
WinDriver USB v7.02 User’s Guide

Jungo Ltd

COPYRIGHT

Copyright©1997 - 2005 Jungo Ltd. All Rights Reserved

Information in this document is subject to change without notice. The software
described in this document is furnished under a license agreement. The software
may be used, copied or distributed only in accordance with that agreement. No part
of this publication may be reproduced, stored in a retrievalsystem, or transmitted in
any form or any means, electronically or mechanically, including photocopying and
recording for any purpose without the written permission ofJungo Ltd.

Windows, Win32, Windows 98, Windows Me, Windows CE, WindowsNT, Windows
2000, Windows XP and Windows Server 2003 are trademarks of Microsoft Corp.
WinDriver and KernelDriver are trademarks of Jungo. Other brand and product
names are trademarks or registered trademarks of their respective holders.

1

Contents

Table of Contents 2

List of Figures 3

1 WinDriver Overview 4
1.1 Introduction to WinDriver . 4
1.2 Background . 5

1.2.1 The Challenge . 5
1.2.2 The WinDriver Solution 6

1.3 Conclusion . 6
1.4 WinDriver Benefits . 7
1.5 WinDriver Architecture . 8
1.6 What Platforms Does WinDriver Support?8
1.7 Limitations of the Different Evaluation Versions 9
1.8 How Do I Develop My Driver with WinDriver? 9

1.8.1 On Windows 98/Me/2000/XP/Server 2003 and Linux9
1.8.2 On Windows CE . 9

1.9 What Does the WinDriver Toolkit Include? 10
1.9.1 WinDriver Modules . 10
1.9.2 Utilities . 11
1.9.3 WinDriver’s Specific Chipset Support11
1.9.4 Samples .12

1.10 Can I Distribute the Driver Created with WinDriver? 12
1.11 Identifying the Right Tool for Your Development 12

2 Understanding Device Drivers 14
2.1 Device Driver Overview . 14
2.2 Classification of Drivers According to Functionality 15

2.2.1 Monolithic Drivers . 15
2.2.2 Layered Drivers .16
2.2.3 Miniport Drivers . 16

2

CONTENTS 3

2.3 Classification of Drivers According to Operating Systems 17
2.3.1 WDM Drivers . 17
2.3.2 VxD Drivers . 18
2.3.3 Unix Device Drivers . 18
2.3.4 Linux Device Drivers . 18

2.4 The Entry Point of the Driver .19
2.5 Associating the Hardware to the Driver19
2.6 Communicating with Drivers .19

3 WinDriver USB Overview 21
3.1 Introduction to USB .21
3.2 WinDriver USB Benefits . 22
3.3 USB Components .23
3.4 Data Flow in USB Devices .23
3.5 USB Data Exchange .25
3.6 USB Data Transfer Types .26

3.6.1 Control Transfer .26
3.6.2 Isochronous Transfer .26
3.6.3 Interrupt Transfer .27
3.6.4 Bulk Transfer . 27

3.7 USB Configuration .28
3.8 WinDriver USB . 30
3.9 WinDriver USB Architecture . 31
3.10 Which Drivers Can I Write with WinDriver USB? 32

4 Installing WinDriver 33
4.1 System Requirements .33

4.1.1 For Windows 98/Me .33
4.1.2 For Windows NT/2000/XP/Server 200333
4.1.3 For Windows CE .33
4.1.4 For Linux . 34

4.2 WinDriver Installation Process .34
4.2.1 Windows 98/Me/2000/XP/Server 2003 WinDriver

Installation Instructions 34
4.2.2 Windows CE WinDriver Installation Instructions 36

4.2.2.1 Installing WinDriver CE when Building New
CE-based Platforms36

4.2.2.2 Installing WinDriver CE when Developing
Applications for CE Computers 37

4.2.2.3 Windows CE Installation Note38
4.2.3 Linux WinDriver Installation Instructions 38

4.2.3.1 Preparing the System for Installation38
4.2.3.2 Installation . 39

CONTENTS 4

4.3 Upgrading Your Installation .42
4.4 Checking Your Installation .42

4.4.1 On Your Windows, Linux and Solaris Machines42
4.4.2 On Your Windows CE Machine43

4.5 Uninstalling WinDriver . 43
4.5.1 On Windows 98/Me/2000/XP/Server 200343
4.5.2 On Linux . 46

5 Using DriverWizard 47
5.1 An Overview . 47
5.2 DriverWizard Walkthrough .48
5.3 DriverWizard Notes .58

5.3.1 Logging WinDriver API Calls 58
5.3.2 DriverWizard Logger . 58
5.3.3 Automatic Code Generation58

5.3.3.1 Generating the Code58
5.3.3.2 Generated USB Code58
5.3.3.3 Compiling the Generated Code59
5.3.3.4 Visual Basic or Delphi Code Generation59
5.3.3.5 For Linux: . 59
5.3.3.6 For Other OSs or IDEs:59

6 Developing a Driver 60
6.1 Using the DriverWizard to Build a Device Driver 60
6.2 Writing the Device Driver Without the DriverWizard 61

6.2.1 Include the Required WinDriver Files61
6.2.2 Write Your Code . 62

6.3 Developing Your Driver on Windows CE Platforms 62
6.4 Developing in Visual Basic and Delphi63

6.4.1 Using DriverWizard . 63
6.4.2 Samples .63
6.4.3 Creating your Driver .63

7 Debugging Drivers 64
7.1 User-Mode Debugging .64
7.2 Debug Monitor . 64

7.2.1 Using Debug Monitor in Graphical Mode64
7.2.2 Using Debug Monitor in Console Mode67

7.2.2.1 Using Debug Monitor on Windows CE67

8 Enhanced Support for Specific Chipsets 68
8.1 Overview . 68
8.2 Developing a Driver Using the Enhanced Chipset Support 69

CONTENTS 5

9 USB Control Transfers 70
9.1 USB Control Transfers Overview70

9.1.1 USB Data Exchange .70
9.1.2 More About the Control Transfer71
9.1.3 The Setup Packet .72
9.1.4 USB Setup Packet Format73
9.1.5 Standard Device Request Codes74
9.1.6 Setup Packet Example .74

9.2 Performing Control Transfers with WinDriver 76
9.2.1 Control Transfers with DriverWizard76
9.2.2 Control Transfers with WinDriver API 78

10 Dynamically Loading Your Driver 79
10.1 Why Do You Need a Dynamically Loadable Driver?79
10.2 Windows 2000/XP/Server 2003 and 98/Me79

10.2.1 Windows Driver Types .79
10.2.2 The WDREG Utility . 80
10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Files . . 81

10.3 Linux . 82

11 Distributing Your Driver 83
11.1 Getting a Valid License for WinDriver 83
11.2 Windows 98/Me and Windows 2000/XP/Server 2003 84

11.2.1 Preparing the Distribution Package84
11.2.2 Installing Your Driver on the Target Computer 84

11.3 Creating an INF File .87
11.3.1 Why Should I Create an INF File?87
11.3.2 How Do I Install an INF File When No Driver Exists? . . .88
11.3.3 How Do I Replace an Existing Driver Using the INF File?. 89

