K is K = 10, find the sensitivity of
the system to small changes in K. (c) Evaluate the sen-
sitivity of part (b) at DC (set s = 0). (d) Evaluate the
magnitude of the sensitivity at the normal heart rate
of 60 beats/minute.
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T(s)

Pacemaker Heart
+
Desired + ; K _1_ _ Actual
heart rate TR + s " heart rate
Rate measurement
sensor
FIGURE P5.17 Kyp=1 “
Heart pacemaker.
P5.18 Consider the original third-order system given in (b) The closed-loop system has a percent overshoot
Example 5.9. Determine a first-order model with one of less than 5%.
pole unspecified and no zeros that will represent the
third-order system.
P5.19 A closed-loop control system with negative unity Ris) 5 ! > ¥is)
feedback has a loop transfer function B s+ 2k
L(s) = Gs)G(s) = —5— 1
5) =G P S E——— <
s(s® + 6s + 12) s+a |

(a) Determine the closed-loop transfer function 7(s).
(b) Determine a second-order approximation for
T(s). (c) Plot the response of T(s) and the second-
order approximation to a unit step input and compare
the results. P5.22 Consider the closed-loop system in Figure P5.22,

FIGURE P5.21 Closed-loop system with
parameters k and a.

P520 A system is shown in Figure P5.20. where
(a) Determine the steady-state error for a unit step 2 2
input in terms of K and K,;. where E(s) = G($)G(s) = S+ 02K and H(s) = s+ 7

R(s) — Y{(s).

(b) Select K so that the steady-state error is zero. .
(a) If 7 = 2.43, determine the value of K such that

the steady-state error of the closed-loop system
response to a unit step input, R(s) = 1/s, is zero.
(b) Determine the percent overshoot F.O. and the
+ K time to peak T, of the unit step response when K

¢ K » Yix . .
R(s)y—» & G+ + 1D Yix) is as in part (a).

+ 2
FIGURE P5.20 System with pregain, K. Rg) o= TT 02K > ¥(s)
2

P5.21 Consider the closed-loop system in Figure P5.21. Cypr
Determine values of the parameters k and a so that
the following specifications are satisfied: FIGURE P5.22 Nonunity closed-loop feedback control
(a) The steady-state error to a unit step input is zero. ~ system.

F 3




Advanced Problems

ADVANCED PROBLEMS

AP5.1 A closed-loop transfer function is

108(s + 3)
T (5 + 9)(s? + 8s + 36)

(a) Determine the steady-state error for a unit step
input R(s) = 1/s.

(b) Assume that the complex poles dominate, and
determine the overshoot and settling time to
within 2% of the final value.

(c) Plot the actual system response, and compare it
with the estimates of part (b).

AP5.2 A closed-loop system is shown in Figure APS5.2.
Plot the response to a unit step input for the system
for r, = 0, 0.05,0.1, and 0.5. Record the percent over-
shoot, rise time, and settling time (with a 2% criterion)
as 7, varies. Describe the effect of varying v_. Com-
pare the location of the zero —1/7, with the location
of the closed-loop poles.
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AP5.3 A closed-loop system is shown in Figure AP5.3.
Plot the response to a unit step input for the system
with 7, = 0, 0.5, 2, and 5. Record the percent over-
shoot, rise time, and settling time (with a 2% criterion)
as 7, varies. Describe the effect of varying 7,. Com-
pare the location of the open-loop pole —1/7, with
the location of the closed-loop poles.

1
s(s + 2)(7',,5 + 1)

R(s) » Yis)

FIGURE AP5.3 System with a variable pole in the process.

APS.4 The speed control of a high-speed train is repre-
sented by the system shown in Figure AP5.4 [17].
Determine the equation for steady-state error for K
for a unit step input r(r). Consider the three values for
K equal to 1,10, and 100.

(a) Determine the steady-state error.

R(s) 5440(7s + 1) > ¥(s) (b) Determine and plot the response y(¢) for (i) a unit
_ s(s? + 285 + 432) step input R(s)} = 1/s and (ii) a unit step distur-

bance input T(s) = 1/s.
(c) Create a table showing overshoot, settling time (with
) ] a 2% criterion), e for r(£), and |y/t,]max for the
FIGURE AP5.2 System with a variable zero. three values of K. Sclect the best compromise value.

Disturbance
Tuts) Train
dynamics
_ N EW y 15 o Y
Rto K 2 (s+5)Ns+7) > Specd

FIGURE AP5.4
Speed control.

APS.5S A system with a controller is shown in Figure
APS.5, The zero of the controller may be varied. Let
a = 0, 10, 100.

(b) Plot the response of the system to a step input dis-
turbance for the three values of a. Compare the
results and select the best value of the three val-

(a) Determine the steady-state error for a step input ues of a.
r(t)fora = 0anda # 0.
Disturbance
Ty(s)
Controller Plant
+
+ sta + 50(s + 2)

R(s)

S

FIGURE AP5.5
System with control
parameter a.

» Y(s
GG +a) )
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APS5.6 The block diagram model of an armature-current-

controlled DC motor is shown in Figure APS.6,

(a) Determine the steady-state tracking error to a
ramp input r(¢) = £, ¢ = 0, in terms of K, K, and

hee

+ +
R(s) K

Chapter 5 The Performance of Feedback Control Systems

(b) Let K, = 10 and K, = 0.05, and select K so that
steady-state tracking error is equal to 1.

(c) Plot the response to a unit step input and a unit
ramp input for 20 seconds. Are the responses
acceptable?

DC motor

"

s+ 0.01

> Yis)

v

@ | —

FIGURE AP5.6
DC motor control.

APS.7 Consider the closed-loop system in Figure APS5.7
with transfer functions

100 K

GC(S) = m and G(S) = S(S—‘}’SF)’

where

1000 = K = 5000.

(a) Assume that the complex poles dominate and
estimate the settling time and percent overshoot
to a unit step input for K = 1000, 2000, 3000,
4000, and 5000.

Controller Process

Gls) >

Riy)

G(s)

—> Y(s)

FIGURE AP5.7 Closed-loop system with unity feedback.

(b) Determine the actual settling time and percent over-
shoot to a unit step for the values of K in part (a).
(c) Co-plot the results of (a) and (b) and comment.

APS5.8 A unity negative feedback system (as shown in
Figure ES5.11) has the loop transfer function

_ i _ K(s+2)
L() = GIG6) = Z 77T
Determine the gain K that minimizes the damping
ratio ¢ of the closed-loop system poles. What is the
minimum damping ratio?
AP5.9. The unity negative feedback system in Figure
APS5.9 has the process given by

. 1
GO = T )6+ 25
The controller is a proportional plus integral con-
troller with gains K|, and K;. The objective is to design
the controller gains such that the dominant roots have
a damping ratio { equal to 0.707. Determine the result-
ing peak time and settling time (with a 2% criterion)
of the system to a unit step input.

Plant

[

Controller
E
FIGUREAPS.9 ., — b L K
Feedback control A Poos

> Y(5)

\ 4

s(s + 15)(s + 25)

system with a
proportional plus
integral controller.
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Design Problems

DESIGN PROBLEMS

CDP5.1  The capstan drive system of the previous problems
7" 2\ (see CDP1.1-CDP4.1) has a disturbance due to changes
&'t in the part that is being machined as material is removed.

The controller is an amplifier G.(s) = K. Evaluate the
effect of a unit step disturbance, and determine the best
value of the amplifier gain so that the overshoot to a step
command r(¢t) = A,t > Qisless than 5%, while reduc-
ing the effect of the disturbance as much as possible.

DP5.1 The roll control autopilot of a jet fighter is shown in

Figure DPS.1. The goal is to select a suitable K so that
the response to a unit step command ¢,(¢) = A, = 0,
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will provide a response ¢(¢) that is a fast response and
has an overshoot of less than 20%. (a) Determine the
closed-loop transfer function ¢(s)/d.(s). (b) Deter-
mine the roots of the characteristic equation for
K = 0.7, 3, and 6. (c) Using the concept of dominant
roots, find the expected overshoot and peak time for
the approximate second-order system. (d) Plot the
actual response and compare with the approximate
results of part (c). (e) Select the gain K so that the per-
centage overshoot is equal to 16%. What is the result-
ing peak time?

Aileron actuator Aircraft dynamics
D (5) K 12.2 )
¢ B s+ 7 s(s+22) Roll angle

Gyro

FIGURE DP5.1
Roll angle control.

g

DPS.2  The design of the control for a welding arm with a
long reach requires the careful selection of the para-
meters [13]. The system is shown in Figure DP5.2,
where ¢ = 0.6, and the gain K and the natural fre-
quency w, can be selected. (a) Determine K and w), so
that the response to a unit step input achicves a peak

time for the first overshoot (above the desired level of
1) that is less than or equal to 1 second and the over-
shoot is less than 5%. (Hin:: Try 0.2 < K/w, < 0.4.)
(b) Plot the response of the system designed in part
(a) to a step input.

Actuator and Arm
amplifier dynamics
2 Y(s)
R(s) sl > — 2;" — » Welding tip

s N+ 2w, s + o, et
FIGURE DP5.2 - — position
Welding tip position
control.

DPS5.3  Active suspension systems for modern automo-
biles provide a comfortable firm ride. The design of an
active suspension system adjusts the valves of the
shock absorber so that the ride f{its the conditions. A
small electric motor, as shown in Figure DP5.3,
changes the valve settings [13]. Select a design value

for K and the parameter ¢ in order to satisfy the ITAE
performance for a step command R(s) and a settling
time (with a 2% criterion) for the step response of less
than or equal to 0.5 second. Upon completion of your
design, predict the resulting overshoot for a step
input.

Electric

Amplifier motor
R(s) 14 > ! - Y(s5) valve
Command _ sls + q) posttion

FIGURE DP5.3

Active suspension
system.
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Figure DP5.8(a) [7]. We wish to investigate the system
when K = 1, 10, and 20. The feedback control block
diagram is shown in Figure DP5.8(b). (a) For the three
values of K, determine the percent overshoot, the set-
tling time (with a 2% criterion), and the steady-state

COMPUTER PROBLEMS

CP5.1 Consider the closed-loop transfer function

15
$2+ 85+ 15

Obtain the impulse response analytically and com-
pare the result to one obtained using the impulse
function.

T(s) =

CP5.2 A unity negative feedback system has the loop
transfer function

s+ 10

L(s) = G(s)G(s) = 5.

() = Gs)G(s) = s

Using Isim, obtain the response of the closed-loop
system to a unit ramp input,

R(s) = 1/s2

Consider the time interval 0 < ¢ < 50. What is the
steady-state error?

CP5.3 A working knowledge of the relationship between
the pole locations of the second-order system shown
in Figure CPS5.3 and the transient response is impor-
tant in control design. With that in mind, consider the
following four cases:
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error for a unit step input. Record your results in a
table. (b) Choose one of the three values of K that
provides acceptable performance. (¢) For the value se-
lected in part (b), determine y(r) for a disturbance
T4(s) = 1/s when R(s) = 0.

2
@y

R(s) =P 77—
s2 + 2fw,s + @l

> Y(s)

FIGURE CP5.3 A simple second-order system.

Using the impulse and subplot functions, create a plot
containing four subplots, with each subplot depicting
the impulse response of one of the four cases listed.
Compare the plot with Figure 5.17 in Section 5.5, and
discuss the results.

CP54 Consider the control system shown in Figure CP5.4.

(a) Show analytically that the expected percent over-

shoot of the closed-loop system response to a unit

step input is about 50%.

Develop an m-file to plot the unit step response

of the closed-loop system and estimate the per-

cent overshoot from the plot. Compare the result

with part (a).

CP5.5 Consider the feedback system in Figure CPS5.S.
Develop an m-file to design a controller and prefilter

(b)

85+ 2 _ Kp
G(s) = Ks T p and Gp(s) = P

lLow,=2, (=0, such that the ITAE performance criterion is mini-
2.w,=2, £=01, mized. For w, = 0.45 and ¢ = 0.59, plot the unit step
Jw, =1, §=0, response and determine the percent overshoot and
4 w,=1, =02 settling time.
Controller Process
R + 21 R 1 > Vis
= O | T2 > 1
FIGURE CP5.4
A negative feedback
controt system.
Prefilter Controller Process
K + E, (s) + - 2
FIGURECP5.5  py— 7 | - 1T - e > Yo
Feedback control st+7 _ s+p st + 2w,s + o,
system with

controller and
prefilter.




Computer Problems

CP5.6 The loop transfer function of a unity negative feed-
back system is

25

L(s) = G.(5)G(s) = m

Develop an m-file to plot the unit step response and
determine the values of peak overshoot M, time to
peak T, and settling time 7 (with a 2% criterion).

CP5.7 An autopilot designed to hold an aircraft in
straight and level flight is shown in Figure CPS.7.

(a) Suppose the controller is a constant gain con-
troller given by G.(s) = 2. Using the Isim func-
tion, compute and plot the ramp response for
04(t) = at, where ¢ = 0.5°/s. Determine the atti-
tude error after 10 seconds.
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(b) If we increase the complexity of the controller, we
can reduce the steady-state tracking error. With
this objective in mind, suppose we replace the
constant gain controller with the more sophisti-
cated controller

K, 1
Gus) = Ky + =2=2 + -,
S )

This type of controller is known as a proportional plus
integral (PI) controller. Repeat the simulation of part
{a) with the PI controller, and compare the steady-
state tracking errors of the constant gain controller
versus the PI controller.

Controller Elevator servo Aircraft model
O,() + 10 —(s+5) ()
Desired G(s) > 10 > — ¢ - Actual
attitude - s sG” + 355+ 6) attitude

FIGURE CP5.7
An aircraft autopilot
block diagram.

CP5.8 The block diagram of a rate loop for a missile autopi-
lot is shown in Figure CP5.8. Using the analytic formu-
las for second-order systems, predict M,,, T,, and T
for the closed-loop system due to a unit step input.

Compare the predicted results with the actual unit
step response obtained with the step function. Explain
any differences.

R Controller Missile dynamics
(x"[v) + 5 100(s + 1) [1163]
Desired 0.1+ - > 3 +» Actual
rate - $ (5" + 25 + 100) rate
FIGURE CP5.8 2 a
A missile rate loop
autopilot.

CPS5.9 Develop an m-file that can be used to analyze the
closed-loop system in Figure CP5.9. Drive the system
with a step input and display the output on a graph.
What is the settling time and the percent overshoot?

+ 10
s+ 10

R(s) > ¥(5)

05 |
10s + 05|

FIGURE CP5.9 Nonunity feedback system.

CP5.10 Develop an m-file to simulate the response of the
system in Figure CP5.10 to a ramp input R(s) = 1/s2.
What is the steady-state error? Display the output on
an x-y graph.

+ 10
s(s + 15)(s + 5)

R(s) > Y(s)

FIGURE CP5.10 Closed-loop system for m-file.

CPS5.11 Consider the closed-loop system in Figure
CPS5.11. Develop an m-file to accomplish the following
tasks:

(a) Determine the closed-loop transfer function
T(s) = Y(5)/R(s).

(b) Plot the closed-loop system response to an impulse
input R(s) = 1, a unit step input R(s) = 1/s, and
a unit ramp input R(s) = 1/s% Use the subplot
function to display the three system responses.
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1

2
05+ — s(s +2)
R(s) r— O —> Yis)
1
~1
(a)
Controller Process
Ris) 0.5 + i > ! — Yis)
s s(s +2)
FIGURE CP5.11 -
A single loop unity
feedback system.
(a) Signal flow
graph. (b) Block
diagram. )

CP5.12 A closed-loop transfer function is given by
Y(s) T77(s + 2)
R(s) (s + 7)(s® + 45 + 22)

(a) Obtain the response of the closed-loop transfer
function T'(s) = Y (s)/R(s) to a unit step input.

T(s) =

ANSWERS TO SKILLS CHECK

v

(5) False

True or False: (1) True; (2) False; (3) False; (4) True;

What is the settling time 7, (use a 2% criterion)
and percent overshoot P.O.?

Neglecting the real pole at s = —7, determine the
settling time 7, and percent overshoot P.O.. Com-
pare the results with the actual system response in
part (a). What conclusions can be made regarding
neglecting the pole?

(b)

Word Match (in order, top to bottom): i, j.d, g, k, c,
n,p,o0,b,e,],fh,m,a

Multiple Choice: (6) a; (7) a; (8) c; (9) b; (10) b; (11)

a; (12) b; (13) b; (14) a; (15) b

TERMS AND CONCEPTS

Acceleration error constant, K, The constant evaluated
T2
as ¥E.’5[S G(5)G(s)]. The steady-state error for a para-

bolic input, r(f) = A2, is equal to A/K,.
Design specifications A set of prescribed performance
criteria.

Dominant roots The roots of the characteristic equation
that cause the dominant transient response of the
system.

Optimum control system A system whose parameters
are adjusted so that the performance index reaches
an extremum value.

Peak time The time for a system to respond to a step
input and rise to a peak response.

Percent overshoot The amount by which the system out-
put response proceeds beyond the desired response.

Performance index A quantitative measure of the perfor-
mance of a system.

Position error constant, K, The constant evaluated as
!i-% G.(5)G(s). The steady-state error for a step input
(of magnitude A) is equal to A/(1 + K)).

Rise time The time for a system to respond to a step input
and attain a response equal to a percentage of the
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magnitude of the input. The 0-100% rise time, 7,
measures the time to 100% of the magnitude of the
input. Alternatively. T, measures the time from 10%
to 90% of the response 1o the step input.

Settling time The time required for the system output
to settle within a certain percentage of the input
amplitude.

Steady-state response The constituent of the system
response that exists a long time following any signal
initiation.

Test input signal  An mput signal used as a standard test
of a system's ability to respond adequately.
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Transient response  The constituent of the system response
that disappears with time.

Type number The number N of poles of the transfer func-
tion, G,(5)G(s), at the origin. G(s)G(s) is the loop
transfer function.

Unit impulse A test input consisting of an impulse of infi-
nite amplitude and zero width, and having an area of
unity. The unit impulse is used to determine the impulse
response.

Velocity error constant, K, The constant evaluated as

W 1sG(5)G(5)]- The steady-state error for a ramp

input (of slope A) for a system is equal to 4/K,,.
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PREVIEW

Stability of closed-loop feedback systems is central to control system design. A sta-
ble system should exhibit a bounded output if the corresponding input is bounded.
This is known as bounded-input-bounded-output stability and is one of the main
topics of this chapter. The stability of a feedback system is directly related to the
location of the roots of the characteristic equation of the system transfer function
and to the location of the eigenvalues of the system matrix for a system in state vari-
able format. The Routh~Hurwitz method is introduced as a useful tool for assessing
system stability. The technique allows us to compute the number of roots of the
characteristic equation in the right half plane without actually computing the values
of the roots. This gives us a design method for determining values of certain system
parameters that will lead to closed-loop stability. For stable systems, we will intro-
duce the notion of relative stability, which allows us to characterize the degree of
stability. The chapter concludes with a stabilizing controller design based on
the Routh-Hurwitz method for the Sequential Design Example: Disk Drive Read
System.

DESIRED OUTCOMES

Upon completion of Chapter 6, students should:

Understand the concept of stability of dynamic systems.

Be aware of the key concepts of absolute and relative stability.

Be familiar with the notion of bounded-input, bounded-output stability.

Understand the relationship of the s-plane pole locations (for transfer function models)
and of the eigenvalue locations (for state variable models) to system stability.

Know how to construct a Routh array and be able to employ the Routh-Hurwitz
stability criterion to determine stability.

0O 0O0opoDOD
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6.1 THE CONCEPT OF STABILITY

When considering the design and analysis of feedback control systems, stability is of
the utmost importance. From a practical point of view, a closed-loop feedback system
that is unstable is of little value. As with all such general statements, there are excep-
tions; but for our purposes, we will declare that all our control designs must result in
a closed-loop stable system. Many physical systems are inherently open-loop unsta-
ble, and some systems are even designed to be open-loop unstable. Most modern
fighter aircraft are open-loop unstable by design, and without active feedback control
assisting the pilot, they cannot fly. Active control is introduced by engineers to stabi-
lize the unstable system—that is, the aircraft—so that other considerations, such as
transient performance, can be addressed. Using feedback, we can stabilize unstable
systems and then with a judicious selection of controller parameters, we can adjust
the transient performance. For open-loop stable systems, we still use feedback to
adjust the closed-loop performance to meet the design specifications. These specifi-
cations take the form of steady-state tracking errors, percent overshoot, settling time,
time to peak, and the other indices discussed in Chapters 4 and 5.

We can say that a closed-loop feedback system is either stable or it is not stable.
This type of stable/not stable characterization is referred to as absolute stability. A sys-
tem possessing absolute stability is called a stable system—the label of absolute is
dropped. Given that a closed-loop system is stable, we can further characterize the
degree of stability. This is referred to as relative stability. The pioneers of aircraft design
were familiar with the notion of relative stability—the more stable an aircraft was, the
more difficult it was to maneuver (that is, to turn). One outcome of the relative insta-
bility of modern fighter aircraft is high maneuverability. A fighter aircraft is less stable
than a commercial transport, hence it can maneuver more quickly. In fact, the motions
of a fighter aircraft can be quite violent to the “passengers.” As we will discuss later in
this section, we can determine that a system is stable (in the absolute sense) by deter-
mining that all transfer function poles lie in the left-half s-plane, or equivalently, that all
the eigenvalues of the system matrix A lie in the left-half s-plane. Given that all the
poles (or eigenvalues) are in the left-half s-plane, we investigate relative-stability by
examining the relative locations of the poles (or eigenvalues).

A stable system is defined as a system with a bounded (limited) system response.
That is, if the system is subjected to a bounded input or disturbance and the response
is bounded in magnitude, the system is said to be stable.

A stable system is a dynamic system with a bounded response
to a bounded input.

The concept of stability can be illustrated by considering a right circular cone
placed on a plane horizontal surface. If the cone is resting on its base and is tipped
slightly, it returns to its original equilibrium position. This position and response are
said to be stable. If the cone rests on its side and is displaced slightly, it rolls with no ten-
dency to leave the position on its side. This position is designated as the neutral stabili-
ty. On the other hand, if the cone is placed on its tip and released, it falls onto its side.
This position is said to be unstable. These three positions are illustrated in Figure 6.1.
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months, on November 7, 1940, a wind produced an oscillation that grew in ampli-
tude until the bridge broke apart. Figure 6.3(a) shows the condition at the beginning
of oscillation; Figure 6.3(b) shows the catastrophic failure [5].

In terms of linear systems, we recognize that the stability requirement may be
defined in terms of the location of the poles of the closed-loop transfer function. The
closed-loop system transfer function is written as

M
KH(S + z;)
16 -2 -— N .6
7 SNH(S + O-k) [S2 + 20(,,,.5' + (atzn + w)zn)]
k=1 1

m=

where g(s) = A(s) = 0 is the characteristic equation whose roots are the poles of
the closed-loop system. The output response for an impulse function input (when
N = 0)is then

Q R 1
y(t) = EAke~‘rk’ + EBl?i(w—)e—amt Sin(wmt + 0,,,), (62)
k=1 m=1 m

where A, and B, are constants that depend on oy, z;, @,,, K, and w,,. To obtain a
bounded response, the poles of the closed-loop system must be in the left-hand por-
tion of the s-plane. Thus, a necessary and sufficient condition for a feedback system
to be stable is that all the poles of the system transfer function have negative real
parts. A system is stable if all the poles of the transfer function are in the left-hand
s-plane. A system is not stable if not all the roots are in the left-hand plane. If the
characteristic equation has simple roots on the imaginary axis (jw-axis) with all
other roots in the left half-plane, the steady-state output will be sustained oscillations
for a bounded input, unless the input is a sinusoid (which is bounded) whose frequency
is equal to the magnitude of the jw-axis roots. For this case, the output becomes
unbounded. Such a system is called marginally stable, since only certain bounded inputs
(sinusoids of the frequency of the poles) will cause the output to become unbounded.
For an unstable system, the characteristic equation has at least one root in the right half
of the s-plane or repeated jw roots; for this case, the output will become unbounded
for any input.
For example, if the characteristic equation of a closed-loop system is

(s + 10)(s* + 16) = 0,

then the system is said to be marginally stable. If this system is excited by a sinusoid
of frequency w = 4, the output becomes unbounded.

To ascertain the stability of a feedback control system, we could determine the
roots of the characteristic polynomial g(s). However, we are first interested in deter-
mining the answer to the question, Is the system stable? If we calculate the roots of the
characteristic equation in order to answer this question, we have determined much
more information than is necessary. Therefore, several methods have been developed
that provide the required yes or no answer to the stability question. The three
approaches to the question of stability are (1) the s-plane approach, (2) the frequency
plane (jw) approach, and (3) the time-domain approach. The real frequency (jw)
approach is outlined in Chapter 9, and the discussion of the time-domain approach is
considered in Section 6.4.
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published a method of investigating the stability of a linear system [6, 7]. The
Routh-Hurwitz stability method provides an answer to the question of stability by
considering the characteristic equation of the system. The characteristic equation in
the Laplace variable is written as

A(s) = q(s) = a,s" + a,_;s" '+ - + a5 + ay = 0. (6.3)

To ascertain the stability of the system, it is necessary to determine whether any one
of the roots of g(s) lies in the right half of the s-plane. If Equation (6.3) is written in
factored form, we have

ay(s = r)(s —r)- (s —rp) =0, (6.4)

where r; = ith root of the characteristic equation. Multiplying the factors together,
we find that

q(s) = anS‘z —ary+rn+ -+ "w)sn_1
+ ay(rirs + rpry + ryry + ‘-‘)s"'z
— a,(ryrory + r1r2r4‘~-)s"‘3 + -
+ a,,(—l)"rlr2r3--~r,, = Q. (6.5)

In other words, for an nth-degree equation, we obtain

g(s) = a,s" — a, (sum of all the roots) s" !

+ a, (sum of the products of the roots taken 2 at a time) s" >

— a, (sum of the products of the roots taken 3 at a time) s" 3

+ -+ + a,(-1)" (product of all » roots) = 0. (6.6)

Examining Equation (6.5), we note that all the coefficients of the polynomial
must have the same sign if all the roots are in the left-hand plane. Also, it is neces-
sary that all the coefficients for a stable system be nonzero. These requirements are
necessary but not sufficient. That is, we immediately know the system is unstable if
they are not satisfied; yet if they are satisfied, we must proceed further to ascertain
the stability of the system. For example, when the characteristic equation is

gis) = (s +2)(s* — s +4) = (s* + s* + 25 + 8), 6.7)

the system is unstable, and yet the polynomial possesses all positive coefficients.
The Routh-Hurwitz criterion is a necessary and sufficient criterion for the sta-
bility of linear systems. The method was originally developed in terms of determi-
nants, but we shall use the more convenient array formulation.
The Routh-Hurwitz criterion is based on ordering the coefficients of the char-
acteristic equation

s+ a8 A, - +as +ag=0 (6.8)
into an array or schedule as follows [4]:

N P
s a, Ay Gy
J1—1 ..
N an—1 ay-3 4,-5°
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Further rows of the schedule are then completed as

N
S a, ay—2 a,-4
-1
S Ap-1 Qp-3 ay-5
$—2
3 bn—] bn—3 bn—-S
n-3 N
s Cn-1 Cp-3 -5
s h,_,
where
b _ GGy T A3 -1 a, UES]
n-1 = - El
a,- Ay |0y a,-3
b _ 1 a -y
n-3 T .
Ay-1 Q- ay-5
c _ =1 |a,— dy-3
n—-1 " ’
bn—l bn—l bn—3

and so on. The algorithm for calculating the entries in the array can be followed on
a determinant basis or by using the form of the equation for b, _,.

The Routh-Hurwitz criterion states that the number of roots of ¢(s) with posi-
tive real parts is equal to the number of changes in sign of the first column of the
Routh array. This criterion requires that there be no changes in sign in the first col-
umn for a stable system. This requirement is both necessary and sufficient.

Four distinct cases or configurations of the first column array must be consid-
ered, and each must be treated separately and requires suitable modifications of
the array calculation procedure: (1) No element in the first column is zero; (2) there
is a zero in the first column, but some other elements of the row containing the zero
in the first column are nonzero; (3) there is a zero in the first column, and the other
elements of the row containing the zero are also zero; and (4) as in the third case,
but with repeated roots on the jw-axis.

To illustrate this method clearly, several examples will be presented for each case.

Case 1. No element in the first column is zero.

EXAMPLE 6.1 Second-order system

The characteristic polynomial of a second-order system is
g(s) = as* + ais + ay.

The Routh array is written as

N a a
N a 0,
SO [)\ 0
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where

b = aay — (0)a, _ -1
: 4 @

a dao

= q.
a 0 0

Therefore, the requirement for a stable second-order system is simply that all the
coefficients be positive or all the coefficients be negative. m

EXAMPLE 6.2 Third-order system
The characteristic polynomial of a third-order system is
g(s) = a38° + a5’ + ags + ag.

The Routh array is

L

S ds ay
2

S a 4
5! by 0O
0 ¢ 0

where
ha; — ayas biay
bp=———— and ¢ =——=a
a b

For the third-order system to be stable, it is necessary and sufficient that the coeffi-
cients be positive and a,a; > apa;. The condition when aya; = aga; results in a mar-
ginal stability case, and one pair of roots lies on the imaginary axis in the s-plane.
This marginal case is recognized as Case 3 because there is a zero in the first column
when a,a; = agas. It will be discussed under Case 3.

As a final example of characteristic equations that result in no zero elements in
the first row, let us consider the polynomial

q(s) = (s -1+ j\/i)(s -1- j\/a)(s +3)=s5+52+ 25+ 24 (6.9)

The polynomial satisfies all the necessary conditions because all the coefficients
exist and are positive, Therefore, utilizing the Routh array, we have

s 1 2
§2 1 24
st -22 0
sY 24 0

Because two changes in sign appear in the first column, we find that two roots of
q(s) lie in the right-hand plane, and our prior knowledge is confirmed. m

Case 2. There is a zero in the first column, but some other elements of the row
containing the zero in the first column are nonzero. If only one element in the
array is zero, it may be replaced with a small positive number, ¢, that is allowed to
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approach zero after completing the array. For example, consider the following
characteristic polynomial:

q(s) = s> + 2s* + 25° + 45 + 115 + 10. (6.10)
The Routh array is then
5° 12 11
st 2 4 10
s e 6 0

52 c 10 O
st d 0 0
s? 10 0 0

where

4e — 12 -—12 6¢; — 10
_de— 12 -12 and (i1=-—£1——6—>6.

C]
€ € Cq

There are two sign changes due to the large negative number in the first column,

¢; = —12/e. Therefore, the system is unstable, and two roots lie in the right half of

the plane.

EXAMPLE 6.3 Unstable system

As a final example of the type of Case 2, consider the characteristic polynomial
g) =s"+ s+ P+ 5+ K, (6.11)

where we desire to determine the gain K that results in marginal stability. The Routh
array is then

s 1 1 K
5 1 1 0
s e K 0
5! ¢ 0 0
s9 K 0 0
where

e — K -K

) = I
€ €

Therefore, for any value of K greater than zero, the system is unstable. Also, because
the last term in the first column is equal to K, a negative value of K will result in an
unstable system. Consequently, the system is unstable for all values of gain K. m

Case 3. There is a zero in the first column, and the other elements of the row con-
taining the zero are also zero. Case 3 occurs when all the elements in one row are
zero or when the row consists of a single element that is zero. This condition occurs
when the polynomial contains singularities that are symmetrically located about the
origin of the s-plane. Theretfore, Case 3 occurs when factors such as (s + a)(s — )
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or (s + jw)(s — jw) occur. This problem is circumvented by utilizing the auxiliary
polynomial, U(s), which immediately precedes the zero entry in the Routh array.
The order of the auxiliary polynomial is always even and indicates the number of
symmetrical root pairs.

To illustrate this approach, let us consider a third-order system with the charac-
teristic polynomial

q(s) = s+ 22+ 45 + K, (6.12)
where K is an adjustable loop gain. The Routh array is then
s? 1 4
s 2 K
s! 8- K
> 0
s K 0
For a stable system, we require that
0 <K <8

When K = 8, we have two roots on the jw-axis and a marginal stability case. Note
that we obtain a row of zeros (Case 3) when K = 8. The auxiliary polynomial, U(s),
is the equation of the row preceding the row of zeros. The equation of the row pre-
ceding the row of zeros is, in this case, obtained from the s>-row. We recall that this
row contains the coefficients of the even powers of s, and therefore we have

U(s) =25* + Ks =252 + 8 = 2(s*> + 4) = 2(s + j2)(s — j2).  (6.13)

To show that the auxiliary polynomial, U(s), is indeed a factor of the characteristic
polynomial, we divide g(s) by U(s) to obtain

%s +1
252 + 8)s° + 252 + 4s + 8
$ + 4¢
2s? + 8
252 +8

When K = 8, the factors of the characteristic polynomial are
g(s) = (s + 2)(s + j2)(s — j2). (6.14)
The marginal case response is an unacceptable oscillation.

