Zosilňovač s MOSFET

simulácia elektrónkového nízkofrekvenčného zosilňovača

Jozef Ropovik

V poslednom období zvyšovanie záujmu o elektrónkové zosilňovače vytvára dojem nejakého návratu elektroniek. Skôr by som povedal, že elektrónkové zosilňovače boli, sú a budú, čo taktiež možno povedať aj o tranzistorových zosilňovačoch. V článku je popísaný zosilňovač s tranzistormi MOSFET navrhnutý tak, aby sa zvukový prejav zosilňovača priblížil prejavu zosilňovača s elektrónkami.

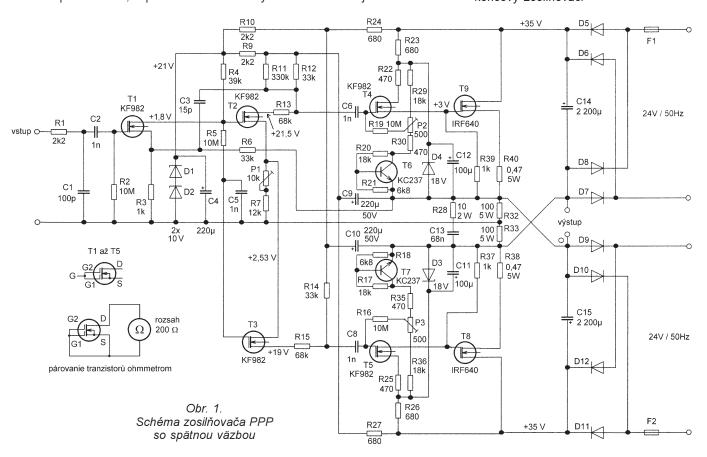
Zámeru odpovedá aj obvodové riešenie, zvyčajne používané u elekrónkových zosilňovačov. Osobne som použil typ Parallel-Push-Pull, označovaný aj ako PPP, ktorý v 50. a 60. rokoch bol považovaný za najlepšie riešený. Treba pripomenúť, že 70. a 80. roky priniesli podobu zosilňovačov PPP v tranzistorovom prevedení pod značkou Regent, s ktorými sa stretávam dodnes. Tieto zosilňovače sú osadené bipolárnymi kremíkovými tranzistormi. Preto by bolo vhodné osadit zosilňovač aj tranzistormi MOSFET, ktoré majú niekoľko spoločných znakov s elektrónkami, aby sa odzrkadlila doba 90. rokov v tej istej podobe

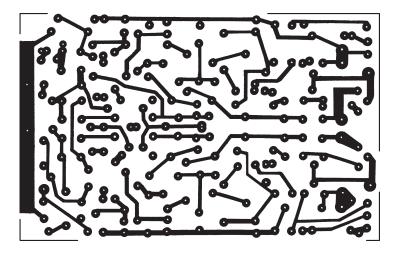
Podstatou návrhu bola čo najmenšia spätná väzba, a preto vznikli dve zapojenia – jedno so spätnou väzbou a druhé bez nej. Obidve zapojenia sú osadené tetrodami MOSFET KF982 z bývalej TESLA Piešťany, ktoré s obľubou používam od roku 1993 s prepojenými hradlami G1 a G2.

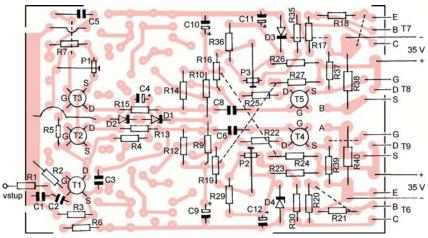
Vylepšovanie zosilňovačov s použitím PPP som ukončil v roku 2001, pričom ja sám, ale aj môj syn, ich používame dodnes. Doposiaľ s nimi neboli žiadne problémy. Ku konštrukcii ma inšpiroval príspevok pána Rochelta v PE 3, 4 a 5/2000.

Jednou zaujímavou zvláštnosťou tohto zosilňovača oproti iným, ktoré som používal predtým je, že zvuk sa nachádza v priestore izby a pri jej opúšťaní sa podstatne stráca, čo predtým bolo opačne. Rozdiel medzi popísanými zosilňovačmi je len vo vnútor-

nom zosílení, ktoré je pri otvorenej spätnej väzbe rozdielne.


Zvuk je nevtieravý, neunavuje a pre nové konštrukcie ho používam pre porovnanie. Jediné, čo sa mi na ňom nepáčilo, je množstvo napájacich okruhov, samostatných a oddelených.

