Bibliography：

［Per84－1］Hephaistos（G．Perrot）－L＇audiophile first serie n 32 －May 1984－«La distorsion thermique－ Elle existe je＇la i rencontrée，
［Per84－2］Hephaistos（G．Perrot）－L＇audiophile first serie n³3－Sept．1984－«La distorsion thermique－ Tube contre transistor »
［Per89］Hephaistos（G．Perrot）－L＇audiophile second serien5－Jun．1989－«Amplification－Un nouveau concept»
［Per91］Hephaistos（G．Perrot）－L＇audiophile second serie nº15－Apr 1991－«Offset et distrosion»
［Pas78］N．Pass－Patent n° 4，107，619－1978－«Constant voltage constant current high fideliy ampli－ fier»
［Per94］G．Perrot－Patent n ${ }^{\circ}$ WO－94／05079－1994－«Etage amplificateur à faible distorsion thermique »
［Tay73］P．L．Taylor．－Wireless world－Jun 1973－«Audio power amplifier»

Soft Recovery Diodes Lower Transformer Ringing by 10－20X

Mark Johnson

Abstract

Power transformer secondary ringing was measured with 48 different semiconductor diodes；ringing amplitude was 10－20X lower with the best diodes than with the worst．They all rang，including Schottkys and HEXFREDs．A $1 \mathrm{R}+2 \mathrm{C}$ snubber directly across the secondary completely eliminated ringing in every case．

Introduction

Solid state audio equipment very frequently contains a linear power supply with transformer，diodes， and filter capacitors．In these supplies the diode switch－off transient generates a current rate－of－change， $\mathrm{dI} / \mathrm{dt}$ ；excellent diodes generate small $\mathrm{dI} / \mathrm{dt}$ and poor diodes generate large $\mathrm{dI} / \mathrm{dt}$ ．When $\mathrm{dI} / \mathrm{dt}$ is large，it produces substantial voltage spikes across the leakage inductance of the transformer secondary（ $\mathrm{V}=$ $\left.L^{*} \mathrm{~d} / / \mathrm{dt}\right)$ ．These voltage spikes stimulate the secondary RLC resonant circuit into oscillatory ringing．

Numerous audiophiles have reported improved sound quality when transformer secondary ringing is eliminated．Typical descriptions include：＂Music just sounds cleaner，with a darker background＂［1］， ＂Quiet．Glorious quiet．This makes for a clarity and low level detail recovery that is quite amazing．Im－ aging has really taken leaps forward＂$[2]$ ，＂There does seem to be an enhanced dynamic－l＇m guessing from a lowering of the noise floor．I think there may be a better handling of signal peaks．Sibilance is han－ died more naturally＂［3］．Several mechanisms for these subjective improvements have been proposed． High frequency transformer ringing can radiate RF noise into other circuits．Ringing can also capacitively couple into nearby conductors．Oscillatory currents in one secondary winding，induce oscillatory cur－ rents in the other windings．Viewed purely from an engineering perspective，transformer secondary ringing is an unwanted artifact；an unsightly wart．It might be harmless，or it might not；either way，sur－ gically removing it eliminates all doubt．

Although it has been known for some time that different diode types produce different amounts of dI／dt at switch－off［4－5］，there is little available data quantifying the amount of transformer ringing produced across a wide variety of diodes．

This is especially true for the more recently introduced types，such as soft recovery diodes with datasheet guaranteed softness ratio（ $\mathrm{tb} / \mathrm{ta}^{1}$ ），Super Barrier rectifiers，and silicon carbide diodes．

This paper presents measured data on power transformer secondary ringing，produced by 48 different semiconductor diodes．The exact same power supply test fixture is used in every measurement；only the diode changes．Therefore differences between the measured amounts of ringing are due to differences among the diodes．Many different diode types were measured，including standard silicon PN diodes， bridge rectifiers，high－Vf Schottkys，low－Vf Schottkys，hyperfast，ultrafast，HEXFRED，silicon carbide， Super Barrier，and soft recovery diodes．At today＇s distributor prices（ $\mathrm{qty}=1000$ ），the tested diodes span a－to－1 cost range．