Case 4. Repeated roots of the characteristic equation on the jw-axis. If the
jw-axis roots of the characteristic equation are simple, the system is neither stable
nor unstable; it is instead called marginally stable, since it has an undamped sinu-
soidal mode. If the jw-axis roots are repeated, the system response will be unstable
with a form ¢ sin(wt + ¢). The Routh-Hurwitz criteria will not reveal this form of
instability [20].
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Consider the system with a characteristic polynomial
g) =+ D+ N - N+ P —H=s+s+28+2>+s+ 1.

The Routh array is

s 1 2 1

st 1 2 1

s e € 0
52 11
s! e 0

0 1

where € — 0. Note the absence of sign changes, a condition that falsely indicates
that the system is marginally stable. The impulse response of the system increases
with time as ¢ sin(t + ¢). The auxiliary polynomial at the s? line is s* + 1, and the
auxiliary polynomial at the s* line is s* + 25> + 1 = (s> + 1)%, indicating the
repeated roots on the jw-axis.

EXAMPLE 6.4 Fifth-order system with roots on the jw-axis

Consider the characteristic polynomial

g(s) = 5° + s* + 45> + 245 + 35 + 63, (6.15)
The Routh array is
$ 1 4 3
st 1 24 63
s -20 —-60 0.
5 21 63 0
st 0 0 0

Therefore, the auxiliary polynomial is
U(s) = 21s% + 63 = 21(s> + 3) = 21(s + jV3)(s = jV3),  (6.16)

which indicates that two roots are on the imaginary axis. To examine the remaining
roots, we divide by the auxiliary polynomial to obtain

q(s)

2 =+ +5+21
sc+3

Establishing a Routh array for this equation, we have

s? 1 1
s? 1 21
st -20 O
s 21 0
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The two changes in sign in the first column indicate the presence of two roots in the
right-hand plane, and the system is unstable. The roots in the right-hand plane are
s=+1+j\Vo m

EXAMPLE 6.5 Welding control

Large welding robots are used in today’s auto plants. The welding head is moved to
different positions on the auto body, and a rapid, accurate response is required. A
block diagram of a welding head positioning system is shown in Figure 6.5. We
desire to determine the range of K and «a for which the system is stable. The charac-
teristic equation is

K(s + a)

T N

1+G(s)=1+

Therefore, g(s) = s* + 65> + 115> + (K + 6)s + Ka = 0. Establishing the Routh
array, we have

st 1 11 Ka
$ 6 K+6
S2 b3 Ka )
S] C3
s Ka
where
60 - K biy(K + 6) — 6Ka
by = and ¢3 = .
N 6 b3

The coefficient c¢; sets the acceptable range of K and a, while b; requires that K be
less than 60. Requiring ¢; = 0, we obtain

(K — 60)(K + 6) + 36Ka = 0.
The required relationship between K and « is then
(60 — K)(K + 6)
a =
36K

when a is positive. Therefore, if K = 40, we require a < 0.639. =

The general form of the characteristic equation of an nth-order system is

S a5 a8 o tas e, =0
Controller Head dynamics
[)I""(:\")-d 5 Kis + a) > l > D-nt)':( :1:3'[(1
e s+ s(s + 2)(s + 3) o
pﬂ&ltl(“'l —_ p(\f\lll()l'\
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Table 6.1 The Routh-Hurwitz Stability Criterion

n Characteristic Equation Criterion

2 S+bs+1=0 b>0

3 S+bs?tes+1=0 bc~-1>0

4 sS+bsP+ess+ds+1=0 bed — d*> — b* >0

5 S+bsf+est+rdsttes+1=0 bed + b — d® = bPe >0

6 sS+bsHcs'+dsi+res?+fs+1=0 (bed + bf —d* — bPe)e + b% — bd — bc*f — f2 + bfe + cdf >0

Note: The equations are normalized by (w,)".

We divide through by w,” and use §= $/w, to obtain the normalized form of the
characteristic equation:

S+ bS5+ e+ 1 =0,
For example, we normalize
S +55%2+25+8=0
by dividing through by 8 = w,’, obtaining

3 2

5 5% 2 s
S HI S +S+1=0,
w,” 2w, 4 w,

or
42552 +055+1=0,

where § = s/w,. In this case,b = 2.5 and ¢ = 0.5. Using this normalized form of the
characteristic equation, we summarize the stability criterion for up to a sixth-order
characteristic equation, as provided in Table 6.1. Note that bc = 1.25 and the system
is stable.

6.3 THE RELATIVE STABILITY OF FEEDBACK CONTROL SYSTEMS

The verification of stability using the Routh-Hurwitz criterion provides only a par-
tial answer to the question of stability. The Routh~Hurwitz criterion ascertains the
absolute stability of a system by determining whether any of the roots of the char-
acteristic equation lie in the right half of the s-plane. However, if the system satis-
fies the Routh-Hurwitz criterion and is absolutely stable, it is desirable to
determine the relative stability; that is, it is necessary to investigate the relative
damping of each root of the characteristic equation. The relative stability of a sys-
tem can be defined as the property that is measured by the relative real part of
each root or pair of roots. Thus, root r, is relatively more stable than the roots r(, 7y,
as shown in Figure 6.6. The relative stability of a system can also be defined in
terms of the relative damping coefficients { of each complex root pair and, there-
fore, in terms of the speed of response and overshoot instead of settling time.
Hence, the investigation of the relative stability of each root is clearly neces-
sary because, as we found in Chapter 5, the location of the closed-loop poles in the
s-plane determines the performance of the system. Thus, it is imperative that we
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FIGURE 6.6
Root locations in
the s-plane.
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reexamine the characteristic polynomial ¢(s) and consider several methods for the
determination of relative stability.

Because the relative stability of a system is dictated by the location of the roots
of the characteristic equation, a first approach using an s-plane formulation is to
extend the Routh-Hurwitz criterion to ascertain relative stability. This can be simply
accomplished by utilizing a change of variable, which shifts the s-plane axis in order
to utilize the Routh-Hurwitz criterion. Examining Figure 6.6, we notice that a shift of
the vertical axis in the s-plane to —o; will result in the roots ry, 7, appearing on the
shifted axis. The correct magnitude to shift the vertical axis must be obtained on a
trial-and-error basis. Then, without solving the fifth-order polynomial g(s), we may
determine the real part of the dominant roots ry, 7;.

EXAMPLE 6.6 Axis shift
Consider the simple third-order characteristic equation
q(s) = s* + 4s* + 65 + 4. (6.17)

As a first try, let s, = s + 1/2 and note that we obtain a Routh array without a zero
occurring in the first column. However, upon setting the shifted variable s, equal to
s + 1, we obtain

(5, - 1) +4s, — 12 +6(s,— 1 +4=s5>+s2+s,+1 (6.18)

Then the Routh array is established as

55 1 1
sz 11
s 0 o
0 1 0

There are roots on the shifted imaginary axis that can be obtained from the aux-
iliary polynomial

U(Sn) = Su2 +1= (Sn + j)(sn - ]) = (S +1+ ])(S +1- ]) (619) =

The shifting of the s-plane axis to ascertain the relative stability of a system is a
very useful approach, particularly for higher-order systems with several pairs of
closed-loop complex conjugate roots.
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6.4 THE STABILITY OF STATE VARIABLE SYSTEMS

The stability of a system modeled by a state variable flow graph model can be read-
ily ascertained. The stability of a system with an input—output transfer function 7(s)
can be determined by examining the denominator polynomial of T(s). Therefore, if
the transfer function is written as

q(s)’

where p(s) and g(s) are polynomials in s, then the stability of the system is repre-
sented by the roots of ¢(s). The polynomial g(s), when set equal to zero, is called the
characteristic equation. The roots of the characteristic equation must lie in the left-
hand s-plane for the system to exhibit a stable time response. Therefore, to ascertain
the stability of a system represented by a transfer function, we investigate the
characteristic equation and utilize the Routh-Hurwitz criterion. If the system we
are investigating is represented by a signal-flow graph state model, we obtain the
characteristic equation by evaluating the flow graph determinant. If the system is
represented by a block diagram model we obtain the characteristic equation using
the block diagram reduction methods. As an illustration of these methods, let us
investigate the stability of the system of Example 3.2.

T(s)

EXAMPLE 6.7 Stability of a system

The transfer function 7(s) cxamined in Example 3.2 is

252 + 85 + 6
T(s) = . 6.20
) P+ 852 + 165 + 6 (6.20)
The characteristic polynomial for this system is
g(s) = s + 8% + 165 + 6. (6.21)

This characteristic polynomial is also readily obtained from either the flow graph
model or block diagram model shown in Figure 3.11 or the ones shown in Figure 3.13.
Using the Routh—-Hurwitz criterion, we find that the system is stable and that all the
roots of g(s) lie in the left-hand s-plane. m

We often determine the flow graph or block diagram model directly from a set
of state differential equations. We can use the flow graph directly to determine the
stability of the system by obtaining the characteristic equation from the flow graph
determinant A(s). Similarly, we can use block diagram reduction to define the char-
acteristic equation. An illustration of these approaches will aid in comprehending
these methods.

EXAMPLE 6.8 Stability of a second-order system
A second-order system is described by the two first-order differential equations

X = -3x;+x, and i, = +Ilx;, — Kx; + Ku,
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FIGURE 6.7

{a) Flow graph
model for state
variable equations
of Example 6.8.
{b) Block diagram
model.
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where the dot notation implies the first derivative and u(¢) is the input. The flow
graph model of this set of differential equations is shown in Figure 6.7(a) and the
block diagram model is shown in Figure 6.7(b).

Using Mason’s signal-flow gain formula, we note three loops:
L =s1 L,=-3s"' and L;=—Ks7?

>

where L, and L, do not share a common node. Therefore, the determinant is
A=1—-(Li+Ly+ L) +LL,=1-(s"=35" = Ks?) + (-3s72).
We multiply by s? to obtain the characteristic equation
s+ 25+ (K—-3)=0.

Since all coefficients must be positive, we require K > 3 for stability. A similar
analysis can be undertaken using the block diagram. Closing the two feedback loops
yields the two transfer functions

Gy(s) = and Gs(s) =

s—1 s+ 3
as illustrated in Figure 6.7(b). The closed loop transfer function is thus
KG(s)Gy(s
sy = —KOGA)

T 1+ KGy(5)Gas)

Therefore, the characteristic equation is
A(s) = 1 + KGi(s)G,(s) = 0,
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or
Ay =(—1D)(s+3)+K=s>+2s+(K—-3)=0.

This confirms the results obtained using signal-flow graph techniques. m

A method of obtaining the characteristic equation directly from the vector dif-
ferential equation is based on the fact that the solution to the unforced system is an
exponential function. The vector differential equation without input signals is

x = Ax, (6.22)

where x is the state vector. The solution is of exponential form, and we can define a
constant A such that the solution of the system for one state can be of the form
x{(t) = kM. The A, are called the characteristic roots or eigenvalues of the system,
which are simply the roots of the characteristic equation. If we let x = ke™ and sub-
stitute into Equation (6.22), we have

Aket = AkeV, (6.23)

or
AXx = AX. (6.24)

Equation (6.24) can be rewritten as
(AT - A)x =0, (6.25)

where I equals the identity matrix and 0 equals the null matrix. This set of simulta-
neous equations has a nontrivial solution if and only if the determinant vanishes—
that is, only if

det(AI — A) = 0. (6.26)
The nth-order equation in A resulting from the evaluation of this determinant is the
characteristic equation, and the stability of the system can be readily ascertained.

Let us consider again the third-order system described in Example 3.3 to illustrate
this approach.

EXAMPLE 6.9 Closed epidemic system

The vector differential equation of the epidemic system is given in Equation (3.63)
and repeated here as

- -8 0 1 0
‘;—’:z B -y Ofx+|0 1 [”l}.
a y 0 0 o|t*
The characteristic equation is then
A 0 0 - -5 0
det(A — Ay=det§ |0 A O0|—-| B -y O
0 0 A o y O

=detl =B A+y O
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= Al + &)(A + 7) + B7)

AA2 + (@ + YA+ (ay + BH] = 0.

Thus, we obtain the characteristic equation of the system, and it is similar to that
obtained in Equation (3.65) by flow graph methods. The additional root A = 0
results from the definition of x; as the integral of ax; + yx,, and x; does not affect
the other state variables. Thus, the root A = 0 indicates the integration connected
with x3. The characteristic equation indicates that the system is marginally stable
whena +y > Oanday + B> > 0. =

As another example, consider again the inverted pendulum described in Exam-
ple 3.4. The system matrix is

0 1 0 0
|0 0 -mgiM O

A= 0 0 0 1y
0 0 gl 0

The characteristic equation can be obtained from the determinant of (AI — A) as
follows:

A -1 0 0
0 A mgiM 0 , & oA 2 8
= 22l =2-2) =
det 0 0 A 4 A[A(A [>] )\( /
0 0 -—gll A

The characteristic equation indicates that there are two roots at A = (0: a root at
= +V g/l and aroot at A = —V g/l. Hence, the system is unstable, because there is

a root in the right-hand plane at A = +V g/l. The two roots at A = 0 will also result in
an unbounded response.

6.5 DESIGN EXAMPLES

In this section we present two illustrative examples. The first example is a tracked vehi-
cle control problem. In this first example, stability issues are addressed employing the
Routh-Hurwitz stability criterion and the outcome is the selection of two key system
parameters. The second example illustrates the stability problem robot-controlled mo-
torcycle and how Routh-Hurwitz can be used in the selection of controller gains during
the design process. The robot-controlled motorcycle example highlights the design
process with special attention to the impact of key controller parameters on stability.

EXAMPLE 6.10 Tracked vehicle turning control

The design of a turning control for a tracked vehicle involves the selection of two
parameters [8]. In Figure 6.8, the system shown in part (a) has the model shown in
part (b). The two tracks are operated at different speeds in order to turn the vehicle.



FIGURE 6.8
(a) Turning control
system for a two-
track vehicle.
(b) Block diagram.
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Controller Power train and
G.(s) vehicle G(s
Ris) c (s)
Desired + | s+a R K > Vis)
direction s+ 1 st + 2)(s + 5) o
of turning N

(b)

We must select K and a so that the system is stable and the steady-state error for a
ramp command is less than or equal to 24% of the magnitude of the command.
The characteristic equation of the feedback system is

1+ G.G(s) = 0,
or
K(s + a)
G+ D +2)6+5)

0. (6.27)

Therefore, we have

Il

s(s+ (s +2)(s +5)+ K(s+a)=0,

or

]

st + 8%+ 175 + (K + 10)s + Ka = 0. (6.28)

To determine the stable region for K and a, we establish the Routh array as

c3 =

s* 1 17 Ka
s 8 K+10 0
§? by Ka ,
gl ¢
s0 Ka
where
126 - K bx(K + 10) — 8Ka

bx 8 bs

For the elements of the first column to be positive, we require that Ka, b;, and c; be
positive. Therefore, we require that












FIGURE 6.12

The robot-
controlled
motorcyle feedback
system block
diagram.
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Control is accomplished by turning the handlebar. The front wheel rotation
about the vertical is not evident in the transfer functions. Also, the transfer functions
assume a constant forward speed v which means that we must have another control
system at work regulating the forward speed. Nominal motorcycle and robot con-
troller parameters are given in Table 6.2.

Assembling the components of the feedback system gives us the system config-
uration shown in Figure 6.12. Examination of the configuration reveals that the
robot controller block is a function of the physical system (4, ¢, and L), the operat-
ing conditions (v), and the robot time-constant (7). No parameters need adjustment
unless we physically change the motorcycle parameters and/or speed. In fact, in this
example the parameters we want to adjust are in the feedback loop:

Select Key Tuning Parameters
Feedback gains Kp and Kj,.

The key tuning parameters are not always in the forward path;in fact they may exist
in any subsystem in the block diagram.

We want to use the Routh-Hurwitz technique to analyze the closed-loop system
stability. What values of Kp and Kj; lead to closed-loop stability? A related question
that we can pose is, given specific values of Kp and Kp for the nominal system (that
is, nominal values of «, a3, a3, and 7), how can the parameters themselves vary while
still retaining closed-loop stability?

Table 6.2 Physical Parameters

T 02s
o 9 1/s°
o 2.7 1/
as 1.35 1/s
h 1.09 m
vV 2.0 m/s
L 1.0 m
c 1.36 m
Tts)
Robot Motorcycle
controller dynamics
+
+ as + as 1 R
hy(s) e ? 2 @ » his)
Feedback
controller
KP +KD$
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The closed-loop transfer function from ¢,(s) to ¢(s) is
a, + azs
() = =35
where
A(s) = 755 + (1 + Kpas)s® + (Kpay + Kpaz — Tay)s + Kpay — ay.
The characteristic equation is
A(s) = 0.

The question that we need to answer is for what values of Kp and K does the char-
acteristic equation A(s) = 0 have all roots in the left half-plane?
We can set up the following Routh array:

s T Kpa, + Kpaz — 1
5 1+ Kpas Kpay — o

s a

1 Kp&z - ay

where
(1 + Kpas)(Kpay + Kpay — 1a1) — 7(aKp — ay)
1 + KD(13 ’

a =

By inspecting column 1, we determine that for stability we require
T > O, KD > _‘1/(13, KP > a1/a2, anda > 0.

Choosing K, > () satisfies the second inequality (note that a3 > 0). In the event
t = 0, we would reformulate the characteristic equation and rework the Routh array.

The computational difficulty arises in determining the conditions on Kp and K},
such that ¢ > 0. We find that 4 > 0 implies that the following relationship must be
satisfied:

[ = ayosKp? + (ay — Teyor + az?Kp)Kp + (@3 — 1a)Kp > 0. (6.33)

Using the nominal values of the parameters ay, a;, a3, and 7 (see Table 6.2), the sta-
bility region is shown in Figure 6.13. For all Kp > 0 and Kp > 3.33, the function
f > 0, hence a > 0. Taking into account all the inequalities, a valid region for
selecting the gains is Kp > 0 and Kp > ay/a, = 3.33.

Selecting any point (Kp, Kp) in the stability region yields a valid (that is, stable)
set of gains for the feedback loop. For example, selecting

Kp=10and Kp = 5
yields a stable closed-loop system. The closed-loop poles are
s, = =35.2477,s, = —2.4674, and 53 = —1.0348.

Since all the poles have negative real parts, we know the system response to any
bounded input will be bounded.



FIGURE 6.13
Region of valid
gains (Kp, Kg) for
which the inequality
in Equation. (6.33)
is satisfied.

Section 6.5 Design Examples 411

14000 ~

12000

8000
6000 ~

4000

2000

o
D
T COOTD,
S S SO S SO SISO SO
S T S TS SIS oo
S e ST ST T ey

rﬁ

o AL S
50/ 40 i

10 - 10
Valid gains for which Kp 0 0 Kp
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For this robot-controlled motorcycle, we do not expect to have to respond to
nonzero command inputs (that is, ¢, # 0) since we want the motorcyle to remain
upright, and we certainly want to remain upright in the presence of external
disturbances.. The transfer function for the disturbance T;(s) to the output ¢(s)
without feedback is

1
é(s) = 7——T(s)-
ST - ay
The characteristic equation is

q(s) =5* —a; = 0.

The system poles are
51 = —Vejand s, = +Vay.

Thus we see that the motorcycle is unstable; it possesses a pole in the right half-
plane. Without feedback control, any external disturbance will result in the motor-
cycle falling over. Clearly the need for a control system (usually provided by the
human rider) is necessary. With the feedback and robot controller in the loop, the
closed-loop transfer function from the disturbance to the output is

o(s) s+ 1
Ta(s)  75° + (1 + Kpaz)s® + (Kpo + Kpaz — 7en)s + Kpay — o
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FIGURE 6.14
Disturbance
response with
Kp = 10 and
KD =5,
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0.06

0.05 // — 1

0.04 /
¢ 0.03 /

0.02 /

0.01 /

00 1 2 3 4 5 6
Time (5)
The response to a step disturbance
7 = 5

is shown in Figure 6.14; the response is stable. The control system manages to keep
the motorcycle upright, although it is tilted at about ¢ = 0.055 rad = 3.18 deg.

It is important to give the robot the ability to control the motorcycle over a wide
range of forward speeds. Is it possible for the robot, with the feedback gains as
selected (Kp = 10 and Kj = 5), to control the motorcycle as the velocity varies?
From experience we know that at slower speeds a bicycle becomes more difficult to
control. We expect to see the same characteristics in the stability analysis of our sys-
tem. Whenever possible, we try to relate the engineering problem at hand to real-life
experiences. This helps to develop intuition that can be used as a reasonableness
check on our solution.

A plot of the roots of the characteristic equation as the forward speed v varies
is shown in Figure 6.15. The data in the plot were generated using the nominal val-
ues of the feedback gains, Kp = 10 and K, = 5. We selected these gains for the case
where » = 2 m/s. Figure 6.15 shows that as v increases, the roots of the characteris-
tic equation remain stable (that is, in the left half-plane) with all points negative. But
as the motorcycle forward speed decreases, the roots move toward zero, with one
root becoming positive at ¥ = 1.15 m/s. At the point where one root is positive, the
motorcycle is unstable. m



FIGURE 6.15
Roots of the
charactetistic
equation as the
motorcycle velocity
varies.

Section 6.6 System Stability Using Control Design Software 413

One pole enters the
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6.6 SYSTEM STABILITY USING CONTROL DESIGN SOFTWARE

This section begins with a discussion of the Routh-Hurwitz stability method. We
will see how the computer can assist us in the stability analysis by providing an easy
and accurate method for computing the poles of the characteristic equation. For the
case of the characteristic equation as a function of a single parameter, it will be pos-
sible to generate a plot displaying the movement of the poles as the parameter
varies. The section concludes with an example.

The function introduced in this section is the function for, which is used to
repeat a number of statements a specific number of times.

Routh-Hurwitz Stability. As stated earlier, the Routh—-Hurwitz criterion is a neces-
sary and sufficient criterion for stability. Given a characteristic equation with fixed
coefficients, we can use Routh—-Hurwitz to determine the number of roots in the
right half-plane. For example, consider the characteristic equation

gis) = s>+ s +25+24=0

associated with the closed-loop control system shown in Figure 6.16. The corre-
sponding Routh-Hurwitz array is shown in Figure 6.17. The two sign changes in the
first column indicate that there are two roots of the characteristic polynomial in
the right half-plane; hence, the closed-loop system is unstable. We can verify the
Routh-Hurwitz result by directly computing the roots of the characteristic equa-
tion, as shown in Figure 6.18, using the pole function. Recall that the pole function
computes the system poles.

Whenever the characteristic equation is a function of a single parameter, the
Routh-Hurwitz method can be utilized to determine the range of values that the
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FIGURE 6.16
Closed-loop control
system with T(s) =
Y(s)/Als) = 1/6° +
§% + 2s + 24).

FIGURE 6.17
Routh array for the
closed-loop control
system with 7(s) =
Y(s)/RGs) = 1/6° +
§? + 25 + 24),

FIGURE 6.18
Using the pole
function to
compute the
closed-loop control
system poles of the
system shown in
Figure 6.16.

FIGURE 6.19
Closed-loop control
system with 7(s) =
Y(s)/Rs) = K/(s® +
252 + 4s + 4).
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+
R(s)

1

G(s) =

s +s2+25+23

» Y(s)

1 24

|

Ist sign change

»—22 «— 0

2nd sign change

parameter may take while maintaining stability. Consider the closed-loop feedback

system in Figure 6.19. The characteristic equation is

Using a Routh-Hurwitz approach, we find that we require 0 < K < 8 for stability
(see Equation 6.12). We can verify this result graphically. As shown in Figure
6.20(b), we establish a vector of values for K at which we wish to compute the roots
of the characteristic equation. Then using the roots function, we calculate and plot
the roots of the characteristic equation, as shown in Figure 6.20(a). It can be seen
that as K increases, the roots of the characteristic equation move toward the right
half-plane as the gain tends toward K = 8, and eventually into the right half-plane

when K > 8.

gs) = + 25+ 4s+ K=0.

>>numg=[1]; deng=[1 1 2 23); sysg=tf(numg,deng);
>>sys=feedback(sysg,[1]);

>>pole(sys)
ans =
-3.0000
1.0000 + 2.6458i
1.0000 - 2.64581} ‘ Unstable poles
+ |
R(s) K S > Y(5)




FIGURE 6.20

(a) Piot of root
locations of gs) =
s +25%+ 45 + K
for0 = K = 20.
{b) m-file script.
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3 :
K>8

Imaginary axis

Real axis

(a)

% This script computes the roots of the characteristic
% equation q(s) = s*3 + 2 s"2 + 4 s + K for 0<K<20
%
K=[0:0.5:20);
for i=1:length(K)
g=[1 2 4 K(i)]; — Loop for' roots as
p(,i)=roots(q); a function of X
end
plot(real(p),imag(p),'x'), grid
xlabel('Real axis'), ylabel('Imaginary axis')

(b)

The script in Figure 6.20 contains the for function. This function provides a
mechanism for repeatedly executing a series of statements a given number of times.
The for function connected to an end statement sets up a repeating calculation loop.
Figure 6.21 describes the for function format and provides an illustrative example of
its usefulness. The example sets up a loop that repeats ten times. During the ith iter-
ation, where 1 = i < 10, the ith element of the vector a is set equal to 20, and the
scalar b is recomputed.

The Routh-Hurwitz method allows us to make definitive statements regarding
absolute stability of a linear system. The method does not address the issue of rela-
tive stability, which is directly related to the location of the roots of the characteris-
tic equation. Routh-Hurwitz tells us how many poles lie in the right half-plane, but
not the specific location of the poles. With control design software, we can easily cal-
culate the poles explicitly, thus allowing us to comment on the relative stability.

EXAMPLE 6.12 Tracked vehicle control

The block diagram of the control system for the two-track vehicle is shown in Figure 6.8.
The design objective is to find a and K such that the system is stable and the steady-state
error for a ramp input is less than or equal to 24% of the command.
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FIGURE 6.21
The for function
and an illustrative
example.
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General format

for variable=expression

>
>

statement
Loop .

statement

end

v

N 00 4—]
The end statement ?J(-')a(ﬁgé‘i‘ | -
must be included to »ond - ’ aisa vector
indicate the end of d with 10 elements.
the oop. I

b is a scalar that
changes as i increments.

We can use the Routh-Hurwitz method to aid in the search for appropriate values
of a and K. The closed-loop characteristic equation is

g(s) =s*+ 85 + 175 + (K + 10)s + aK = 0.
Using the Routh array, we find that, for stability, we require that

K < 126, —RLS—K(K +10) — 8aK >0, and aK > 0.

For positive K, it follows that we can restrict our searchto 0 < K < 126 anda > 0.
Our approach will be to use the computer to help find a parameterized a versus K
region in which stability is assured. Then we can find a set of (a, K) belonging to the
stable region such that the steady-state error specification is met. This procedure,
shown in Figure 6.22, involves selecting a range of values for a and K and computing
the roots of the characteristic polynomial for specific values of @ and K. For each
value of K, we find the first value of a that results in at least one root of the charac-
teristic equation in the right half-plane. The process is repeated until the entire
selected range of 2 and K is exhausted. The plot of the (a, K) pairs defines the sepa-
ration between the stable and unstable regions. The region to the left of the plot of a
versus K in Figure 6.22 is the stable region.

If we assume that r(t) = At,t > 0, then the steady-state error is

s(s + 1)(s + 2)(s + 5) A 104

b = s T D612 75 + K6+ a) £ aK’

where we have used the fact that
1 R(s) = s(s + 1)(s + 2)(s + 5)
14660 X = (G DG+ 2)5 + 5) + K(s + a)

E(s) = R(s).



FIGURE 6.22

(a) Stability region
for a and K for two-
track vehicle turning
control. (b) m-file
script.
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2.5
2.0 - : (a =06, K = 70)

H i
L. ~ ‘

. 5 \\
1.0} Stable region |- e

05F — ,.i,_. s

0 L :
20 40 60 80 100 120

% The a-K stability region for the two track vehicle
% control problem Range of g and K.
%

=[{0.1:0.01:3.0}; K=[20:1:120];
i=([)q|:; 333@;0] <E [20:1:120] Initialize plot vectors as zero

vectors of appropriate lengths.

n=length(K); m=length(a);

fori=1:n

for j=1:m o
q=[1, 8, 17, K(i)+10, K(i)*a())}; < Z;rac eris lnc
p=roots{(q); potynomial.
if max(real(p)) > 0, x(i)=K(i); y(i)=a(j-1); break; end

eenn(-_‘;i | Fora given value of K, determine

plot(x,y), grid, xlabel('K'), ylabel('a') first value of a for instability.

(b)

Given the steady-state specification, e, < 0.24A, we find that the specification is
satisfied when

104
— < 0.24A,
aK

or
aK > 41.67. (6.34)

Any values of a and X that lie in the stable region in Figure 6.22 and satisfy Equa-
tion (6.34) will lead to an acceptable design. For example, K = 70 and a = 0.6 will
satisfy all the design requirements. The closed-loop transfer function (with a = 0.6
and K = 70) is

70s + 42
st + 85 + 175% + 80s + 42°

The associated closed-loop poles are

= —7.0767,

—0.5781,

= —0.1726 + 3.1995{, and
= —0.1726 — 3.1995i.

T(s) =

I

P %)
|
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FIGURE 6.23

(a) Ramp response
fora = 0.6 and

K = 70 for two-
track vehicle
turning control.

(b) m-file script.
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16 i ——

14} -t R 2

¥

— o
/My-slate error
i b

% Two-track vehicle lurning control ramp response

% with a=0.6 and K=70.
% <-—-|_'—{ ¥ = unit ramp input
t=[0:0.01:16]; u=t;

numgc=(1 0.6]; dengc=[1 1]; sysgc=tf(numgc,dengc);
numg=([70]; deng=[1 7 10 0]; sysg=tf(numg,deng);
sysa=series(sysgc,sysg);
sys=feedback(sysa,[1]);
y=Isim(sys,u,t);
plot(t,y,t,u,'--"), grid
xlabel('Time (s)"), ylabel('y(1)")

Linear simulation | | a=06and X =70

(M

The corresponding unit ramp input response is shown in Figure 6.23. The steady-
state error is less than 0.24, as desired. m

The Stability of State Variable Systems. Now let us turn to determining the stabil-
ity of systems described in state variable form. Suppose we have a system in state-
space form as in Equation (6.22). The stability of the system can be evaluated with
the characteristic equation associated with the system matrix A. The characteristic
equation is

det(sI — A) = 0. (6.35)

The left-hand side of the characteristic equation is a polynomial in s. If all of the
roots of the characteristic equation have negative real parts (i.e., Re(s;) < 0), then
the system is stable.

When the system model is given in state variable form, we must calculate the
characteristic polynomial associated with the A matrix. In this regard, we have sev-
eral options. We can calculate the characteristic equation directly from Equation
(6.35) by manually computing the determinant of sI — A. Then, we can compute
the roots using the roots function to check for stability, or alternatively, we can use



FIGURE 6.24
Computing the
characteristic
polynomiai of A
with the poly
function.

FIGURE 6.25

Control system for

jump-jet aircraft.

Assume that z > 0

and p > 0.
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Coefficients of characteristic n X n matrix
polynomial in descending order.
Iy 1
p=poly(A)
A=[-8 -16 -6;1 0 0;0 1 0] ]
>>A={-8 -16 -6, 5 N - .
>>p=poly(A) | Characteristic polynomial

1.0000 8.0000 16.0000 6.0000

>>roots(p)

ans =
-5.0861
-2.4280
-0.4859

<«—— Stable

the Routh-Hurwitz method to detect any unstable roots. Unfortunately, the manual
computations can become lengthy, especially if the dimension of A is large. We
would like to avoid this manual computation if possible. As it turns out, the comput-
er can assist in this endeavor.