11.4 Windows CE .91
11.5 Linux . 92

11.5.1 WinDriver Kernel Module 93
11.5.2 User-Mode Hardware Control Application/Shared Objects . 93
11.5.3 Installation Script .94

12 WinDriver USB Device 95
12.1 WinDriver USB Device Overview95
12.2 System and Hardware Requirements97
12.3 WinDriver Device Firmware (WDF) Directory Overview 97

12.3.1 The cypress Directory .98
12.3.2 The microchip Directory99
12.3.3 The silabs Directory .100
12.3.4 The WinDriver USB Device Firmware Libraries102

CONTENTS 6

12.3.5 Building the Sample Code102
12.4 WinDriver USB Device Development Process 103

12.4.1 Define the Device USB Interface103
12.4.1.1 EZ-USB Endpoint Buffers Configuration108

12.4.2 Generate Device Firmware Code109
12.4.3 Develop the Device Firmware110

12.4.3.1 The Generated DriverWizard USB Device
Firmware Files111

12.4.3.2 Build the Generated DriverWizard Firmware . .112
12.4.3.3 Download the Firmware to the Device113

12.4.4 Diagnose and Debug Your Hardware114
12.4.5 Develop a USB Device Driver114

A WinDriver USB PC Host API Reference 115
A.1 WinDriver USB (WDU) Library Overview115

A.1.1 Calling Sequence for WinDriver USB116
A.1.2 Upgrading from the WD_xxx USB API to the WDU_xxx

API .119
A.2 USB - User Callback Functions120

A.2.1 WDU_ATTACH_CALLBACK() 120
A.2.2 WDU_DETACH_CALLBACK() 122
A.2.3 WDU_POWER_CHANGE_CALLBACK() 123

A.3 USB - Functions .124
A.3.1 WDU_Init() .124
A.3.2 WDU_SetInterface() .126
A.3.3 WDU_GetDeviceAddr()127
A.3.4 WDU_GetDeviceInfo() .128
A.3.5 WDU_PutDeviceInfo() .129
A.3.6 WDU_Uninit() .130
A.3.7 WDU_Transfer() .131
A.3.8 WDU_Wakeup() .133
A.3.9 WDU_TransferDefaultPipe()134
A.3.10 WDU_TransferBulk() .135
A.3.11 WDU_TransferIsoch() .136
A.3.12 WDU_TransferInterrupt()137
A.3.13 WDU_HaltTransfer() .138
A.3.14 WDU_ResetPipe() .139
A.3.15 WDU_ResetDevice() .140
A.3.16 WDU_GetLangIDs() .141
A.3.17 WDU_GetStringDesc() .143

A.4 USB - Structures .145
A.4.1 WDU_MATCH_TABLE 146
A.4.2 WDU_EVENT_TABLE 147

CONTENTS 7

A.4.3 WDU_DEVICE .148
A.4.4 WDU_CONFIGURATION149
A.4.5 WDU_INTERFACE .150
A.4.6 WDU_ALTERNATE_SETTING151
A.4.7 WDU_DEVICE_DESCRIPTOR152
A.4.8 WDU_CONFIGURATION_DESCRIPTOR153
A.4.9 WDU_INTERFACE_DESCRIPTOR154
A.4.10 WDU_ENDPOINT_DESCRIPTOR155
A.4.11 WDU_PIPE_INFO .156

A.5 General WD_xxx Functions .157
A.5.1 Calling Sequence WinDriver – General Use157
A.5.2 WD_Open() .159
A.5.3 WD_Version() .160
A.5.4 WD_Close() .162
A.5.5 WD_Debug() .163
A.5.6 WD_DebugAdd() .165
A.5.7 WD_DebugDump() .167
A.5.8 WD_Sleep() .168
A.5.9 WD_License() .170
A.5.10 WD_LogStart() .172
A.5.11 WD_LogStop() .173
A.5.12 WD_LogAdd() .174

A.6 WinDriver Status/Error Codes .175
A.6.1 Introduction .175
A.6.2 Status Codes Returned by WinDriver175
A.6.3 Status Codes Returned by USBD176

A.7 User-Mode Utility Functions .180
A.7.1 Stat2Str() .180
A.7.2 get_os_type() .181
A.7.3 ThreadStart() .182
A.7.4 ThreadWait() .183
A.7.5 OsEventCreate() .184
A.7.6 OsEventClose() .185
A.7.7 OsEventWait() .186
A.7.8 OsEventSignal() .187
A.7.9 OsEventReset() .188
A.7.10 OsMutexCreate() .189
A.7.11 OsMutexClose() .190
A.7.12 OsMutexLock() .191
A.7.13 OsMutexUnlock() .192
A.7.14 PrintDbgMessage() .193

B WinDriver USB Device Cypress EZ-USB FX2LP CY7C68013A API

CONTENTS 8

Reference 195
B.1 Firmware Library API .195

B.1.1 Firmware Library Types196
B.1.1.1 EP_DIR Enumeration196
B.1.1.2 EP_TYPE Enumeration196
B.1.1.3 EP_BUFFERING Enumeration196

B.1.2 WDF_EP1INConfig() / WDF_EP1OUTConfig()197
B.1.3 WDF_EP2Config / WDF_EP6Config()198
B.1.4 WDF_EP4Config / WDF_EP8Config()199
B.1.5 WDF_FIFOReset() .200
B.1.6 WDF_SkipOutPacket() .201
B.1.7 WDF_FIFOWrite() .202
B.1.8 WDF_FIFORead() .203
B.1.9 WDF_FIFOFull() .204
B.1.10 WDF_FIFOEmpty() .205
B.1.11 WDF_SetEPByteCount()206
B.1.12 WDF_GetEPByteCount()207
B.1.13 WDF_I2CInit() .208
B.1.14 WDF_SetDigitLed() .208
B.1.15 WDF_I2CWrite() .209
B.1.16 WDF_I2CRead() .210
B.1.17 WDF_I2CWaitForEEPROMWrite()211
B.1.18 WDF_I2CGetStatus() .212
B.1.19 WDF_I2CClearStatus() .212

B.2 Generated DriverWizard Firmware API213
B.2.1 WDF_Init() .213
B.2.2 WDF_Poll() .214
B.2.3 WDF_Suspend() .214
B.2.4 WDF_Resume() .215
B.2.5 WDF_GetDescriptor() .215
B.2.6 WDF_SetConfiguration()216
B.2.7 WDF_GetConfiguration()217
B.2.8 WDF_SetInterface() .218
B.2.9 WDF_GetInterface() .219
B.2.10 WDF_GetStatus() .220
B.2.11 WDF_ClearFeature() .220
B.2.12 WDF_SetFeature() .221
B.2.13 WDF_VendorCmnd() .221

C WinDriver USB Device Microchip PIC18F4550 API Reference 222
C.1 Firmware Library API .222

C.1.1 Firmware Library Types223
C.1.1.1 EP_DIR Enumeration223

CONTENTS 9

C.1.1.2 EP_TYPE Enumeration223
C.1.1.3 BD_STAT Union224
C.1.1.4 BDT Union .225
C.1.1.5 EP_DATA Structure225

