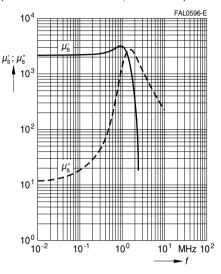


Ferrites and accessories

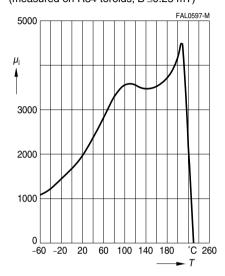
SIFERRIT material N87

Date: September 2006

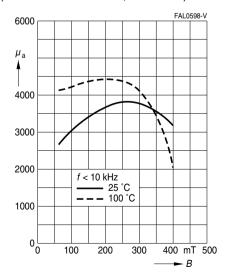
N87


Material properties

Preferred application			Power transformers
Material			N87
Base material			MnZn
	Symbol	Unit	
Initial permeability (T = 25 °C)	μ		2200 ±25%
Flux density (H = 1200 A/m, f = 10 kHz)	B _S (25 °C) B _S (100 °C)	mT mT	490 390
Coercive field strength (f = 10 kHz)	H _c (25 °C) H _c (100 °C)	A/m	21 13
Optimum frequency range		kHz	25 500
Hysteresis material constant	ηΒ	10 ⁻⁶ /mT	<1.0
Curie temperature	T _C	°C	>210
Mean value of α_{F} at 25 55 °C		10 ⁻⁶ /K	4
Density (typical values)		kg/m ³	4850
Relative core losses (typical values)	P _V		
25 kHz, 200 mT, 100 °C		kW/m ³	57
100 kHz, 200 mT, 100 $^{\circ}$ C		kW/m ³	375
300 kHz, 100 mT, 100 $^{\circ}$ C		kW/m ³	390
500 kHz, 50 mT, 100 $^{\circ}$ C		kW/m ³	215
Resistivity	ρ	Ωm	10
Core shapes			RM, P, PM, ETD, EFD, E, ER, EP, EQ, ELP, U, Toroid

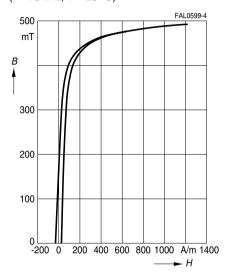


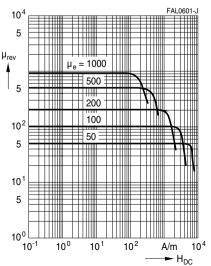
N87


Complex permeability versus frequency (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

Initial permeability μ_i versus temperature (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

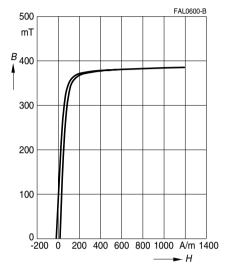
Amplitude permeability versus AC field flux density (measured on R34 toroids, $\hat{B} \le 0.25$ mT)

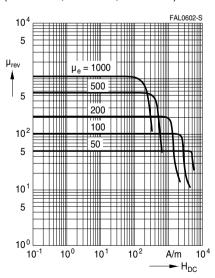



N87

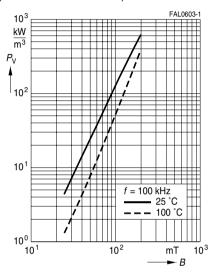
Dynamic magnetization curves (typical values)

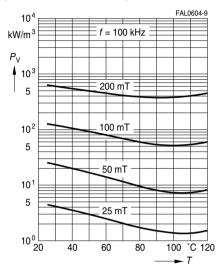
$$(f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$$


DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 25 ^{\circ}\text{C})$

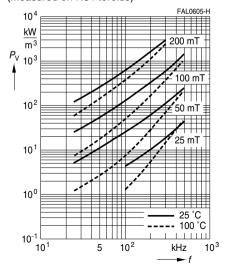

Please read Cautions and warnings and

Dynamic magnetization curves (typical values)


DC magnetic bias of P, RM, PM and E cores $(\hat{B} \le 0.25 \text{ mT}, f = 10 \text{ kHz}, T = 100 ^{\circ}\text{C})$



N87


Relative core losses versus AC field flux density (measured on R34 toroids)

Relative core losses versus temperature (measured on R34 toroids)

Relative core losses versus frequency (measured on R34 toroids)

Cautions and warnings

General

Based on IEC 60401-3, the data specified here are typical data for the material in question, which have been determined principally on the basis of toroids (ring cores).

The purpose of such characteristic material data is to provide the user with improved means for comparing different materials.

There is no direct relationship between characteristic material data and the data measured using other core shapes and/or core sizes made of the same material. In the absence of further agreements with the manufacturer, only those specifications given for the core shape and/or core size in question are binding.

Effects of core combination on A_L value

Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent that the initial permeability is dependent on the stress state of the core. The higher the stresses are in the core, the lower is the value for the initial permeability. Thus the embedding medium should have the greatest possible elasticity.

For detailed information see Data Book 2007, chapter "General – Definitions, 8.2".

Heating up

Ferrites can run hot during operation at higher flux densities and higher frequencies.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application.
 - As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
 - The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DSSP, MiniBlue, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.