Resonant Circuit
Figure 1（a）shows an AC－to－DC power supply using a single diode as a half－wave rectifier．This is the topology used for all measurements in this paper．With only one diode to remove and replace，experi－ mental setup time is reduced，and parts cost is minimized since only 48 diodes need to be purchased． Other supply topologies would require purchasing（ $48^{*} 2$ ）or（ $48^{*} 4$ ）diodes．
The power transformer elements are enclosed by a dotted line．US 115 VAC mains are connected to the primary，which consists of the leakage inductance LLp and the magnetizing inductance．The secondary＇s magnetizing inductance is perfectly coupled to the primary，at a turns ratio of $n: 1$ ，and the secondary＇s

Figure 1 Resonant circuit in the transformer secondary．
When a diode stops conducting，the current doesn＇t immediately return to zero but actually reverses to some value，THEN re－ Urns to zero．The time from start of current reverse to max reverse is called ta，the time from max reverse back to zero is called t．The larger the ratio $\mathrm{t} / \mathrm{f} / \mathrm{ta}$ ，the softer the diode recovers．
leakage inductance LLs appears in series．The secondary winding capacitance is Ct ．Rectifier diode D con－ nects the secondary node S to the output node DCVOLTS，which is filtered by capacitor Cf．The supply delivers power to a resistor RLOAD．

The small signal incremental model is shown in Figure 1（b）．Elements in the primary circuit（LLp and Vin）reflect into the secondary，by the square of the turns ratio n ．The diode is modeled as a voltage con－ trolled current source Id，in parallel with a junction capacitance Cj．It drives the output at DCVOLTS．

For small signal analysis，the input voltage source Vsec becomes a short circuit，and the output node DCVOLTS can be considered an AC ground；Cf acts as a short circuit at the frequencies of interest．These simplifications result in the small signal model shown in Figure 1（c）．It is just a parallel LC resonant cir－ cuit，consisting of the transformer inductance $\mathrm{Lt}\left(=\mathrm{LLs}+\left(\mathrm{LLP} / \mathrm{n}^{2}\right)\right.$ ），the transformer winding capacitance， and the diode junction capacitance at switch－off（where Vdiode $\sim 0 \mathrm{v}$ ）．If the diode switches off abruptly， $\mathrm{d} /$／dt is large，creating a large voltage spike across the inductor and stimulating the LC resonant circuit into oscillatory ringing．

Test Fixture

The AC－to－DC power supply used in these experiments is shown in Figure 2 below．It is designed to maximize the amount of transformer secondary ringing，so that even small differences among excellent diodes（those producing very little ringing）will be detectable．

A 600 watt autotransformer（＂Variac＂）connects the test fixture to the AC mains，allowing fine－tuned adjustment of the output voltage．The Variac drives the primary of the power transformer X1 $(115 \mathrm{~V}$ pri－ mary， 24 V secondary）through a 1 amp ，fast－blow fuse．X1＇s secondary drives the diode（DUT）and，if
used，the optional CRC snubber comprised of Cx, Cs ，and Rs．These components are socketed and are usually removed from the circuit completely．

The diode charges seven parallel filter capacitors C1－C7，chosen for low ESR and high ripple current． Their total capacitance is high $(16.2 \mathrm{mF})$ ，so the diode conduction angle is small．Therefore the diode cur－ rent pulses are narrow and very tall，i．e．，large peak current and large dI／dt．This provides a stronger stim－ ulus to the secondary resonant circuit，increasing ringing amplitude．Low ESR capacitors ensure the current peaks are not compressed；high ripple current rating safely accepts the extremely tall peaks．

D1 protects the large electrolytic capacitors against reverse bias，if／when the DUT is accidentally installed backwards．The fuse blows immediately and the capacitors do not explode．This protection mechanism activated three times during the course of these experiments，with no detrimental effect．

The D．U．T．connects to the test PCB through a Phoenix 1935336 wire－to－board connector，rated for 17.5 amps．Screw－down terminals give mechanically solid connections and quick diode swapping．The 4－pin connector allows a variety of different size diode packages and lead spacings．