C.1.2 WDF_EPConfig() .226
C.1.3 WDF_EPWrite() .228
C.1.4 WDF_EPRead() .229
C.1.5 WDF_IsEPBusy() .230
C.1.6 WDF_TriggerWriteTransfer()231
C.1.7 WDF_TriggerReadTransfer()232
C.1.8 WDF_GetReadBytesCount()233
C.1.9 WDF_DisableEP1to15()234

C.2 Generated DriverWizard Firmware API235
C.2.1 WDF_Init() .235
C.2.2 WDF_Poll() .236
C.2.3 WDF_SOFHandler() .236
C.2.4 WDF_Suspend() .237
C.2.5 WDF_Resume() .237
C.2.6 WDF_ErrorHandler() .238
C.2.7 WDF_SetConfiguration()239
C.2.8 WDF_SetInterface() .240
C.2.9 WDF_GetInterface() .241
C.2.10 WDF_VendorCmnd() .242
C.2.11 WDF_ClearFeature() .243
C.2.12 WDF_SetFeature() .243

D WinDriver USB Device Silicon Laboratories C8051F320 API Reference 244
D.1 Firmware Library API .244

D.1.1 wdf_silabs_lib.h Types .245
D.1.1.1 EP_DIR Enumeration245
D.1.1.2 EP_TYPE Enumeration245
D.1.1.3 EP_BUFFERING Enumeration245
D.1.1.4 EP_SPLIT Enumeration246

D.1.2 c8051f320.h Types and General Definitions246
D.1.2.1 Endpoint Address Definitions246
D.1.2.2 Endpoint State Definitions246
D.1.2.3 EP_INT_HANDLER Function Pointer247
D.1.2.4 EP0_COMMAND Structure247
D.1.2.5 EP_STATUS Structure248
D.1.2.6 PEP_STATUS Structure Pointer248
D.1.2.7 IF_STATUS Structure248
D.1.2.8 PIF_STATUS Structure Pointer249

D.1.3 WDF_EPINConfig() .249

CONTENTS 10

D.1.4 WDF_EPOUTConfig() .250
D.1.5 WDF_HaltEndpoint() .252
D.1.6 WDF_EnableEndpoint()253
D.1.7 WDF_SetEPByteCount()254
D.1.8 WDF_GetEPByteCount()255
D.1.9 WDF_FIFOClear() .256
D.1.10 WDF_FIFOFull() .257
D.1.11 WDF_FIFOEmpty() .258
D.1.12 WDF_FIFOWrite() .259
D.1.13 WDF_FIFORead() .260
D.1.14 WDF_GetEPStatus() .261

D.2 Generated DriverWizard Firmware API262
D.2.1 WDF_USBReset() .262
D.2.2 WDF_SetAddressRequest()263
D.2.3 WDF_SetFeatureRequest()263
D.2.4 WDF_ClearFeatureRequest()264
D.2.5 WDF_SetConfigurationRequest()264
D.2.6 WDF_SetDescriptorRequest()265
D.2.7 WDF_SetInterfaceRequest()265
D.2.8 WDF_GetStatusRequest()266
D.2.9 WDF_GetDescriptorRequest()266
D.2.10 WDF_GetConfigurationRequest()267
D.2.11 WDF_GetInterfaceRequest()267

E Troubleshooting and Support 268

F Evaluation Version Limitations 269
F.1 Windows 98/Me/2000/XP/Server 2003269
F.2 Windows CE .269
F.3 Linux .269
F.4 DriverWizard GUI .270

G Purchasing WinDriver 271

H Distributing Your Driver – Legal Issues 272

I Additional Documentation 273

List of Figures

1.1 WinDriver Architecture . 8

2.1 Monolithic Drivers . 15
2.2 Layered Drivers .16
2.3 Miniport Drivers . 17

3.1 USB Endpoints .24
3.2 USB Pipes .25
3.3 Device Descriptors .28
3.4 WinDriver USB Architecture . 31

5.1 Select Your Device .49
5.2 DriverWizard INF File Information 50
5.3 DriverWizard Multi-Interface Device INF File Information – Specific

Interface . 51
5.4 DriverWizard Multi-Interface Device INF File Information –

Composite Device .52
5.5 Select Device Interface .53
5.6 Test Your Device .54
5.7 USB Requests List .55
5.8 Write to Pipe .56
5.9 Code Generation Options .57

7.1 Start Debug Monitor .65
7.2 Set Trace Options .66

9.1 USB Data Exchange .71
9.2 USB Read and Write .72
9.3 Custom Request .76
9.4 Request List .77
9.5 USB Request Log .77

11

LIST OF FIGURES 12

12.1 Create Device Firmware Project .104
12.2 Choose Your Development Board104
12.3 Edit Device Descriptor .105
12.4 Configure Your Device .106
12.5 Define Interfaces and Endpoints .107
12.6 EZ-USB Endpoint Buffers .108
12.7 Firmware Code Generation .109

A.1 WinDriver USB Calling Sequence117
A.2 WinDriver USB Structures .145
A.3 WinDriver API Calling Sequence .157

Chapter 1

WinDriver Overview

In this chapter you will explore the uses of WinDriver, and learn the basic steps of
creating your driver.
The WinDriver USB Device toolkit, for development of USB device firmware code, is
outlined separately in Chapter12.

NOTE
This manual outlines WinDriver’s support forUSBdevices onWindows
98/Me/2000/XP/Server2003/CE.NET and Linux.

WinDriver also supports
development forPCI/PCMCIA/CardBus/ISA/ISAPnP/EISA/CompactPCI/PCI
Expressdevices. For detailed information regarding WinDriver’s support
for these buses, please refer to the WinDriver Product Line page on our
web-site (http://www.jungo.com/windriver.html) and to the WinDriver
PCI/PCMCIA/CardBus/ISA/ISAPnP/EISA/CompactPCI/PCI Express User’s
Manual, which is available on-line at:
http://www.jungo.com/support/manuals.html#manuals.

Support forUSBonWindows NT 4.0 is provided in a separate tool-kit – see our
WinDriver USB for NT web-page:http://www.jungo.com/wdusb_nt.html.

1.1 Introduction to WinDriver

WinDriver is a development toolkit that dramatically simplifies the difficult
task of creating device drivers and hardware access applications. WinDriver
includes a wizard and code generation features that automatically detect your

13

http://www.jungo.com/windriver.html
http://www.jungo.com/support/manuals.html#manuals
http://www.jungo.com/wdusb_nt.html

1.2 Background 14

hardware and generate the driver to access it from your application. The driver
and application you develop using WinDriver is source code compatible between
all supported operating systems (WinDriver currently supports Windows
98/Me/2000/XP/Server2003/CE.NET and Linux.). The driveris binary compatible
between Windows 98/Me/2000/XP/Server 2003. WinDriver provides a complete
solution for creating high performance drivers.

Don’t let the size of this manual fool you. WinDriver makes developing device
drivers an easy task that takes hours instead of months. Mostof this manual deals
with the features that WinDriver offers to the advanced user. However, most
developers will find that reading this chapter and glancing through the DriverWizard
and function reference chapters is all they need to successfully write their driver.