The poly function described in Section 2.9 can be used to compute the charac-
teristic equation associated with A. Recall that poly is used to form a polynomial
from a vector of roots. It can also be used to compute the characteristic equation of
A, as illustrated in Figure 6.24. The input matrix A is

-8 —-16 -6
A= 1 0 0|,
0 1 0

and the associated characteristic polynomial is
s°+ 85% + 16s + 6 = 0.
If A is an n X n matrix, poly(A) is an » + 1 element row vector whose ele-
ments are the coefficients of the characteristic equation det(sI — A) = 0.
EXAMPLE 6.13 Stability region for an unstable process

A jump-jet aircraft has a control system as shown in Figure 6.25 [16]. Assume that
z > 0 and p > 0. The system is open-loop unstable (without feedback), since the
characteristic equation of the process and controller is

ss—1)(s+p)=s[s*+(p—Vs—p]=0.

R(s) Controller Aircraft v
Aireraft + K(s + 2) _ I . '
desired " > — »  Actual

) - sTp ss- D orientation

orientation
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FIGURE 6.26
m-file script for
stability region.

Chapter 6 The Stability of Linear Feedback Systems

Note that since one term within the bracket has a negative coefficient, the charac-
teristic equation has at least one root in the right-hand s-plane. The characteristic
equation of the closed-loop system is

S+ (p— 1+ (K- p)s+ Kz=0.

The goal is to determine the region of stability for K, p, and z. The Routh
array is

s 1 K-p
s p—1 Kz
Sl b2 ’
50 Kz

where

_ (@ -1)K - p) - Kz

p-1 '
From the Routh-Hurwitz criterion, we find that we require Kz > 0and p > 1. Set-
ting b, > 0, we have

(p—1D)K-p-—Kz=K[(p-1)—-2z]-p(p—-1)>0.

Consider two cases:

b,

1. z = p — 1: thereisno 0 < K < oo that leads to stability.
2. z < p - L:any 0 < K < oo satisfying the stability condition for a given p and z will
result in stability:
plp— 1)

The stability conditions can be depicted graphically. The m-file script used to
generate a three-dimensional stability surface is shown in Figure 6.26. This script
uses mesh to create the three-dimensional surface and meshgrid to generate arrays
for use with the mesh surface.

The three-dimensional plot of the stability region for X, p, and z is shown in
Figure 6.27. One acceptable stability pointisz = 1, p = 10,and K = 15. =

% Jump-jet control system 3-D stability region.

%
N s oL, Transform domains for
[p,z]=meshgrid(1.2:0.2:10,0.1:.2:10); <————— p and z for mesh plot.

k=p.*(p-1)./(p-1-2); <
mesh(k) « Stability surface
JI Generate 3D plot.
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Stability surface

Stability region exists
above the stability surface,

Section 6.7 Sequential Design Example: Disk Drive Read System
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Let us consider the system as shown in Figure 6.28. This is the same system with
a model of the motor and load as considered in Chapter 5, except that the velocity
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feedback sensor was added, as shown in Figure 6.28. Initially, we consider the case
where the switch is open. Then the closed-loop transfer function is

Y(s) _ _ KiGi(5)Ga(s)

R(s) 1+ K,Gi(s)Gy(s)’ (637)
where
5000
Gi(8) = 1000
and
Gy(s) = ;
2 s(s + 20)
The characteristic equation is
s(s + 20)(s + 1000) + S000K, = 0, (6.38)

or
s* + 1020s% + 20000s + S000K, = O.

We use the Routh array

s 1 20000
s 1020  5000K,
s! b, ’
50 5000K,

where

b = (20000)1020 — 5000K,
1= 1020

The case b; = 0 results in marginal stability when K, = 4080. Using the auxiliary
equation, we have

10205 + 5000(4080) = 0,

or the roots of the jw-axis are s = +j141.4. In order for the system to be stable,
K, < 4080.

Now let us add the velocity feedback by closing the switch in the system of
Figure 6.28. The closed-loop transfer function for the system is then

Y(s) K,G1(5)G(s)
R(s) 1+ [KGi(s)Go9)](A + Kys)’

(6.39)

since the feedback factor is equal to 1 + Ks, as shown in Figure 6.29.



FIGURE 6.29
Equivalent system
with the velocity
feedback switch
closed.
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Tyts)

\ 4

+ _
R(x)—»?—» K, G(s) —:é—; Gy(s) > Y(s)
L 1+ K5

The characteristic equation is then
1 + [K,Gi(s)Ga()](1 + Kis) = 0,
or
s(s + 20)(s + 1000) + S000K,(1 + Kis) = 0.
Therefore, we have
s3 + 1020s* + [20000 + S000K,K,]s + S000K, = 0.

Then the Routh array is

5 1 20000 + 5000K,K,
s 1020 5000K,

Sl bl ’
s° 5000K,

where

1020 (20000 + SO00K,K,) — S000K,
1020 '

b,

I

To guarantee stability, it is necessary to select the pair (K, K;) such that b; > 0,
where K, > 0. When K;= 0.05 and K, = 100, we can determine the system
response using the script shown in Figure 6.30. The settling time (with a 2% criterion)
is approximately 260 ms, and the percent overshoot is zero. The system performance
is summarized in Table 6.3. The performance specifications are nearly satisfied, and
some iteration of K| is necessary to obtain the desired 250 ms settling time.

Table 6.3 Performance of the Disk Drive System Compared to the
Specifications

Performance Measure Desired Value Actual Response
Percent overshoot Less than 5% 0%
Settling time Less than 250 ms 260 ms

Maximum response
to a unit disturbance Less than 5 x 1073 2x 1073
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FIGURE 6.30
Response of the
system with

velocity feedback.

(a) m-file script.
(b) Response with
K, = 100 and

K; = 0.05.

6.8 SUMMARY

Chapter 6 The Stability of Linear Feedback Systems

Ka=100; K1=0.05; < Select the velocity
ng1={5000]; dg1=[1 1000]; sys1=tf(ng1,dg1); | feedback gain K, and
ng2=[1]; dg2=[1 20 0]; sys2=ti(ng2,dg2); amplifier gain K.
nc=[K1 1]; dc=[0 1}; sysc=tf(nc,dc);

syso=series(Ka*sys1,sys2);
sys=feedback(syso,sysc); sys=minreal(sys);
1=[0:0.001:0.5];

y=step(sys.t); plot(L,y)
ylabel('y(t)"),xlabel('Time (s)'),grid

(a)

¥

|
0.3 e ;
0.2 74‘_- e
H
' |
0.1 | 1 ! -
f ! i % ‘ f t
0 L SR .
4} 005 01 015 02 025 03 035 04 045 05
Time (s)
(b)

In this chapter, we have considered the concept of the stability of a feedback control
system. A definition of a stable system in terms of a bounded system response was
outlined and related to the location of the poles of the system transfer function in
the s-plane.

The Routh-Hurwitz stability criterion was introduced, and several examples
were considered. The relative stability of a feedback control system was also consid-
ered in terms of the location of the poles and zeros of the system transfer function in
the s-plane. The stability of state variable systems was considered.
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SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems. Use the block diagram in Figure 6.31
as specified in the various problem statements.

Controller Process

+
R(s) G(s) G(s) > Y(s)

A 4

FIGURE 6.31 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. A stable system is a dynamic system with a bounded output response

for any input. True or False
2. A marginally stable system has poles on the jw-axis. True or False
3, A system is stable if all poles lie in the right half-plane. True or False
4. The Routh-Hurwitz criterion is a necessary and sufficient criterion for

determining the stability of linear systems. True or False
5. Relative stability characterizes the degree of stability. True or False

6. A system has the characteristic equation
g(s) =5 +4Ks*+ (5+ K)s+ 10 =0,

The range of K for a stable system is:
a. K> 046

b. K < 046

¢ 0< K <046

d. Unstable for all K

Utilizing the Routh-Hurwitz criterion, determine whether the following polynomials are
stable or unstable:

N

pi(s) =52 +10s + 5 =0,
pa(s) = s* + 5 + 552 + 205 + 10 = 0.

. pi(5) is stable, p,(s) is stable

. pi(s) is unstable, p,(s) is stable

pi{s) is stable, py(s) is unstable

d. p(s) is unstable, p,(s) is unstable

Consider the feedback control system block diagram in Figure 6.31. Investigate closed-

loop stability for G.(s) = K(s + 1) and G(s) =

P TP

o

1
m, for the two cases where

K =1and K = 3.
a. Unstable for K = 1 and stable for K = 3
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b. Unstable for K = 1 and unstable for K = 3
¢, Stable for X = 1 and unstable for K = 3
d. Stable for K = 1 and stable for K = 3
9. Consider a unity negative feedback system in Figure 6.31 with loop transfer function
where
K
(1 + 0.55)(1 + 0.55 + 0.255%)

L(s) = G(s)G(s) =

Determine the value of K for which the closed-loop system is marginally stable.
a K=10

b. K=3

¢. The system is unstable for all K

d. The system is stable for all X

10. A system is represented by X = Ax, where
0 1 0
A=| 0 0o 1|
-5 -K 10
The values of X for a stable system are
a K<1/2
b. K >1/2
e« K=1/2

d. The system is stable for all K
11

.

Use the Routh array to assist in computing the roots of the polynomial

q(s) =28 + 22 + s+ 1 =0,

V2,
a 5;= — 153 = iT]
2
b. S1=1;Sz3= iiz-"
V2,
C 1 = _1;52,3—_-]:‘:—2—]
d. 51 = "1:32,321

12, Consider the following unity feedback control system in Figure 6.31 where

1 K(s +0.3)

G(s) = =D+ 105+ 43) and G.(s) =

The range of X for stability is

a. K < 260.68

b. 50.06 < K < 123.98

¢. 100.12 < K < 260.68

d. The system is unstable for all K > 0
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In Problems 13 and 14, consider the system represented in a state-space form

0 1 0 0
X = 0 0 1x+]| 0 u
-5 -10 -5 20
y=[1 0 1}k

13. The characteristic equation is:
a g{s) =5 + 5% -10s - 6
b. g(s) = s>+ 552+ 10s + 5
e g(s)=s -5+ 10s — 5
d. g(s) =s*— 55+ 10

14

marginally stable,

a. Stable

b. Unstable

¢. Marginally stable
d. None of the above

15. A system has the block diagram representation as shown in Figure 6.31, where

and G.(s) =

G6) =+ 157
for a stable system is:
a. 0 < K < 28875
b. 0 < K < 27075
e 0 < K < 25050

Using the Routh-Hurwitz criterion, determine whether the system is stable, unstable, or

K
s+ 80

d. Stableforall K > 0

where K is always positive. The limiting gain

427

In the following Word Match problems, match the term with the definition by writing the
correct letter in the space provided.

a. Routh-Hurwitz
criterion

b. Auxiliary polynomial

¢. Marginally stable

d. Stable system

e. Stability

f. Relative stability

g. Absolute stability

A performance measure of a system.

A dynamic system with a bounded system
response to a bounded input.

The property that is measured by the relative
real part of each root or pair of roots of the
characteristic equation.

A criterion for determining the stability of a
system by examining the characteristic equation
of the transfer function.

The equation that immediately precedes the zero
entry in the Routh array.

A system description that reveals whether a system
is stable or not stable without consideration of other
system attributes such as degree of stability.

A system possesses this type of stability if the zero
input response remains bounded as ¢ — oo.
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EXERCISES

E6.1 A system has a characteristic equation s* + Ks? +
(1 + K)s + 6 = 0. Determine the range of X for a
stable system.

Answer: K > 2
E6.2 A system has a characteristic equation 5° + 105 +

2s + 30 = 0. Using the Routh-Hurwitz criterion,
show that the system is unstable.

E63 A system has the characteristic equation
st +10s* + 325 + 375 + 20 = 0. Using the Routh-
Hurwitz criterion, determine if the system is stable.

E6.4 A control system has the structure shown in
Figure E6.4. Determine the gain at which the system
will become unstable.

Answer: K = 20/7

E6.5 A unity feedback system has a loop transfer function

K
(s + 1)(s + 3)s + 6)
where K = 20. Find the roots of the closed-loop sys-
tem’s characteristic equation.

E6.6 For the feedback system of Exercise E6.5, find the
value of K when two roots lie on the imaginary axis.
Determine the value of the three roots.

Answer: s = —10, £45.2

L(s) =

E6.7 A negative feedback system has a loop transfer
function

K(s +2)

Ls) = s(s = 1)°

(a) Find the value of the gain when the £ of the closed-

Chapter 6 The Stability of Linear Feedback Systems

E6.8 Designers have developed small, fast, vertical-take-
off fighter aircraft that are invisible to radar (stealth
aircraft). This aircraft concept uses quickly turning jet
nozzles to steer the airplane [16]. The control sys-
tem for the heading or direction control is shown in
Figure E6.8. Determine the maximum gain of the sys-
tem for stable operation.

E6.9 A system has a characteristic equation
$+22+(K+1s+8=0.
Find the range of X for a stable system.
Answer: K > 3

E6.10 We all use our eyes and ears to achieve balance.
Our orientation system allows us to sit or stand in a de-
sired position even while in motion. This orientation
system is primarily run by the information received in
the inner ear, where the semicircular canals sense an-
gular acceleration and the otoliths measure linear ac-
celeration. But these acceleration measurements need
to be supplemented by visual signals. Try the following
experiment: (a) Stand with one foot in front of anoth-
er, with your hands resting on your hips and your
elbows bowed outward. (b) Close your eyes. Did you
experience a low-frequency oscillation that grew until
you lost balance? Is this orientation position stable
with and without the use of your eyes?

E6.11 A system with a transfer function Y(s)/R(s) is
Y(s) 24(s + 1)
R(s) s*+653+2s2+s+3

Determine the steady-state error to a unit step input.
Is the system stable?

. J2. A t has th d-ord haracteristi
loop roots is equal to 0.707. (b) Find the value of the E6 le quati OSny stem fhas fhe seconc-order characterishic
gain when the closed-loop system has two roots on the )
imaginary axis. s"+as+b=0,

Rs) A los+1 A s(s + 4) = Y
FIGURE E6.4
Feedforward
system.

Controller Aircraft dynamics
+ (s + 20) V)

R K s(s + 10)? " Heading
FIGURE E6.8 -
Aircraft heading

control.
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FIGURE E6.13 Controller Process
Closed-loop 4
system with a R(s) Kp+ Kps > “+3 > Y(s)
proportional -
plus derivative
controller

Gels) = Kp + Kps.

where a and b are constant parameters. Determine the
necessary and sufficient conditions for the system to
be stable. Is it possible to determine stability of a sec-
ond-order system just by inspecting the coefficients of
the characteristic equation?

E6.13. Consider the feedback system in Figure E6.13.
Determine the range of Kp and Kp for stability of
the closed-loop system.

E6.14 By using magnetic bearings, a rotor is supported
contactless. The technique of contactless support for
rotors becomes more important in light and heavy
industrial applications [14]. The matrix differential
equation for a magnetic bearing system is

0 1 0
x=|-3 -1 0 |x,
-2 -1 -2

where x” = [y, dy/dt, i], y = bearing gap, and i is
the electromagnetic current. Determine whether the
system is stable.

Answer: The system is stable.
E6.1S A system has a characteristic equation

q(s) = s® + 95° + 31.25s5% + 61.255°
+ 67.75s% + 14.75s + 15 = 0.

(a) Determine whether the system is stable, using the
Routh-Hurwitz criterion. (b) Determine the roots of
the characteristic equation.

Answer: (a) The system is marginally stable.
(b)s = -3, -4, -1 £ 2j, +0.5j
E6.16 A system has a characteristic equation

g(s) = s* + 95 + 4552 + 875 + 50 = 0.

(a) Determine whether the system is stable, using the
Routh-Hurwitz criterion. (b} Determine the roots of
the characteristic equation.

E6.17 The matrix differential equation of a state variable
model of a system has

0 1 -1
A=|-8 -12 8|
-8 -12 5

(a) Determine the characteristic equation. (b) Deter-
mine whether the system is stable. (c) Determine the
roots of the characteristic equation.

Answer: (a) q(s) = s* + Ts2 + 365 + 24 = 0

E6.18 A system has a characteristic equation
g(s) = s* + 20s* + 55 + 100 = 0.
(a) Determine whether the system is stable, using the
Routh-Hurwitz criterion. (b) Determine the roots of
the characteristic equation.
E6.19 Determine whether the systems with the following
characteristic equations are stable or unstable:
(@) s + 452 + 65 + 100 = 0,
(b) s* + 65* + 10s®> + 17s + 6 = 0, and
(c) s> +6s+3=0.
E6.20 Find the roots of the following polynomials:
(@ s+ 55 + 85 + 4 = 0 and
(b) s* + 95% + 275 + 27 = 0.
E6.21 A system has the characteristic equation

g(s) = s> + 105> + 295 + K = 0,

Shift the vertical axis to the right by 2 by using
s = 5, — 2, and determine the value of gain X so that
the complex rootsare s = —2 + j.

E6.22 A system has a transfer function Y(s)/R(s) =
T(s) = 1/s. (a) Is this system stable? (b) If #(¢) is a unit
step input, determine the response y(f).

E6.23 A system is represented by Equation (6.22) where

0 1 0
A= 0 0 1
-8 -k -4

Find the range of k where the system is stable.
E6.24 Consider the system represented in state variable

form
x = Ax + Bu
y = Cx + Du,
where
0 1 0 0
A= 0 0 1,B=1]0
-k -k -k 1
C=[l 0 0},D=]0]



430 Chapter 6 The Stability of Linear Feedback Systems

(a) What is the system transfer function? (b) For what E6.26 Consider the closed-loop system in Figure E6.26,

values of k is the system stable? where
E6.25 A closed-loop feedback system is shown in 10
Figure E6.25. For what range of values of the para- G(s) = and  G.(s) = .
meters K and p is the system stable? s—10 25+ K
(a) Determine the characteristic equation associated
+ 1 with the closed-loop system.

\ 4

R(s) Ks + 1 > Y(s)

(b) Determine the values of K for which the closed-
loop system is stable.

s%s + p)

FIGURE E6.25 Closed-loop system with parameters K

and p.
Ty(s)
R(s)
N(s)
(a)
Tuls)
Controller Process
+
R + E,(5) 1 10 R
(s) 2%+ K P s— 10 » Y(s)
~ +
FIGURE E6.26 “ N(s)
Closed-loop
feedback control
system with
parameter K. (b)
PROBLEMS
P6.1 Utilizing the Routh-Hurwitz criterion, determine (e s'+s+32+25s+ K
the stability of the following polynomials: () S +s'+2%+5+6
(a) s>+ 55 +2 (@ sS+s'+2°8+s2+s+K
2 ) . .
(b) s + 45>+ 8s + 4 Determine the number of roots, if any, in the right-
(c) s+ 257 — 65+ 20 hand plane. If it is adjustable, determine the range of

(@ s+ s+ 252+ 125 + 10 K that results in a stable system.
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P6.2 An antenna control system was analyzed in Problem

P4.5,and it was determined that, to reduce the effect of
wind disturbances, the gain of the magnetic amplifier,
k,, should be as large as possible. (a) Determine the
limiting value of gain for maintaining a stable system.
(b) We want to have a system settling time equal to 1.5
seconds. Using a shifted axis and the Routh-Hurwitz
criterion, determine the value of the gain that satisfies
this requirement. Assume that the complex roots of the
closed-loop system dominate the transient response. (Is
this a valid approximation in this case?)

P6.3 Arc welding is one of the most important areas of

application for industrial robots {11]. In most manu-
facturing welding situations, uncertainties in dimen-
sions of the part, geometry of the joint, and the
welding process itself require the use of sensors for
maintaining weld quality. Several systems use a vision
system to measure the geometry of the puddle of
melted metal, as shown in Figure P6.3. This system
uses a constant rate of feeding the wire to be melted.
(a) Calculate the maximum value for X for the sys-
tem that will result in a stable system. (b) For half
of the maximum value of K found in part (a), determine
the roots of the characteristic equation. (c) Estimate
the overshoot of the system of part (b) when it is sub-
jected to a step input.
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P6.4 A feedback control system is shown in Figure P6.4. The
controller and process transfer functions are given by

s + 40

G.(s) = K and G(s) = (s 7 10)
and the feedback transfer function is H(s) = 1/(s + 20).
(a) Determine the limiting value of gain K for a stable
system. (b) For the gain that results in marginal stability,
determine the magnitude of the imaginary roots. (c) Re-
duce the gain to half the magnitude of the marginal
value and determine the relative stability of the system
(1) by shifting the axis and using the Routh-Hurwitz
criterion and (2) by determining the root locations.
Show the roots are between —1 and —2.

P6.5 Determine the relative stability of the systems with
the following characteristic equations (1) by shifting
the axis in the s-plane and using the Routh-Hurwitz
criterion, and (2) by determining the location of the
complex roots in the s-plane:

(a) s> + 352 + 45 + 2 = 0.
(b) s + 95% + 3052 + 425 + 20 = 0.
(c) s* + 195 + 110s + 200 = 0.

P6.6 A unity-feedback control system is shown in
Figure P6.6. Determine the relative stability of the

Controller Arc Wire-melting process
Desired + Error K current 1 _ Puddle
diameter s+2 055+ (s + 1 " diameter
Measured Vision system
diameter 1
FIGURE P6.3 1 [
Welder control. 0.005s
Controller Process
+ ~EL
R(s) G.(8) g G(s) » Y(s)
— A
Sensor
FIGURE P6.4
Nonunity feedback H(s)
system.
Controller Process
+ E5)

R(s) G(s) > G(s) > Y(s)
FIGURE P6.6
Unity feedback

system.
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system with the following transfer functions by
locating the complex roots in the s-plane:

10s + 2
(a) Gs)G(s) = ??f:_l)
24
s(s3 + 10s% + 355 + 50)
(s +2)(s + 3)

s(s + 4)(s + 6)

() Ge(s5)G(s) =

(€} G(s)G(s) =

P6.7 The linear model of a phase detector (phase-lock

loop) can be represented by Figure P6.7 [9]. The phase-
lock systems are designed to maintain zero difference
in phase between the input carrier signal and a local
voltage-controlled oscillator. Phase-lock loops find
application in color television, missile tracking, and
space telemetry. The filter for a particular application is
chosen as

10(s + 10)

F) = 36 + 100y

We want to minimize the steady-state error of the
system for a ramp change in the phase information
signal. (a) Determine the limiting value of the gain
K,K = K, in order to maintain a stable system. (b) A
steady-state error equal to 1° is acceptable for a

Chapter 6 The Stability of Linear Feedback Systems

ramp signal of 100 rad/s. For that value of gain K,,
determine the location of the roots of the system.

P6.8 A very interesting and useful velocity control system

has been designed for a wheelchair control system. We

want to enable people paralyzed from the neck down

to drive themselves in motorized wheelchairs. A pro-

posed system utilizing velocity sensors mounted in a

headgear is shown in Figure P6.8. The headgear sensor

provides an output proportional to the magnitude of
the head movement. There is a sensor mounted at 90°
intervals so that forward, left, right, or reverse can be
commanded. Typical values for the time constants are

7y =05s,73=1s,and 7y = %s.

(a) Determine the limiting gain X = K, K,Kj; for a
stable system.

(b) When the gain X is set equal to one-third of the
limiting value, determine whether the settling
time (to within 2% of the final value of the sys-
tem) is less than 4 s.

(c) Determine the value of gain that results in a sys-
tem with a settling time of 4 s, Also, obtain the
value of the roots of the characteristic equation
when the settling time is equal to 4 s.

P6.9 A cassette tape storage device has been designed for

mass-storage [1]. It is necessary to control the velocity
of the tape accurately. The speed control of the tape
drive is represented by the system shown in Figure
P6.9.

Amplifier Filter Voltage:controlled
oscillator
+
Oin K, > F(s) > —I.‘S > 4,
FIGURE P6.7 -
Phase-lock loop
system.
Head ynam;
Desired + nod K Ky .
> K > -\
velocity ns+1 2 (735 + D(rgs + 1) elocity
FIGURE P6.8
Wheelchair control
system.
Power Motor and
amplifier drive mechanism
+ K -~ 10 Y
Ris) 5+ 100 | s+202 > Speed

FIGURE P6.9
Tape drive control.




Problems

(a) Determine the limiting gain for a stable system.
(b) Determine a suitable gain so that the overshoot
to a step command is approximately 5%.

P6.10 Robots can be used in manufacturing and assembly
operations that require accurate, fast, and versatile
manipulation [10, 11]. The open-loop transfer function
of a direct-drive arm may be approximated by

K(s +10)
s(s + 3)(s2 + 45 + 8)
(a) Determine the value of gain K when the system

oscillates. (b) Calculate the roots of the closed-loop
system for the K determined in part (a).

P6.11 A feedback control system has a characteristic
equation

G(s)H(s) =

S+ + K)s?+10s + (5 + 15K) = 0.
The parameter K must be positive. What is the maximum
value K can assume before the system becomes unsta-
ble? When K is equal to the maximum value, the system
oscillates. Determine the frequency of oscillation.

P6.12. A system has the third-order characteristic equation

s +ast + bs +¢ =0,

where q, b, and ¢ are constant parameters. Determine
the necessary and sufficient conditions for the system
to be stable. Is it possible to determine stability of the
system by just inspecting the coefficients of the char-
acteristic equation?

P6.13. Consider the system in Figure P6.13. Determine
the conditions on K, p, and z that must be satisfied for
closed-loop stability. Assume that X > 0, > 0, and
w, > 0.

P6.14 A feedback control system has a characteristic
equation
s+ 25 + 125 + 45> + 212 + 25 + 10 = 0.

Determine whether the system is stable, and deter-
mine the values of the roots.
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P6.15 The stability of a motorcycle and rider is an im-
portant area for study because many motorcycle de-
signs result in vehicles that are difficult to control
[12,13]. The handling characteristics of a motorcycle
must include a model of the rider as well as one of
the vehicle. The dynamics of one motorcycle and
rider can be represented by a loop transfer function
(Figure P6.4)

_ K (s + 30s + 1125)
s(s + 20)(s* + 105 + 125)(s? + 60s + 3400) "

(a) As an approximation, calculate the acceptable
range of K for a stable system when the numerator
polynomial (zeros) and the denominator polynomial
(s* + 60s + 3400) are neglected. (b) Calculate the
actual range of acceptable K, account for all zeros and
poles.

P6.16 A system has a closed-loop transfer function

1
S +52+2005+6

(a) Determine whether the system is stable. (b) Deter-
mine the roots of the characteristic equation. (¢) Plot
the response of the system to a unit step input.

P6.17 The elevator in Yokohama’s 70-story Landmark
Tower operates at a peak speed of 45 km/hr. To reach
such a speed without inducing discomfort in passengers,
the elevator accelerates for longer periods, rather than
more precipitously. Going up, it reaches full speed only at
the 27th floor; it begins decelerating 15 floors later. The
result is a peak acceleration similar to that of other sky-
scraper elevators—a bit less than a tenth of the force of
gravity. Admirable ingenuity has gone into making this
safe and comfortable. Special ceramic brakes had to
be developed; iron ones would melt. Computer-con-
trolled systems damp out vibrations. The lift has been
streamlined to reduce the wind noise as it speeds up
and down [19]. One proposed control system for the
elevator’s vertical position is shown in Figure P6.17.
Determine the range of K for a stable system.

L(s)

T(s) =

Controller Process
FIGURE P6.13 R(s) —b PR . oy > Y0s)
Control system _ s+p s(s + 2{w,)
with controller with
three parameters
K,p,andz.
R Controller Elevator dynamics
(s)
Desired + 1 Y('f)
vertical K+1 > n » Vertical
eried s(s7+3s+3) position

FIGURE P6.17 position -
Elevator control
system.
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Design Problems

The parameter p is equal to 2 for many autos but can
equal zero for those with high performance. Select a
gain K that will result in a stable system for both values
of p.

DP6.2 An automatically guided vehicle on Mars is repre-
sented by the system in Figure DP6.2. The system has
a steerable wheel in both the front and back of the ve-
hicle, and the design requires that H(s) = Ks + 1.
Determine (a) the value of K required for stability,
(b) the value of K when one root of the characteristic
equation is equal to s = —5, and (c) the value of the
two remaining roots for the gain selected in part
(b). (d) Find the response of the system to a step
command for the gain selected in part (b).

DP6.3 A unity negative feedback system with
K(s +2)
s(1 + 7s)(1 + 25)

has two parameters to be selected. (a) Determine and
plot the regions of stability for this system. (b) Select 7
and K so that the steady-state error to a ramp input is
less than or equal to 25% of the input magnitude.
(¢) Determine the percent overshoot for a step input
for the design selected in part (b).

DP6.4 The attitude control system of a space shuttle
rocket is shown in Figure DP6.4 [17]. (a) Determine

G (5)G(s) =
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the range of gain K and parameter m so that the
system is stable, and plot the region of stability. (b)
Select the gain and parameter values so that the
steady-state error to a ramp input is less than or
equal to 10% of the input magnitude. (c) Determine
the percent overshoot for a step input for the design
selected in part (b).

DP6.5 A traffic control system is designed to control the

distance between vehicles, as shown in Figure DP6.5
[15]. (a) Determine the range of gain K for which the
system is stable. (b) If K, is the maximum value of K
so that the characteristic roots are on the jw-axis, then
let K = K,,/N,where 6 < N < 7. We want the peak
time to be less than 2 seconds and the percent over-
shoot to be less than 18%. Determine an appropriate
value for N.

DP6.6 Consider the single-input, single-output system as

described by
x(2) = Ax(t) + Bu(1)
y(0) = Cx()

1 0
o 1Jo=[Te-0 m

where

>
Il
—
(=1

R(s) + 20 I ¥(s)
Steering > 510 > » Direction
command - s of travel
FIGURE DP6.2
Mars guided vehicle ! H(s) |
control.
Controller Spa:;cil::tlle
Res s+ m)(s +2) . K _ Y
$) s " s2-1 ~ Atitude
FIGURE DP6.4 -
Shuttle attitude
control.
Controller Throttle, engl.ne,
and automobile
R(s) + K 1 Y(s)
Desired — > 3 »  Actual
distance - : 57+ 10s + 20 distance
FIGURE DP6.5
Traffic distance
Sensor

control.
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Assume that the input is a linear combination of the
states, that is,

w(r) = —Kx(¢) + r(t),

where r(¢) is the reference input. The matrix
K = [K;, K,] is known as the gain matrix. If you
substitute w1(f) into the state variable equation you will
obtain the closed-loop system

x(t) = [A — BKx(t) + Br(t)

y(£) = Cx(1)
For what values of K is the closed-loop system stable?
Determine the region of the left half-plane where the
desired closed-loop eigenvalues should be placed so
that the percent overshoot to a unit step input,
R(s) = 1/s, is less than P.O. < 5% and the settling
time is less than 7; < 4s. Select a gain matrix, K, so
that the system step response meets the specifications

Chapter 6 The Stability of Linear Feedback Systems

The inner loop must be stable and have a quick speed
of response. (a) Consider the inner loop first. Deter-
mine the range of K resulting in a stable inner loop.
That is, the transfer function Y(s)/U(s) must be stable.
(b) Select the value of K in the stable range leading to
the fastest step response. (c) For the value of K select-
ed in (b), determine the range of K, such that the
closed-loop system T'(s) = Y (s)/R(s) is stable.

DP6.8 Consider the feedback system shown in Figure

DP6.8. The process transfer function is marginally sta-
ble. The controller is the proportional-derivative (PD)
controller

GC(S) = Kp + KDS.

Determine if it is possible to find values of Kpand K,
such that the closed-loop system is stable. If so, obtain
values of the controller parameters such that the
steady-state tracking error E(s) = R(s) — Y(s) to

PO. < 5%and T, < 4s.

DP6.7 Consider the feedback control system in Figure
DP6.7. The system has an inner loop and an outer loop.

a unit step input R(s) = 1/s is e, = ,li[go e(r) = 0.1
and the damping of the closed-
loop system is ¢ = V2n.

Process
* k. LU® 20 ) .
—>( > K, ‘ >
Ris) _ ] +x_ [ss+10) ¥(s)
Controller
K,
FIGURE DP6.7 1+ =
Feedback system
with inner and outer I :
loop. nner loop
Controller Process
E (5) R 4 R
FIGUREDP6.8  R() Kp+Kps Y T > ¥(s)
A marginally stable

plant with a PD
controller in the
loop.

COMPUTER PROBLEMS

CP6.1 Determine the roots of the following characteristic

equations:

(@) g(s) = s* + 352+ 10s + 14 = 0.
(b) g(s) = s* + 857 + 245% + 325 + 16 = 0.

(©) g(s)=s"+252+1=0.
CP6.2 Consider a unity negative feedback system with

G(s) = K and G(s) =

52
S +2s+1

-5s+2

Develop an m-file to compute the roots of the closed-
loop transfer function characteristic polynomial for
K =1, 2, and 5. For which values of K is the closed-
loop system stable?