Ringing at Diode Switch－0ff

In the power supply of Figure 2，the diode turns on when the secondary voltage exceeds the output volt－ age（DCVOLTS）by Vfwd or more．The diode remains on，charging the output capacitors，until the sec－ ondary voltage falls below（DCVOLTS＋Vfwd）；then the diode cuts off．As discussed above，diode cut－off produces a very large $\mathrm{d} / / \mathrm{dt}$ which generates a large voltage spike across the transformer secondary in－ ductance $\mathrm{Lt}\left(\mathrm{V}=\mathrm{Lt}^{*} \mathrm{dI} / \mathrm{dt}\right)$ ．This is seen in the top trace of Figure 3；the voltage spike is about two ver－ tical divisions tall： 20 volts！（Subsequent figures will show zoom－in magnifications of this region．）The bottom trace shows the secondary waveform when the diode is removed from its socket，disconnecting the secondary from the rest of the power supply．The mains outlet delivers a less than ideal sinewave in this laboratory．

Figure 3 Secondary voltage in Fig． 2 supply．Lower：unloaded．Upper： $1 \mathrm{~N} 5262 G P+100 \mathrm{~mA}$ load． $10 \mathrm{~V} / \mathrm{div}, 2 \mathrm{~ms} /$ div

Measuring the Ringing Amplitude

Figure 4 shows a typical zoomed－in waveform of a typical＂good＂performing diode，the SBR12A45

Figure 4 SBR12A45 at 100 mA dc load current．Initial step down amplitude＂V01＂is 6．60V；first ringing amplitude ＂V12＂is 4.88 V ．（Cursors＋legend omitted）． $1 \mathrm{~V} / \mathrm{div}, 5 \mathrm{Sus} / \mathrm{div}_{\text {s }}$

When the diode switches off，it produces a voltage spike which stimulates the secondary resonant circuit into oscillatory ringing．The first step－down leg of the ringing is from V0 to V 1 ；oscilloscope cursors are used to measure its amplitude， 6.60 V ．The first leg of post－stimulus ringing is from V 1 to V 2 ；scope cur－ sors are again used to measure its amplitude， 4.88 V ．To maintain legibility at very small printed size，the cursors and legend were not displayed in Figure 4；instead，their values are included in the figure caption．

All 48 diodes were measured at a dc output current of 100 mA ．In each case the Variac was adjusted until the output voltage across the $150 \mathrm{ohm}, 20$ watt load resistor measured 15.0 volts．This ensured that all diodes operate at the exact same dc output current，regardless of their Vfwd．It also nulls out fluctua－ tions of the mains voltage（on a timescale longer than the average measurement time，which was 2 to 5 minutes per diode）．A rather low output voltage（ 15 V ）was deliberately chosen，so that very low Vfwd Schottky diodes，with very low max reverse voltage ratings（ 40 V ），could be included in the tests．This may not be representative of medium－and high－voltage power supplies，and different results might have been obtained with 80 V output instead of 15 V output．An opportunity for further research！

The amplitude V01 of the first step－down leg of ringing was measured＠ 100 mA ，and so was the ampli－ tude V12 of the first post－stimulus leg of ringing．These data are presented in Table I．

A second full set of tests were performed，operating the diodes at an average current of 2.0 amperes．This required a different power transformer with a higher power rating（ 80 VA rather than 20VA）．The sec－ ond set of tests used an $8.0 \mathrm{ohm}, 200$ watt load resistor and the new transformer．In each test the Variac was adjusted to give 16.0 volts across the 8.0 ohm resistor，thus 2.0 amperes．Four of the 48 diodes were
rated for only 1 ampere; so they were omitted, leaving 44 diodes to be measured at 2.0 A . These data are also presented in Table I.

Adding a CRC Snubber Across the Secondary

Although the best diodes reduced ringing amplitude by a factor of 10-20X compared to the worst diodes, they all produced some oscillatory ringing in this sensitive test fixture. However the desired result is zero ringing. Fortunately, since the secondary is a parallel LC resonant circuit, it should be possible in theory to add a parallel resistance, and to tune the resistance value until the RLC resonant circuit is overdamped (damping ratio $\zeta>1.0$). This should, in theory, eliminate ringing completely, even with the worst diodes.