WinDriver supports development for all USB chipsets. Enhanced support is offereed
for Cypress, STMicroelectronics, Microchip, Texas Instruments, Silicon Laboratories
and National Semiconductors chipsets, as outlined in Chapter [8] of the manual.

Visit Jungo’s web site athttp://www.jungo.com for the latest news about
WinDriver and other driver development tools that Jungo offers.

Good luck with your project!

1.2 Background

1.2.1 The Challenge

In protected operating systems such as Windows and Linux, a programmer cannot
access hardware directly from the application level (user mode), where development
work is usually done. Hardware can only be accessed from within the operating
system itself (kernel mode or Ring-0), utilizing software modules called device
drivers. In order to access a custom hardware device from theapplication level, a
programmer must do the following:

• Learn the internals of the operating system he is working on(Windows
98/Me/2000/XP/Server2003/CE.NET and Linux).

• Learn how to write a device driver.

• Learn new tools for developing/debugging in kernel mode (DDK, ETK,
DDI/DKI).

• Write the kernel-mode device driver that does the basic hardware input/output.

• Write the application in user mode that accesses the hardware through the
device driver written in kernel mode.

• Repeat the first four steps for each new operating system on which the code
should run.

http://www.jungo.com

1.3 Conclusion 15

1.2.2 The WinDriver Solution

Easy Development:
WinDriver enables Windows 98/Me/2000/XP/Server2003/CE.NET and
Linux programmers to create USB-based device drivers in an extremely short
time. WinDriver allows you to create your driver in the familiar user-mode
environment, using MSDEV/Visual C/C++, Borland Delphi, Borland C++,
Visual Basic, GCC or any other 32-bit compiler. You do not need to have any
device driver knowledge, nor do you have to be familiar with operating system
internals, kernel programming, the DDK, ETK or DDI/DKI.

Cross Platform: The driver created with WinDriver will run on Windows
98/Me/2000/XP/Server2003/CE.NET and Linux. In other words – write it
once, run it on many platforms.

Friendly Wizards: DriverWizard (included) is a graphical diagnostics tool that lets
view your device’s resources and test the communication with the hardware,
by transferring data on the pipes and sending control requests, before writing
a single line of code. Once the device is operating to your satisfaction,
DriverWizard creates the skeletal driver source code, giving access functions
to all the resources on the hardware.

Kernel-Mode Performance: WinDriver’s API is optimized for performance.

1.3 Conclusion

Using WinDriver, a developer need only do the following to create an application that
accesses the custom hardware:

• Start DriverWizard and detect the hardware and its resources.

• Automatically generate the device driver code from withinDriverWizard,
or use one of the WinDriver samples as the basis for the application (see
Chapter8 for an overview of WinDriver’s enhanced support for specific
chipsets).

• Modify the user-mode application, as needed, using the generated/sample
functions to implement the desired functionality for your application.

Your hardware access application will run on all the supported platforms:
Windows 98/Me/2000/XP/Server2003/CE.NET and Linux– justre-compile the
code for the target platform. (The code is binary compatiblebetween Windows
98/Me/2000/XP/Server 2003 platforms, so there is no need torebuild the code when
porting the driver between these operating systems.)

1.4 WinDriver Benefits 16

1.4 WinDriver Benefits

• Easy user-mode driver development.

• Friendly DriverWizard allows hardware diagnostics without writing a single
line of code.

• Automatically generates the driver code for the project inC, C# (.NET), Delphi
(Pascal) or Visual Basic.

• Support for any USB device, regardless of manufacturer.

• Enhanced support for Cypress, STMicroelectronics, Microchip, Texas
Instruments, Silicon Laboratories and National Semiconductors USB
controllers, hiding from the developer the USB implementation details.

• Applications are binary-compatible across Windows 98/Me/2000/XP/Server
2003.

• Applications are source
code compatible across Windows 98/Me/2000/XP/Server2003/CE.NET and
Linux.

• Can be used with common development environments, including
MSDEV/Visual C/C++, MSDEV .NET, Borland Delphi, Borland C++ Builder,
Visual Basic, GCC or any other 32-bit compiler.

• No DDK, ETK, DDI or any system-level programming knowledgerequired.

• Supports multiple CPUs.

• Includes dynamic driver loader.

• Comprehensive documentation and help files.

• Detailed examples in C, C#, Visual Basic .NET, Delphi and Visual Basic 6.0.

• WHQL certifiable driver (Windows).

• Two months of free technical support.

• No runtime fees or royalties.

1.5 WinDriver Architecture 17

1.5 WinDriver Architecture

Figure 1.1: WinDriver Architecture

For hardware access, your application calls one of the WinDriver user-mode
functions. The user-mode function calls the WinDriver kernel, which accesses the
hardware for you through the native calls of the operating system.

1.6 What Platforms Does WinDriver Support?

WinDriver supports Windows 98/Me/2000/XP/Server2003/CE.NET and Linux.

The same source code will run on all supported platforms – simply re-compile
it for the target platform. The source code is binary compatible across Windows
98/Me/2000/XP/Server 2003, so executables created with WinDriver can be ported
between these operating systems without re-compilation.

Even if your code is meant only for one of the supported operating systems, using
WinDriver will give you the flexibility to move your driver toanother operating
system in the future without needing to change your code.

1.7 Limitations of the Different Evaluation Versions 18

1.7 Limitations of the Different Evaluation Versions

All the evaluation versions of WinDriver USB Host toolkit are full featured. No
functions are limited or crippled in any way. The evaluationversion of WinDriver
varies from the registered version in the following ways:

• Each time WinDriver is activated, anUn-registeredmessage appears.

• When using the DriverWizard, a dialog box with a message stating that an
evaluation version is being run appears on every interaction with the hardware.

• In the Linux and CE versions, the driver will remain operational for 60
minutes, after which time it must be restarted.

• The Windows evaluation version expires 30 days from the date of installation.

For more details please refer to appendixF.

1.8 How Do I Develop My Driver with WinDriver?

1.8.1 On Windows 98/Me/2000/XP/Server 2003 and Linux

1. Start DriverWizard and use it to diagnose your hardware – see details in
Chapter5.

2. Let DriverWizard generate skeletal code for your driver,or use one of the
WinDriver samples as the basis for your driver application (see Chapter [8]
for details regarding WinDriver’s enhanced support for specific chipsets).

3. Modify the generated/sample code to suit your application’s needs.

4. Run and debug your driver.

NOTE
The code generated by DriverWizard is in fact a diagnostics program that contains
functions that perform data transfers on the device’s pipes, send requests to the
control pipe, change the active alternate setting, reset pipes, and more.

1.8.2 On Windows CE

1. Plug your hardware into a Windows host machine.

2. Diagnose your hardware using DriverWizard.

3. Let DriverWizard generate your driver’s skeletal code.

1.9 What Does the WinDriver Toolkit Include? 19

4. Modify this code using eMbedded Visual C++ to meet your specific needs. If
you are using Platform Builder, activate it and insert the generated*.pbp into
your workspace.