CP6.3 A unity negative feedback system has the loop
transfer function

s+ 1
s+ 45+ 65 + 10

G (5)G(s) =



Computer Problems

Develop an m-file to determine the closed-loop trans-
fer function and show that the roots of the characteristic
equation are s; = —2.89 and s,3 = —0.55 + j1.87.

CP6.4 Consider the closed-loop transfer function

1
S 28+ 2 A+ s+ 2

T(s) =

(a) Using the Routh-Hurwitz method, determine
whether the system is stable. If it is not stable, how
many poles are in the right half-plane? (b) Com-
pute the poles of T(s) and verify the result in part (a).
(c) Plot the unit step response, and discuss the results.

CP6.5 A “paper-pilot™ model is sometimes utilized in air-
craft control design and analysis to represent the pilot
in the loop. A block diagram of an aircraft with a pilot
“in the loop™ is shown in Figure CP6.5. The variable 7
represents the pilot’s time delay. We can represent a
slower pilot with = 0.6 and a faster pilot with
7 = 0.1. The remaining variables in the pilot model are
assumed to be K = 1,7, = 2, and 7, = 0.5. Develop
an m-file to compute the closed-loop system poles for
the fast and slow pilots. Comment on the results. What
is the maximum pilot time delay allowable for stability?

CP6.6 Consider the feedback control system in Figure
CP6.6. Using the for function, develop an m-file script
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to compute the closed-loop transfer function poles for
0 = K = 5 and plot the results denoting the poles
with the “X” symbol. Determine the maximum range
of K for stability with the Routh-Hurwitz method.
Compute the roots of the characteristic equation
when K is the minimum value allowed for stability.

CP6.7 Consider a system in state variable form:

0 1 0 0
X = 0 0 1Ix+]| O
-12 -14 -10 12
y=1[1 1 O0)]x

(a) Compute the characteristic equation using the poly
function. (b) Compute the roots of the characteristic
equation, and determine whether the system is stable.
(c) Obtain the response plot of y(¢) when u(r) is a unit
step and when the system has zero initial conditions.

CP6.8 Consider the feedback control system in Figure
CP6.8. (a) Using the Routh-Hurwitz method, deter-
mine the range of K resulting in closed-loop stability.
(b) Develop an m-file to plot the pole locations as a
function of 0 < K; < 30 and comment on the results.

CP6.9 Consider a system represented in state variable form
x = Ax + Bu

y = Cx + Du,
Pilot Elevator Aircraft
model servo model
0 + —K(Ts + 1)(7s — 2) R —-10 —(s + 6) )
d (725 + (75 + 2) 7l s+ 10 s(s2 + 35 + 6) o

FIGURE CP6.5 -
An aircraft with a
pilot in the loop.
FIGURE CP6.6 I ! . Vis
A single-loop Ris) SHS2+H (K -3+ K > ¥s)
feedback control -
system with
parameter K.

Process

+ 5
Rs) A St + 10) > 1o

FIGURE CP6.8 Controller
Nonunity feedback K, g
system with 2+ €
parameter K, .
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where
0 1 0 -1
A=]| 2 0 1 ,B={ 0 |
-k -3 =2 1
C=[1 2 0],D=]0].
ANSWERS TO SKILLS CHECK

(5) True

True or False: (1) False; (2) True; (3) False; (4) True;

Chapter 6 The Stability of Linear Feedback Systems

(a) For what values of & is the system stable?

(b) Develop an m-file to plot the pole locations as a
function of 0 < & < 10 and comment on the
results.

Word Match (in order, top to bottom): e, d, f, a, b,
gc

Multiple Choice: (6) a; (7) c: (8) a; (9) b; (10) b;

(11) a; (12) a; (13) b; (14) a; (15) b

TERMS AND CONCEPTS

Absolute stability A system description that reveals
whether a system is stable or not stable without con-
sideration of other system attributes such as degree of
stability.

Auxiliary polynomial The equation that immediately
precedes the zero entry in the Routh array.

Marginally stable A system is marginally stable if and
only if the zero input response remains bounded as
{— 0,

Relative stability The property that is measured by the
relative real part of each root or pair of roots of the
characteristic equation.

Routh-Hurwitz criterion A criterion for determining the
stability of a system by examining the characteristic
equation of the transfer function. The criterion states
that the number of roots of the characteristic equation
with positive real parts is equal to the number of
changes of sign of the coefficients in the first column
of the Routh array.

Stability A performance measure of a system. A system
is stable if all the poles of the transfer function have
negative real parts.

Stable system A dynamic system with a bounded system
response to a bounded input.
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PREVIEW

The performance of a feedback system can be described in terms of the location of the
roots of the characteristic equation in the s-plane. A graph showing how the roots of
the characteristic equation move around the s-plane as a single parameter varies is
known as a root locus plot. The root locus is a powerful tool for designing and analyz-
ing feedback control systems. We will discuss practical techniques for obtaining a
sketch of a root locus plot by hand. We also consider computer-generated root locus
plots and illustrate their effectiveness in the design process. We will show that it is pos-
sible to use root locus methods for controller design when more than one parameter
varies. This is important because we know that the response of a closed-loop feedback
system can be adjusted to achieve the desired performance by judicious selection of
one or more controller parameters. The popular PID controller is introduced as a
practical controller structure. We will also define a measure of sensitivity of a spec-
ified root to a small incremental change in a system parameter. The chapter con-
cludes with a controller design based on root locus methods for the Sequential
Design Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 7, students should:

Understand the powerful concept of the root locus and its role in control system design.
Know how to obtain a root locus plot by sketching or using computers.

Be familiar with the PID controller as a key element of many feedback systems.
Recognize the role of root locus plots in parameter design and system sensitivity analysis.
Be able to design controllers to meet desired specifications using root locus methods.

o000
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Chapter 7 The Root Locus Method

7.1 INTRODUCTION

The relative stability and the transient performance of a closed-loop control system
are directly related to the location of the closed-loop roots of the characteristic
equation in the s-plane. It is frequently necessary to adjust one or more system
parameters in order to obtain suitable root locations. Therefore, it is worthwhile to
determine how the roots of the characteristic equation of a given system migrate
about the s-plane as the parameters are varied; that is, it is useful to determine the
locus of roots in the s-plane as a parameter is varied. The root locus method was
introduced by Evans in 1948 and has been developed and utilized extensively in con-
trol engineering practice [1-3]. The root locus technique is a graphical method for
sketching the locus of roots in the s-plane as a parameter is varied. In fact, the root
locus method provides the engineer with a measure of the sensitivity of the roots of
the system to a variation in the parameter being considered. The root locus technique
may be used to great advantage in conjunction with the Routh—-Hurwitz criterion.

The root locus method provides graphical information, and therefore an approx-
imate sketch can be used to obtain qualitative information concerning the stability
and performance of the system. Furthermore, the locus of roots of the characteristic
equation of a multiloop system may be investigated as readily as for a single-loop
system. If the root locations are not satisfactory, the necessary parameter adjust-
ments often can be readily ascertained from the root locus [4].

7.2 THE ROOT LOCUS CONCEPT

FIGURE 7.1
Closed-loop
control system with
a variable
parameter K.

The dynamic performance of a closed-loop control system is described by the
closed-loop transfer function

_Y6) _ pls)
R(s)  q(s)’
where p(s) and ¢(s) are polynomials in s. The roots of the characteristic equation

g(s) determine the modes of response of the system. In the case of the simple single-
loop system shown in Figure 7.1, we have the characteristic equation

T(s) (7.1)

1 + KG(s) = 0, (72)

where K is a variable parameter and 0 =< K < oo. The characteristic roots of the
system must satisfy Equation (7.2), where the roots lie in the s-plane. Because s is a
complex variable, Equation (7.2) may be rewritten in polar form as

|KG(s)| /KG(s) = —1 + jO, (7.3)

Y

+
R(s) K

G(s) » Y(s)




FIGURE 7.2

Unity feedback
control system. The
gain K is a variable
parameter.
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and therefore it is necessary that

|KG(s)| =1
and
/KG(s) = 180° + k360°, (7.4)

where k = 0, =1, £2, £3,....

The root locus is the path of the roots of the characteristic equation traced out
in the s-plane as a system parameter varies from zero to infinity.

The simple second-order system considered in the previous chapters is shown in
Figure 7.2. The characteristic equation representing this system is

A(s)=1+KG(s)=1+S—(ST5=O,
or, alternatively,
AGs) =8>+ 25+ K =5 + 2{w,s + o> = 0. (7.5)
The locus of the roots as the gain K is varied is found by requiring that
KGO = |5y = ! (76)
and
/KG(s) = +£180°, £540°,.... .7

The gain K may be varied from zero to an infinitely large positive value. For a
second-order system, the roots are

S, 82 = —50),, + w,V 52 -1, (78)

and for ¢ < 1, we know that § = cos™' {. Graphically, for two open-loop poles as
shown in Figure 7.3, the locus of roots is a vertical line for { = 1 in order to satisfy
the angle requirement, Equation (7.7). For example, as shown in Figure 7.4, at a root
sy, the angles are

K
/ s(s +2)

+ 1
R(s) K 62

= /51— /(s, +2) = —[(180° — 6) + 6] = —180°.  (7.9)

$=8)

A\ 4

> Yis)
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FIGURE 7.3
Root locus for a
second-order
system when

Ko < Ky < K. The
locus is shown as
heavy lines, with
arrows indicating
the direction of
increasing K. Note
that roots of the
characteristic
equation are
denoted by “00" on
the root locus.

FIGURE 7.4
Evaluation of the
angle and gain at s,
forgain K = K.
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This angle requirement is satisfied at any point on the vertical line that is a perpen-
dicular bisector of the line 0 to —2. Furthermore, the gain X at the particular points
is found by using Equation (7.6) as

K K
— | ==, 7.10
G+ D)|ses, Tsills + 2] (7.10)
and thus
K = Isylls; + 2|, (7.11)

where |5, is the magnitude of the vector from the origin to s;, and |s; + 2| is the
magnitude of the vector from —2 to s;.

For a multiloop closed-loop system, we found in Section 2.7 that by using
Mason’s signal-flow gain formula, we had

N
A(s)=1-= DL, + > LLny— 2 LLnL,+ -, (712)
n=1 n,m n,m,p
nontouching nontouching
T |
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FIGURE 7.5

{a) Single-loop
system. (b) Root
locus as a function
of the parameter a,
where a > 0.
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where L, equals the value of the nth self-loop transmittance. Hence, we have a char-
acteristic equation, which may be written as
q(s) = A(s) = 1 + F(s). (7.13)

To find the roots of the characteristic equation, we set Equation (7.13) equal to zero
and obtain

1+ F(s) = 0. (7.14)
Equation (7.14) may be rewritten as
F(s) = =1 + 0, (7.15)

and the roots of the characteristic equation must also satisfy this relation.
In general, the function F(s) may be written as

K(s + 2)(s + 2)(s + 23) - (s + 2y)
(.S' + pl)(s + pZ)(s + P3)(5 + pn) ’
Then the magnitude and angle requirement for the root locus are

Kls + zlls + z5] -

F(s) =

Ol = T ol gl ! (716
and
[ES)=/st+zu+ /st o+

—(/s+p + /s+p+ ---)=180° + k360°, (7.17)

where k is an integer. The magnitude requirement, Equation (7.16), enables us to
determine the value of K for a given root location s;. A test point in the s-plane, sy,
is verified as a root location when Equation (7.17) is satisfied. All angles are mea-
sured in a counterclockwise direction from a horizontal line.

To further illustrate the root locus procedure, let us consider again the
second-order system of Figure 7.5(a). The effect of varying the parameter a can

G(s)

R(s | > » Y5 2
() K 56+ a) )

(a) (b)
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be effectively portrayed by rewriting the characteristic equation for the root
locus form with a as the multiplying factor in the numerator. Then the character-
istic equation is

K

1+KG(S)=1+m=

L)

or, alternatively,
s +as+ K=0.

Dividing by the factor s* + K, we obtain

as
1+ =0. 7.18
2+ K ( )
Then the magnitude criterion is satisfied when
sl _ (7.19)
Is? + K| '

at the root s;. The angle criterion is

/51— (/s + VK + /5 — [VK) = +180°, £540°,....

In principle, we could construct the root locus by determining the points in the
s-plane that satisfy the angle criterion. In the next section, we will develop a multi-
step procedure to sketch the root locus. The root locus for the characteristic equa-
tion in Equation (7.18) is shown in Figure 7.5(b). Specifically at the root s,, the
magnitude of the parameter a is found from Equation (7.19) as

— iVK]|s; + jVK
s ]\/—I“sll VK| (7.20)
S

The roots of the system merge on the real axis at the point s, and provide a critically
damped response to a step input. The parameter a has a magnitude at the critically
damped roots, s; = 0, equal to

los — jVEllos + jVE] _

o3

L2+ K)=2VK, (7.21)
g2

where o, is evaluated from the s-plane vector lengths as o, = \/_IZ As a increases
beyond the critical value, the roots are both real and distinct; one root is larger than
o5, and one is smaller.

In general, we desire an orderly process for locating the locus of roots as a para-
meter varies. In the next section, we will develop such an orderly approach to
sketching a root locus diagram.
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7.3 THE ROOT LOCUS PROCEDURE

The roots of the characteristic equation of a system provide a valuable insight con-
cerning the response of the system. To locate the roots of the characteristic equation
in a graphical manner on the s-plane, we will develop an orderly procedure of seven
steps that facilitates the rapid sketching of the locus.

Step 1: Prepare the root locus sketch. Begin by writing the characteristic equa-
tion as

1+ F(s) = 0. (7.22)

Rearrange the equation, if necessary, so that the parameter of interest, K, appears as
the multiplying factor in the form,

1+ KP(s) = 0. (7.23)
We are usually interested in determining the locus of roots as K varies as

0= K = o0,

In Section 7.7, we consider the case when K varies as —00 < K =< (). Factor P(s),
and write the polynomial in the form of poles and zeros as follows:

M
H(S + z)
i1 _

1+ K=,
H(S + pj)
=1

0. (7.24)

Locate the poles —p; and zeros —z; on the s-plane with selected symbols. By con-
vention, we use ‘x’ to denote poles and ‘0’ to denote zeros.
Rewriting Equation (7.24), we have

n

M
16+ p) + K[ +z) =0. (7.25)
i=1

j=1

Note that Equation (7.25) is another way to write the characteristic equation. When
K = 0, the roots of the characteristic equation are the poles of P(s). To see this, con-
sider Equation (7.25) with K = 0. Then, we have

j=1

When solved, this yields the values of s that coincide with the poles of P(s). Con-
versely, as K — o0, the roots of the characteristic equation are the zeros of P(s). To
see this, first divide Equation (7.25) by K. Then, we have

12 M
=116+ pp + [IGs +2z) =0,
K j=i =1
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FIGURE 7.6

(a) The zero and
poles of a second-
order system,

(b) the root locus
segments, and

(c) the magnitude of
each vector at s4.
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which, as K — 00, reduces to
M
[IG+z)=0.
i=1

When solved, this yields the values of s that coincide with the zeros of P(s). There-
fore, we note that the locus of the roots of the characteristic equation
1 + KP(s) = 0 begins at the poles of P(s) and ends at the zeros of P(s) as K
increases from zero to infinity. For most functions P(s) that we will encounter, sev-
eral of the zeros of P(s) lie at infinity in the s-plane. This is because most of our func-
tions have more poles than zeros. With n poles and M zeros and n > M, we have
n — M branches of the root locus approaching the n — M zeros at infinity.

Step 2: Locate the segments of the real axis that are root loci. The root locus on
the real axis always lies in a section of the real axis to the left of an odd number of poles
and zeros. This fact is ascertained by examining the angle criterion of Equation (7.17).
These two useful steps in plotting a root locus will be illustrated by a suitable example.

EXAMPLE 7.1 Second-order system
A single-loop feedback control system possesses the characteristic equation

K(%s + 1)
1+ GH(s) =1+ -5 = 0. (7.26)
Zsz + 5

StEP 1: The characteristic equation can be written as
2(s + 2
s+ _,

1+ K >
s°+ 4s

L]

where

The transfer function, P(s), is rewritten in terms of poles and zeros as
2(s + 2)

+ —
1 Ks(s+4) ’

(7.27)

and the multiplicative gain parameter is K. To determine the locus of roots for the
gain 0 = K = oo, we locate the poles and zeros on the real axis as shown in
Figure 7.6(a).

lsy + 2| Jsql
Root locus \ /
Zero segments Roots
\ b, / /
O
-4 -2 0 53 —4 -2 S5 9
e lsy + 4|

Poles

(a) (b) ©
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STEP 2: The angle criterion is satisfied on the real axis between the points 0 and -2,
because the angle from pole p; at the origin is 180°, and the angle from the zero and
pole p, at s = —4 is zero degrees. The locus begins at the pole and ends at the zeros,
and therefore the locus of roots appears as shown in Figure 7.6(b), where the direc-
tion of the locus as K is increasing (K 1) is shown by an arrow. We note that because
the system has two real poles and one real zero, the second locus segment ends at a
zero at negative infinity. To evaluate the gain K at a specific root location on the
locus, we use the magnitude criterion, Equation (7.16). For example, the gain X at

the root s = s, = —1 is found from (7.16) as
(2K)'Sl + 2| _
Isallsy + 4]
or
-1{l-1+4 3
K = l_”—l_| == (7.28)

21-1+21 2

This magnitude can also be evaluated graphically, as shown in Figure 7.6(c). For the

gain of K = %, one other root exists, located on the locus to the left of the pole at
—4. The location of the second root is found graphically to be located at s = —6, as
shown in Figure 7.6(c).

Now, we determine the number of separate loci, SL. Because the loci begin at
the poles and end at the zeros, the number of separate loci is equal to the number of
poles since the number of poles is greater than or equal to the number of zeros.
Therefore, as we found in Figure 7.6, the number of separate loci is equal to two
because there are two poles and one zero.

Note that the root loci must be symmetrical with respect to the horizontal real
axis because the complex roots must appear as pairs of complex conjugate roots. m

We now return to developing a general list of root locus steps.

Step 3: The loci proceed to the zeros at infinity along asymptotes centered at g
and with angles ¢ 4. When the number of finite zeros of P(s), M, is less than the num-
ber of poles n by the number N = n — M, then N sections of loci must end at zeros
at infinity. These sections of loci proceed to the zeros at infinity along asymptotes as
K approaches infinity. These linear asymptotes are centered at a point on the real
axis given by

n M
a > poles of P(s) — >, zeros of P(s) B ;(wpf) - Z(“Z:’)

% n-M - n—-M (7:29)
The angle of the asymptotes with respect to the real axis is
2k + 1
A=n_M180°, k=0,1,2,...,(n— M~ 1), (7.30)
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where £ is an integer index [3]. The usefulness of this rule is obvious for sketching
the approximate form of a root locus. Equation (7.30) can be readily derived by con-
sidering a point on a root locus segment at a remote distance from the finite poles
and zeros in the s-plane. The net phase angle at this remote point is 180°, because it
is a point on a root locus segment. The finite poles and zeros of P(s) are a great dis-
tance from the remote point, and so the angles from each pole and zero, ¢, are
essentially equal, and therefore the net angle is simply (n — M)¢, where n and M
are the number of finite poles and zeros, respectively. Thus, we have

(n — M)¢p = 180°,
or, alternatively,

180°
n—-M

¢ =

Accounting for all possible root locus segments at remote locations in the s-plane,
we obtain Equation (7.30).

The center of the linear asymptotes, often called the asymptote centroid, is
determined by considering the characteristic equation in Equation (7.24). For large
values of s, only the higher-order terms need be considered, so that the characteristic
equation reduces to

n

However, this relation, which is an approximation, indicates that the centroid of
n — M asymptotes is at the origin, s = 0. A better approximation is obtained if we
consider a characteristic equation of the form

K

— =0
(S _ O_A)n—M

1+

with a centroid at gy.
The centroid is determined by considering the first two terms of Equation
(7.24), which may be found from the relation

M
KH(S‘*'Z:')
1+ =1+K

TG + )
j=1

From Chapter 6, especially Equation (6.5), we note that

sM o+ bM_ISM_l + .-+ bo
s"+ a"..]S"_l + -+ oa '

M n
bM-—l = Ezi and a,-1 = Ep]
i=1 j=1

Considering only the first two terms of this expansion, we have

K
I+ n—-M n—M-1 =0
s + (an—l - bM—l)S
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The first two terms of

K

——— =0
(s = ou)'™"

1+

are
K
1+ — —— = 0.
"M — (n — M)ays”

n—M—1

Equating the term for s , we obtain
a1 = by-1 = —(n — M)ay,

or

i=1

n—M

n M
;(—pf) - 2 (-2)

(&7}

which is Equation (7.29).
For example, reexamine the system shown in Figure 7.2 and discussed in
Section 7.2. The characteristic equation is written as

K

1+———=0.
s(s +2) 0

Because n — M = 2, we expect two loci to end at zeros at infinity. The asymptotes
of the loci are located at a center
-2

UA=7=—1

and at angles of
¢4 =90°(fork =0) and ¢, = 270° (fork = 1).

The root locus is readily sketched, and the locus shown in Figure 7.3 is obtained. An
example will further illustrate the process of using the asymptotes.

EXAMPLE 7.2 Fourth-order system
A single-loop feedback control system has a characteristic equation as follows:

K(s+1)

L+ GHE) =1+

(7.31)

We wish to sketch the root locus in order to determine the effect of the gain K. The
poles and zeros are located in the s-plane, as shown in Figure 7.7(a). The root loci on
the real axis must be located to the left of an odd number of poles and zeros; they
are shown as heavy lines in Figure 7.7(a). The intersection of the asymptotes is

(D H2AH -1 -9
9a = 4-1 K

= -3 (7.32)
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FIGURE 7.7

A fourth-order
system with (a) a
zero and (b) root
locus.

Chapter 7 The Root Locus Method

Root loci sections

N )
/—%z(( -2 —ﬁo

Double pole

(a) (b)

The angles of the asymptotes are
¢qa = +60° (k =0),
¢4 =180° (k =1),and
¢a =300° (k=2),

|

where there are three asymptotes, since n — M = 3. Also, we note that the root loci
must begin at the poles; therefore, two loci must leave the double pole at s = —4.
Then with the asymptotes sketched in Figure 7.7(b), we may sketch the form of the
root locus as shown in Figure 7.7(b). The actual shape of the locus in the area near
o4 would be graphically evaluated, if necessary. m

We now proceed to develop more steps for the process of determining the root loci.

Step 4: Determine where the locus crosses the imaginary axis (if it does so),
using the Routh-Hurwitz criterion. The actual point at which the root locus crosses
the imaginary axis is readily evaluated by using the criterion.

Step 5: Determine the breakaway point on the real axis (if any). The root
locus in Example 7.2 left the real axis at a breakaway point. The locus breakaway
from the real axis occurs where the net change in angle caused by a small dis-
placement is zero. The locus leaves the real axis where there is a multiplicity of
roots (typically, two). The breakaway point for a simple second-order system is
shown in Figure 7.8(a) and, for a special case of a fourth-order system, is shown in
Figure 7.8(b). In general, due to the phase criterion, the tangents to the loci at the
breakaway point are equally spaced over 360°. Therefore, in Figure 7.8(a), we find
that the two loci at the breakaway point are spaced 180° apart, whereas in Figure
7.8(b), the four loci are spaced 90° apart.

The breakaway point on the real axis can be evaluated graphically or analyti-
cally. The most straightforward method of evaluating the breakaway point involves



FIGURE 7.8
lllustration of the
breakaway point

(a) for a simple
second-order
system and (b) for a
fourth-order
system.

FIGURE 7.9

A graphical
evaluation of the
breakaway point.
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Breakaway

I/ point

() (b)

the rearranging of the characteristic equation to isolate the multiplying factor K.
Then the characteristic equation is written as

p(s) = K. (7.33)

For example, consider a unity feedback closed-loop system with an open-loop trans-
fer function

K

=Gy

which has the characteristic equation

K

1+Gs)=1+——7———=0. 7.34
(s) (s +2)(s +4) (7.34)

Alternatively, the equation may be written as

K = p(s) = —(s + 2)(s + 4). (7.35)
The root loci for this system are shown in Figure 7.8(a). We expect the breakaway
point to be near s = ¢ = —3 and plot p(s)|,-, near that point, as shown in Figure 7.9.
In this case, p(s) equals zero at the poles s = —2 and s = —4. The plot of p(s) versus
s — o is symmetrical, and the maximum point occurs at s = ¢ = —3, the breakaway
point.

p(s)

(22
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Analytically, the very same result may be obtained by determining the maxi-
mum of K = p(s). To find the maximum analytically, we differentiate, set the differ-
entiated polynomial equal to zero, and determine the roots of the polynomial,
Therefore, we may evaluate

dK  dp(s)
s s 0 (7.36)
in order to find the breakaway point. Equation (7.36) is an analytical expression of
the graphical procedure outlined in Figure 7.9 and will result in an equation of only
one degree less than the total number of poles and zerosn + M — 1.

The proof of Equation (7.36) is obtained from a consideration of the character-
istic equation

KY(s)
1+ =1+ =0,
F(s) X@s)
which may be written as
X(s) + KY(s) = 0. (7.37)

For a small increment in K, we have
X(s) + (K + AK)Y(s) = 0.
Dividing by X (s) + KY(s) yields
AKY(s)

X kv

(7.38)

Because the denominator is the original characteristic equation, a multiplicity m of
roots exists at a breakaway point, and

Y(Y) Ci C"

X() + KYG) G- s Aoy 73)
Then we may write Equation (7.38) as
1+ ?Alj )(,’; =0, (7.40)
or, alternatively,
AA—I: = jA—él)m—_l (7.41)
Therefore, as we let As approach zero, we obtain
% =0 (7.42)

at the breakaway points.



FIGURE 7.10
Closed-loop
system.
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Now, considering again the specific case where

K
O
we obtain
p(s) = K= —(s + 2)(s + 4) = —(s* + 65 + 8). (7.43)
Then, when we differentiate, we have
d[;_is) =—(2s +6) =0, (7.44)
or the breakaway point occurs at s = —3. A more complicated example will illus-

trate the approach and demonstrate the use of the graphical technique to determine
the breakaway point.

EXAMPLE 7.3 Third-order system

A feedback control system is shown in Figure 7.10. The characteristic equation is

Ks+D) _, (7.45)

1+G(S)H(S): 1 +m_

The number of poles #» minus the number of zeros M is equal to 2, and so we have
two asymptotes at £90° with a center at o4, = —2. The asymptotes and the sec-
tions of loci on the real axis are shown in Figure 7.11(a). A breakaway point occurs
between s = —2 and s = —3. To evaluate the breakaway point, we rewrite the
characteristic equation so that K is separated; thus,

s(s+2)(s+3)+K(s+1)=0,

or
—s(s + 2)(s + 3)
= =K .
p(s) 1 (7.46)
Then, evaluating p(s) at various values of s between s = —2 and s = —3, we obtain

the results of Table 7.1, as shown in Figure 7.11(b). Alternatively, we differentiate

G(s)

+ K(s + 1)
s(s + 2)

R(s) » Y(s)

H(s)

s+3




458

FIGURE 7.11
Evaluation of the
(a) asymptotes and
(b) breakaway
point.
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Table 7.1
pls) 0 0.411 0.419 0.417 +0.390 0
s -2.00 -2.40 -2.46 -2.50 —2.60 -3.0

Equation (7.46) and set it equal to zero to obtain

d{=s(s+2)(s+3)\ _ ($+57+65) — (s +1)3Bs" + 105 +6) 0
ds (s +1) a (s + 1)? =

25> + 852 + 10s + 6 = 0. (747)

Now to locate the maximum of p(s), we locate the roots of Equation (7.47) to obtain
s = —2.46, —0.77 £ 0.79/. The only value of s on the real axis in the interval s = —2
tos = —3is s = —2.46; hence this must be the breakaway point. It is evident from
this one example that the numerical evaluation of p(s) near the expected breakaway
point provides an effective method of evaluating the breakaway point. m

Step 6: Determine the angle of departure of the locus from a pole and the angle
of arrival of the locus at a zero, using the phase angle criterion. The angle of locus
departure from a pole is the difference between the net angle due to all other poles
and zeros and the criterion angle of +180° (2k + 1), and similarly for the locus
angle of arrival at a zero. The angle of departure (or arrival) is particularly of inter-
est for complex poles (and zeros) because the information is helpful in completing
the root locus. For example, consider the third-order open-loop transfer function

K
(s + p3)(s2 + 2{w,s + w?,)'

F(s) = G(s)H(s) = (7.48)

The pole locations and the vector angles at one complex pole —p; are shown in
Figure 7.12(a). The angles at a test point s;, an infinitesimal distance from — p,, must

| Asymptote pls)
l
[}
}
| Maximum - 0.50
! N T T 0.419
: } -0.25
1 |
(72 C )( 1
-3 -2 -1 0 -3 —2.46 -2 0
|
i
1
1
1
1
i
1
i
(a) (b)



FIGURE 7.12
lustration of the
angle of departure.
(a) Test point
infinitesimal
distance from —p;.
(b) Actual departure
vector at —p;.

FIGURE 7.13
Evaluation of the
angle of departure.
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meet the angle criterion. Therefore, since 8, = 90°, we have

01 +02+63=91 + 90° +63= +180°,

or the angle of departure at pole p; is
0, = 90° — 65,

459

as shown in Figure 7.12(b). The departure at pole — p, is the negative of that at —p,
because —p; and —p, are complex conjugates. Another example of a departure

angle is shown in Figure 7.13. In this case, the departure angle is found from

6, — (6, + 65 + 90°) = 180° + k360°.
Since 6, — 63 = vy in the diagram, we find that the departure angle is 6; = 90° + .

Step 7: The final step in the root locus sketching procedure is to complete the
sketch. This entails sketching in all sections of the locus not covered in the previous
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| -

2N

rd
7
7
e
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P
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six steps. If a more detailed root locus is required, we recommend using a computer-

aided tool. (See Section 7.8.)

In some situation, we may want to determine a root location s, and the value of
the parameter K, at that root location. Determine the root locations that satisfy the
phase criterion at the root s,, x = 1,2,..., n, using the phase criterion. The phase
criterion, given in Equation (7.17), is

/ P(s) = 180° + k360°,

and k=0, £1, £2,....

To determine the parameter value K, at a specific root s,, we use the magnitude
requirement (Equation 7.16). The magnitude requirement at s, is

K

=M
HIS + Zil
i=1

n
H |5 + Pil
=1

5=5,

It is worthwhile at this point to summarize the seven steps utilized in the root
locus method (Table 7.2) and then illustrate their use in a complete example.

Table 7.2 Seven Steps for Sketching a Root Locus

Step

Related Equation or Rule

L.

2.

3

7.

Prepare the root locus sketch.

(a) Write the characteristic equation so that the
parameter of interest, K, appears as a multiplier.

(b) Factor P(s) in terms of n poles and M zeros.

(c) Locate the open-loop poles and zeros of P(s)
in the s-plane with selected symbols.

(d) Determine the number of separate loci, SL.

(e) The root loci are symmetrical with respect to the

horizontal real axis.

Locate the segments of the real axis that are root loci.

The loci proceed to the zeros at infinity along

asymptotes centered at 4 and with angles ¢ 4.

. Determine the points at which the locus crosses the

imaginary axis (if it does so).

. Determine the breakaway point on the real axis (if any).

. Determine the angle of locus departure from complex

poles and the angle of locus arrival at complex zeros,
using the phase criterion.
Complete the root locus sketch.

1 + KP(s) = 0.
M

H(S +z)
=1 _

H(é‘ + pj)
=1

X = poles, O = zeros

Locus begins at a pole and ends at a zero.

SL = nwhen n = M;n = number of finite poles,
M = number of finite zeros.

1+ K 0.

Locus lies to the left of an odd number of poles and
Zeros.

B E(_Pi) - E(‘Zi)
Ty n—M .

2k +
A= nk— ]kl,180°,k =0,1,2,...(n — M —1).