Figure 5 shows a small signal circuit model of the transformer secondary. Lt (from Fig 1) is the transformer leakage inductance, and Ca is the total capacitance $(=\mathrm{Ct}+\mathrm{Cj})$, also from Fig.1. A parallel resistance Rs has been added. For the initial analysis assume Rs connects directly to ground, as shown with a dotted line. (This is equivalent to assuming that $\mathrm{Cs}=$ infinity).

Figure 5 Circuit model of transformer secondary including snubbing resistor.

The damping factor ζ can be calculated using Laplace Transforms (see Appendix):

$$
\zeta=\frac{1}{2 R_{S}} \sqrt{\frac{L_{T}}{C_{A}}}
$$

To eliminate oscillation, the system is intentionally overdamped ($\zeta>1.0$); plugging this in gives

$$
R_{S}<\frac{1}{2} \sqrt{\frac{L_{T}}{C_{A}}}
$$

And now in theory, the problem is solved: choose a suitably small Rs which gives ($\zeta>1.0$). Unfortunately if this resistor Rs is connected directly across the transformer secondary, it sees the entire RMS secondary voltage, and so Rs dissipates an unacceptably large amount of power. Therefore a capacitor Cs is introduced in series with Rs, to reduce power dissipation. Cs presents a high impedance at the 60 Hz mains
frequency, limiting the current through Rs and reducing power dissipation. Cs presents a very low impedance (much lower than Rs) at high frequencies where the RLC circuit might oscillate. Theoretical calculations guide the selection of Cs (see Appendix).

In order to successfully overdamp the secondary,

$$
C_{S} \geq C_{A} \cdot 15 \zeta^{2}
$$

To learn whether snubbers do eliminate ringing in practice, another set of measurements were taken in the 100 mA test setup. The 48 diodes were re-tested, with a 3-element snubber across the transformer secondary as shown in Figure 2. The values of the snubber were: $\mathrm{Cx}=10 \mathrm{nF} / \mathrm{Rs}=150 \Omega / \mathrm{Cs}=680 \mathrm{nF}$. These gave a damping factor ζ of approximately 1.5 with this transformer; the secondary RLC circuit was overdamped.

Figures 6-10 below, show measured transformer waveforms from several diode types, with and without the $10 \mathrm{nF} / 150 \mathrm{R} / 680 \mathrm{nF}$ CRC snubber.

Figure 6 Super Barrier Rectifier SBR12A45 at 100mA. Lower (no snubber): V01 $=6.60 \mathrm{~V}, \mathrm{~V} 12=4.88 \mathrm{~V}$. Upper (with CRC snubber): no ringing. (Cursors + legend omitted). $2 \mathrm{~V} / \mathrm{div}$, $5 \mathrm{sus} / d i v$.

Figure 7 Bridge rectifier GBPC3510 at 100mA. Lower (no snubber): V01 $=32.8 \mathrm{~V}, \mathrm{~V} 12=32.8 \mathrm{~V}$. Upper (with CRC snubber): no ringing. $10 \mathrm{~V} /$ div, 5us/div.

二三三ミ三三 $三=$

Figure 8 HEXFRED HFAO8TB60 at 100 mA ．Lower（no snubber）：

Vol＝4．70V，V12＝2．41V．Upper（with CRC snubber）：no ringing． $7 \mathrm{~V} /$ div， 5us／div．

Figure 9 Soft Recovery diode ISL9R460 at 100 mA ．Lower（no snubber）： V01＝4．44V，V12＝2．28V．Upper（with CRC snubber）：no ringing． $1 \mathrm{~V} /$ div， Sus／div．

Figure 10 Schottky diode SB540 at
100 mA ．Lower（no snubber）： V01 $=528 \mathrm{~V}$ V12 $=3.14 \mathrm{~V}$ Upper CRC snubber）：no ringing． $1 \mathrm{~V} / \mathrm{div}^{2}$ 5us／div．