5. Test and debug your code and hardware from the CE emulationrunning on the
host machine.

1.9 What Does the WinDriver Toolkit Include?

• A printed version of this manual

• Two months of free technical support (Phone/Fax/Email)

• WinDriver modules

• The WinDriver CD

– Utilities

– Chipset support APIs

– Sample files

1.9.1 WinDriver Modules

• WinDriver (WinDriver \include) – the general purpose hardware access
toolkit. The main files here are:

– windrvr.h : Declarations and definitions of WinDriver’s basic API.

– wdu_lib.h: Declarations and definitions of the WinDriver USB (WDU)
library, which provides convenient wrapper USB APIs.

– windrvr_int_thread.h : Declarations of convenient wrapper functions to
simplify interrupt handling.

– windrvr_events.h: Declarations of APIs for handling and Plug-and-Play
and power management events.

– utils.h: Declarations of general utility functions.

– status_strings.h: Declarations of API for converting WinDriver status
codes to descriptive error strings.

• DriverWizard (/WinDriver/wizard/wdwizard) – a graphical tool that
diagnoses your hardware and enables you to easily generate code for your
driver (refer to Chapter5 for details).

1.9 What Does the WinDriver Toolkit Include? 20

• Graphical Debugger (WinDriver/util/wddebug_gui) – a graphical debugging
tool that collects information about your driver as it runs.
WinDriver also includes a console version of this program
(WinDriver/util/wddebug), which can be used on platforms that have no GUI
support, such as Windows CE.
For details regarding the Debug Monitor, refer to section [7.2].

• WinDriver distribution package (WinDriver/redist) – the files you include in
the driver distribution to customers.

• This manual – the full WinDriver manual (this document) in PDF, Windows
Help and HTML formats can be found under theWinDriver/docs/ directory. L
formats.

1.9.2 Utilities

• USB_DIAG.EXE (/WinDriver/util/usb_diag.exe) – provides a list of the
USB devices installed and identifies the resources allocated for each one of
them and the resources used to access them.

The Windows CE version also includes:

• \REDIST\... \X86EMU\WINDRVR_CE_EMU.DLL : DLL that
communicates with the WinDriver kernel – for the x86 HPC emulation mode
of Windows CE.

• \REDIST\... \X86EMU\WINDRVR_CE_EMU.LIB: an import library that
is used to link with WinDriver applications that are compiled for the x86 HPC
emulation mode of Windows CE.

1.9.3 WinDriver’s Specific Chipset Support

WinDriver provides custom wrapper APIs and sample code for major USB
controllers (see Chapter8), including for the following controllers:

• Cypress EZ-USB –WinDriver/cypress

• Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052: –
WinDriver/ti

• Silicon Laboratories C8051F320 USB –WinDriver/silabs .

The samples directories typically include the following sub-directories:

• <vendor>/lib/ – the custom API for the enhanced-support chip(s), written
using the WinDriver API.

1.10 Can I Distribute the Driver Created with WinDriver? 21

• <chip>/<sample_name>/- a sample diagnostics application for a specific
chip, which was written using the custom API from thelib/ directory.
The sample application can be compiled and executed "as-is".

1.9.4 Samples

In addition to the samples provided for specific chipsets [1.9.3], WinDriver includes
a variety of samples that demonstrate how to use WinDriver’sAPI to communicate
with your device and perform various driver tasks.

• WinDriver/samples – C samples.
These samples also include the source code for the utilitieslisted above [1.9.2].

• WinDriver/delphi/samples – Delphi (Pascal) samples

• WinDriver/vb/samples – Visual Basic samples

1.10 Can I Distribute the Driver Created with
WinDriver?

Yes. WinDriver is purchased as a development toolkit, and any device driver created
using WinDriver may be distributed, royalties free, in as many copies as you wish.
See the license agreement (WinDriver/docs/license.txt) for more details.

1.11 Identifying the Right Tool for Your Development

Jungo offers two driver development products: WinDriver and KernelDriver.

WinDriver is designed for monolithic type user-mode drivers. It enables you to
access your hardware directly from within your user-mode application, without
writing a kernel-mode device driver. Using WinDriver you can either access
your hardware directly from your application (in user mode)or write a DLL
that you can call from many different applications.

A USB driver developed with WinDriver will run on Windows
98/Me/2000/XP/Server2003/CE.NET and Linux.

Typically, using WinDriver a developer that has no previousdriver knowledge
can get a driver running in a matter of a few hours (compared toseveral weeks
with a kernel-mode driver).

1.11 Identifying the Right Tool for Your Development 22

KernelDriver is intended for creating standard operating system internal drivers
that require hardware access and that must communicate withthe operating
system or must be implemented in the kernel.

A USB driver created with KernelDriver can run on Windows
98/Me/2000/XP/Server2003/CE and Linux. KernelDriver dramatically
simplifies the difficult task of creating kernel-mode devicedrivers, by providing
a hardware access API in the kernel mode, which is portable across the
supported operating systems.

Chapter 2

Understanding Device Drivers

This chapter provides you with a general introduction to device drivers and takes you
through the structural elements of a device driver.

NOTE
Using WinDriver, you do not need to familiarize yourself with the internal workings
of driver development. As explained in Chapter1 of the manual, WinDriver enables
you to communicate with your hardware and develop a driver for your device from
the user mode, using only WinDriver’s simple APIs, without any need for driver or
kernel development knowledge.

2.1 Device Driver Overview

Device drivers are the software segments that provides an interface between the
operating system and the specific hardware devices such as terminals, disks, tape
drives, video cards and network media. The device driver brings the device into
and out of service, sets hardware parameters in the device, transmits data from the
kernel to the device, receives data from the device and passes it back to the kernel,
and handles device errors.
A driver acts like a translator between the device and programs that use the device.
Each device has its own set of specialized commands that onlyits driver knows. In
contrast, most programs access devices by using generic commands. The driver,
therefore, accepts generic commands from a program and thentranslates them into
specialized commands for the device.

23

2.2 Classification of Drivers According to Functionality 24

2.2 Classification of Drivers According to
Functionality

There are numerous driver types, differing in their functionality. This subsection
briefly describes three of the most common driver types.

2.2.1 Monolithic Drivers

Monolithic drivers are device drivers that embody all the functionality needed to
support a hardware device. A monolithic driver is accessed by one or more user
applications, and directly drives a hardware device. The driver communicates with
the application through I/O control commands (IOCTLs) and drives the hardware
using calls to the different DDK, ETK, DDI/DKI functions.

Figure 2.1: Monolithic Drivers

Monolithic drivers are supported in all operating systems including all Windows
platforms and all Unix platforms.

2.2 Classification of Drivers According to Functionality 25

2.2.2 Layered Drivers

Layered drivers are device drivers that are part of a stack ofdevice drivers that
together process an I/O request. An example of a layered driver is a driver that
intercepts calls to the disk and encrypts/decrypts all databeing transferred to/from
the disk. In this example, a driver would be hooked on to the top of the existing driver
and would only do the encryption/decryption.