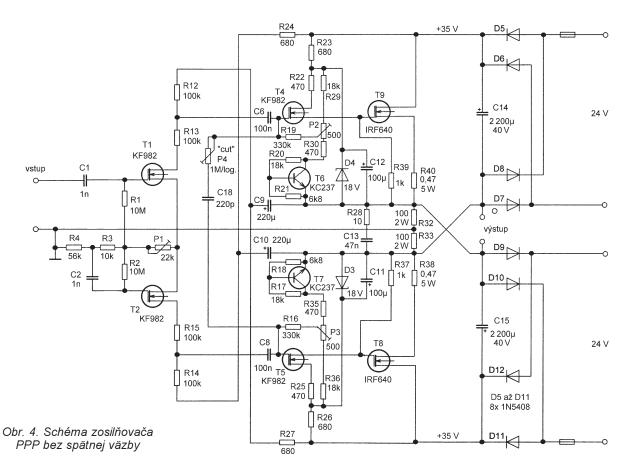

Niektoré skúsenosti pri stavbe a oživovaní

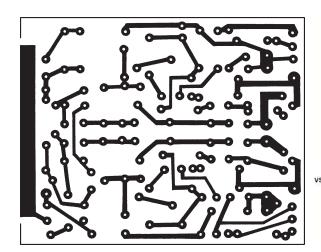

Úvodom je treba upozorniť, že napriek tomu, že tetrody MOSFET majú chránené hradlá, ich ochrana je obmedzená. Pre oživovanie výkonových zosilňovačov používam namiesto poistiek autožiarovky pre prúd do 1 A s vláknami do série, pričom súčet ich napätí musí odpovedať napájaciemu napätiu zosilňovača.

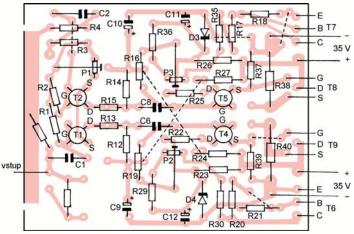
Bežne používam rezistory 0,6 W, pokiaľ ich neoznačujem ináč. Taktiež používam fóliové kondenzátory. Výkonové tranzistory a tranzistorové teplotné čidlá sa musia nachádzať na chladiči vo vzájomnej blízkosti. Protiľahlé tranzistory je potrebné párovať. Oživovanie je podobné ako u elektrónkových zosilňovačoch opísaných pánom Rocheltom. Treba pripomenúť, že všetko sa musí merať a nastavovať do náhradnej záťaže. Tento zosilňovač nemá výstupný transformátor.

Ako doplnok používam korekčný predzosilňovač. Jedná sa o pasívny korektor osadený tetródami MOSFET. Predzosilňovač je v zosilňovači možno odpojiť a signál priviesť priamo na koncový zosilňovač.

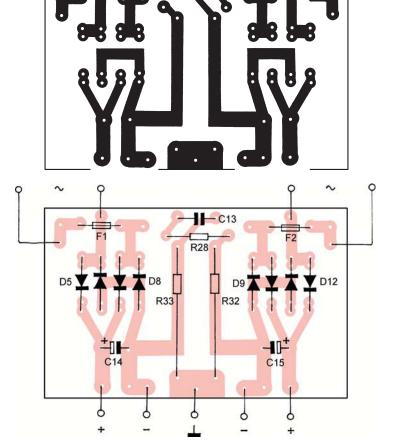
Obr. 2 a 3. Doska s plošnými spojmi zosilňovača PPP so spätnou väzbou a rozmiestnenie súčiastok na doske.


Niektoré tranzistory KF982 je treba na doskách obrátiť tak, aby súhlasili ich vývody (sú "bruchom" hore).


Napájací transformátor má pre stereofónný zosilňovač štyri samostatné vinutia s napätím 24 V a jedno nevýkonové vinutie tiež 24 V pre predzosilňovač. Každé vinutie je pripojené na mostíkový usmerňovač. Filtračný kondenzátor pro rozsah záťaže 4 až 8 Ω stačí s kapacitou 2 200 μ F pre napätie 50 V. Pre predzosilňovač má filtračný kondenzátor v usmerňovači kapacitu 1000 μ F. S odstupom hlukšum nie sú problémy.


Trubičkové poistky sú súčasťou zdroja a aj výstup k reproduktoru je odvedený zo zdroja. Doska s plošnými spojmi je univerzálna, a bol na nej postavený i zosilňovač s výkonom 200 W/4 Ω. Ochranné obvody boli identické ako v zosilňovačoch Regent. Najväčším problémom tohto typu zosilňovača je zložitý napájací zdroj.