Part Number	MaxRating	type	Vf @ If	tb/ta ratio	$\begin{gathered} \text { A: V01 @ } \\ \text { 100mA } \end{gathered}$	$\begin{gathered} \hline \text { B: V12 @ } \\ 100 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { C: V01 @ } \\ 2.0 A \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { D: V12 @ } \\ 2.0 \mathrm{~A} \\ \hline \end{array}$	rankB	rankD	top15?
SB160-E3	1A 60V	Schottky	0.65 V 1 A		5.00	2.69	---	---	25	44	
VS-MBR160	1A 60 V	Schottky	0.75 V 1A		5.12	2.63	---	---	22	44	
MBR1100	1 A 100 V	Schottky	0.79 V 1 A		4.92	2.58	---	---	14	44	\%
UF4004	1 A 400 V	Ultrafast	1.0 V 1A		4.72	2.38	---	---	7	44	\bigcirc
1N4005	1 A 600 V	Standard	1.1 V 1A		15.20	15.20	---	---	42	44	
SBYV27-200	2A 200V	Ultrafast	1.07 V 2 A		4.60	2.28	9.00	2.98	3	1	\checkmark
GI851	3A 100V	Fast	1.25 V 3 A		4.64	2.38	9.92	4.60	6	28	3
VSB3200	3 A 200 V	Schottky	0.86 V 3 A		4.96	2.60	9.24	3.44	19	12	\checkmark
1N5404	3A 400V	Standard	1.0 V 3 A		5.28	3.18	12.32	7.96	32	36	
1N5626GP	3 A 600 V	Standard	1.0 V 3 A		20.60	20.60	45.00	45.00	45	40	
SBYV28-100-E3	3.5A 100V	Ultrafast	1.1 V 3.5 A		4.60	2.27	9.12	3.08	1	3	\%
BYV28-150	3.5A 150V	Ultrafast	1.1 V 5 A		5.08	2.74	9.68	3.68	26	19	
MUR420	4A 200V	Ultrafast	0.89 V 4 A		5.08	2.66	9.28	3.34	23	7	\checkmark
MUR460	4A 600V	Ultrafast	1.28 V 4 A		4.86	2.54	9.72	4.02	12	24	\bigcirc
RURD460	4 A 600 V	Ultrafast	1.5 V 4 A	0.47	4.76	2.51	9.96	4.88	10	29	\bigcirc
C3D04060F	4A 600V	Si Carbide	1.5 V 4A		5.12	2.74	8.60	3.06	27	2	\checkmark
GBU4J	4A 600V	Standard	1.0 V 2 A		18.80	18.80	42.80	42.80	44	39	
ISL9R460	4A 600V	STEALTH-II	2.0 V 4 A	4.2	4.44	2.28	8.96	3.48	2	13	*
SB540	5A 40V	Schottky	0.48 V 5 A		5.28	3.14	9.80	4.00	31	23	
SB5100	5 A 100 V	Schottky	0.85 V 5A		5.10	2.79	9.60	3.52	28	16	
6A4	6 A 400 V	Standard	1.1 V 6A		7.66	6.64	18.90	16.30	41	37	
RURD660S9A	6 A 600 V	Ultrafast	1.5 V 6A	0.57	4.88	2.58	10.88	5.98	15	34	*
FES8GT	8 A 400 V	Ultrafast	1.3 V 8 A		4.92	2.61	9.52	3.70	20	20	
GBU8G	8A 400V	Standard	1.0 V 4 A		27.30	27.30	57.80	57.80	46	41	

Table 1(a) Diode measurements at 100 mA (columns A and B) and at 2.0 A (columns C and D).