Layered drivers are sometimes also known as filter drivers, and are supported in all
operating systems including all Windows platforms and all Unix platforms.

Figure 2.2: Layered Drivers

2.2.3 Miniport Drivers

A Miniport driver is an add-on to a class driver that supportsminiport drivers. It is
used so the miniport driver does not have to implement all of the functions required
of a driver for that class. The class driver provides the basic class functionality for the
miniport driver.
A class driver is a driver that supports a group of devices of common functionality,
such as all HID devices or all network devices.

Miniport drivers are also called miniclass drivers or minidrivers, and are supported in
the Windows NT (or 2000) family, namely Windows NT/2000/XP and Server 2003.

2.3 Classification of Drivers According to Operating Systems 26

Figure 2.3: Miniport Drivers

Windows NT/2000/XP/Server 2003 provide several driver classes (called ports) that
handle the common functionality of their class. It is then upto the user to add only
the functionality that has to do with the inner workings of the specific hardware.

The NDIS miniport driver is one example of such a driver. The NDIS miniport
framework is used to create network drivers that hook up to NT’s communication
stacks, and are therefore accessible to common communication calls used
by applications. The Windows NT kernel provides drivers forthe various
communication stacks and other code that is common to communication cards. Due
to the NDIS framework, the network card developer does not have to write all of this
code, only the code that is specific to the network card he is developing.

2.3 Classification of Drivers According to Operating
Systems

2.3.1 WDM Drivers

WDM (Windows Driver Model) drivers are kernel-mode driverswithin the Windows
NT and Windows 98 operating system families. Windows NT family includes
Windows NT/2000/XP/Server 2003, and Windows 98 family includes Windows 98
and Windows Me.
WDM works by channeling some of the work of the device driver into portions of the
code that are integrated into the operating system. These portions of code handle all
of the low-level buffer management, including DMA and Plug and Play (Pnp) device
enumeration.

2.3 Classification of Drivers According to Operating Systems 27

WDM drivers are PnP drivers that support power management protocols, and include
monolithic drivers, layered drivers and miniport drivers.

2.3.2 VxD Drivers

VxD drivers are Windows 95/98/Me Virtual Device Drivers, often called VxDs
because the filenames end with the .vxd extension. VxD drivers are typically
monolithic in nature. They provide direct access to hardware and privileged operating
system functions. VxD drivers can be stacked or layered in any fashion, but the driver
structure itself does not impose any layering.

2.3.3 Unix Device Drivers

In the classic Unix driver model, devices belong to one of three categories: character
(char) devices, block devices and network devices. Driversthat implement these
devices are correspondingly known as char drivers, block drivers or network drivers.
Under Unix, drivers are code units linked into the kernel that run in privileged kernel
mode. Generally, driver code runs on behalf of a user-mode application. Access to
Unix drivers from user-mode applications is provided via the file system. In other
words, devices appear to the applications as special devicefiles that can be opened.

Unix device drivers are either layered or monolithic drivers. A monolithic driver can
be perceived as a one-layer layered driver.

2.3.4 Linux Device Drivers

Linux device drivers are based on the classic Unix device driver model. In addition,
Linux introduces some new characteristics.

Under Linux, a block device can be accessed like a character device, as in Unix, but
also has a block-oriented interface that is invisible to theuser or application.

Traditionally, under Unix, device drivers are linked with the kernel, and the system is
brought down and restarted after installing a new driver. Linux introduces the concept
of a dynamically loadable driver called a module. Linux modules can be loaded or
removed dynamically without requiring the system to be shutdown. A Linux driver
can be written so that it is statically linked or written in a modular form that allows
it to be dynamically loaded. This makes Linux memory usage very efficient because
modules can be written to probe for their own hardware and unload themselves if they
cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are either layered or monolithic
drivers.

2.4 The Entry Point of the Driver 28

2.4 The Entry Point of the Driver

Every device driver must have one main entry point, like themain() function in a
C console application. This entry point is calledDriverEntry() in Windows and
init_module() in Linux. When the operating system loads the device driver,this
driver entry procedure is called.

There is some global initialization that every driver needsto perform only once when
it is loaded for the first time. This global initialization isthe responsibility of the
DriverEntry()/init_module() routine. The entry function also registers which
driver callbacks will be called by the operating system. These driver callbacks are
operating system requests for services from the driver. In Windows, these callbacks
are calleddispatch routines, and in Linux they are calledfile operations. Each
registered callback is called by the operating system as a result of some criteria, such
as disconnection of hardware, for example.

2.5 Associating the Hardware to the Driver

Operating systems differ in how they link a device to its driver.
In Windows, the link is performed by the INF file, which registers the device to work
with the driver. This association is performed before theDriverEntry() routine is
called. The operating system recognizes the device, looks up in its database which
INF file is associated with the device, and according to the INF file, calls the driver’s
entry point.
In Linux, the link between a device and its driver is defined intheinit_module()
routine. Theinit_module() routine includes a callback which states what hardware
the driver is designated to handle. The operating system calls the driver’s entry point,
based on the definition in the code.

2.6 Communicating with Drivers

A driver can create an instance, thus enabling an application to open a handle to the
driver through which the application can communicate with it.
The applications communicate with the drivers using a file access API (Application
Program Interface). Applications open a handle to the driver usingCreateFile()
call (in Windows), oropen() call (in Linux) with the name of the device as the file
name. In order to read from and write to the device, the application callsReadFile()
andWriteFile() (in Windows), orread(), write() in Linux.

2.6 Communicating with Drivers 29

Sending requests is accomplished using an I/O control call,called
DeviceIoControl() (in Windows), andioctl() in Linux. In this I/O control call,
the application specifies:

• The device to which the call is made (by providing the device’s handle).

• An IOCTL code that describes which function this device should perform.

• A buffer with the data on which the request should be performed.

The IOCTL code is a number that the driver and the requester agree upon for a
common task.

The data passed between the driver and the application is encapsulated into a
structure. In Windows, this structure is called an I/O Request Packet (IRP), and is
encapsulated by the I/O Manager. This structure is passed onto the device driver,
which may modify it and pass it down to other device drivers.

Chapter 3

WinDriver USB Overview

This chapter explores the basic characteristics of the Universal Serial Bus (USB) and
introduces WinDriver USB’s features and architecture.

NOTE
The references to the WinDriver USB toolkit in this chapter relate to the standard
WinDriver USB toolkit for development of USB host drivers.
The WinDriver USB Device toolkit, designed for developmentof USB device
firmware, is discussed separately in Chapter12.

3.1 Introduction to USB

USB (Universal Serial Bus) is an industry standard extension to the PC architecture
for attaching peripherals to the computer. It was originally developed in 1995 by
leading PC and telecommunication industry companies, suchas Intel, Compaq,
Microsoft and NEC. USB was developed to meet several needs, among them the
needs for an inexpensive and widespread connectivity solution for peripherals in
general and for computer telephony integration in particular, an easy-to-use and
flexible method of reconfiguring the PC, and a solution for adding a large number
of external peripherals. The USB standard meets these needs.

The USB specification allows for the connection of a maximum of 127 peripheral
devices (including hubs) to the system, either on the same port or on different ports.