Zoznam súčiastok


Zosilňovač PPP so spätnou väzbou R1, R9, R10 $2,2 k\Omega$ $10~\text{M}\Omega$ R2, R5, R16, R19 R3, R37, R39 $1 \, k\Omega$ R4 $39 \text{ k}\Omega$ R6, R12, R14 $33 \text{ k}\Omega$ R7 $12 \text{ k}\Omega$ R11 330 kΩ R13, R15 $68 \text{ k}\Omega$ R17, R20 18 k Ω R21 $6,8 \text{ k}\Omega$ R22, R25 470Ω R23, R24, R26, R27 680 Ω

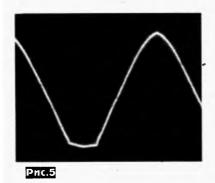
Obr. 5 a 6. Doska s plošnými spojmi zosilňovača PPP bez spätnej väzby a rozmiestnenie súčiastok na doske

Obr. 7 a 8. Doska s plošnými spojmi a rozmiestnenie súčiastok usmerňovačov. Výstup na reproduktor je zo záporných pólov usmerňovačov

R28 R29, R36	10 Ω, 2 W 18 kΩ (22 kΩ)	C14, C15 D1, D2	2 200 µF/50 V ZD 10 V, 1,3 W
R30, R35	$470 \Omega (1 k\Omega)$	D3, D4	ZD 10 V, 1,3 W
R32, R33	100 Ω, 2 až 5́ W	D5 [°] až D12	1N5402
R38, R40	$0,47 \Omega, 5 W$	T1 až T5	KF982
	$(3x 1,5 \Omega, 2 W)$	T6, T7	KC237
P1	10 kΩ	T8, T9	IRF640
P2, P3	500Ω	F1, F2	F1,6A
C1	100 pF, ker.		
C2, C5, C6, C8	1 nF	Zosilňovač PPP be	ez spätnej väzby
C3	15 pF, ker.	R1, R2	10 ΜΩ
C4, C9, C10	220 µF/50 V	R3	10 kΩ
C11, C12	100 µF/25 V	R4	56 kΩ
C13	68 nF	R12, R13, R14, R15	100 kΩ

D40 D40	00010	
R16, R19	330 kΩ	
R17, R20, R29, R36		
R18, R21	6,8 kΩ	
R22, R25	470 Ω	
R23, R24, R26, R27		
R28	10 Ω, 2 W	
R29, R36	18 kΩ (22 kΩ)	
R30, R35	470Ω	
R32, R33	100 Ω, 2 až 5 W	
R37, R39	$1~\mathrm{k}\Omega$	
R38, R40	$0,47 \Omega, 5 W$	
	$(3x 1,5 \Omega, 2 W)$	
P1	22 kΩ	
P2, P3	$470 \Omega (500 \Omega)$	
P4 [']	1 M Ω , log.	
C1, C2	1 nF	
C6, C8	100 nF	
C9, C10	220 µF/50 V	
C11, C12	100 µF/25 V	
C13	47 nF	
C14, C15	2 200 µF/50 V	
C18	220 pF	
D3, D4	ZD 18 V, 1,3 W	
T1 až T5	KF982	
T6, T7	KC237	
T8, T9	IRF640	
F1, F2	F1,6A	
Karakaný zasilňovač (jeden kanál)		

,	,
Korekčný zosilňov	ač (jeden kanál)
R1	68 kΩ
R2	100 kΩ
R3	10 M Ω
R4	10 kΩ
R5	18 kΩ
R6, R9	$1.8~\mathrm{k}\Omega$
R7, R10	47 kΩ
R8	22 kΩ
R11	$1~\mathrm{k}\Omega$
P1, P3, P5	$2x 100 k\Omega/log$.
P2	10 kΩ, trimer
P4, P6	2x 22 kΩ
C1, C3	1 nF
C2	4,7 µF/50 V
C4, C6	33 nF
C5	330 nF
C7	220 µF/35 V
I:	

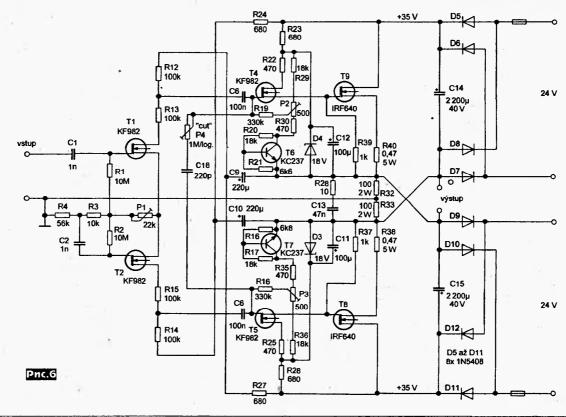

Pozn. redakce: Zesilovač není vhodná konstrukce pro méně zkušené konstruktéry. Tranzistory KF982 lze stále objednat u firmy DENKL Electronic, www.denkl.cz.