Part Number	MaxRating	type	Vf. @ If	tb/ta ratio	$\begin{gathered} \text { A: V01 @ } \\ \text { 100mA } \end{gathered}$	$\begin{gathered} \text { B: V12 @ } \\ \text { 100mA } \end{gathered}$	$\begin{array}{\|c} \hline \text { C: V01 @ } \\ 2.0 A \end{array}$	$\begin{array}{\|c} \hline \text { D: V12 @ } \\ 2.0 A \end{array}$	rankB	rankD	top15?
APT8DQ60KG	8A 600V	Ultrafast	2.0 V 8 A		4.60	2.38	9.00	3.34	5	6	\checkmark
DSR8U600	8 A 600 V	Schottky	2.5 V 8 A	1	5.54	3.70	10.20	5.12	38	30	
FFPF08H60S	8A 600V	Hyperfast-II	2.1 V 8 A	1.07	4.78	2.53	9.24	3.44	11	10	(2)
HFA08TB60	8A 600V	HEXFRED	1.4 V 8 A		4.70	2.41	9.16	3.22	9	5	$0 \checkmark$
ISL9R860	8A 600V	STEALTH-II	2.0 V 8 A	3.7	4.74	2.60	9.08	3.48	18	14	\checkmark
MSR860	8A 600V	Ultrasoft	1.7 V 8 A	2.5	4.86	2.55	9.60	3.70	13	22	¢
RHRP860	8 A 600 V	Hyperfast	2.1 V 8 A	0.56	4.64	2.40	9.16	3.36	8	8	Or
RURP860	8 A 600 V	Ultrafast	1.5 V 8 A	0.66	4.82	2.59	9.56	3.60	17	17	
VS-ETH0806	8 A 600 V	FRED Pt	2.0 V 8 A		4.58	2.36	9.12	3.36	4	9	$6 \checkmark$
VS-ETL0806	8A 600V	FRED Pt	0.97 V 8 A		5.32	3.19	11.40	6.32	33	35	
FFPF10UP30	10 A 300 V	Ultrafast	1.4 V 10A	1.2	4.94	2.67	9.44	3.44	24	11	\checkmark
SBL1040	10 A 40 V	Schottky	0.6 V 10A		5.50	3.34	10.12	4.16	35	26	
UH10FT-E3	10 A 300 V	Ultrafast	0.96 V 5 A	0.36	4.96	2.62	9.56	3.50	21	15	\checkmark
SBR12A45	12A 45V	SuperBarrier	0.43 V 12 A		6.60	4.88	11.36	5.96	40	33	
VSB1545	15A 45V	Schottky	0.33 V 5 A		5.86	3.84	11.56	5.92	39	32	
MUR1520	15A 200V	Ultrafast	1.05 V 15 A		5.26	2.93	9.76	3.66	29	18	
GBJ1506	15A 600V	Standard	1.05 V 8 A		17.30	17.30	42.80	42.80	43	38	
DSS16-01A	16A 100V	Schottky	0.79 V 15 A		5.52	3.42	10.20	4.40	36	27	
LQA16T300	16A 300V	Qspeed	1.6V 16A	0.7	4.96	2.59	9.00	3.16	16	4	\checkmark
GBU2510	25A 1000V	Standard	1.0V 12A		31.30	31.30	65.60	65.60	47	42	
VF30100S	30 A 100 V	Schottky	0.39 V 5A		5.80	3.56	11.32	5.48	37	31	
FFPF30UP20	30 A 200 V	Ultrafast	1.15 V 30 A	0.64	5.30	3.01	9.92	3.70	30	21	
GBPC3510	35A 1000V	Standard	1.1V 17A		32.80	32.80	67.80	67.80	48	43	
MBR40250	40 A 250 V	Schottky	0.86 V 20A		5.44	3.26	10.08	4.14	34	25	

Table 1 (b) Diode measurements at 100 mA (columns A and B) and at 2.0 A (columns C and D).
$z^{\mathbf{u}_{\boldsymbol{m}}+s\left(\eta^{\left.\mathrm{U}_{\boldsymbol{m}}\right)}+\tau^{\mathrm{s}}\right.}$

$$
\frac{\frac{V_{J X}}{s}+{ }_{2} s+\frac{{ }^{V} J^{\nu}}{\mathrm{L}}}{\frac{\nabla_{J}}{s}}=(s) H
$$

$$
\frac{s_{y s}+\left({ }^{(}{ }_{y y} s\right)^{\forall}{ }^{\forall} s+\frac{{ }^{L_{7} s}}{s_{\partial y} s}}{s_{\partial y} s}=(s)_{H}
$$

 дәуsuex әчL

x!puədddy
$\cdot 9 \tau-\angle \cdot d \mathrm{dd}{ }^{`} \varepsilon 10 Z$
 Gu!peor doypn!