USB also supports Plug and Play installation and hot swapping.

TheUSB 1.1standard supports both isochronous and asynchronous data transfers
and has dual speed data transfer: 1.5 Mb/s (megabits per second) for low-speedUSB

30

3.2 WinDriver USB Benefits 31

devices and 12 Mb/s forhigh-speedUSB devices (much faster than the original serial
port). Cables connecting the device to the PC can be up to five meters (16.4 feet)
long. USB includes built-in power distribution for low power devices and can provide
limited power (up to 500 mA of current) to devices attached onthe bus.

TheUSB 2.0standard supports a signalling rate of 480 Mb/s, known as
”high-speed”, which is 40 times faster than the USB 1.1 full-speed transfer rate.
USB 2.0 is fully forward- and backward-compatible with USB 1.1 and uses existing
cables and connectors.
USB 2.0 supports connections with PC peripherals that provide expanded
functionality and require wider bandwidth. In addition, itcan handle a larger number
of peripherals simultaneously.
USB 2.0 enhances the user’s experience of many applications, including interactive
gaming, broadband Internet access, desktop and Web publishing, Internet services
and conferencing.

Because of its benefits (described also in section3.2below), USB is currently
enjoying broad market acceptance.

3.2 WinDriver USB Benefits

This section describes the main benefits of the USB standard and the WinDriver USB
toolkit, which supports this standard:

• External connection, maximizing ease of use

• Self identifying peripherals supporting automatic mapping of function to driver
and configuration

• Dynamically attachable and re-configurable peripherals

• Suitable for device bandwidths ranging from a few Kb/s to hundreds of Mb/s

• Supports isochronous as well as asynchronous transfer types over the same set
of wires

• Supports simultaneous operation of many devices (multiple connections)

• Supports a data transfer rate of up to 480 Mb/s (high-speed)for USB 2.0 (for
the operating systems that officially support this standard) and up to 12 Mb/s
(full-speed) for USB 1.1

• Guaranteed bandwidth and low latencies; appropriate for telephony, audio, etc.
(isochronous transfer may use almost the entire bus bandwidth)

• Flexibility: supports a wide range of packet sizes and a wide range of data
transfer rates

3.3 USB Components 32

• Robustness: built-in error handling mechanism and dynamic insertion and
removal of devices with no delay observed by the user

• Synergy with PC industry; Uses commodity technologies

• Optimized for integration in peripheral and host hardware

• Low-cost implementation, therefore suitable for development of low-cost
peripherals

• Low-cost cables and connectors

• Built-in power management and distribution

3.3 USB Components

The Universal Serial bus is comprised of the following primary components:

USB Host: The USB host platform is where the USB host controller is installed and
where the client software/device driver runs. TheUSB Host Controlleris the
interface between the host and the USB peripherals. The hostis responsible
for detecting the insertion and removal of USB devices, managing the control
and data flow between the host and the devices, providing power to attached
devices and more.

USB Hub: A USB device that allows multiple USB devices to attach to a single
USB port on a USB host. Hubs on the back plane of the hosts are called root
hubs. Other hubs are calledexternal hubs.

USB Function: A USB device that can transmit or receive data or control
information over the bus and that provides a function. A function is typically
implemented as a separate peripheral device that plugs intoa port on a hub
using a cable. However, it is also possible to create acompound device, which
is a physical package that implements multiple functions and an embedded hub
with a single USB cable. A compound device appears to the hostas a hub with
one or more non-removable USB devices, which may have ports to support the
connection of external devices.

3.4 Data Flow in USB Devices

During the operation of a USB device, the host can initiate a flow of data between the
client software and the device.

Data can be transferred between the host and only one device at a time (peer to peer
communication). However, two hosts cannot communicate directly, nor can two USB

3.4 Data Flow in USB Devices 33

devices (with the exception of On-The-Go (OTG) devices, where one device acts as
the master (host) and the other as the slave.)

The data on the USB bus is transferred via pipes that run between software memory
buffers on the host and endpoints on the device.

Data flow on the USB bus is half-duplex, i.e. data can be transmitted only in one
direction at a given time.

An endpoint is a uniquely identifiable entity on a USB device, which is thesource
or terminus of the data that flows from or to the device. Each USB device, logical
or physical, has a collection of independent endpoints. Thethree USB speeds (low,
full and high) all support one bi-directional control endpoint (endpoint zero) and 15
unidirectional endpoints. Each endpoint unidirectional endpoint can be used for either
inbound or outbound transfers, so theoretically there are 30 supported endpoints.
Each endpoint has the following attributes: bus access frequency, bandwidth
requirement, endpoint number, error handling mechanism, maximum packet size that
can be transmitted or received, transfer type and direction(into or out of the device).

Figure 3.1: USB Endpoints

A pipe is a logical component that represents an association between an endpoint on
the USB device and software on the host. Data is moved to and from a device through
a pipe. A pipe can be either a stream pipe or a message pipe, depending on the type
of data transfer used in the pipe.Stream pipeshandle interrupt, bulk and isochronous
transfers, whilemessage pipessupport the control transfer type. The different USB
transfer types are discussed below [3.6].

3.5 USB Data Exchange 34

3.5 USB Data Exchange

The USB standard supports two kinds of data exchange betweena host and a device:
functional data exchange and control exchange.

Functional data exchange is used to move data to and from the device. There are
three types of data transfers: bulk, interrupt and isochronous.

Control exchange is used to determine device identification and configuration
requirements and to configure a device, and can also be used for other
device-specific purposes, including control of other pipeson the device.
Control exchange takes place via a control pipe, mainly the defaultPipe 0,
which always exists. The control transfer consists of asetup stage(in which
a setup packet is sent from the host to the device), an optional data stageand a
status stage.

Figure3.2below depicts a USB device with one bi-directional control pipe (endpoint)
and six functional data transfer pipes (endpoints), as identified by WinDriver’s
DriverWizard utility (discussed in Chapter5).

Figure 3.2: USB Pipes

3.6 USB Data Transfer Types 35

More information on how to implement the control transfer bysending setup packets
can be found in Chapter9.

3.6 USB Data Transfer Types

The USB device (function) communicates with the host by transferring data through
a pipe between a memory buffer on the host and an endpoint on the device. USB
supports four different transfer types. A type is selected for a specific endpoint
according to the requirements of the device and the software. The transfer type of a
specific endpoint is determined in the endpoint descriptor.

The USB specification provides for the following data transfer types:

3.6.1 Control Transfer

Control Transfer is mainly intended to support configuration, command and status
operations between the software on the host and the device.

This transfer type is used for low-, full- and high-speed devices.

Each USB device has at least one control pipe (default pipe),which provides access
to the configuration, status and control information.

Control transfer is bursty, non-periodic communication.

The control pipe is bi-directional – i.e. data can flow in bothdirections.

Control transfer has a robust error detection, recovery andretransmission mechanism
and retries are made without the involvement of the driver.

The maximum packet size for control endpoints can be only 8 bytes for low-speed
devices; 8, 16, 32, or 64 bytes for full-speed devices; and only 64 bytes for
high-speed devices.