T1, T2

KF982

TANTXECT ■■■

фильтры R5C7R7C9 (С7 и С9 имеют емкость 1 миллифарада, т.е. 1000 мкФ) формируют напряжение фиксированного смещения U_в = -12 В. Цепочка R6C8D9U1R8 образует схему, запирающую лампы выходного каскада на время разогрева их катодов: в первый момент после включения сети U1 закрыт, и на сетки выходных ламп подается «намертво» запирающее смещение U_в = -40 В. По мере постепенного заряда С8 транзисторный ключ U1 открывается, и делитель R7R8R9 (штатное положение выключателя S2 - замкнутое) снижает напряжение смещения до -12 В, обеспечивая режим класса АВ2 с начальным током катода выходных ламп от 40 до 50 мА. В разомкнутом положении S2 напряжение смещения увеличивается (по абс. величине) до -19 В и усилитель переводится в экономичный режим класса В2. Эпюра напряжения на управляющей сетке выходной лампы при максимальной выход-



ной мощности показана на рис.5. «Полочка» в нижней полуволне как раз соответствует порогу стабилитрона -24 В, а вершина синусоиды - напряжению +4 В. При этом ток катодов достигает в пике линейного режима 400 мА, обеспечивая выходную мощность 60 Вт. Это существенно больше, чем 40 Вт, обеспечиваемых этими же лампами, но в обычном режиме без сеточных токов. Рабочая полоса частот усилителя по уровню -1 дБ простирается от 7 Гц до 150 кГц, выходное сопротивление 0,2 Ома. Выходной трансформатор - самодельный, 14 секций обмоток выполнены на Ш-образном сердечнике массой 18 Фунтов («AudioXpress» №2/2006, с.6-9). Примечание редакции «РХ». Подойдёт выходной трансформатор от усилителя ТУ-100БУ4.2, который был выполнен на лампах 6РЗС. Если мотать самому, первичка 2х1000 витков провод 0,4, вторичка для 8 Ом 100 витков проаодом 1,3, железо сечением 20-24 см². В выходном каскаде можно применить по 2 шт 6П44С в плечо или по одной ГУ-29, ГИ-30.

Йозеф Роповик свой УМЗЧ выполнил по схеме Цирклотрона (Push-Pull-Parallel), популярной у конструкторов ламповых схем, но в качестве активных элементов использовал полевые транзисторы КF982 (Tesla), вольтамперные характеристики которых приближены к тетродным, и IRF640 (International Rectifier). Входной, он же фазоинверсный, каскад выполнен по схеме дифференциального УПТ на транзисторах Т1, Т2 (рис.6). Далее следуют повторители напряжения Т4, Т5 с местными ООС R29P2R19, R36P3R16 и цепочками (вок-

руг Т6, Т7), задающими и термостабилизирующими режим транзисторов Т8, Т9 выходного каскада. Устройство развивает выходную мощность 200 Вт на нагрузке 4 Ома. Его питание выполняют от двух электрически не соединенных 24вольтовых обмоток сетевого трансформатора мощностью 300 Вт. Налаживание заключается в установке триммерами Р2, Р3 начальных токов Т8, Т9, равных 1 А (по падению напряжения 0,5 В на резисторах R38, R40), после чего одним из этих резисторов добиваются нулевой разности потенциалов между обеими выходными клеммами (vystup). Далее на вход усилителя подают синусоидальное напряжение и несколькими итерациями триммерами Р4, Р1 минимизируют коэффициент гармоник («Prakticka elektronika A Radio» №1/2006, c.26-28 *).

Для любителей высококачественной записи «живой» музыки Деннис Колин разработал предусилитель/микшер/ монитор (рис. 7), обеспечивающий регулировку уровней и баланса от динамического/электретного стереомикрофона, индикацию трех пороговых уровней и усиление на высокоомные студийные наушники. Для усиления использован счетверенный ОУ TL074 (U1A/B/C/D), выходной каскад которого в принципе работает в режиме класса АВ, но, поскольку в данном устройстве выходной ток ОУ меньше, чем начальный ток смещения его выходного каскада, то можно считать, что ОУ работает в режиме класса А. Линейный вход J1L содержит радиочастотный ФНЧ R1C3, блокирующий возможную постоянную составляющую конденсатор С4, аттенюатор Р1L и не-