รәวиวәృәу

Krewuns

$$
\begin{aligned}
& \equiv \equiv \equiv \equiv 二 \\
& \equiv \equiv \equiv
\end{aligned}
$$

We assumed that（ （RCs $\gg 1$ ），i．e．，that（ $j \omega R C s \gg 1$ ）．In the worst case，the radian frequency ω might be as low as the resonant frequency of Lt in parallel with both Ca and Cs （i．e． Rs is very small）．Then

$$
\omega=\sqrt{\frac{1}{L_{T}\left(C_{A}+C_{S}\right)}}
$$

Since ω RCs $\gg 1$ ，RCs $\gg(1 / \omega)$ ．Squaring both sides，

$$
R^{2} C_{S}^{2} \gg \frac{1}{\omega^{2}} \Rightarrow R^{2} C_{S}^{2} \gg L_{T}\left(C_{A}+C_{S}\right)
$$

Substituting，$R=\frac{1}{2 \zeta} \sqrt{\frac{L_{T}}{C_{A}}}$ ，

$$
\frac{C_{S}^{2}}{4 \zeta^{2}} \frac{L_{T}}{C_{A}} \gg L_{T}\left(C_{A}+C_{S}\right) \Rightarrow \frac{C_{S}^{2}}{4 \zeta^{2}} \gg C_{A}\left(C_{A}+C_{S}\right)
$$

If $\mathrm{Cs} \gg \mathrm{Ca}$ then $(\mathrm{Ca}+\mathrm{Cs})$ reduces to Cs ，and

$$
\frac{C_{S}^{2}}{C_{A} C_{S}} \gg 4 \zeta^{2} \Rightarrow \frac{C_{S}}{C_{A}} \gg 4 \zeta^{2}
$$

Whew！Mathematical analysis says that（ $\mathrm{Cs} / \mathrm{Ca}$ ）needs to be much much greater than 4 times zeta squared But exactly how much greater？LTSPICE simulations，carried out at zeta values from 1 to 10 ，show that good damping behavior occurs whenever $(\mathrm{Cs} / \mathrm{Ca})$ is fifteen times zeta squared，or greater：

$$
\frac{C_{S}}{C_{A}} \geq 15 \zeta^{2}
$$

Partition Noise and the＇BestPentode＇Revisited

Merlin Blencowe

Glossary of symbols
 $B=$ noise bandwidth in hertz

$\mathrm{f}_{\text {hi }}=$ upper noise bandwidth limit in hertz
$\mathrm{f}_{\mathrm{lo}}=$ lower noise bandwidth limit in hertz
$g_{m}=$ full（i．e．triode mode）valve transconductance in siemens or AN
I＝average current in amps
$a_{a}=$ average anode current in amps
$\lg _{92}=$ average screen－grid current in amps
$\mathrm{K}=$ empirical flicker－noise constant which varies typically between about 10^{-14} for a very quiet valve to 10^{-12} for a very poor one
$\mathrm{k}=$ Boltzmann＇s constant， $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{m}=$ anode／screen－grid current ratio
$\mathrm{q}=$ electron charge， 1.6×10^{-19} coulombs
$=$ internal AC anode resistance
$\mathrm{T}_{\mathrm{k}}=$ cathode temperature，normally 1000 K
$\sigma=$ empirical shot－noise constant which typically varies between 0.6 and 1
EIN＝equivalent input noise
PSRR＝power supply rejection ratio
SNR＝signal to noise ratio

Introduction

In Linear Audio Volume 0，Frank Blöhbaum proposed an interesting circuit for use with pentodes， which he called＇BestPentode＇［1］．In essence，his circuit is a cascode，but it makes clever use of the ＇spare electrode＇（the anode of a pentode）to reduce dissipation in the cascoded device（transistor）． Blöhbaum claimed that this retains the basic properties of the pentode but eliminates its partition noise．This much is true，but his article also implies that the＇BestPentode＇has lower EIN even than the simple，triode－connected pentode，and it is this which I find fault with．The experimental data pre sented in his article are misleading as they do not compare triode－mode，pentode－mode，and＇Best－