Use Routh—~Hurwitz criterion (see Section 6.2).

a) Set K = p(s).

b) Determine roots of dp(s)/ds = 0 or use
graphical method to find maximum of p(s).
/ P(s) = 180° + k360°ats = —p, or —z,




FIGURE 7.14
The root locus for
Example 7.4.
Locating (a) the
poles and (b) the
asymptotes.
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EXAMPLE 7.4 Fourth-order system

1. (a) We desire to plot the root locus for the characteristic equation of a system as K
varies for K > 0 when

K
3 3 2 =0
st 4+ 1257 + 64s° + 128s

(b) Determining the poles, we have

K
+ =
! s(s + 4)(s + 4 + ja)s + 4 — j4)

0 (7.49)

as K varies from zero to infinity. This system has no finite zeros.
(c) The poles are located on the s-plane as shown in Figure 7.14(a).
(d) Because the number of poles 7 is equal to 4, we have four separate loci.
(e) The root loci are symmetrical with respect to the real axis.
2. A segment of the root locus exists on the real axis between s = Oand s = —4.
3. The angles of the asymptotes arc
(2k + 1)
A= ——2180°, k=0,1,23;
4
b = +45° 135°,225°, 315°.
The center of the asymptotes is

~4—4-4
O'Azf.:

Then the asymptotes are drawn as shown in Figure 7.14(a).
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4. The characteristic equation is rewritten as
s(s +4)(s* + 85 +32) + K =s'+ 125 + 645 + 1285 + K = 0. (7.50)

Therefore, the Routh array is

st 1 64 K

$ 12 128

S2 bl K N

?J (8]

0 K

where
_12(64) — 128 333 and _53.33(128) - 12K
1= 12 =200 and o = 53.33

Hence, the limiting value of gain for stability is K = 568.89, and the roots of the auxil-
iary equation are

53.33s? + 568.89 = 53.33(s> + 10.67) = 53.33(s + j3.266)(s — j3.266). (7.51)

The points where the locus crosses the imaginary axis are shown in Figure 7.14(a).
Therefore, when K = 568.89, the root locus crosses the jw-axis at s = +/3.266.

5. The breakaway point is estimated by evaluating
K=p(s)=—s(s +4)s + 4+ jd)s + 4 — j4)

between s = —4 and s = 0. We expect the breakaway point to liec between s = —3 and
s = —1, so we search for a maximum value of p(s) in that region. The resulting values
of p(s) for several values of s are given in Table 7.3. The maximum of p(s) is found to lie
at approximately s = —1.577, as indicated in the table. A more accurate estimate of the
breakaway point is normally not necessary. The breakaway point is then indicated on
Figure 7.14(a).

6. The angle of departure at the complex pole p; can be estimated by utilizing the angle
criterion as follows:

8, + 90° + 90° + 83 = 180° + k360°.

Here, 8; is the angle subtended by the vector from pole p3. The angles from the pole at
s = —4and s = —4 — j4 are each equal to 90°, Since #; = 135°, we find that

g, = —135° = +225°,

as shown in Figure 7.14(a).
7. Complete the sketch as shown in Figure 7.14(b).

Table 7.3
p(s) 0 51.0 68.44 80.0 83.57 75.0 0
K —4.0 -3.0 -2.5 =20 -1.577 -1.0 0
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Using the information derived from the seven steps of the root locus method,
the complete root locus sketch is obtained by filling in the sketch as well as possible
by visual inspection. The root locus for this system is shown in Figure 7.14(b). When
the complex roots near the origin have a damping ratio of { = 0.707, the gain K can
be determined graphically as shown in Figure 7.14(b). The vector lengths to the root
location s; from the open-loop poles are evaluated and result in a gain at s; of

K = |sillsy + 4lls; = pills; — pil = (1.9)(2.9)(3.8)(6.0) = 126.  (7.52)

The remaining pair of complex roots occurs at s, and §,, when K = 126. The effect
of the complex roots at s, and §, on the transient response will be negligible com-
pared to the roots s; and §,. This fact can be ascertained by considering the damping
of the response due to each pair of roots. The damping due to s; and 5 is

e‘@']w"ll - e—"‘ll,
and the damping factor due to s, and 5, is
e—{zm,,zl — e—vzl ,

where o, is approximately five times as large as o;. Therefore, the transient response
term due to s, will decay much more rapidly than the transient response term due to
s1. Thus, the response to a unit step input may be written as

1) =1+ cie®'sin(wz + 6)) + cre” "' sin(wyt + 6
y 1 2 2 2

1+ Cle_gll Sin(wlt + 61). (7.53)

Q

The complex conjugate roots near the origin of the s-plane relative to the other roots
of the closed-loop system are labeled the dominant roots of the system because they
represent or dominate the transient response. The relative dominance of the complex
roots, in a third-order system with a pair of complex conjugate roots, is determined
by the ratio of the real root to the real part of the complex roots and will result in
approximate dominance for ratios exceeding S.

The dominance of the second term of Equation (7.53) also depends upon the rel-
ative magnitudes of the coefficients ¢; and c¢,. These coefficients, which are the
residues evaluated at the complex roots, in turn depend upon the location of the
zeros in the s-plane. Therefore, the concept of dominant roots is useful for estimating
the response of a system, but must be used with caution and with a comprehension of
the underlying assumptions. =

EXAMPLE 7.5 Automatic self-balancing scale

The analysis and design of a control system can be accomplished by using the
Laplace transform, a signal-flow diagram or block diagram, the s-plane, and the root
locus method. At this point, it will be worthwhile to examine a control system and
select suitable parameter values based on the root locus method.

Figure 7.15 shows an automatic self-balancing scale in which the weighing oper-
ation is controlled by the physical balance function through an electrical feedback
loop [5]. The balance is shown in the equilibrium condition, and x is the travel of the
counterweight W, from an unloaded equilibrium condition. The weight W to be
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Table 7.5 Specifications

Steady-state error K, = 00, e, = 0for a step input
Underdamped response =105
Settling time (2% criterion) Less than 2 seconds

2 seconds in order to provide a rapid weight-measuring device. The settling time
must be within 2% of the final value of the balance following the introduction of a
weight to be measured. The specifications are summarized in Table 7.5.

The derivation of a model of the electromechanical system may be accom-
plished by obtaining the equations of motion of the balance. For small deviations
from balance, the deviation angle is

[\

0 = = (7.54)
The motion of the beam about the pivot is represented by the torque equation
do
I— = torques.
dr? 2, torq
Therefore, in terms of the deviation angle, the motion is represented by
d’6 do
— = LW — xW, - [7b—. 7.55
I 2 e L (7.55)
The input voltage to the motor is
vult) = Kiy — fo' (7.56)
The lead screw motion and transfer function of the motor are described by
9"1 § K'N
X(s) = K;0,,(s) and () _ (7.57)

Vols) s(rs + 1)

where 7 will be negligible with respect to the time constants of the overall system,
and 6,, is the output shaft rotation. A signal-flow graph and block diagram repre-
senting Equations (7.54) through (7.57) is shown in Figure 7.16. Examining the for-
ward path from W to X(s), we find that the system is a type one due to the
integration preceding Y(s). Therefore, the steady-state error of the system is zero.

The closed-loop transfer function of the system is obtained by utilizing Mason’s
signal-flow gain formula and is found to be

X(g) - lwliKiKmKs/(ISB)
W(S) 1+ l,zb/(IS) + (KmK.va/S) + liKiK/nKsW(.‘/(IS}) + liz bl{nt](sl(f/([sz)1
(7.58)

where the numerator is the path factor from W to X, the second term in the denom-
inator is the loop L, the third term is the loop factor L,, the fourth term is the loop
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FIGURE 7.16
Model of the
automatic self-
balancing scale.
(a) Signal-flow
graph. (b) Block
diagram.
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L3, and the {ifth term is the two nontouching loops L, L,. Therefore, the closed-loop
transfer function is

X(S) - lw[iKiKmKs (7 59)
W(s)  s(Is + Bb)(s + K, K.K;) + WK, KKl B
The steady-state gain of the system is then
t X L
tim 20y X e 5k (7.60)

B [W[ s W(s) | W,

when W(s) = |W|/s. To obtain the root locus as a function of the motor constant
K,,, we substitute the selected parameters into the characteristic equation, which is
the denominator of Equation (7.59). Therefore, we obtain the following characteris-
tic equation:

K, 96K,
+ + _— + _ = . .
s(s 8\/5)(s 10 ) 10 0 (7.61)

Rewriting the characteristic equation in root locus form, we first isolate K,, as
follows:

(s + 8V3) + s(s + 8VE) I 4 D =g (7.62)



FIGURE 7.17
Root locus as K,
varies (only upper
halfplane shown).
One locus leaves
the two poles at the
origin and goes to
the two complex
zeros as K
increases. The
other locus is to the
left of the pole at

s = —14,
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T

."3 = =3
e,
-30

Then, rewriting Equation (7.62) in root locus form, we have

e KRG -1+ Kn/(10m)[s(s + 8V/3) +96] _ .

32(3 + 8\/5)

K../(10 + 6.93 + j6.93)(s + 6.93 — j6.93
., Ka/Q0m)Gs j6.93)(s 699 e

sz(s + 8\/5)

The root locus as K, varies is shown in Figure 7.17. The dominant roots can be
placed at { = 0.5 when K = 25.3 = K,,/107. To achieve this gain,
Ipm

rad/s
= 7600——,
volt volt

K, = 795 (7.64)

an amplifier would be required to provide a portion of the required gain. The real
part of the dominant roots is less than —4; therefore, the settling time, 4/, is less than
1 second, and the settling time requirement is satisfied. The third root of the charac-
teristic equation is a real root at s = —30.2, and the underdamped roots clearly dom-
inate the response. Therefore, the system has been analyzed by the root locus method
and a suitable design for the parameter K,, has been achieved. The efficiency of the
s-plane and root locus methods is clearly demonstrated by this example. m

7.4 PARAMETER DESIGN BY THE ROOT LOCUS METHOD

Originally, the root locus method was developed to determine the locus of roots of
the characteristic equation as the system gain, K, is varied from zero to infinity.
However, as we have seen, the effect of other system parameters may be readily
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investigated by using the root locus method. Fundamentally, the root locus method
is concerned with a characteristic equation (Equation 7.22), which may be written as

1 + F(s) = 0. (7.65)

Then the standard root locus method we have studied may be applied. The question
arises: How do we investigate the effect of two parameters, « and 8? It appears that
the root locus method is a single-parameter method; fortunately, it can be readily
extended to the investigation of two or more parameters. This method of parameter
design uses the root locus approach to select the values of the parameters.

The characteristic equation of a dynamic system may be written as

a,s" + a,18" M+ o+ as + ay= 0. (7.66)

Hence, the effect of the coefficient a; may be ascertained from the root locus equation

as
1+ — o 5 =0. (7.67)
a,s" + a,_15" + -+ ast +oay

If the parameter of interest, «, does not appear solely as a coefficient, the parameter
may be isolated as

as" + a,_s"+ o+ (ay—g —@)s" 9+ as" "+ - +as+ay=0. (7.68)
For example, a third-order equation of interest might be
S$+@B+a)s+35+6=0. (7.69)

To ascertain the effect of the parameter «, we isolate the parameter and rewrite the
equation in root locus form, as shown in the following steps:

S +3%+as*+3s+6=0 (7.70)

C(SZ

1+ -
S +3%2+3s5+6

0. (7.71)

Then, to determine the effect of two parameters, we must repeat the root locus
approach twice. Thus, for a characteristic equation with two variable parameters, «
and B3, we have

as" + @, 8" (G — @) s+
+(a,_, —B)s" T+ BT+ +as+ta=0  (7.72)
The two variable parameters have been isolated, and the effect of a will be deter-

mined. Then, the effect of 8 will be determined. For example, for a certain third-
order characteristic equation with & and $ as parameters, we obtain

sS+s2+ Bs+a=0. (7.73)

In this particular case, the parameters appear as the coefficients of the characteristic
equation. The effect of varying B from zero to infinity is determined from the root
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locus equation

Bs
1+ —5——5——=0. 7.74
S+ +a (7.74)
We note that the denominator of Equation (7.74) is the characteristic equation of
the system with 8 = (. Therefore, we must first evaluate the effect of varying « from

zero to infinity by using the equation
S+ +a=0,
rewritten as

(24

+ =0, 7.75
(s + 1) (7.75)

where 8 has been set equal to zero in Equation (7.73). Then, upon evaluating the
effect of @, a value of « is selected and used with Equation (7.74) to evaluate the effect
of B. This two-step method of evaluating the effect of « and then 8 may be carried
out as two root locus procedures. First, we obtain a locus of roots as « varies, and we
select a suitable value of a; the results are satisfactory root locations. Then, we obtain
the root locus for 8 by noting that the poles of Equation (7.74) are the roots evalu-
ated by the root locus of Equation (7.75). A limitation of this approach is that we
will not always be able to obtain a characteristic equation that is linear in the para-
meter under consideration (for example, a).

To illustrate this approach effectively, let us obtain the root locus for @ and then
B for Equation (7.73). A sketch of the root locus as « varies for Equation (7.75) is
shown in Figure 7.18(a), where the roots for two values of gain « are shown. If the
gain « is selected as a, then the resultant roots of Equation (7.75) become the poles
of Equation (7.74). The root locus of Equation (7.74) as 8 varies is shown in Figure
7.18(b), and a suitable B can be selected on the basis of the desired root locations.

Using the root locus method, we will further illustrate this parameter design
approach by a specific design example.

B

@

& S~ @

o
— Ay > < >
a a1 N\ a B 0

Double a

pole a /X 1
FIGURE 7.18 @

Root loci as a
function of @ and B.
(a) Loci as a varies.
(b) Loci as B varies
for one value of

a = .

(a)

(b)
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FIGURE 7.19
Block diagram of
welding head
control system.
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EXAMPLE 7.6 Welding head control

A welding head for an auto body requires an accurate control system for positioning
the welding head [4]. The feedback control system is to be designed to satisfy the
following specifications:

1. Steady-state error for a ramp input =35% of input slope
2. Damping ratio of dominant roots =0.707
3. Settling time to within 2% of the final value <3 seconds
The structure of the feedback control system is shown in Figure 7.19, where the

amplifier gain K and the derivative feedback gain K, are to be selected. The steady-
state error specification can be written as

. . . s(IRI/s?)
e = xl-Ln(;lo e(t) = lslglosE(s) = lim—————— (7.76)

s—01 + Gz(S)’
where G,(s) = G(s)/(1 + G(s)H(s)). Therefore, the steady-state error require-
ment is

6—53_2+K]K2

= = 0.35. 777
|R| K (7.77)

Thus, we will select a small value of K, to achieve a low value of steady-state
error. The damping ratio specification requires that the roots of the closed-loop sys-
tem be below the line at 45° in the left-hand s-plane. The settling time specification
can be rewritten in terms of the real part of the dominant roots as

4

T,=—=3s (7.78)

Therefore, it is necessary that ¢ = %;; this area in the left-hand s-plane is indicated
along with the {-requirement in Figure 7.20. Note that o = %; implies that we want
the dominant roots to lie to the left of the line defined by o = — “4. To satisfy the
specifications, all the roots must lie within the shaded area of the left-hand plane.

The parameters to be selected are « = K; and 8 = K,K,. The characteristic
equation is

1+GH(s)=s*+25+ Bs+a=0. (7.79)

> Yiv)

r 3
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FIGURE 7.22
Two-parameter root
locus. The loci for «
varying are solid;
the loci for 8
varying are dashed.

Chapter 7 The Root Locus Method

o = —3.15; therefore, the time to settle (to within 2% of the final value) is equal to
1.27 seconds, which is considerably less than the specification of 3 seconds. w

We can extend the root locus method to more than two parameters by extend-
ing the number of steps in the method outlined in this section. Furthermore, a fami-
ly of root loci can be generated for two parameters in order to determine the total
effect of varying two parameters. For example, let us determine the effect of varying
o and B of the following characteristic equation:

$+3%+25+Bs+a=0. (7.82)
The root locus equation as a function of « is (set 8 = 0)
a
+——==0. 7.83
1 s(s + 1)(s + 2) (7.83)
The root locus as a function of B is
1+ Bs =0 (7.84)

S +32 4+ 2% +a

The root locus for Equation (7.83) as a function of « is shown in Figure 7.22 (unbro-
ken lines). The roots of this locus, indicated by slashes, become the poles for the locus
of Equation (7.84). Then the locus of Equation (7.84) is continued on Figure 7.22
(dotted lines), where the locus for 8 is shown for several selected values of a. This
family of loci, often called root contours, illustrates the effect of @ and 8 on the roots
of the characteristic equation of a system [3].

iz
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)
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7.5 SENSITIVITY AND THE ROOT LOCUS

One of the prime reasons for the use of negative feedback in control systems is the re-
duction of the effect of parameter variations. The effect of parameter variations, as we
found in Section 4.3, can be described by a measure of the sensitivity of the system
performance to specific parameter changes. In Section 4.3, we defined the logarithmic
sensitivity originally suggested by Bode as

T _ alnT N aTr/T (7.85)
K7 9InK ~ oK/K '
where the system transfer function is 7(s) and the parameter of interest is K.

In recent years, there has been an increased use of the pole-zero (s-plane)
approach. Therefore, it has become useful to define a sensitivity measure in terms of
the positions of the roots of the characteristic equation [7-9]. Because these roots
represent the dominant modes of transient response, the effect of parameter varia-
tions on the position of the roots is an important and useful measure of the sensitiv-
ity. The root sensitivity of a system 7(s) can be defined as

N ar,- al'i
= 3mK ~ K/K (7.86)
where r; equals the ith root of the system, so that
M
KlH(S + z)
T(s) = ———— (7.87)

_1:_!(3 +r)

and K is a parameter affecting the roots. The root sensitivity relates the changes in

the location of the root in the s-plane to the change in the parameter. The root sen-

sitivity is related to the logarithmic sensitivity by the relation
r _9lnkK, oo 1

K—aan ,~=161nK.s+r,~

(7.88)

when the zeros of T(s) are independent of the parameter K, so that
JInK

This logarithmic sensitivity can be readily obtained by determining the derivative of
T(s), Equation (7.87), with respect to K. For this particular case, when the gain of the
system is independent of the parameter K, we have

T > o L
Sk = —25,3~
=

s+ r,~’
and the two sensitivity measures are directly related.

(7.89)
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FIGURE 7.23
A feedback control
system.
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The evaluation of the root sensitivity for a control system can be readily accom-
plished by utilizing the root locus methods of the preceding section. The root sensitiv-
ity Sk may be evaluated at root —r; by examining the root contours for the parameter
K. We can change K by a small finite amount AK and determine the modified root
~(r; + Ar;) at K + AK. Then, using Equation (7.86), we have

Ar;
AK/K

Sk =~ (7.90)

Equation (7.90) is an approximation that approaches the actual value of the sensitivity
as AK — 0. An example will illustrate the process of evaluating the root sensitivity.

EXAMPLE 7.7 Root sensitivity of a control system

The characteristic equation of the feedback contro} system shown in Figure 7.23 is

K
1+——-=0
s(s + B) ’
or, alternatively,
st + Bs + K =0. (7.91)

The gain K will be considered to be the parameter . Then the effect of a change in
each parameter can be determined by utilizing the relations

a=ay+t Aa and B =, AB,

where o, and B are the nominal or desired values for the parameters « and S,
respectively. We shall consider the case when the nominal pole value is By = 1 and
the desired gain is &y = K = 0.5. Then the root locus can be obtained as a function
of @ = K by utilizing the root locus equation

K K

l+m=l+m=0, (7.92)

as shown in Figure 7.24. The nominal value of gain K = «, = 0.5 results in two com-
plex roots, —r; = —0.5 + j0.5 and —r, = -7y, as shown in Figure 7.24. To evaluate
the effect of unavoidable changes in the gain, the characteristic equation with
a = gy + Aa becomes

sS+s+aytAa=s+s+05=+ Aa. (7.93)

Therefore, the effect of changes in the gain can be evaluated from the root locus of
Figure 7.24. For a 20% change in a, we have Aa = +0.1. The root locations for a

K . v
Ris) G(s) _s(s B » Yiv)




FIGURE 7.24
The root locus
for K.
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gain « = 0.4 and a = 0.6 are readily determined by root locus methods, and the
root locations for A = +0.1 are shown in Figure 7.24. When @ = K = (0.6, the root
in the second quadrant of the s-plane is

(~=r)) + Ar; = —0.5 + j0.59,

and the change in the root is Ar; = +;0.09. When « = K = 0.4, the root in the sec-
ond quadrant is

_(7’1) + Arl = -0.5 + ]0387,

and the change in the root is —Ar; = —j0.11. Thus, the root sensitivity for r, is
sp, = A M09 s 045 4900 (7.94)
K= AKJK - wop 1045 = 040 '

for positive changes of gain. For negative increments of gain, the sensitivity is

r Arl —]0.].1 .
I = = = — = —00°
S~ 3K/K = hog = 1055 = 055/=90

For infinitesimally small changes in the parameter K, the sensitivity will be equal for
negative or positive increments in K. The angle of the root sensitivity indicates the
direction the root moves as the parameter varies. The angle of movement for +Aa is
always 180° from the angle of movement for —Ae« at the point & = «,.

The pole B varies due to environmental changes, and it may be represented by
B = Bo + AB, where B, = 1. Then the effect of variation of the poles is represented
by the characteristic equation

S +s+ ABs+ K =0,
or, in root locus form,
ABs

L+ =
s+ s+ K

(7.95)
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FIGURE 7.25
The root locus for
the parameter 8.
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The denominator of the second term is the unchanged characteristic equation when
AB = 0. The root locus for the unchanged system (A = 0) is shown in Figure 7.24
as a function of K. For a design specification requiring { = 0.707, the complex roots
lie at

-r; = =05+ j05 and -r,= -7, = —0.5 — jO.5.

Then, because the roots are complex conjugates, the root sensitivity for r, is the con-
jugate of the root sensitivity for 7; = r,. Using the parameter root locus techniques
discussed in the preceding section, we obtain the root locus for AB as shown in
Figure 7.25. We are normally interested in the effect of a variation for the parameter
so that 8 = By £ A, for which the locus as 8 decreases is obtained from the root
locus equation

—(AB)s _
£+s+K

We note that the equation is of the form
1 - ABP(s) =0.

Comparing this equation with Equation (7.23) in Section 7.3, we find that the sign
preceding the gain A is negative in this case. In a manner similar to the develop-
ment of the root locus method in Section 7.3, we require that the root locus satisfy
the equations

|ABP(s)l =1 and /P(s) = 0° + k360°,

AB=01 ! R
(approximately) !
1N

: i j0.50

j0.25

O

50

b —j025

—|=j0.50

-j0.75
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where k is an integer. The locus of roots follows a zero-degree locus in contrast with
the 180° locus considered previously. However, the root locus rules of Section 7.3
may be altered to account for the zero-degree phase angle requirement, and then
the root locus may be obtained as in the preceding sections. Therefore, to obtain the
effect of reducing B, we determine the zero-degree locus in contrast to the 180°
locus, as shown by a dotted locus in Figure 7.25. To find the effect of a 20% change
of the parameter 8, we evaluate the new roots for AB = +0.20, as shown in Figure
7.25. The root sensitivity is readily evaluated graphically and, for a positive change
in B, is

Ar,  0.16/—128°

Sh=2p5 = om0 - 080/z1z8"

The root sensitivity for a negative change in 8 is

Ar,  0.125/39°
= = 0.625/+39°.
AB/B 0.20 0.625/+3%

As the percentage change AB/B decreases, the sensitivity measures S [,L and S[,'_ will
approach equality in magnitude and a difference in angle of 180°. Thus, for small
changes when AB/B = 0.10, the sensitivity measures are related as

151 = Isp

sy =

and

/Sg. = 180° + /Sg_.

Often, the desired root sensitivity measure is desired for small changes in the
parameter. When the relative change in the parameter is of the order AB/8 = 0.10,
we can estimate the increment in the root change by approximating the root locus
with the line at the angle of departure 6,,.. This approximation is shown in Figure 7.25
and is accurate for only relatively small changes in AB. However, the use of this
approximation allows the analyst to avoid sketching the complete root locus diagram.
Therefore, for Figure 7.25, the root sensitivity may be evaluated for Ag/B8 = 0.10
along the departure line, and we obtain

0.075/—132°
—oﬁ% =0.75/-132°. (7.96)

Sgv =

The root sensitivity measure for a parameter variation is useful for comparing

the sensitivity for various design parameters and at different root locations. Com-

paring Equation (7.96) for 8 with Equation (7.94) for a, we find (a) that the sensi-

tivity for B is greater in magnitude by approximately 50% and (b) that the angle

for Sg_ indicates that the approach of the root toward the jw-axis is more sensitive for

changes in 8. Therefore, the tolerance requirements for 8 would be more stringent

than for «. This information provides the designer with a comparative measure of
the required tolerances for each parameter. m
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FIGURE 7.26
Pole and zero
diagram for the
parameter 3.
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EXAMPLE 7.8 Root sensitivity to a parameter
A unity feedback control system has a forward transfer function

Gls) = 20.7(s + 3) ,
s(s +2)(s + B)
where 8 = By + AB and B, = 8. The characteristic equation, as a function of A8, is
s(s +2)(s +8+ AB) +20.7(s +3) =0,
or
s(s +2)(s + 8) + ABs(s + 2) + 20.7(s + 3) = 0.

When AB = 0, the roots are

—ry = —2.36 + j248, -r,=r, and -r3= -=527.
The root locus for A is determined by using the root locus equation

ABs(s + 2) _

(s+ r)s+ 7))+ r3)

1+ (7.97)

The roots and zeros of Equation (7.97) are shown in Figure 7.26. The angle of
departure at r is evaluated from the angles as follows:

1800 = —(9(! + 900 + 6[);) + (021 + 017_)
= —(6, + 90° + 40°) + (133° + 98°).

Therefore, 6, = —80° and the locus is approximated near —r, by the line at an angle
of 8,. For a change of Ar; = 0.2/—80° along the departure line, the +Af is evalu-
ated by determining the vector lengths from the poles and zeros. Then we have

tag = A8375)(02) 048
k= (325(23)
j3
j2
[
—— [ — _}l
v s w,
S B e e B O el
L I N -l
A N R O I
R
B [ —j2
| RS |
_ J,,.ffzy | - —i3




FIGURE 7.27
Pole-zero diagram
for the parameter .
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Therefore, the sensitivity at r; is

Ary  02/-80°

Sg = AB/E 0488 = 3.34/-80°,

which indicates that the root is quite sensitive to this 6% change in the parameter S.
For comparison, it is worthwhile to determine the sensitivity of the root —r; to a
change in the zero s = —3. Then the characteristic equation is

s(s +2)(s + 8) +207(s + 3+ Ay) =0,
or

20.7 Ay

L Py R A

(7.98)

The pole-zero diagram for Equation (7.98) is shown in Figure 7.27. The angle of
departure at root —ry is 180° = —(6; + 90° + 40°), or

6y = +50°.
For a change of Ar; = 0.2/+50°, the Avy is positive. Obtaining the vector lengths,
we find that
_5.22(4.18)(0.2)

207 = 0.21.

|Ayl

Therefore, the sensitivity at r; for +Ay is

Ar,  02/+50°
= = = 2.84/+50°.
5y Ay/y 0.21/3

Thus, we find that the magnitude of the root sensitivity for the pole 8 and the zero y
is approximately equal. However, the sensitivity of the system to the pole can be con-
sidered to be less than the sensitivity to the zero because the angle of the sensitivity,
§7, is equal to +50° and the direction of the root change is toward the jw-axis.

! f :A'y i
S S‘SO" R
TR
Co o ! : j2
Pl i
7#‘77”“ I il
N P | 0
=5 -4 =3 (=20 -1
[
. | i1
- R R P
. . P | =j3
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Evaluating the root sensitivity in the manner of the preceding paragraphs, we
find that the sensitivity for the pole s = —§, = =2 is

Sy = 2.1/+27°.

Thus, for the parameter 6, the magnitude of the sensitivity is less than for the other
parameters, but the direction of the change of the root is more important than for 8
andy. m

To utilize the root sensitivity measure for the analysis and design of control sys-
tems, a series of calculations must be performed; they will determine the various
selections of possible root configurations and the zeros and poles of the open-loop
transfer function. Therefore, the root sensitivity measure as a design technique is
somewhat limited by two things: the relatively large number of calculations required
and the lack of an obvious direction for adjusting the parameters in order to provide
a minimized or reduced sensitivity. However, the root sensitivity measure can be uti-
lized as an analysis measure, which permits the designer to compare the sensitivity
for several system designs based on a suitable method of design. The root sensitivity
measure is a useful index of the system’s sensitivity to parameter variations expressed
in the s-plane. The weakness of the sensitivity measure is that it relies on the ability
of the root locations to represent the performance of the system. As we have seen in
the preceding chapters, the root locations represent the performance quite adequately
for many systems, but due consideration must be given to the location of the zeros of
the closed-loop transfer function and the dominancy of the pertinent roots. The root
sensitivity measure is a suitable measure of system performance sensitivity and can
be used reliably for system analysis and design.

7.6 PID CONTROLLERS

One form of controller widely used in industrial process control is the three-term,
PID controller [4, 10]. This controller has a transfer function

K,
GC(S) = KI) + T + KDS.

The equation for the output in the time domain is

de(t)
de

I»l(t) = er([) + K,/e(t) dr + KD

The three-term controller is called a PID controller because it contains a propor-
tional, an integral, and a derivative term represented by K, K and K, respectively.
The transfer function of the derivative term is actually

KDS
Gd(s) = Tds + 15

but 7, is usually much smaller than the time constants of the process itself, so it is
neglected.
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If we set Kp = 0, then we have the proportional plus integral (PI) controller

K
Gils) = K, + .

When K; = 0, we have

GC(S) = KI’ + KDS,

which is called a proportional plus derivative (PD) controller.
The PID controller can also be viewed as a cascade of the PI and the PD con-
trollers. Consider the PI controller

A

A K
Gpi(s) = Kp + TI
and the PD controller
Gpp(s) = Kp + Kps,

where k[) and k, are the PI controller gains and Kp and K, are the PD controller
gains. Cascading the two controllers (that is, placing them in series) yields

G.(s) = Gpi(s)Gpp(s)

RN
= KP+T(KP+KDS)
KKp

= (Epkp + le(D) + kPEDS + s

K;
= Kp + KDS + T,

where we have the following relationships between the PI and PD controller gains
and the PID controller gains

Kp = R—pkp + k[?p

KD = kpkn

K[ = k[fp.
Consider the PID controller

KDSZ + KPS + Kl
)

LY
Gu(s) = Kp + =" + Kps =

_ Kp(s® + as + b) _ Kp(s + 21)(s + z2)

k]

N S

where @« = Kp/Kp and b = K;/Kp. Therefore, a PID controller introduces a trans-
fer function with one pole at the origin and two zeros that can be located anywhere
in the s-plane.
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Controller Process
+

R(x) G(s) G(s > Yis)
FIGURE 7.28 H = ©) :
Closed-loop system
with a controller. l

Recall that a root locus begins at the poles and ends at the zeros. If we have a
system, as shown in Figure 7.28, with

\ 4

1
G(s)="—"""7",
O =G+26+9
and we use a PID controller with complex zeros —z; and —z;, where —z; = =3 + 1
and —z, = —Z;, we can plot the root locus as shown in Figure 7.29. As the gain, K, of

the controller is increased, the complex roots approach the zeros. The closed-loop
transfer function is

_ G(s)G(s)
o) = 15 60G.0)

__ Kp(s+ 2))(s + %))
(s + r)(s+r)is+7)

The response of this system will be attractive. The percent overshoot to a step will be
less than 2%, and the steady-state error for a step input will be zero. The settling
time will be approximately 1 second. If a shorter settling time is desired, then we
select z; and z; to lie further left in the left-hand s-plane and set Kp to drive the
roots near the complex zeros.

Many industrial processes are controlled using PID controllers. The popularity
of PID controllers can be attributed partly to their good performance in a wide
range of operating conditions and partly to their functional simplicity that allows

43
+ 2
-r X,
-z -+ jl
——t «——K—
n -4
FIGURE 7.29
Root tocus for plant -n
with a PID
controller with
complex zeros.
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Table 7.6 Effect of Increasing the PID Gains K, Kp, and K, on the Step Response

Percent Steady-State
PID Gain Overshoot Settling Time Error
Increasing Kp Increases Minimal impact Decreases
Increasing K| Increases Increases Zero steady-state error
Increasing K Decreases Decreases No impact

FIGURE 7.30
Unity feedback
control system with
PID controller.

engineers to operate them in a simple, straightforward manner. To implement
the PID controller, three parameters must be determined, the proportional gain,
denoted by Kp, integral gain, denoted by K, and derivative gain denoted by K, [10].

There are many methods available to determine acceptable values of the PID
gains. The process of determining the gains is often called PID tuning. A common
approach to tuning is to use manual PID tuning methods, whereby the PID control
gains are obtained by trial-and-error with minimal analytic analysis using step re-
sponses obtained via simulation, or in some cases, actual testing on the system and
deciding on the gains based on observations and experience. A more analytic
method is known as the Ziegler-Nichols tuning method. The Ziegler-Nichols tuning
method actually has several variations, We discuss in this section a Ziegler-Nichols
tuning method based on open-loop responses to a step input and a related a Ziegler-
Nichols tuning method based on closed-loop response to a step input.

