2.6. ДИЭЛЕКТРИЧЕСКАЯ АБСОРБЦИЯ КОНДЕНСАТОРОВ

Явление, обусловленное замедленными процессами поляризации в диэлектрике, приводящее к появлению напряжения на электродах после кратковременной разрядки конденсатора, называется диэлектрической абсорбцией.

Напряжение, появляющееся на обкладках конденсатора после его кратковременной разрядки, существенно зависит от длительности времени зарядки конденсатора, времени, в течение которого он был закорочен, и времени, прошедшего после этого. Количественное значение абсорбции принято характеризовать коэффициентом абсорбции (K_a), который определяется в стандартных условиях. Примерный график зависимости напряжения на конденсаторе от времени при измерении коэффициента абсорбции приведен на рис. 2.1.

Численные значения коэффициента абсорбции для некоторых типов конденсаторов приведены в табл. 2.5.

Таблица 2.5. Значения коэффициентов абсорбции

коэффициентов иссороции	
Группа конденсаторов	Ka. %
Полистнрольиые	0,03—0.1
Фторопластовые металлизированные	0.03—0,15
Комбинированные	0,4-1,0
Полиэтилэнтерефта латные	0,2—0,8
Лакопленочные	0,7-1,3
Бумажные	0,6—1,0
Металлобумажные	2.0—3.0
Слюдяные	1,5—5,0
Керамические	5—15
Оксидные	1-5,5

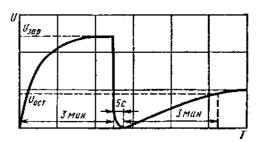


Рис. 2.1. Зависимость напряжения на конденсаторе от времени при измерении коэффициента абсорбции

Коэффициент абсорбции конденсаторов зависит от температуры окружающей среды и повышается с ее ростом.

2.7. ПОЛНОЕ СОПРОТИВЛЕНИЕ КОНДЕНСАТОРА, РЕЗОНАНСНАЯ ЧАСТОТА

Под *полным сопротивлением конденсатора* понимают сопротивление конденсатора переменному синусоидальному току определенной частоты, обусловленное наличием у реального конденсатора наряду с емкостью также активного сопротивления и индуктивности.

Значения активного сопротивления и индуктивности зависят от характеристик используемых материалов и конструктивного исполнения конденсатора.

Полное сопротивление конденсатора ${\bf Z}$ при представлении его в качестве последовательно соединенных собственной емкости ${\bf C}$, индуктивности секции и выводов ${\bf L}$, активного сопротивления выво-