One approach to manual tuning is to first set K, = 0 and Kp = 0. This is fol-
lowed by slowly increasing the gain Kp until the output of the closed-loop system
oscillates just on the edge of instability. This can be done either in simulation or on
the actual system if it cannot be taken off-line. Once the value of Kp (with K; = 0
and Kp = 0) is found that brings the closed-loop system to the edge of stability, you
reduce the value of gain Kp to achieve what is known as the quarter amplitude
decay. That is, the amplitude of the closed-loop response is reduced approximately
to one-fourth of the maximum value in one oscillatory period. A rule-of-thumb is to
start by reducing the proportional gain Kp by one-half. The next step of the design
process is to increase K; and K manually to achieve a desired step response. Table
7.6 describes in general terms the effect of increasing K; and K.

EXAMPLE 7.9 Manual PID tuning

Consider the closed-loop system in Figure 7.30 with

1
s(s + b)(s + 2lw,)’

where b = 10,¢ = 0.707,and »,, = 4.

G(s) =

T8

Controller Process
+
Ris) 3 Ky, + —K'— + K, 5 ! » (V)
L4 s D s(s + b)(s + 2{w,)

+
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FIGURE 7.31

(a) Step response
with Ko = 885.5,
KD = 0,and K, = 0.
(b) Root locus
showing Kp = 885.5
results in marginal
stability with

s = +7.5/.
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To begin the manual tuning process, set K; = 0 and K, = 0 and increase Kp
until the closed-loop system has sustained oscillations. As can be seen in Figure
7.31a, when Kp = 885.5, we have a sustained oscillation of magnitude A = 1.9 and
period P = 0.83 s. The root locus shown in Figure 7.31b corresponds to the charac-
teristic equation

1
L+ K”[s(s F10)(s + 5.66)] =0.

The root locus shown in Figure 7.31b illustrates that when Kp = 885.5, we have
closed-loop poles at s = +7.5j leading to the oscillatory behavior in the step response
in Figure 7.31a.

Reduce Kp = 885.5 by half as a first step to achieving a step response with ap-
proximately a quarter amplitude decay. You may have to iterate on the value
Kp = 442.75. The step response is shown in Figure 7.32 where we note that the peak
amplitude is reduced to one-fourth of the maximum value in one period, as desired.
To accomplish this reduction, we refined the value of Kp by slowly reducing the
value from Kp = 442.75 to Kp = 370.

The root locus for Kp = 370, K; = 0,and 0 = Kp < o0 is shown in Figure 7.33.
In this case, the characteristic equation is

s
1+ K = 0.
Pl(s + 10)(s + 5.66) + Kp]
We see in Figure 7.33 that as K increases, the root locus shows that the closed-loop
complex poles move left, and in doing so, increases the associated damping ratio and
thereby decreases the percent overshoot. The movement of the complex poles to the
left also increases the associated {w,, thereby reducing the settling time. These



FIGURE 7.32
Step response with
Kp = 370 showing
the quarter
amplitude decay.

FIGURE 7.33
Root locus for
Kp = 370,

K; =0, and
0= KD < 00,
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effects of varying K p are consistent with information provided in Table 7.6. As Kp
increases (when K > 75), the real root begins to dominant the response and the
trends described in Table 7.6 become less accurate. The percent overshoot and set-
tling time as a function of Kp, are shown in Figure 7.34.

The root locus for Kp = 370, Kp = 0, and 0 < K; < co is shown in Figure
7.35. The characteristic equation is

1
1+K, = 0.

s(s(s + 10)(s + 5.66) + KP)

We see in Figure 7.35 that as K increases, the root locus shows that the closed-loop
complex pair poles move right. This decreases the associated damping ratio and
thereby increasing the percent overshoot. In fact. when K; = 778.2, the system is
marginally stable with closed-loop poles at s = +4.86j. The movement of the
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FIGURE 7.34
Percent overshoot
and settling time
with Kp = 370,

K, = 0,and

5= Kp<75.

FIGURE 7.35
Root locus for

Kp = 370, KD = 0,
and 0 = K; < o0,
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complex poles to the right also decreases the associated {w,, thereby increasing the
settling time. The percent overshoot and settling time as a function of K are shown
in Figure 7.36. The trends in Figure 7.36 are consistent with Table 7.6.

To meet the percent overshoot and settling time specifications, we can select
Kp = 370, K, = 60, and K; = 100. The step response shown in Figure 7.37 indi-
catesa T, = 2.4sand P.O. = 12.8% meeting the specifications. m



FIGURE 7.36
Percent overshoot
and settling time
with Kp = 370,
Kp = 0, and

50 = K; < 600.

FIGURE 7.37
Percent overshoot
and settling time
with final design

Kp = 370, Kp = 60,
and K, = 100.
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Two important PID controller gain tuning methods were published in 1942 by
John G. Ziegler and Nathaniel B. Nichols intended to achieve a fast closed-loop step
response without excessive oscillations and excellent disturbance rejection. The two
approaches are classified under the general heading of Ziegler-Nichols tuning meth-
ods. The first approach is based on closed-loop concepts requiring the computation
of the ultimate gain and ultimate period. The second approach is based on open-
loop concepts relying on reaction curves. The Ziegler-Nichols tuning methods are
based on assumed forms of the models of the process, but the models do not have to
be precisely known. This makes the tuning approach very practical in process
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Table 7.7 Ziegler-Nichols PID Tuning Using Ultimate Gain, K, and Oscillation Period, P,

Ziegler-Nichols PID Controller Gain Tuning Using Closed-loop Concepts

Controller Type Kp K, Kp
Proportional (P)
G(s) = Kp 0.5Ky - -

Proportional-plus-integral (PI)

K 0.54K
Gus) = Kp + =% 045K, — Y -

s Ty
Proportional-plus-integral-plus-derivative (PID)

K 1.2K 0.6K,T
Gc(s)=Kp+‘—'+KDS 0.6KU kil Chil

S TU 8

control applications. Our suggestion is to consider the Ziegler-Nichols rules to ob-
tain initial controller designs followed by design iteration and refinement. Remem-
ber that the Ziegler-Nichols rules will not work with all plants or processes.

The closed-loop Ziegler-Nichols tuning method considers the closed-loop sys-
tem response to a step input (or step disturbance) with the PID controller in the
loop. Initially the derivative and integral gains, K p and K/, respectively, are set to
zero. The proportional gain Kp is increased (in simulation or on the actual system)
until the closed-loop system reaches the boundary of instability. The gain on the bor-
der of instability, denoted by Ky, is called the ultimate gain. The period of the sus-
tained oscillations, denoted by Py, is called the ultimate period. Once K, and Py
are determined, the PID gains are computed using the relationships in Table 7.7
according to the Ziegler-Nichols tuning method.

EXAMPLE 7.10 Closed-loop Ziegler-Nichols PID tuning

Re-consider the system in Example 7.9. The plant is

1

G = 5T ) + Lo

i

where b = 10,¢ = 0.707, and w, = 4. The controller is a PID controller

K,
GJ(s)=Kp + T + Kps,

where the gains K p, K p, and K; are computed using the formulas in Table 7.7. We
found in Example 7.9 that K, = 885.5and 7y, = 0.83 s. By using the Ziegler-Nichols
formulas we obtain
12K 0.6K,T
Kp = 06Ky = 5313, K; =~ U - 12802, and Kp= TUU = 55.1.
U

Comparing the step response in Figures 7.37 and 7.38 we note that the settling
time is approximately the same for the manually tuned and the Ziegler-Nichols
tuned PID controllers. However, the percent overshoot of the manually tuned con-
troller is less than that of the Ziegler-Nichols tuning. This is due to the fact that the
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FIGURE 7.38
Time response for
the Ziegler-Nichols
PID tuning with

Kp = 531-3,

K, = 1280.2, and
Kp = 55.1.

FIGURE 7.39
Disturbance
response for the
Ziegler-Nichols PID
tuning versus the
manual tuning in
Example 7.9.
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Ziegler-Nichols tuning is designed to provide the best disturbance rejection perfor-
mance rather than the best input response performance.

In Figure 7.39, we see that the step disturbance performance of the Ziegler-
Nichols PID controller is indeed better than the manually tuned controller. While
Ziegler-Nichols approach provides a structured procedure for obtaining the PID
controller gains, the appropriateness of the Ziegler-Nichols tuning depends on the
requirements of the problem under investigation. =

The open-loop Ziegler-Nichols tuning method utilizes a reaction curve ob-
tained by taking the controller off-line (that is, out of the loop) and introducing a
step input (or step disturbance). This approach is very commonly used in process
control applications. The measured output is the reaction curve and is assumed to
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Amplitude

FIGURE 7.40
Reaction curve
illustrating
parameters A and
T, required for the
Ziegler-Nichols :
open-loop tuning p Time
method.

have the general shape shown in Figure 7.40. The response in Figure 7.40 implies
that the process is a first-order system with a transport delay. If the actual system
does not match the assumed form, then another approach to PID tuning should be
considered. However, if the underlying system is linear and lethargic (or sluggish
and characterized by delay), the assumed model may suffice to obtain a reasonable
PID gain selection using the open-loop Ziegler-Nichols tuning method.

The reaction curve is characterized by the transport delay, 7, and the reaction
rate, R. Generally, the reaction curve is recorded and numerical analysis is per-
formed to obtain estimates of the parameters 7; and R. A system possessing the
reaction curve shown in Figure 7.40 can be approximated by a first-order system
with a transport delay as

G(s) = M { . }’
s+p

Table 7.8 Ziegler-Nichols PID Tuning Using Reaction Curve Characterized by Time Delay,
T4, and Reaction Rate, R

Ziegler-Nichols PID Controlier Gain Tuning Using Open-loop Concepts

Controller Type Kp K; Kp
Proportional (P) 1
G.(s) = Kp T - _
Proportional-plus-integral (PI) RT,
! 0.9 0.27
G.(s) = Kp + — - Dl _
o(s) = Kp + — RT, RT?
Proportional-plus-integral-plus-derivative (P1D)
1.2 0.6 0.6

K,
j(s) = Kp + — + —= —
Cels) = Kp + =7+ Kps RT, RT3 R




FIGURE 7.41
Reaction curve with
T4 = 0.1 sand

R = 0.8.
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where M is the magnitude of the response at steady-state, 7, is the transport delay,
and p is related to the slope of the reaction curve. The parameters M, 7, and T; can
be estimated from the open-loop step response and then utilized to compute
R = M/r. Once that is accomplished, the PID gains are computed as shown in
Table 7.8. You can also use the Ziegler-Nichols open-loop tuning method to design a
proportional controller or a proportional-plus-integral controller.

EXAMPLE 7.11 Open-loop Ziegler-Nichols PI controller tuning

Consider the reaction curve shown in Figure 7.41. We estimate the transport lag to
be T, = 0.1 s and the reaction rate R = 0.8.
Using the Ziegler-Nichols tuning for the PI controller gains we have

0.9 0.27
= 1125 and K, = —= = 3375.
RT, ame =R

Kp=

The closed-loop system step response {assuming unity feedback) is shown in
Figure 7.42. The settling time is 7; = 1.28 s and the percent overshoot is P.O. =
78%. Since we are using a PI controller, the steady-state is zero, as expected. m

The manual tuning method and the two Ziegler-Nichols tuning approaches pre-
sented here will not always lead to the desired closed-loop performance. The three
methods do provide structured design steps leading to candidate PID gains and
should be viewed as first steps in the design iteration. Since the PID (and the related
PD and PI) controllers are in wide use today in a variety of applications, it is
important to become familiar with various design approaches. We will use the PD
controller later in this chapter to control the hard disk drive sequential design prob-
lem (see Section 7.10).

0.8
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FIGURE 7.42
Time response for
the Ziegler-Nichols

Pl tuning with
Kp = 11.25 and
K; = 33.75.
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7.7 NEGATIVE GAIN ROOT LOCUS

As discussed in Section 7.2, the dynamic performance of a closed-loop control sys-
tem is described by the closed-loop transfer function, that is, by the poles and zeros
of the closed-loop system. The root locus is a graphical illustration of the variation
of the roots of the characteristic equation as a single parameter of interest varies. We
know that the roots of the characteristic equation and the closed-loop poles are one
in the same. In the case of the single-loop negative unity feedback system shown in
Figure 7.1, the characteristic equation is

1 + KG(s) = 0, (7.99)

where K is the parameter of interest. The orderly seven-step procedure for sketch-
ing the root locus described in Section 7.3 and summarized in Table 7.2 is valid for
the case where 0 = K < 0. Sometimes the situation arises where we are interest-
ed in the root locus for negative values of the parameter of interest where
-0 < K = (.We refer to this as the negative gain root locus. Our objective here is
to develop an orderly procedure for sketching the negative gain root locus using
familiar concepts from root locus sketching as described in Section 7.2.

Rearranging Equation (7.99) yields
1
G(C) = —E.

Since K is negative, it follows that

|KG(s)] =1 and | KG(s) = 0° + k360° (7.100)

where & = 0, £1, £2, £3,.... The magnitude and phase conditions in Equation
(7.100) must both be satisfied for all points on the negative gain root locus. Note



FIGURE 7.43

(a) Signal flow
graph and (b) block
diagram of unity
feedback system
with controller
gain, K.
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that the phase condition in Equation (7.100) is different from the phase condition in
Equation (7.4). As we will show, the new phase condition leads to several key modi-
fications in the root locus sketching steps from those summarized in Table 7.2.

EXAMPLE 7.12 Negative gain root locus

Consider the system shown in Figure 7.43. The loop transfer function is

s —20
L(s) = KG(s) = K5——
() () s+ 55 — 50
and the characteristic equation is
-2
L N
s+ 55 — 50

Sketching the root locus yields the plot shown in Figure 7.44a where it can be seen
that the closed-loop system is not stable for any 0 = K < oo.The negative gain root
locus is shown in Figure 7.44b. Using the negative gain root locus in Figure 7.44b we
find that the stability is —5.0 < K < —2.5.The system in Figure 7.43 can thus be sta-
bilized with only negative gain, K. m

R(s) O >
1
N(y)
(a)
’.’;/(S)
Controller Process
+
+ Edls) s =20
Ris K > Vi
) ¥ &+ 55— 50 Y
- +

Niy)

(b)
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FIGURE 7.44
(a) Root locus for
0=K< oo.

(b) Negative gain
root locus for
-0 <K=0.
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To locate the roots of the characteristic equation in a graphical manner on the
s-plane for negative values of the parameter of interest, we will re-visit the seven
steps summarized in Table 7.2 to obtain a similar orderly procedure to facilitate the
rapid sketching of the locus.

Step 1: Prepare the root locus sketch. As before, you begin by writing the char-
acteristic equation and rearranging, if necessary, so that the parameter of interest, K,
appears as the multiplying factor in the form,

1 + KP(s) = 0. (7.101)

For the negative gain root locus, we are interested in determining the locus of roots
of the characteristic equation in Equation (7.101) for —oco < K = 0. As in Equa-
tion (7.24), factor P(s) in Equation (7.101) in the form of poles and zeros and locate
the poles and zeros on the s-plane with ‘x’ to denote poles and ‘0’ to denote zeros.

When K = 0, the roots of the characteristic equation are the poles of P(s),
and when K — —o0 the roots of the characteristic equation are the zeros of P(s).
Therefore, the locus of the roots of the characteristic equation begins at the poles of
P(s) when K = 0 and ends at the zeros of P(s) as K — —o0. If P(s) has n poles and
M zeros and n > M, we have n — M branches of the root locus approaching the
zeros at infinity and the number of separate loci is equal to the number of poles. The
root loci are symmetrical with respect to the horizontal real axis because the com-
plex roots must appear as pairs of complex conjugate roots.

Step 2: Locate the segments of the real axis that are root loci. The root locus on
the real axis always lies in a section of the real axis to the left of an even number of
poles and zeros. This follows from the angle criterion of Equation (7.100).
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Step 3: When n > M, we have n — M branches heading to the zeros at infinity
as K — —oo along asymptotes centered at o, and with angles ¢,4. The linear
asymptotes are centered at a point on the real axis given by

n M
> poles of P(s) — >, zeros of P(s) j=1(_pf) - ;(‘Zi)
n= n—M - n— M . (7.102)

The angle of the asymptotes with respect to the real axis is

2k +1

4= 360° =0,1,2,....(n = M — 1), (7.103)

where k is an integer index.

Step 4: Determine where the locus crosses the imaginary axis (if it does so),
using the Routh-Hurwitz criterion.

Step 5: Determine the breakaway point on the real axis (if any). In general, due
to the phase criterion, the tangents to the loci at the breakaway point are equally
spaced over 360°. The breakaway point on the real axis can be evaluated graphically
or analytically. The breakaway point can be computed by rearranging the character-
istic equation

as
p(s) = K,

where p(s) = —d(s)/n(s) and finding the values of s that maximize p(s). This is
accomplished by solving the equation

Ldlde)]
ds

d( \d[ —_
5) = 0. (7.104)

" )

d
Equation (7.104) yields a polynomial equation in s of degree n + M — 1, where
n is the number of poles and M is the number of zeros. Hence the number of solu-
tions is n + M — 1. The solutions that exist on the root locus are the breakaway
points.

Step 6: Determine the angle of departure of the locus from a pole and the angle
of arrival of the locus at a zero using the phase angle criterion. The angle of locus
departure from a pole or angle of arrival at a zero is the difference between the net
angle due to all other poles and zeros and the criterion angle of £4360°.

Step 7: The final step is to complete the sketch by drawing in all sections of the
locus not covered in the previous six steps.

The seven steps for sketching a negative gain root locus are summarized in
Table 7.9.
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Table 7.9 Seven Steps for Sketching a Negative Gain Root Locus (color text denotes
changes from root locus steps in Table 7.2)

Step

Related Equation or Rule

L.

Prepare the root locus sketch.
(a) Write the characteristic cquation so that the
parameter of interest, K, appears as a multiplier.

(b) Factor P(s) in terms of n poles and M zeros

(c) Locate the open-loop poles and zeros of P(s)
in the s-plane with selected symbols.

(d) Determine the number of separate loci, SL.

(e) The root loci are symmetrical with respect to
the horizontal real axis.

. Locate the segments of the real axis that are root loci.

. The loci proceed to the zeros at infinity along

asymptotes centered at 4 and with angles ¢ 4.

. Determine the points at which the locus crosses the

imaginary axis (if it does so).

. Determine the breakaway point on the real axis (if any).

. Determine the angle of locus departure from complex

at or poles and the angle of locus arrival at complex
zeros using the phase criterion.

7. Complete the negative gain root locus sketch.

(@) 1+ KP(s)=0

M
6+
(b) 1+ K—— =0

IIG+ )
j=1
(¢) X = poles, O = zeros
(d) Locus begins at a pole and ends at a zero.

SL = nwhenn = M;n = number of finite
poles, M = number of finitc zeros.

Locus lies to the left of an ¢ven number of poles
and zeros.

n M
2(=p) — 2(-2)
= =1

Oy =

n—M

1
= 3607, K =0,1.2.... - M -
o p— )7, A 0,1 (n — M 1)

Use Routh-Hurwitz criterion (see Section 6.2).

a)Set K = p(s)
b) Determine roots of dp(s)/ds = 0 or use
graphical method to find maximum of p(s).

/P(s) = £k360"ats = —p,or —z

7.8 DESIGN EXAMPLES

In this section we present four illustrative examples. The first example is a wind tur-
bine control system. The feedback control system uses a PI controller to achieve a
fast settling time and rise time while limiting the percent overshoot to a step input.
The second example is a laser manipulator control system. Here the root locus
method is used to show how the closed-loop system poles move in the s-plane as the
proportional controller amplifier gain varies. The second example considers a sim-
plified robotic replication facility. In the example, the system is represented by a
fifth-order transfer function model. The feedback control strategy employs a
velocity feedback coupled with a controller in the forward loop. Root locus design
methods are used to select the two feedback controller gains. In the final example, the
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FIGURE 7.46
Wind turbine
generator speed
control system.
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Tls)

Desired Controller Turbine & Generator

generator + E5) ot & + K - Gcnc’r)z:or
speed P f ™+ 1 > spee
R(s) - Yis)

and maximum pitch rate = 18.7 deg/sec. Note that the linearized model in Equation
(7.105) has zeros in the right half-plane at s; = 827.1 and 5,5 =0.0274 £ 0.1367;
making this a nonminimum phase system (see Chapter 8 for more information on
nonminimum phase systems).

A simplified version of the model in Equation (7.105) is given by the transfer
function

K
G(s) = PP (7.106)
where 7 = 5 seconds and K = —7200. We will design a PI controller to control the

speed of the turbine generator using the simplified first-order model in Equation
(7.106) and confirm that the design specifications are satisfied for both the first-
order model and the third-order model in Equation (7.105). The PI controller,
denoted by G(s), is given by

K s+ 7,
G(s) = Kp+ - = Kp[ : }

S

where 7. = K;/Kp and the gains K p and K are to be determined. A stability analy-
sis indicates that negative gains K; < 0 and K, < 0 will stabilize the system. The
main design specification is to have a settling time 7y < 4 seconds to a unit step
input. We also desire a limited percent overshoot (P.0. < 25%) and a short rise
time (7, < 1s) while meeting the settling time specification. To this end, we will tar-
get the damping ratio of the dominant roots to be { > 0.4 and the natural frequency
w, > 2.5 rad/s.
The root locus is shown in Figure 7.47 for the characteristic equation

’

~ s+ 71, 7200
+
I KP[ s 5s + 1}

where 7, = 2 and K p = —K, > 0. The placement of the controller zero at s =
—7, =—2 is a design parameter. We select the value of K p such that the damping
ratio of the closed-loop complex poles is { = 0.707. Selecting Kp = 0.0025 yields
Kp = —0.0025 and K; = —0.005. The PI controller is

s+2}

K
G(s) = Kp + TI = —0.0025[






500

Chapter 7 The Root Locus Method

14

1.2

1

0.8 §

0.6

04f [~

Step Response, rpm

0.2 !

0.5 1 1.5 2 2.5
Time (s)

FIGURE 7.49 Step response of the third-order model in Equation (7.105) with the Pl controller
showing that all specifications are satisfied with P.O. = 26%, T, = 1.7s,and 7, = 0.3 s.
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FIGURE 7.50 Disturbance response of the wind turbine generator speed control system with a P}
controller shows excellent disturbance rejection characteristics.

EXAMPLE 7.14 Laser manipulator control system

Lasers can be used to drill the hip socket for the appropriate insertion of an artificial
hip joint. The use of lasers for surgery requires high accuracy for position and veloc-
ity response. Let us consider the system shown in Figure 7.51, which uses a DC
motor manipulator for the laser. The amplifier gain K must be adjusted so that the
steady-state error for a ramp input, r(#) = At (where A = 1 mm/s), is less than or
equal to 0.1 mm, while a stable response is maintained.



FIGURE 7.51
Laser manipulator
control system.
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Amplifier Motor and manipulator
1

s(ys + 175 + 1)

+
R(s) | K I—>]

» Y(s)

To obtain the steady-state error required and a good response, we select a
motor with a field time constant 7; = 0.1 s and a motor-plus-load time constant
75 = 0.2 s. We then have

s = KG(s) K
() =17 KG(s) ~ s(mis + D(ms + 1) + K
K SOK

T 0025 + 032 + s+ K 5+ 1552 + 505 + 50K

(7.107)

The steady-state error for a ramp, R(s) = A/s% from Equation (5.29), is
A
ess = Z =

Since we desire e, = 0.1 mm (or less) and A = 1 mm, we require K = 10 (or
greater).

To ensure a stable system, we obtain the characteristic equation from Equation
(7.107) as

s* + 1552 + 50s + 50K = 0.
Establishing the Routh array, we have

s 1 50

s 15 50K
st by 0"’
S 50K

where

750 — 50K
by = T

Therefore, the system is stable for
0 =K =15
The characteristic equation can be written as

50

1+ K5———5——=0
2 + 15s% + 50s

The root locus for K > 0 is shown in Figure 7.52. Using K = 10 results in a stable
system that also satisfies the steady-state tracking error specification. The roots at
K = 10are —r, = —13.98, —r; = —0.51 + j5.96, and —r;. The { of the complex
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FIGURE 7.52
Root locus for a
laser control
system.
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roots is 0.085 and {w, = 0.51. Thus, assuming that the complex roots are domi-
nant, we expect (using Equation 5.16 and 5.13) a step input to have an overshoot of
76% and a settling time (to within 2% of the final value) of

4 4

T-=_=_= R .
= lw, 051 188

Plotting the actual system response, we find that the overshoot is 70% and the set-
tling time is 7.5 seconds. Thus, the complex roots are essentially dominant. The sys-
tem response to a step input is highly oscillatory and cannot be tolerated for laser
surgery. The command signal must be limited to a low-velocity ramp signal. The
response to a ramp signal is shown in Figure 7.53. =

EXAMPLE 7.15 Robot control system

The concept of robot replication is relatively easy to grasp. The central idea is that
robots replicate themselves and develop a factory that automatically produces
robots. An example of a robot replication facility is shown in Figure 7.54. To achieve
the rapid and accurate control of a robot, it is important to keep the robotic arm stiff
and yet lightweight [6].

The specifications for controlling the motion of the arm are (1) a settling time to
within 2% of the final value of less than 2 seconds, (2) a percent overshoot of less
than 10% for a step input, and (3) a steady-state error of zero for a step input.

The block diagram of the proposed system with a controller is shown in
Figure 7.55. The configuration proposes the use of velocity feedback as well as


file:///-2.11
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FIGURE 7.56
Root locus of the
system if

K, = 0, K, is varied
from K, = O to

Ky = o0, and

Gqls) = K;.
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The complex zeros are located at

s = -2+ j100 and s = —6 % j300.
The complex poles are located at

s=-1+£j50 and s= -3 % j150.

A sketch of the root locus when K, = () and the controller is an adjustable gain,
G.(s) = K4, is shown in Figure 7.56. The system is unstable since two roots of the
characteristic equation appear in the right-hand s-plane for K; > 0.

It is clear that we need to introduce the use of velocity feedback by setting K, to
a positive magnitude. Then we have H(s) = 1 + K,s; therefore, the loop transfer
function is

1
Kle(s + 7<—>(sz + 4s + 10004)(s? + 125 + 90036)

éG‘.(s)G(s)H(s) =

s*(s + 10)(s® + 25 + 2501)(s® + 6s + 22509)
where K] is the gain of G(s). We now have available two parameters, K| and Kj,
that we may adjust. We select 5 < K, < 10 in order to place the adjustable zero
near the origin.

When K, = S and K| is varied, we obtain the root locus sketched in Figure 7.57.
When K; = 0.8 and K, = 5, we obtain a step response with a percent overshoot of
12% and a settling time of 1.8 seconds. This is the optimum achievable response. If
we try K, = 7 or K, = 4, the overshoot will be larger than desired. Therefore, we
have achieved the best performance with this system. If we desired to continue the
design process, we would use a controller G(s) with a pole and zero in addition to
retaining the velocity feedback with K, = 5.

T.4300
/200
[ : ——rt K
-0 -40 -3 -20 —10
<:<--—le0
+ =j200
4 —j300
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Root locus for the
robot controller with ——¢ —>—} — »Ol
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One possible selection of a controller is

If we select z =1 and p = 5, then, when K; = 5, we obtain a step response
with an overshoot of 8% and a settling time of 1.6 seconds. m

EXAMPLE 7.16 Automobile velocity control

The automotive electronics market is expected to reach $243 billion by 2015. It is
predicted that there will be growth of about 6.4% up to the year 2015 in electron-
ic braking, steering, and driver information. Much of the additional computing
power will be used for new technology for smart cars and smart roads, such as
IVHS (intelligent vehicle/highway systems) [14, 30, 31]. New systems on-board the
automobile will support semi-autonomous automobiles, safety enhancements,
emission reduction, and other features including intelligent cruise control, and
brake by wire systems eliminating the hydraulics [32].

The term IVHS refers to a varied assortment of electronics that provides real-
time information on accidents, congestion, and roadside services to drivers and traffic
controllers. IVHS also encompasses devices that make vehicles more autonomous:
collision-avoidance systems and lane-tracking technology that alert drivers to im-
pending disasters and allow a car to drive itself.

An example of an automated highway system is shown in Figure 7.58. A velocity
control system for maintaining the velocity between vehicles is shown in Figure
7.59.The output Y(s) is the relative velocity of the two automobiles; the input R(s)
is the desired relative velocity between the two vehicles. Our design goal is to develop
a controller that can maintain the prescribed velocity between the vehicles and
maneuver the active vehicle (in this case the rearward automobile) as commanded.
The elements of the design process emphasized in this example are depicted in
Figure 7.60.
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From the first column, third row, we have the inequality

K>3 7.112
»> %0 : (7.112)
It follows from DS2 that
Kpls + K’)
s+ K
K, = lim sG.(s)G(s) = lim AR ! Ky,
v = SeSIUAS) = S s (s+2)+8 16

Therefore, the integral gain must satisfy
K; > 64. (7.113)

If we select K; > 64, then the inequality in Equation (7.103) is satisfied. The valid
region for Kp is then given by Equation (7.112), where K; > 64.

We need to consider DS4. Here we want to have the dominant poles to the left
of the s = —2.6 line. We know from our experience sketching the root locus that
since we have three poles (at s = 0, —2, and —8) and one zero (at s = —K;/Kp), we
expect two branches of the loci to go to infinity along two asymptotes at
¢ = —90° and +90° centered at

_ 2("[’:‘) - 2(‘&)

T4 ’
np_ n,

where n, = 3 and n, = 1. In our case

1 K,
= -5+ _-—.
2 > 2 Kp

We want to have @ < —2.6 so that the two branches will bend into the desired regions.

Therefore,
1 K;
-5+ —— < 2.6,
2 Kp

or

— < 4.7. (7.114)
So as a first design, we can select K p and K such that
K; K;
K; > 64, Kp > — — 16, — < 47.
I} Kp 10 6, and X, 4.7
Suppose we choose K;/Kp = 2.5.Then the closed-loop characteristic equation is

s+ 25

G+ Dc+8

1+ Kp






FIGURE 7.63

Automobile velocity
control using the PI

controller in
Equation (7.107).
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approximate root locus. The fundamental concepts behind the root locus method are
embedded in the manual steps, and it is essential to understand their application fully.

The section begins with a discussion on obtaining a computer-generated root
locus plot. This is followed by a discussion of the connections between the partial
fraction expansion, dominant poles, and the closed-loop system response. Root sen-
sitivity is covered in the final paragraphs.

The functions covered in this section are rlocus, rlocfind, and residue. The func-
tions rlocus and rlocfind are used to obtain root locus plots, and the residue function
is utilized for partial fraction expansions of rational functions.

Obtaining a Root Locus Plot. Consider the closed-loop control system in
Figure 7.10. The closed-loop transfer function is

Y(s) K(s + 1)(s + 3)

R(s) (s +2)(s +3) + K(s + 1)

T(s) =

The characteristic equation can be written as

s+ 1

1+Ks(s+2)(s+3) N

(7.116)

The form of the characteristic equation in Equation (7.116) is necessary to use the
rlocus function for generating root locus plots. The general form of the characteris-
tic equation necessary for application of the rlocus function is

o _

= 7.117
q(s) (7-117)

1+ KG(s)=1+K
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FIGURE 7.64
The rlocus
function.

FIGURE 7.65
The root locus for
the characteristic
equation,
Equation (7.116).
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r = complex root locations
K = gain vector

e

[r.K]=rlocus(sys)

1+ KG(s) =0
[

where X is the parameter of interest to be varied from 0 < K < oo. The rlocus
function is shown in Figure 7.64, where we define the transfer function object
sys = G(s). The steps to obtaining the root locus plot associated with Equation (7.116),
along with the associated root locus plot, are shown in Figure 7.65. Invoking the
rlocus function without left-hand arguments results in an automatic generation of
the root locus plot. When invoked with left-hand arguments, the rlocus function
returns a matrix of root locations and the associated gain vector.
The steps to obtain a computer-generated root locus plot are as follows:

1. Obtain the characteristic equation in the form given in Equation (7.117), where K is
the parameter of interest.

2. Use the rlocus function to generate the plots.

Referring to Figure 7.65, we can see that as K increases, two branches of the
root locus break away from the real axis. This means that, for some values of K,
the closed-loop system characteristic equation will have two complex roots. Suppose
we want to find the value of K corresponding to a pair of complex roots. We can use

6 T 7
4 - l |
@ ][ Zeroats = —1 ]
é 2 SR - w— —
2 / X
g 0 A ¢
g, W T
= A { Polesats =0, -2, =3 ]
—4 > -3
6 A
had i
-6 -4 -2 0 2 4 6

Real Axis

>>p=[1 1}; q=[1 5 6 0J; sys=tf(p,q); rlocus(sys)

Rienemting a root locus plot. I—J

>>p=[1 1]; g=[1 5 6 0J; sys=tf(p,q); [r.K]=rlocus(sys});

Obtaining root locations r associated -
with various values of the gain X.




FIGURE 7.66
Using the rlocfind
function.
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the rlocfind function to do this, but only after a root locus has been obtained with
the rlocus function. Executing the rlocfind function will result in a cross-hair mark-
er appearing on the root locus plot. We move the cross-hair marker to the location
on the locus of interest and hit the enter key. The value of the parameter K and the
value of the selected point will then be displayed in the command display. The use of
the rlocfind function is illustrated in Figure 7.66.

Control design software packages may respond differently when interacting with
plots, such as with the rlocfind function on the root locus. The response of Hocfind
in Figure 7.66 corresponds to MATLAB. Refer to the companion website for more
information on other control design software applications.

Continuing our third-order root locus example, we find that when K = 20.5775,
the closed-loop transfer function has three poles and two zeros, at

—2.0505 + j4.3227 _q
poles: s = | —2.0505 — j4.3227 |; Zeros. s = (_ 3).
—0.8989
Considering the closed-loop pole locations only, we would expect that the real pole
at s = —.8989 would be the dominant pole. To verify this, we can study the closed-
loop system response to a step input, R(s) = 1/s. For a step input, we have
20.5775(s + 1)(s + 3 1
Y(s) = ( X ) (7.118)

s(s + 2)(s + 3) + 20.5775(s + 1) s

Generally, the first step in computing y(¢) is to expand Equation (7.118) in a partial
fraction expansion. The residue function can be used to expand Equation (7.118), as
shown in Figure 7.67. The residue function is described in Figure 7.68.

—2.0509 + 4.3228i |——\ ‘ k g
A X Cross-hair placement
= N A | N at selected gain. |
Rl
|
§ o O+ |
£ T_ 1
g 20 S | E—-— .
£ Other two-pole locations
—4 |— R e for the same gain.
| ]
-6 ! |
-6 -4 -2 0 2 4 6
Real Axis

>>p=[1 1}; q=[1 5 6 0); sys=tf(p,q); rlocus(sys)
>>rocfind(sys) '—-I rlocfind follows the rlocus function.

Select a point in the graphics window

selected_point =
-2.0509 + 4.3228i

ansz(——) 5775 <_,———[ Value of X at selected poimJ
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FIGURE 7.67
Partial fraction
expansion of
Equation (7.118).
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>>K=20.5775; num=K*{1 4 3}; den=[1 5 6+K KO0};
>>[r,p,k]=residue(num,den)

r= y

num
Y(s) =
-1.3786 + 1.7010i ©= den
-1.3786 - 1.,7010i
-0.2429
3.0000 y
) r(2) r(3) r(4)
p= YO = = T 5=p® T 5 p® T smp@ T KO
A
-2.0505 - 4.3228i L 2
-2.0505 + 4.3228i
-0.8989 r = residues
0 p = poles
k = direct term
k=

The partial fraction expansion of Equation (7.118) is

—1.3786 + j1.7010 N —1.3786 — j1.7010 + —0.2429 3
s+ 2.0505 + j4.3228 s + 2.0505 — j4.3228 s + 0.8989 s’

Y(s) =

Comparing the residues, we see that the coefficient of the term corresponding to the
pole at s = —0.8989 is considerably smaller than the coefficient of the terms corre-
sponding to the complex-conjugate poles at s = —2.0505 + j4.3227. From this, we
expect that the influence of the pole at s = —0.8989 on the output response y(¢) is
not dominant. The settling time (to within 2% of the final value) is then predicted by
considering the complex-conjugate poles. The poles at s = —2.0505 + j4.3227 cor-
respond to a damping of { = 0.4286 and a natural frequency of w, = 4.7844. Thus,
the settling time is predicted to be

4

n

= = 1.95s.
T 7 95
Using the step function, as shown in Figure 7.69, we find that T, = 1.6 s. Hence, our
approximation of settling time T; = 1.95is a fairly good approximation. The percent
overshoot can be predicted using Figure 5.13 since the zero of T(s) at s = —3 will
impact the system response. Using Figure 5.13, we predict an overshoot of 60%. As
can be seen in Figure 7.48, the actual overshoot is 50%.
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um r = residues

Y(s) = T(s)U(s) = p = pole locations
FIGURE 7.70 den k = direct term
Converting a partial

fraction expansion i T
back to a rational
function.

[num,den]=residue(r,p,k)

Sensitivity and the Root Locus. The roots of the characteristic equation play an
important role in defining the closed-loop system transient response. The effect of
parameter variations on the roots of the characteristic equation is a useful measure
of sensitivity. The root sensitivity is defined to be

ar;

’a—K/—K. (7.119)

We can use Equation (7.119) to investigate the sensitivity of the roots of the charac-
teristic equation to variations in the parameter K. If we change K by a small finite
amount AK, and evaluate the modified root r; + Ar,, it follows that

o AI‘,-
Sk~ AK/K

(7.120)

The quantity S¥ is a complex number. Referring back to the third-order example of
Figure 7.10 (Equation 7.116), if we change K by a factor of 5%, we find that the
dominant complex-conjugate pole at s = —2.0505 + j4.3228 changes by

Ar; = —0.0025 — j0.1168

when K changes from K = 20.5775 to K = 21.6064. From Equation (7.120), it fol-
lows that

g - 200025 — jOII68 -\ o4 — 03355
K= 1.0289/205775 ” .

The sensitivity Sy can also be written in the form

Sy = 2.34/268.79°.
The magnitude and direction of S¥ provides a measure of the root sensitivity. The
script used to perform these sensitivity calculations is shown in Figure 7.71.
The root sensitivity measure may be useful for comparing the sensitivity for var-
ious system parameters at different root locations.

7.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In Chapter 6, we introduced a new configuration for the control system using veloci-
ty feedback. In this chapter, we will use the PID controller to obtain a desirable re-
sponse. We will proceed with our model and then select a controller. Finally, we will
optimize the parameters and analyze the performance. In this chapter, we will use the
root locus method in the selection of the controller parameters.

Ly



FIGURE 7.71
Sensitivity
calculations for the
root locus for a 5%
change in

K = 20.5775.

FIGURE 7.72
Disk drive control
system with a PD
controller.

Section 7.10  Sequential Design Example: Disk Drive Read System 517

% Compute the system sensitivity to a parameter
% variation

%

K=20.5775, den=[1 5 6+K K]; r1=rools(den);

%
dK=1.0289; < { 5% change in K I

%
Km=K+dK; denm=[1 5 6+Km Km]; r2=roots(denm);
dr=r1-r2; <— Ar
%

=dr/(dK/K); ‘_—’ Sensitivity formuli]

We use the root locus to select the controller gains. The PID controller intro-
duced in this chapter is

K
G.(s) = Kp + TI + Kps.
Since the process model G (s) already possesses an integration, we set K; = 0. Then
we have the PD controller

and our goal is to select Kp and K, in order to meet the specifications. The system is
shown in Figure 7.72. The closed-loop transfer function of the system is

Y(s) _ T(s) = G(5)G1(5)Gals)
R(s) 1 + G(s)Gy(s)Gy(s)H(s)’

where H(s) = 1.
In order to obtain the root locus as a function of a parameter, we write
G(5)G1(5)Go(s)H (s) as
S000(Kp + Kps)  S000Kp(s + z)
s(s + 20)(s + 1000)  s(s + 20)(s + 1000)

G(s)G1(8)GA(9)H(s) =

where z = Kp/Kp.We use Kp to select the location of the zero z and then sketch the
locus as a function of K. Based on the insight developed in Section 6.7, we select
z = 1 so that

S000Kp(s + 1)

s(s + 20)(s + 1000)’

G ()G (8)GAs)H (s) =

Disturbance
Txl( s)

PD controller Motor coil Load

* 5000 _é> 1 e
R(x) G(s) = Kp+ Kps G = G = $ Head
‘ _’Q_ﬂ A= Bp T Bos P G = 1006 [ 1) = 5+ 720 :

— position
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FIGURE 7.73
Sketch of the root
locus.

7.11 SUMMARY

Chapter 7 The Root Locus Method

Asymptote

§ = —509.52 + 464.68]

~1000 / -20 -1
a, = ~509.5

A = roots when
K =913

Table 7.10 Disk Drive Control System Specifications
and Actual Design Performance

Performance Actual
Measure Desired Value Response
Percent overshoot Less than 5% 0%
Settling time Less than 250 ms 20ms
Maximum response Less than 5 X 1073 2 x10™

to a unit disturbance

The number of poles minus the number of zeros is 2, and we expect asymptotes at
¢4 = £90° with a centroid

-1020 + 1
o4 = ——— = 5095,

as shown in Figure 7.73. We can quickly sketch the root locus, as shown in Figure 7.73.
We use the computer-generated root locus to determine the root values for various
values of Kp. When Kp = 91.3, we obtain the roots shown in Figure 7.73. Then,
obtaining the system response, we achieve the actual response measures as listed in
Table 7.10. As designed, the system meets all the specifications. It takes the system a
settling time of 20 ms to “practically” reach the final value. In reality, the system drifts
very slowly toward the final value after quickly achieving 97% of the final value.

The relative stability and the transient response performance of a closed-loop control
system are directly related to the location of the closed-loop roots of the characteris-
tic equation. We investigated the movement of the characteristic roots on the s-plane
as key system parameters (such as controller gains) are varied. The root locus and the
negative gain root locus are graphical representations of the variation of the system
closed-loop poles as one parameter varies. The plots can be sketched by hand using a
given set of rules in order to analyze the initial design of a system and determine suit-
able alterations of the system structure and the parameter values. A computer is then
commonly used to obtain the accurate root locus for use in the final design and analy-
sis. A summary of fifteen typical root locus diagrams is shown in Table 7.11.
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Furthermore, we extended the root locus method for the design of several para-
meters for a closed-loop control system. Then the sensitivity of the characteristic
roots was investigated for undesired parameter variations by defining a root sensi-
tivity measure. It is clear that the root locus method is a powerful and useful approach
for the analysis and design of modern control systems and will continue to be one of
the most important procedures of control engineering.

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems. Use the block diagram in Figure
7.74 as specified in the various problem statements.

Controller Process

+
R(s) G (s)

G(s) > Y(s)

Y

FIGURE 7.74 Block diagram for the Skills Check.

In the following True or False and Multiple Choice problems, circle the correct answer.

1. The root locus is the path the roots of the characteristic equation (given
by 1 + KG(s) = 0) trace out on the s-plane as the system parameter

0 = K < oo varies. True or False
2. On the root locus plot, the number of separate loci is equal to the number

of poles of G(s). True or False
3. The root locus always starts at the zeros and ends at the poles of G(s). True or False

4. The root locus provides the control system designer with a measure of
the sensitivity of the poles of the system to variations of a parameter of
interest. True or False

5. The root locus provides valuable insight into the response of a system to

various test inputs. True or False
6. Consider the control system in Figure 7.74, where the loop transfer function is
K(s>+55+9)

(s + 3)

s

L(s) = G(s)G(s) =

Using the root locus method, determine the value of K such that the dominant roots have
a damping ratio { = 0.5.

a K=12
b. K =45
¢ K=97
d. K =374
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In Problems 7 and 8, consider the unity feedback system in Figure 7.74 with
_ _ K(s+1)
L) = GlG) = 7 s 173
7. The approximate angles of departure of the root locus from the complex poles are
a. ¢g = +£180°
b. ¢, = £115°
€ ¢g = £205°
d. None of the above

8. The root locus of this system is given by which of the following

4 4 f
a 2 @ 2 /
% % :
< %
g 0 )i E‘ 0 o
= & :
E £
—4 -4 :
—6 -4 -2 0 2 -6 -4 -2 0 2
Real Axis Real Axis
(a) )

Imaginay Axis
<} N}
O\

Imaginary Axis

—}O -8 -6 -4 -2 0 2 —6 -4 -2 0
Real Axis Real Axis
© (d)

9. A unity feedback system has the closed-loop transfer function given by

_ K
T(s) = (s + 452 + K

Using the root locus method, determine the value of the gain K so that the closed-loop
system has a damping ratio { = \/5/2.

a. K =25
b. K = 1250
c. K =2025

d. K = 10500
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10. Consider the unity feedback control system in Figure 7.74 where

11

13

10(s + z)
s(s> + 4s + 8)
Using the root locus method, determine that maximum value of z for closed-loop
stability.
a z=172
.z =128
¢. Unstable forallz > 0
d. Stable forallz > 0

L(s) = G(s)G(s) =

=

In Problems 11 and 12, consider the control system in Figure 7.74 where the model of the
process is

7500
(s + 1)(s + 10)(s + 50)

G(s) =

Suppose that the controller is

K(1 + 02s)

Gl8) = T o025s °

Using the root locus method, determine the maximum value of the gain K for
closed-loop stability.

a. K =213
b. K =388
e K=1449

d. Stableforall K > 0

. Suppose that a simple proportional controller is utilized, that is, G.(s) = K. Using

the root locus method, determine the maximum controller gain K for closed-loop
stability.

a. K =050
b. K =149
¢. K =449

d. Unstable for K > 0
Consider the unity feedback system in Figure 7.74 where

K
s(s + 5)(s? + 65 + 17.76)
Determine the breakaway point on the real axis and the respective gain, K.
a, s=—18,K = 5875
b. s = -25,K = 459
c. s=14K = 5875
d. None of the above

L(s) = G(s)G(s) =

1l

In Problems 14 and 15, consider the feedback system in Figure 7.74, where

K(s+1+ )} (s+1-))
s(s + 2j)(s — 2j)

L(s) = Gc(s)G(s) =
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14. Which of the following is the associated root locus?

Imaginary Axis
(=]
Imaginary Axis

Real Axis Real Axis
(a) (b)

Imaginary Axis
[l
Imaginary Axis
[l

-2 =20
—4 : —40 :
-4 -3 =2 - 0 1 -25 -20 -15 =10 -5 O
Real Axis Real Axis
© @

15. The departure angles from the complex poles and the arrival angles at the complex
Zeros are:

a ¢p = +180° ¢, = O°

b. ¢p = £116.6° ¢4 = £198.4°
e ¢p = +458°% ¢, = £116.6°
d. None of the above

525

In the following Word Match problems, match the term with the definition by writing the

correct letter in the space provided.

a. Parameter design The amplitude of the closed-loop response is reduced
approximately to one-fourth of the maximum value in

one oscillatory period. -

b. Root sensitivity The path the root locus follows as the parameter
becomes very large and approaches ¢o,

¢. Root locus The center of the linear asymptotes, 4.

d. Root locus segments  The process of determining the PID controller gains
on the real axis using one of several analytic methods based on
open-loop and closed-loop responses to step inputs.

e. Root locus method A method of selecting one or two parameters using
the root locus method.
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f. Asymptote centroid
g. Breakaway point

h. Locus

i. Angle of departure

j- Number of separate
loci

k. Asymptote

1. Negative gain root
locus

m. PID tuning

n. Quarter amplitude
decay

o. Ziegler-Nichols PID
tuning method

Chapter 7 The Root Locus Method

The root locus lying in a section of the real axis to
the left of an odd number of poles and zeros.

The root locus for negative values of the parameter
of interest where —00 < K = (.

The angle at which a locus leaves a complex pole in
the s-plane.

A path or trajectory that is traced out as a parameter
is changed.

The locus or path of the roots traced out on the
s-plane as a parameter is changed.

The sensitivity of the roots as a parameter changes
from its normal value.

The method for determining the locus of roots of
the characteristic equation 1 + KG(s) = O as
0=K <o

The process of determining the PID controller gains.

The point on the real axis where the locus departs
from the real axis of the s-plane.

Equal to the number of poles of the transfer
function, assuming that the number of poles is
greater than or equal to the number of zeros of the
transfer function.

EXERCISES

E7.1 Letusconsider a device that consists of a ball rolling
on the inside rim of a hoop [11}]. This model is similar
to the problem of liquid fuel sloshing in a rocket. The
hoop is free to rotate about its horizontal principal
axis as shown in Figure E7.1. The angular position of
the hoop may be controlled via the torque T applied
to the hoop from a torque motor attached to the hoop
drive shaft. If negative feedback is used, the system
characteristic equation is

Ks(s + 4) _
2 +25s+2

(a) Sketch the root locus. (b) Find the gain when the
roots are both equal. (c) Find these two equal roots.

Torque

()

Hoop

FIGURE E7.1 Hoop rotated by motor.

(d) Find the settling time of the system when the roots
are equal.

E7.2 A tape recorder has a speed control system so that
H(s) = 1 with negative feedback and

K
s(s + 2)(s? + 45 + 5)

L(s) = G(5)G(s) =

(a) Sketch aroot locus for K, and show that the domi-
nantrootsare s = —0.35 = j0.80 when K = 6.5.

(b) For the dominant roots of part (a), calculate the
settling time and overshoot for a step input.

E7.3 A control system for an automobile suspension
tester has negative unity feedback and a process [12]

K(s* + 45 + 8)

L) = Gl9IGe) = =5 ——

We desire the dominant roots to have a { equal to 0.5.
Using the root locus, show that X = 7.35 is required
and the dominant roots are s = —1.3 = j2.2.

E7.4 Consider a unity feedback system with
K(s+1)

L(s) = G5)G(s) = Trasts
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E7.13 A unity feedback system has a loop transfer function

4(s + 2)

L) = G9IG(s) = =

(a) Draw the root locus as z varies from 0 to 100.
(b) Using the root locus, estimate the percent overshoot
and settling time (with a 2% criterion) of the system
at z = 0.6, 2, and 4 for a step input. (c) Determine
the actual overshoot and settling time at z = 0.6, 2,
and 4.

E7.14 A unity feedback system has the loop transfer
function

K(s + 10)

L(s) = G(s)G(s) = G+ )

(a) Determine the breakaway and entry points of the
root locus and sketch the root locus for K > 0.
(b) Determine the gain K when the two characteristic
roots have a { of 1/\/5. {(¢) Calculate the roots.

E7.15 (a) Plot the root locus for a unity feedback system
with loop transfer function

K(s + 10)(s + 2)
L(s) = GA{5)G(s) = s

(b) Calculate the range of K for which the system is

stable. (c) Predict the steady-state error of the system

for a ramp input.

Answers: (a) K > 1.67;(b)e,, =0

E7.16 A negative unity feedback system has a loop trans-
fer function

Ke™"

s+ 1

L(s) = G(s)G(s) =

where T = 0.1 s. Show that an approximation for the
time delay is

2
_--
e—sT a~ T
2.5
T
Using
20 —- %
—0.1s -
¢ 20 + s

obtain the root locus for the system for K > 0. Deter-
mine the range of X for which the system is stable.

E7.17 A control system, as shown in Figure E7.17. has a
process

1
G(s) = ————S(S 1y

Chapter 7 The Root Locus Method

R(s)

- Y(5)

G.(5) —

G(s)

FIGURE E7.17 Feedback system.

(a) When G (s) = K, show that the system is always
unstable by sketching the root locus. (b) When

K(s +2)

Clo) = =50

sketch the root locus and determine the range of K for
which the system is stable. Determine the value of K
and the complex roots when two roots lie on the
jw-axis.

E7.18 A closed-loop negative unity feedback system is
used to control the yaw of the A-6 Intruder attack jet.
When the loop transfer function is

K
s(s + (2 + 25+ 2)

L(s) = Gs)G(s) =

determine {a) the root locus breakaway point and
(b) the value of the roots on the jw-axis and the gain
required for those roots. Sketch the root locus.

Answers: (a) Breakaway: s = —2.29 (b) jw-axis:
s=#%j1.09,K =8
E7.19 A unity feedback system has a loop transfer function
K
s(s + 3)(s* + 6s + 64)

L(s) = G.(5)G(s) =

(a) Determine the angle of departure of the root
locus at the complex poles. (b) Sketch the root locus.
(c) Determine the gain K when the roots are on the
jw-axis and determine the location of these roots.

E7.20 A unity feedback system has a loop transfer func-
tion
L(s) = G.s)G(s) = K(s + 1)
() = GG = 5 T ey
(a) Determine the range of X for stability. (b) Sketch
the root locus. (¢) Determine the maximum ¢ of the
stable complex roots.

Answers: {(a) K > 16; (b} = 025
E7.21 A unity feedback system has a loop transfer function
Ks
L(s) = G()G(s) = ———7>5
(s) (£)G(s) 5P+ 557+ 10

Sketch the root locus. Determine the gain K when the
complex roots of the characteristic equation have a {
approximately equal to ).66.
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E7.22 A high-performance missile for launching a satel- Determine the characteristic equation and then
lite has a unity feedback system with a loop transfer sketch the root locus as 0 < k < o0.

function E7.25 A closed-loop feedback system is shown in

K(s* + 18)(s + 2) Figure E7.25. For what range of values of the para-

G(s)G(s) = (- 2)(s +12) meters K is the system stable? Sketch the root locus

as 0 < K < o0,

Sketch the root locus as K varies from § < K < o E7.26 Consider the signle-input, single-output system is

E7.23 A unity feedback system has a loop transfer func- described by
tion x(t) = Ax(t) + Bu(t)
4t + 1) y(1) = Cx(t)
L(s) = G(s)G(s) = ———.
(s) (G(s) s(s + a) where
Sketch the root locus for 0 = a < oo. A= ,:3 _0 < 1_ K:l’ B = [(1)], c=p0 -1
E7.24 Consider the system represented in state variable ;
form Compute the characteristic polynomial and plot the
x = Ax + Bu root locus as 0 = K < oo. For what values of K is the
table?
y = Cx + Du, system stable
where E7.27 Consider the unity feedback system in Figure
E7.27. Sketch the root locus as 0 < p < oo,
A= l: 0 ! j],B = l:o:l, E7.28. Consider the feedback system in Figure E7.28.
-4 -k 1 Obtain the negative gain root locus as —0o < K = 0.
C=[l 0], and D =[0] For what values of X is the system stable?
Controller Process
E
RUs) —p o) K > 10 > Vs)
B s+25
FIGURE E7.25 Sensor
Nonunity feedback
system with s
parameter K.
Controller Process
E,
Ry — (Yo 5+ 10 s 2 > ¥i5)
s s+p
FIGURE E7.27 -
Unity feedback
system with
parameter p.
Controller Process
FIGURE E7.28 Ris) —b K > s 1 > Yi)
. ; > R Y
Feedback system - S22

for negative gain
root locus.
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PROBLEMS

P7.1 Sketch the root locus for the following loop transfer
functions of the system shown in Figure P7.1 when

0 < K < oo
K
@ Gel)G) = 105+ 8)
K
w)GA”G“)'(ﬁ+2s+zxs+n
K(s+95)

(€) G(s)G(s) = G+ )G + 10)

K(s* + 4s + 8)
(s + 1)
P7.2 The linear model of a phase detector was presented in
Problem P6.7. Sketch the root locus as a function of the
gain K, = K, K. Determine the value of K, attained

if the complex roots have a damping ratio equal to
0.60 [13].

P73 A unity feedback system has the loop transfer
function

(d) G(s)G(s) =

S S
s(s + 2)(s + 5)
Find (a) the breakaway point on the real axis and the
gain K for this point, (b) the gain and the roots when

two roots lie on the imaginary axis, and (c) the roots
when K = 6. (d) Sketch the root locus.

G(s5)G(s) =

Chapter 7 The Root Locus Method

0 < k, < oo. Determine the maximum allowable
gain of the amplifier for a stable system.

P7.5 Automatic control of helicopters is necessary because,
unlike fixed-wing aircraft which possess a fair degree of
inherent stability, the helicopter is quite unstable. A heli-
copter control system that utilizes an automatic control
loop plus a pilot stick control is shown in Figure P7.5.
When the pilot is not using the control stick, the switch
may be considered to be open. The dynamics of the
helicopter are represented by the transfer function

~ 25(s + 0.03)
(s + 0.4)(s? — 0.365 + 0.16)

G(s)

(a) With the pilot control loop open (hands-off con-
trol), sketch the root locus for the automatic stabiliza-
tion loop. Determine the gain K, that results in a
damping for the complex roots equal to ¢ = 0.707.
(b) For the gain K, obtained in part (a), determine the
steady-state error due to a wind gust 7,(s) = 1/s.
(c) With the pilot loop added, draw the root locus as
K, varies from zero to o0 when Kj is set at the value
calculated in part (a). (d) Recalculate the steady-state
error of part (b) when K is equal to a suitable value
based on the root locus.

P7.6 An attitude control system for a satellite vehicle
within the earth’s atmosphere is shown in Figure P7.6.
The transfer functions of the system are

K(s + 0.20)

P7.4 The analysis of a large antenna was presented in G(s) =
Problem P4.5. Sketch the root locus of the system as (s + 0.90)(s — 0.60)(s — 0.10)
Controller Process
+ E(s)
R(s) Gs) > G(s) > ¥(s)
FIGURE P7.1
Tys)
Control Disturbance : :
Pilot stick Helicopter dynamics
HE)]
+ K,
Ris) T G(s) » Piich
- ST Is ] Switch attitude

FIGURE P7.5
Helicopter control.

Automatic stabilization

Kys + 1)
s+9
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Controller Satelli_t €
dynamics
Du(s) +
Desired G.(s) > Gk y 00
" Attitude
FIGURE P7.6 auitude -~
Satellite attitude
control.
and P7.8 Consider again the power control system of Prob-
. . lem P7.7 when the steam turbine is replaced by a
s+ 2+ j15)s+2 - 1.5 . . . .
G.(s) = (s #2415 +2 -1 )‘ hydroturbine. For hydroturbines, the large inertia of

s + 4.0

(a) Draw the root locus of the system as K varies from
0 to 0. (b) Determine the gain K that results in a sys-
tem with a settling time (with a 2% criterion) less than
12 seconds and a damping ratio for the complex roots
greater than 0.50.

P7.7 The speed control system for an isolated power system

is shown in Figure P7.7. The valve controls the steam
flow input to the turbine in order to account for load
changes A L(s) within the power distribution network.
The equilibrium speed desired results in a generator fre-
quency equal to 60 cps. The effective rotary inertia J is
equal to 4000 and the friction constant b is equal to 0.75.
The steady-state speed regulation factor R is repre-
sented by the equation R = (wy — @,)/AL, where w,
equals the speed at rated load and wq equals the speed
at no load. We want to obtain a very small R, usually less
than ().10. (a) Using root locus techniques, determine the
regulation R attainable when the damping ratio of the
roots of the system must be greater than 0.60. (b) Verify

the water used as a source of energy causes a consid-
erably larger time constant. The transfer function of a
hydroturbine may be approximated by

=75 + 1

Gl = s+ 1

where 7 = 1 second. With the rest of the system
remaining as given in Problem P7.7, repeat parts (a)
and (b) of Problem P7.7.

P7.9 The achievement of safe, efficient control of the

spacing of automatically controlled guided vehicles is
an important part of the future use of the vehicles in a
manufacturing plant [14, 15]. It is important that the
system eliminate the effects of disturbances (such as
oil on the floor) as well as maintain accurate spacing
between vehicles on a guideway. The system can be
represented by the block diagram of Figure P7.9. The
vehicle dynamics can be represented by

(s + 0.1)(s*> + 25 + 289)

that the steady-state speed deviation for a load torque G(s) = 3 .
change AL(s) = AL/s is, in fact, approximately equal s(s = 0.4)(s + 0.8)(s” + 1.45s + 361)
to RALwhen R = 0.1.
Load
torque
Speed Steam AL(s) Power
governor turbine system
Reference T 1 Valve | 1 ¥ 1 Aols)
speed 0255 + 1 M Gl = 5ass + 1 Js+b > Speed
sp . ) + : deviation
FIGURE P7.7 P
Power system reN
control. R = regulation factor
Controller Engine throttle Vehicle
Dﬂs(;ld + Ki(s+05) | K, . Sonc Y (;’
CSIre > > 3 > z o
Deslr s + 30) T30 5) pdcm,_.,_ etween
spacing — vehicles
Sensor
FIGURE P7.9 J
Guided vehicle 1 «
control.
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P7.20 Determine the root sensitivity for the dominant
roots of the design for Problem P7.18 for the gain
K = 4a/B and the pole s = —2.

P7.21 Determine the root sensitivity of the dominant
roots of the power system of Problem P7.7. Evaluate
the sensitivity for variations of (a) the poles at
s = —4, and (b) the feedback gain, 1/R.

P7.22 Determine the root sensitivity of the dominant
roots of Problem P7.1(a) when K is set so that the
damping ratio of the unperturbed roots is 0.707. Eval-
uate and compare the sensitivity as a function of the
poles and zeros of G (s)G(s).

P7.23 Repeat Problem P7.22 for the loop transfer func-
tion G.(s)G(s) of Problem P7.1(c).

P7.24 For systems of relatively high degree, the form of
the root locus can often assume an unexpected pattern.

R

(b)

FIGURE P7.24
Root loci of four
systems. (c)

Chapter 7 The Root Locus Method

The root loci of four different feedback systems of
third order or higher are shown in Figure P7.24. The
open-loop poles and zeros of KG(s) are shown, and the
form of the root loci as K varies from zero to infinity is
presented. Verify the diagrams of Figure P7.24 by con-
structing the root loci.

P7.25 Solid-state integrated electronic circuits are com-
posed of distributed R and C elements. Therefore,
feedback electronic circuits in integrated circuit form
must be investigated by obtaining the transfer func-
tion of the distributed RC networks. It has been shown
that the slope of the attenuation curve of a distributed
RC network is 10n dB/decade, where # is the order of
the RC filter [13]. This attenuation is in contrast with
the normal 20n dB/decade for the jJumped parameter
circuits. (The concept of the slope of an attenuation
curve is considered in Chapter 8. If it is unfamiliar,




FIGURE P7.28
Auto engine control.

Problems

reexamine this problem after studying Chapter 8.) An
interesting case arises when the distributed RC net-
work occurs in a series-to-shunt feedback path of a
transistor amplifier. Then the loop transfer function
may be written as

K(s — 1)(s + 3)'?

L(s) = GA5)G(s) = (s + 1)(s + V7

(a) Using the root locus method, determine the locus
of roots as K varies from zero to infinity. (b) Calculate
the gain at borderline stability and the frequency of
oscillation for this gain.

P7.26 A single-loop negative feedback system has a loop

transfer function
K(s + 2)?

L(s) = Gs)G(s) S+ DG+ 8
(a) Sketch the root locus for 0 = K = oo to indicate
the significant features of the locus. (b) Determine the
range of the gain K for which the system is stable.
(c) For what value of K in the range K = 0 do purely
imaginary roots exist? What are the values of these
roots? (d) Would the use of the dominant roots approx-
imation for an estimate of settling time be justified in
this case for a large magnitude of gain (K > 50)?

P7.27 A unity negative feedback system has a loop trans-

fer function
K(s* + 0.1)
s(s2 +2)
K(s + j0.3162)(s — j0.3162)
s(s* + 1) ‘

Sketch the root locus as a function of K. Carefully cal-
culate where the segments of the locus enter and leave
the real axis.

I

L(s) = G(s)G(s)

P7.28 To meet current U.S. emissions standards for auto-
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current limit of 2.0 grams per mile to 1.0 gram per mile,
these techniques alone were no longer sufficient.

Although many schemes are under investigation
for meeting the emissions standards for all three emis-
sions, one of the most promising employs a three-way
catalyst—for HC, CO, and NO, emissions—in con-
junction with a closed-loop engine-control system.
The approach is to use a closed-loop engine control, as
shown in Figure P7.28 [19, 23]. The exhaust-gas sensor
gives an indication of a rich or lean exhaust and com-
pares it to a reference. The difference signal is
processed by the controller, and the output of the con-
troller modulates the vacuum level in the carburetor
to achieve the best air-fuel ratio for proper operation
of the catalytic converter. The loop transfer function is
represented by

Ks* + 125 + 20

L(s) = =>—-2 =
(s) s3 + 10s* + 258

Calculate the root locus as a function of K. Carefully
calculate where the segments of the locus enter and
leave the real axis. Determine the roots when K = 2.
Predict the step response of the system when K = 2.

P7.29 A unity feedback control system has a transfer

function
K(s> + 10s + 30)
X s + 10)
We desirec the dominant roots to have a damping
ratio equal to 0.707. Find the gain K when this con-

dition is satisfied. Show that the complex roots are
s = =3.56 + j3.56 at this gain.

L(s) = G(s)G(s) =

P7.30 An RLC network is shown in Figure P7.30. The

nominal values (normalized) of the network clements
are L — C = 1 and R = 2.5. Show that the root sen-
sitivity of the two roots of the input impedance Z(s) to
a change in R is different by a factor of 4.

- A to A%

mobiles, hydrocarbon (HC) and carbon monoxide R
(CO) emissions are usually controlled by a catalytic Z(5) L 1
converter in the automobile exhaust. Federal standards ’ ¢
for nitrogen oxides (NO,) emissions are met mainly by
exhaust-gas recirculation (EGR) techniques. However, ¢
as NO, emissions standards were tightened from the FIGURE P7.30 RLC network.

R(s) + Three-way

L Controller —{ Carburetor —»{ Engine —»{ catalytic |— Exhaust

Reference
converter

Oxygen

A

Sensor







Advanced Problems

P7.35 A powerful electrohydraulic forklift can be used to

lift pallets weighing several tons on top of 35-foot
scaffolds at a construction site. The negative unity
feedback system has a loop transfer function

K(s + 1)?

L(s) = G (s)YG(s) REEETS
(a) Sketch the root locus for K > 0. (b) Find the gain
K when two complex roots have a ¢ of 0.707. and cal-
culate all three roots. (c) Find the entry point of the
root locus at the real axis. (d) Estimate the expected
overshoot to a step input. and compare it with the
actual overshoot determined from a computer program.

P7.36 A microrobot with a high-performance manipu-

lator has been designed for testing very small parti-
cles, such as simple living cells [6]. The single-loop
unity negative feedback system has a loop transfer
function

K(s + 1)(s + 2)(s + 3)

L(s) = GLs)G(s) 6= D)
(a) Sketch the root locus for X > 0. (b) Find the gain
and roots when the characteristic equation has two
imaginary roots. (¢) Determine the characteristic
roots when K = 20 and K = 100. (d) For K = 20,
estimate the percent overshoot to a step input, and
compare the estimate to the actual overshoot deter-
mined from a computer program.

P7.37 Identify the parameters K, a, and b of the system

shown in Figure P7.37. The system is subject to a unit
step input, and the output response has an overshoot
but ultimately attains the final value of 1. When the
closed-loop system is subjected to a ramp input, the out-
put response follows the ramp input with a finite steady-
state error. When the gain is doubled to 2K, the output
response to an impulsc input is a pure sinusoid with a
period of 0.314 second. Determine K, a, and b.
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K

+
R(s) — Y(s)

(s +40)(s + a)(s + b)

FIGURE P7.37 Feedback system.

P7.38 A unity feedback system has the loop transfer

function
I GANG K(s +1)
(¥) = GUIGE) = =~
This system is open-loop unstable. (a) Determine the
range of K so that the closed-loop system is stable.
(b) Sketch the root locus. (c) Determine the roots for
K = 10. (d) For K = 10, predict the percent over-
shoot for a step input using Figure 5.13. (e) Determine
the actual overshoot by plotting the response.

P7.39 High-speed trains for U.S. railroad tracks must tra-

verse twists and turns. In conventional trains, the axles
are fixed in steel frames called trucks. The trucks pivot
as the train goes into a curve, but the fixed axles stay
parallel to each other, even though the front axle tends
to go in a different direction from the rear axle [24]. If
the train is going fast, it may jump the tracks. One so-
lution uses axles that pivot independently. To counter-
balance the strong centrifugal forces in a curve, the
train also has a computerized hydraulic system that
tilts each car as it rounds a turn. On-board sensors cal-
culate the train’s speed and the sharpness of the curve
and feed this information to hydraulic pumps under
the floor of each car. The pumps tilt the car up to eight
degrees, causing it to lean into the curve like a race car
on a banked track.

The tilt control system is shown in Figure P7.39.
Sketch the root locus, and determine the value of K
when the complex roots have maximum damping. Pre-
dict the response of this system to a step input R(s).

Controller Dynamics
K 2 Y(s)
> > Actual
s+ 1 s+ 8s + 22 lt

R(s) +
Command
FIGURE P7.39 tile -
Tilt control for a
high-speed train.
ADVANCED PROBLEMS

AP7.1 The top view of a high-performance jet aircraft is

shown in Figure AP7.1(a) [20)]. Sketch the root locus
and determine the gain K so that the ¢ of the complex
poles near the jw-axis is the maximum achievable.

Evaluate the roots at this K and predict the response
to a step input. Determine the actual response and
compare it to the predicted response.






Advanced Problems

AP7.3 A compact disc player for portable use requires a
good rejection of disturbances and an accurate position
of the optical reader sensor. The position control sys-
tem uses unity feedback and a loop transfer function

10

L) = GYGG) = S v )

The parameter p can be chosen by selecting the
appropriate DC motor. Sketch the root locus as a func-
tion of p. Select p so that the ¢ of the complex roots of
the characteristic equation is approximately 1/ V2.

AP74 A remote manipulator control system has unity
feedback and a loop transfer function

(s + a)

frl+a)+(a-Ds+1—-a

G(s)G(s) =

We want the steady-state position error for a step input
to be less than or equal to 10% of the magnitude of the
input. Sketch the root locus as a function of the parame-
ter . Determine the range of a required for the desired
steady-state error. Locate the roots for the allowable
value of a to achieve the required steady-state error,
and estimate the step response of the system.

AP7.5 A unity feedback system has a loop transfer
function

K
s+ 1052 + 7s — 18

L(s) = G(s)G(s) =

(a) Sketch the root locus and determine K for a stable
system with complex roots with ¢ equal to 1/ V2.

(b) Dectermine the root sensitivity of the complex
roots of part (a).

(c) Determine the percent change in K (increase or
decrease) so that the roots lie on the jw-axis.
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AP7.6 A unity feedback system has a loop transfer function

K(s? + 35 + 6)

L(s) = G5)G(s) = T—————.
(s) ($)G(5) S +2+3s+1

Sketch the root locus for K > 0, and select a value for
K that will provide a closed step response with settling
time less than 1 second.

AP7.7 A fcedback system with positive feedback is
shown in Figure AP7.7. The root locus for K > 0
must meet the condition

KG(s) = 1 /£k360°
fork =0,1,2,....
Sketch the root locus for 0 < K < 0,

G(s)
+ 1
(s + 4)(s + 8)

>
y

R(s)

FIGURE AP7.7 A closed-loop system with positive
feedback.

AP7.8 A position control system for a DC motor is shown
in Figure AP7.8. Obtain the root locus for the velocity
feedback constant K, and select K so that all the roots
of the characteristic equation are real (two are equal
and real). Estimate the step response of the system for
the K selected. Compare the estimate with the actual
response.

AP7.9 A control system is shown in Figure AP7.9. Sketch
the root loci for the following transfer functions G.(s):
(a) G(s) = K
(b) G(s) = K(s + 3)

+ N 120 R ()]

R(s) v (s+2)s+17) 1S " Position
FIGURE AP7.8 K e
A position control
system with
velocity feedback.

Controller Process
3 G (5) ' >

R(s) —>(—> G5 | G+ 26 + 3 > 1
FIGURE AP7.9 -
A unity feedback

control system.
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_K(s+ 1)

() Gels) RN
_K(s + 1)(s + 4)

e T

AP7.10 A feedback system is shown in Figure AP7.10.
Sketch the root locus as K varies when K = (. Deter-
mine a value for X that will provide a step response
with an overshoot less than 5% and a settling time
(with a 2% criterion) less than 2.5 seconds.

+ 10
(s ¥ 2)s +5)

Ris) » V(s)

K
s+ K

FIGURE AP7.10 A nonunity feedback control system.
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AP7.11 A control system is shown in Figure AP7.11.
Sketch the root locus, and select a gain K so that the
step response of the system has an overshoot of less
than 10% and the settling time (with a 2% criterion) is
less than 4 seconds.

AP7.12 A control system with PI control is shown in
Figure AP7.12. (a) Let K;/Kp = 0.2 and determine
Kp so that the complex roots have maximum damping
ratio. (b) Predict the step response of the system with
Kp set to the value determined in part (a).

AP7.13 The feedback system shown in Figure AP7.13 has
two unknown parameters K; and K,. The process
transfer function is unstable. Sketch the root locus for
0 = K, K, < 0o. What is the fastest settling time
that you would expect of the closed-loop system in
response to a unit step input R(s) = 1/s? Explain.

Controller Process
+ 2 1
R(s) Kis +2) > 5 > ¥(s)
_ (s + 10)(s + 20) s(s”+ 35+ 3.5)
FIGURE AP7.11
A control system
with parameter K.
Controller Process
+ K, 1
- > > V(s
Ris) Kp+ — S62+ 75 + 10) (5)
FIGURE AP7.12 -
A control system
with a Pl controller.
.
K, (s+S5)s—1) 3
R(s) ——> Yis)
_.Kz
(a)
+ K 1
; —p » 3 > Vs
ke ! G+ 5)s— D) 3 )
FIGURE AP7.13
An unstable plant K, |e
with two

parameters K, and
Ko. (b)
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Controller He]icoPter
Tilt dynamics
+ angle
R(s) G.(s) > G(s) > Y(s)
FIGURE DP7.2 -
Two-rotor helicopter
velocity control.
and the controller is selected as be represented by the system shown in Figure DP7.3.
(a) Sketch the root locus for K and identify the roots
for X = 4.1 and 41. (b) Determine the gain K that re-

K: K(s+1)

Gds) = K, + -

(a) Sketch the root locus of the system and determine
K when ¢ of the complex roots is equal to 0.6. (b) Plot
the response of the system to a step input r(f) and find
the settling time (with a 2% criterion) and overshoot
for the system of part (a). What is the steady-state
error for a step input? (c) Repeat parts (a) and (b)
when the { of the complex roots is (.41. Compare the
results with those obtained in parts (a) and (b).

DP7.3 The vehicle Rover has been designed for maneu-
vering at (.25 mph over Martian terrain. Because
Mars is 189 million miles from Earth and it would
take up to 40 minutes each way to communicate with
Earth [22,27], Rover must act independently and reli-

sults in an overshoot to a step of approximately 1%.
(c) Determine the gain that minimizes the settling
time (with a 2% criterion) while maintaining an over-
shoot of less than 1%.

DP7.4 A welding torch is remotely controlled to achieve

high accuracy while operating in changing and haz-
ardous environments [21]. A model of the welding arm
position control is shown in Figure DP7.4, with the dis-
turbance representing the environmental changes.
(a) With T,(s) = 0, select K; and K to provide
high-quality performance of the position control sys-
tem. Select a set of performance criteria, and examine
the results of your design. (b) For the system in part
(a), let R(s) = 0 and determine the effect of a unit
step Ty(s) = 1/sby obtaining y(¢).

ably. Resembling a cross between a small flatbed DP7.5 A high-performance jet aircraft with an autopilot

truck and an elevated jeep, Rover is constructed of
three articulated sections, each with its own two inde-
pendent, axle-bearing, one-meter conical wheels. A
pair of sampling arms—one for chipping and drilling,
the other for manipulating fine objects—extend from
its front end like pincers. The control of the arms can

control system has a unity feedback and control sys-
tem, as shown in Figure DP7.5. Sketch the root locus
and select a gain K that leads to dominant poles. With
this gain K, predict the step response of the system.
Determine the actual response of the system, and
compare it to the predicted response.

Controller Manipulator
+ Uls
R(s) Ks?+655+12) | U0 ! > ¥(s)
5 s+ s+ 2)
FIGURE DP7.3 -
Mars vehicle robot
control system.
T (5)
Controller Process
+
R(s) 3 K(1 + 0.01s) 1 » Y(s)
. A o + 5 s¥(s + 10) s
K & <t
FIGURE DP7.4
Remotely controlied
welder.
















Computer Problems

(c) Plot the root locus for 0 = K < o0 when
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(e) Design the PD controller to meet the following

T =6. specifications:
(d) What is the effect on the root locus when (i) PO.<5%
0<7< VIO? (i) I, < 1s
Controller Process
+ E(s) 10
FIGURE DP7.14 R(5) Kp+ Kps > 7+ 10 > Y(s)
A marginally stable - 5

plant with a PD
controller in the
loop.

COMPUTER PROBLEMS

CP7.1 Using the rlocus function, obtain the root locus for
the following transfer functions of the system shown
in Figure CP7.1 when ) < K < o0

30
G(s) = )
(a) G(s) s+ 14s% + 435 + 30
s+ 20
b) G(s) =5~
(b) G(s) 2+ 45 + 20
s+ s +2
() 6() = 5~~~
s(s? + 65 + 10)
s+ 45+ 65° + 1057 + 65 + 4
(d) G(s) =

S+48 + 45t + 55+ 52+ 105 + 1

+

R(s) KG(s) - ¥(s)

FIGURE CP7.1 A single-loop feedback system with
parameter K.

CP7.2 A unity negative feedback system has the loop
transfer function
st — 25 +2

KG(s) = K—————.
() s(s® + 35 + 2)

Develop an m-file to plot the root locus and show with
the rlocfind function that the maximum value of K for
a stable system is K = 0.79.

CP7.3 Compute the partial fraction expansion of
s+ 6
Y($)= ———
s(s=+ 5s +4)
and verify the result using the residue function.
CP7.4 A unity negative feedback system has the loop
transfer function
d+p)s—p

GA5)G(s) = — :
666 = T v 10

Develop an m-file to obtain the root locus as p varies;
0 < p < 00, For what values of p is the closed-loop
stable?

CP7.5 Consider the feedback system shown in Figure
CP7.1, where

s+ 1
G(s) = ——.
$°
For what value of K is ¢{ = (.707 for the dominant
closed-loop poles?

CP7.6 A large antenna, as shown in Figure CP7.6(a), is
used to receive satellite signals and must accurately
track the satellite as it moves across the sky. The con-
trol system uses an armature-controlled motor and a
controller to be selected, as shown in Figure CP7.6(b).
The system specifications require a steady-state error
for a ramp input r(t) = Bt less than or equal to 0.015,
where B is a constant. We also seek a percent over-
shoot to a step input of P.O. =< 5% with a settling
time (with a 2% criterion) of T, = 2 seconds. (a) Using
root locus methods, create an m-file to assist in design-
ing the controller. (b) Plot the resulting unit step
response and compute the percent overshoot and the
settling time and Jabel the plot accordingly. (c) Deter-
mine the effect of the disturbance T, (s) = Q/s
(where Q is a constant) on the output Y(s).

CP7.7 Consider the feedback control system in Figure
CP7.7. We have three potential controllers for our
system:

1. G.(s) = K (proportional controller)
2. G(s) = K/s (integral controller)
3. G(s) = K(1 + 1/s) (proportional, integral (PI)
controller)
The design specifications are 7, = 10 seconds and
P.0O. = 10% for a unit step input.

(a) For the proportional controller, develop an m-file
to sketch the root locus for ) < K < oo, and






Terms and Concepts

an m-file using root locus methods find the values of
Kp/J and K,/ J so that the seltling time 7} is less than or
equal to 4 seconds, and the pcak overshoot PO. is less
than or equal to 10% for a unit step input. Use a 2% cri-
terion in determining the settling time.

CP7.9 Consider the feedback control system in Figurc
CP7.9. Develop an m-file to plot the root locus for
0 < K < o00. Find the value of X resulting in a damp-
ing ratio of the closed-loop poles equal to 0.707.

CP7.10 Consider the system represented in state variable
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where
0 1 0 1
A= 0 0 1 B=]0]
-1 -5 -2-k 4
C=[1 -9 12], and D = [0].

(a) Determine the characteristic equation. (b) Using
the Routh-Hurwitz criterion. determine the values of
k for which the system is stable. (¢) Develop an m-file
to plot the root locus and compare the results to those
obtained in {(b).

» Y(s)

form
x = Ax + Bu
y = Cx + Du,
R(s) X
FIGURE CP7.9 e S+ 852+ (05 + 1
Unity feedback -
system with
parameter K.
ANSWERS TO SKILLS CHECK

/

(5) True

True or False: (1) True; (2) True; (3) False; (4) True:

Word Match (in order, top to bottom): k, f, a, d, i, h,
cbeg)j

Multiple Choice: (6) b; (7) c; (8) a: (9) c; (10) a;

(11) b;(12) ¢; (13) a; (14) c; (15) b

TERMS AND CONCEPTS

Angle of departure  The angle at which a locus leaves a
complex pole in the s-plane.

Angle of the asymptotes The angle ¢, that thc asymp-
tote makes with respect to the real axis.

Asymptote The path the root locus follows as the para-
meter becomes very large and approaches infinity. The
number of asymptotes is equal to the number of poles
minus the number of zeros.

Asymptote centroid The center ¢,y of the linear asymp-
totes.

Breakaway point The point on the real axis where the
locus departs from the real axis of the s-planc.

Dominant roots  The roots of the characteristic equation
that represent or dominate the closed-loop transient
response.

Locus A path or trajectory that is traced out as a para-
meter is changed.

Logarithmic sensitivity A measure of the sensitivity of
the system performance to specific parameter changes,

aT(s)/T(s)
dK/K
transfer function and K is the parameter of interest.

given by Sk (s) = . where 7(s) is the system

Manual PID tuning methods The process of determining
the PID controller gains by trial-and-error with mini-
mal analytic analysis.

The root locus for negative

interest, where

Negative gain root locus
values of the parameter of
—co < K =0.

Number of separate loci  Equal to the number of poles of
the transfer function, assuming that the number of
poles is greater than or equal to the number of zeros
of the transfer function.

Parameter design A method of sclecting one or two
parameters using the root locus method.
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PID controller A widcly used ;:{ontroller used in industry
of the form G (s) = K, + T, + Kps. where K,, is

the proportional gain, K, is the integral gain, and K,
is the derivative gain.

PID tuning The process of determining the PID con-
troller gains.

Proportional plus deriviative (PD) controller A two-
term controller of the form G.(s) = K, + Kps,
where K|, is the proportional gain and K} is the deri-
vative gain.

Proportional plus integral (PI) controller A two-term

K
controller of the form G.(s) = K, + T’ where X,
is the proportional gain and K; is the inlégral gain.

Quarter amplitude decay The amplitude of the closed-
loop response is reduced approximately to one-fourth
of the maximum value in one oscillatory period.

Reaction curve The responsc obtained by taking the
controller off-line and introducing a step input. The
underlying process is assumed to be a first-order sys-
tem with a transport delay.

Root contours  The family of loci that depict the effect of
varying two parameters on the roots of the character-
istic equation.

Chapter 7 The Root Locus Method

Root locus The locus or path of the roots traced out on
the s-plane as a parameter is changed.

Root locus method The method for determining the locus
of roots of the characteristic equation 1 + KP(s) = 0
as K varies from 0 to infinity.

Root locus segments on the real axis The root locus lying
in a section of the real axis to the left of an odd num-
ber of poles and zeros.

Root sensitivity The sensitivity of the roots as a parame-
ter changes from its normal value. The root sensitivity

is given by S = the incremental change in the

ar
aK/K'
root divided by the proportional change of the para-
meter.
Ultimate gain  The PD controller proportional gain, K,
on the border of instability when K, =0 and K;=0.

Ultimate period The period of the sustained oscillations
when Kp is the ultimate gain and K, =0 and K; =0.

Ziegler-Nichols PID tuning method The process of
determining the PID controller gains using one of
several analytic methods based on open-loop and
closed-loop responses to step inputs.
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PREVIEW

In previous chapters, we examined the use of test signals such as a step and a ramp
signal. In this chapter, we consider the steady-state response of a system to a sinu-
soidal input test signal. We will see that the response of a linear constant coefficient
system to a sinusoidal input signal is an output sinusoidal signal at the same fre-
quency as the input. However, the magnitude and phase of the output signal differ
from those of the input sinusoidal signal, and the amount of difference is a function
of the input frequency. Thus, we will be investigating the steady-state response of the
system to a sinusoidal input as the frequency varies.

We will examine the transfer function G(s) when s = jw and develop methods
for graphically displaying the complex number G(jw) as w varies. The Bode plot is
one of the most powerful graphical tools for analyzing and designing control sys-
tems, and we will cover that subject in this chapter. We will also consider polar plots
and log magnitude and phase diagrams. We will develop several time-domain per-
formance measures in terms of the frequency response of the system, as well as
introduce the concept of system bandwidth. The chapter concludes with a frequency
response analysis of the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 8, students should:

QO Understand the powerful concept of frequency response and its role in control system
design.

& Know how to sketch a Bode plot and also how to obtain a computer-generated Bode plot.

Q Be familiar with log magnitude and phase diagrams.

Q Understand performance specifications in the frequency domain and relative stability
based on gain and phase margins.

Q Be capable of designing a controller to meet desired specifications using frequency
response methods.
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8.1 INTRODUCTION

In preceding chapters, the response and performance of a system have been described
in terms of the complex frequency variable s and the location of the poles and zeros
on the s-plane. A very practical and important alternative approach to the analysis
and design of a system is the frequency response method.

The frequency response of a system is defined as the steady-state response of
the system to a sinusoidal input signal. The sinusoid is a unique input signal,
and the resulting output signal for a linear system, as well as signals
throughout the system, is sinusoidal in the steady state; it differs
from the input waveform only in amplitude and phase angle.

For example, consider the system Y (s) = T(s)R(s) with r(t) = A sin wt. We have

R(s) = 52’1“’ ;
and
T(s) = m(s) m(s)

where —p; are assumed to be distinct poles. Then, in partial fraction form, we have

k k s +
Y(s) = —2—t o —2 1 & BZ
st p stp, sSSt+o

Taking the inverse Laplace transform yields
+
y(t) = kye ™' + oo+ K e7Prl + §£“{a2s—ﬁz},
S+ w

where « and B are constants which are problem dependent. If the system is stable,
then all p, have positive real parts and

+
lim y(r) = 1im.5£-1{“s P }
{—00 —0o0

§ + o

since each exponential term k;e”? decays to zero as t — 00.
In the limit for y(¢), it can be shown, for ¢t — oo (the steady state),

o) = g_l[as + B}

§* + o

1
AwT (jo)

(O]

= A|T(jw)| sin(wt + ¢), (8.1)

sin(wt + ¢)

where ¢ = /T(jw).
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Thus, the steady-state output signal depends only on the magnitude and phase
of T(jw) at a specific frequency w. Notice that the steady-state response, as
described in Equation (8.1), is true only for stable systems, 7(s).

One advantage of the frequency response method is the ready availability of
sinusoid test signals for various ranges of frequencies and amplitudes. Thus, the
experimental determination of the system’s frequency response is easily accom-
plished; it is the most reliable and uncomplicated method for the experimental
analysis of a system. Often, as we shall find in Section 8.4, the unknown transfer
function of a system can be deduced from the experimentally determined frequency
response of a system [1, 2]. Furthermore, the design of a system in the frequency
domain provides the designer with control of the bandwidth of a system, as well as
some measure of the response of the system to undesired noise and disturbances.

A second advantage of the frequency response method is that the transfer func-
tion describing the sinusoidal steady-state behavior of a system can be obtained by
replacing s with jw in the system transfer function 7(s). The transfer function repre-
senting the sinusoidal steady-state behavior of a system is then a function of the
complex variable jw and is itself a complex function T'(jw) that possesses a magni-
tude and phase angle. The magnitude and phase angle of T(jw) are readily repre-
sented by graphical plots that provide significant insight into the analysis and design
of control systems.

The basic disadvantage of the frequency response method for analysis and
design is the indirect link between the frequency and the time domain. Direct corre-
lations between the frequency response and the corresponding transient response
characteristics are somewhat tenuous, and in practice the frequency response char-
acteristic is adjusted by using various design criteria that will normally result in a
satisfactory transient response.

The Laplace transform pair was given in Section 2.4; it is written as

F(s) = 2{f(0)} = /0 e di ©2)
and
a+joo
0 = £HFO} = 5 [ Foeras 83)
o—joo

where the complex variable s = ¢ + jw. Similarly, the Fourier transform pair is
written as

o

F(o) = F{f()} = / f(e)e dt (8.4)

—-00

and

f() = FYF(0)} = 51; /_OOF(w)ej“” do. (8.5)
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The Fourier transform exists for f{¢) when

[ [f(H] dt < 0.

The Fourier and Laplace transforms are closely related, as we can see by exam-
ining Equations (8.2) and (8.4). When the function f(¢) is defined only for ¢ = 0, as
is often the case, the lower limits on the integrals are the same. Then we note that the
two equations differ only in the complex variable. Thus, if the Laplace transform of
a function f,(¢) is known to be F(s), we can obtain the Fourier transform of this
same time function by setting s = jw in F(s)[3].

Again we might ask, Since the Fourier and Laplace transforms are so closely
related, why can’t we always use the Laplace transform? Why use the Fourier trans-
form at all? The Laplace transform permits us to investigate the s-plane location of
the poles and zeros of a transfer function 7(s), as in Chapter 7. However, the fre-
quency response method allows us to consider the transfer function T(jw) and to
concern ourselves with the amplitude and phase characteristics of the system. This
ability to investigate and represent the character of a system by amplitude, phase
equations, and curves is an advantage for the analysis and design of control systems.

If we consider the frequency response of the closed-loop system, we might have
an input () that has a Fourier transform in the frequency domain as follows:

R(jw) = /_oor(t)e'j“" dt.

Then the output frequency response of a single-loop control system can be obtained
by substituting s = je in the closed-loop system relationship, Y (s) = T(s)R(s), so
that we have

G(jw)
1 + G(jw)H(jw)

Using the inverse Fourier transform, the output transient response would be

Y(jo) = T(jo)R(jw) = R(jw). (8.6)

y(t) = FHYY(jo)} = % [ ooY(jw)ef"" dw. (8.7)

However, it is usually quite difficult to evaluate this inverse transform integral for
all but the simplest systems, and a graphical integration may be used. Alternatively,
as we will note in succeeding sections, several measures of the transient response
can be related to the frequency characteristics and utilized for design purposes.

8.2 FREQUENCY RESPONSE PLOTS

The transfer function of a system G(s) can be described in the frequency domain by
the relation

G(jw) = G(8)|s=jo = R(0) + jX(w), (8.8)
where
R(w) = Re[G(jw)] and X(w) = Im[G(jw)].
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Im(G) = X(w)

'0 Re(G) = R(w)

FIGURE 8.1
The polar plane.

:‘%" a See the MCS website for a review of complex numbers.
. = Alternatively, the transfer function can be represented by a magnitude |G(jw)|
and a phase ¢(jw) as

G(jo) = |G(jw)le* = |G(jw)|/$(w), (8.9)

where

d(w) = tan™! X(@)

R(w)

The graphical representation of the frequency response of the system G(jw) can uti-

lize either Equation (8.8) or Equation (8.9). The polar plot representation of the fre-

quency response is obtained by using Equation (8.8). The coordinates of the polar

plot are the real and imaginary parts of G(jw), as shown in Figure 8.1. An example
of a polar plot will illustrate this approach.

and |G(jw)|> = [R(w)]* + [X(w)]*

EXAMPLE 8.1 Frequency response of an RC filter

A simple RC filter is shown in Figure 8.2, The transfer function of this filter is

Vas) 1

G(s) = = , 8.10
)=y 5 = RCs + 1 (8.10)
and the sinusoidal steady-state transfer function is
Gjo) 1 1 (8.11)
W) = = , .
jo(RC) + 1 jlwfw) + 1
where
1
w, = T
' RC
R
+o AYAYA% -0+
Vits) C 1~ Vals)
FIGURE 8.2
An RC filter. —o— o—
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FIGURE 8.3
Polar plot for RC
filter.
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X(w)
Negative w
,/,,’ \\\\
/ \
; \
y \

W= - 11 R(w)
/' 45° '\
w=* w=10

Gl
Positive w =@

Then the polar plot is obtained from the relation
G(jw) = R(w) + jX(w)

_ 1~ jw/a)
(w/w; 2+ 1
1 j(w/wr)

1+ (w/)* 1+ (w/ew)* (812)
The first step is to determine R(w) and X (w) at the two frequencies, @ = 0 and

o = 00. Atw = 0, we have R(w) = 1 and X(w) = 0. At w = 00, we have R(w) = 0
and X (w) = 0. These two points are shown in Figure 8.3. The locus of the real and
imaginary parts is also shown in Figure 8.3 and is easily shown to be a circle with the cen-
ter at (%, 0). When w = wy, the real and imaginary parts are equal in magnitude, and the
angle ¢(w) = —45°. The polar plot can also be readily obtained from Equation (8.9) as

G(jo) = |G(jw)| /d(w), (8.13)

where

|G(jw)| = and ¢(w) = ~tan " (w/w;).

1
1+ @/ 17
Hence, when o = w;, the magnitude is |G(jw;)| = 1/ V/2 and the phase ¢(w;) =
—45°, Also, when w approaches + 00, we have |G(jw)| — 0 and ¢(w) = —90°. Similarly,
when @ = 0, we have |G(jo)| = 1 and ¢p(w) = 0. m

EXAMPLE 8.2 Polar plot of a transfer function

The polar plot of a transfer function is useful for investigating system stability and
will be utilized in Chapter 9. Therefore, it is worthwhile to complete another exam-
ple at this point. Consider a transfer function

K K

jw(jan- + l) - jw — W

G(5)|s=jw = G(jw) = 7 (8.14)



FIGURE 8.4

Polar plot for G(jew) =
K/(joljwr + 1)). Note
that o = oo is at the
origin.
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Table 8.1
w 0 1/27 1/7 ]
|G(jw)| o0 4K1/V5 K/V2 0
¢(w) -90° -117° —135° —180°
Im[G]
=%
y Re[G]
Increasing w £
w= L L 135
Positive @
1
w= ;

n)"()l

Then the magnitude and phase angle are written as

K _ 4 1

(@ + )P and ¢(w) = —tan g
The phase angle and the magnitude are readily calculated at the frequencies
o = 0,0 = 1/7,and w = +00. The values of |G(w)| and ¢(w) are given in Table 8.1,
and the polar plot of G(jw) is shown in Figure 8.4.

An alternative solution uses the real and imaginary parts of G(jw) as

K _ K(-jo — w’r)
jo — Wt w? + W'7?
where R(w) = —Kw?*r/M(w) and X(w) = —wK/M(w), and where M(w) =
w® + 0'r’>. Thenwhenw = 00, we have R(w) = Oand X (w) = 0.Whenw = 0, we have
R(w) = =K1 and X(w) = —o0. When o = 1/7, we have R(w) = —K7/2 and
X(w) = —K7/2, as shown in Figure 8.4.

Another method of obtaining the polar plot is to evaluate the vector G(jw) graph-
ically at specific frequencies, w, along the s = jw axis on the s-plane. We consider

K/t
s(s + 1/7)

|G(jw)] =

G(jw) =

= R(w) + jX (), (8.15)

G(s) =

with the two poles shown on the s-plane in Figure 8.5.
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FIGURE 8.5
Two vectors on the
s-plane to evaluate

G(Jw 1).
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Jjw

Jwy +p

When s = jo, we have
K/r

U o+

where p = 1/7. The magnitude and phase of G(jw) can be evaluated at a specific fre-
quency, wy, on the jw-axis, as shown in Figure 8.5. The magnitude and the phase are,
respectively,

G o) ki
w = T
O jorlTjor + pl

and
d(w) = —/(jw) — /(jo, + p) = =90° — tan” (w;/p). =

There are several possibilities for coordinates of a graph portraying the fre-
quency response of a system. As we have seen, we may use a polar plot to represent
the frequency response (Equation 8.8) of a system. However, the limitations of
polar plots are readily apparent. The addition of poles or zeros to an existing system
requires the recalculation of the frequency response, as outlined in Examples 8.1
and 8.2. (See Table 8.1.) Furthermore, calculating the frequency response in this
manner is tedious and does not indicate the effect of the individual poles or zeros.

The introduction of logarithmic plots, often called Bode plots, simplifies the
determination of the graphical portrayal of the frequency response. The logarith-
mic plots are called Bode plots in honor of H. W. Bode, who used them extensively
in his studies of feedback amplifiers [4, 5]. The transfer function in the frequency
domain is

G(jw) = IG(jw)le’®. (8.16)

The logarithm of the magnitude is normally expressed in terms of the logarithm to
the base 10, so we use

Logarithmic gain = 20 log;o|G(jw)I, (8.17)




FIGURE 8.6

Bode diagram for
G{jw) = 1/(jwr + 1)
(a) magnitude plot
and (b) phase plot.
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where the units are decibels (dB). A decibel conversion table is given on the MCS
website. The logarithmic gain in dB and the angle ¢{w) can be plotted versus the fre-
quency w by utilizing several different arrangements. For a Bode diagr