3.6.2 Isochronous Transfer

Isochronous Transfer is most commonly used for time-dependent information, such
as multimedia streams and telephony.

This transfer type can be used by full-speed and high-speed devices, but not by
low-speed devices.

Isochronous transfer is periodic and continuous.

3.6 USB Data Transfer Types 36

The isochronous pipe is unidirectional, i.e. a certain endpoint can either transmit
or receive information. Bi-directional isochronous communication requires two
isochronous pipes, one in each direction.

USB guarantees the isochronous transfer access to the USB bandwidth (i.e. it
reserves the required amount of bytes of the USB frame) with bounded latency, and
guarantees the data transfer rate through the pipe, unless there is less data transmitted.

Since timeliness is more important than correctness in thistype of transfer, no
retries are made in case of error in the data transfer. However, the data receiver can
determine that an error occurred on the bus.

3.6.3 Interrupt Transfer

Interrupt Transfer is intended for devices that send and receive small amounts of data
infrequently or in an asynchronous time frame.

This transfer type can be used for low-, full- and high-speeddevices.

Interrupt transfer type guarantees a maximum service period and that delivery will be
re-attempted in the next period if there is an error on the bus.

The interrupt pipe, like the isochronous pipe, is unidirectional and periodical.

The maximum packet size for interrupt endpoints can be 8 bytes or less for low-speed
devices; 64 bytes or less for full-speed devices; and 1,024 bytes or less for high-speed
devices.

3.6.4 Bulk Transfer

Bulk Transfer is typically used for devices that transfer large amounts of non-time
sensitive data, and that can use any available bandwidth, such as printers and
scanners.

This transfer type can be used by full-speed and high-speed devices, but not by
low-speed devices.

Bulk transfer is non-periodic, large packet, bursty communication.

Bulk transfer allows access to the bus on an "as-available" basis, guarantees the data
transfer but not the latency, and provides an error check mechanism with retries
attempts. If part of the USB bandwidth is not being used for other transfers, the
system will use it for bulk transfer.

Like the other stream pipes (isochronous and interrupt), the bulk pipe is also
unidirectional, so bi-directional transfers require two endpoints.

The maximum packet size for bulk endpoints can be 8, 16, 32, or64 bytes for
full-speed devices, and 512 bytes for high-speed devices.

3.7 USB Configuration 37

3.7 USB Configuration

Before the USB function (or functions, in a compound device)can be operated,
the device must be configured. The host does the configuring byacquiring the
configuration information from the USB device. USB devices report their attributes
by descriptors. Adescriptor is the defined structure and format in which the data is
transferred. A complete description of the USB descriptorscan be found in Chapter 9
of the USB Specification (seehttp://www.usb.org for the full specification).

It is best to view the USB descriptors as a hierarchical structure with four levels:
• TheDevicelevel

• TheConfigurationlevel

• TheInterfacelevel (this level may include an optional
sub-level calledAlternate Setting)

• TheEndpointlevel

There is only one device descriptor for each USB device. Eachdevice has one
or more configurations, each configuration has one or more interfaces, and each
interface has zero or more endpoints, as demonstrated in Figure3.3below.

Figure 3.3: Device Descriptors

Device Level: The device descriptor includes general information about the USB
device, i.e. global information for all of the device configurations. The device
descriptor identifies, among other things, the device class(HID device, hub,
locator device, etc.), subclass, protocol code, vendor ID,device ID and more.
Each USB device has one device descriptor.

http://www.usb.org

3.7 USB Configuration 38

Configuration Level: A USB device has one or more configuration descriptors.
Each descriptor identifies the number of interfaces groupedin the configuration
and the power attributes of the configuration (such as self-powered, remote
wakeup, maximum power consumption and more). Only one configuration
can be loaded at a given time. For example, an ISDN adapter might have two
different configurations, one that presents it with a singleinterface of 128 Kb/s
and a second that presents it with two interfaces of 64 Kb/s each.

Interface Level: The interface is a related set of endpoints that present a
specific functionality or feature of the device. Each interface may operate
independently. The interface descriptor describes the number of the interface,
the number of endpoints used by this interface and the interface-specific class,
subclass and protocol values when the interface operates independently.

In addition, an interface may havealternate settings. The alternate settings
allow the endpoints or their characteristics to be varied after the device is
configured.

Endpoint Level: The lowest level is the endpoint descriptor, which providesthe
host with information regarding the endpoint’s data transfer type and maximum
packet size. For isochronous endpoints, the maximum packetsize is used
to reserve the required bus time for the data transfer – i.e. the bandwidth.
Other endpoint attributes are its bus access frequency, endpoint number, error
handling mechanism and direction.

The same endpoint can have different properties (and consequently different
uses) in different alternate settings.

Seems complicated? Not at all! WinDriver automates the USB configuration process.
The included DriverWizard utility [5] and USB diagnostics application scan the USB
bus, detect all USB devices and their configurations, interfaces, alternate settings
and endpoints, and enable you to pick the desired configuration before starting driver
development.

WinDriver identifies the endpoint transfer type as determined in the endpoint
descriptor. The driver created with WinDriver contains allconfiguration information
acquired at this early stage.

3.8 WinDriver USB 39

3.8 WinDriver USB

WinDriver USB enables developers to quickly develop high-performance drivers for
USB-based devices, without having to learn the USB specifications or the operating
system’s internals.

Using WinDriver USB, developers can create USB drivers without having to use
the operating system’s development kits (such as the Windows DDK); In addition,
Windows developers do not need to familiarize themselves with Microsoft’s Win32
Driver Module (WDM).

The driver code developed with WinDriver USB is binary compatible across
the supported Windows platforms – Windows 98/Me/2000/XP/Server 2003 –
and source code compatible across all supported operating systems – Windows
98/Me/2000/XP/Server2003/CE.NET and Linux. (For an up-to-date list of supported
operating systems, visit Jungo’s web site at:http://www.jungo.com.

WinDriver USB is a generic tool kit that supports all USB devices from all vendors
and with all types of configurations.

WinDriver USB encapsulates the USB specification and architecture, letting you
focus on your application logic. WinDriver USB features thegraphical DriverWizard
utility [5], which enables you to easily detect your hardware, view itsconfiguration
information, and test it, before writing a single line of code: DriverWizard first lets
you choose the desired configuration, interface and alternate setting combination,
using a friendly graphical user interface. After detectingand configuring your USB
device, you can proceed to test the communication with the device – perform data
transfers on the pipes, send control requests, reset the pipes, etc. – in order to ensure
that all your hardware resources function as expected.

After your hardware is diagnosed, you can use DriverWizard to automatically
generate your device driver source code in C, Delphi or Visual Basic. WinDriver
USB provides user-mode APIs, which you can call from within your application in
order to implement the communication with your device. The WinDriver USB API
includes USB-unique operations such as reset of a pipe or a device. The generated
DriverWizard code implements a diagnostics application, which demonstrates
how to use WinDriver’s USB API to drive your specific device. In order to use the
application you just need to compile and run it. You can jump-start your development
cycle by using this application as your skeletal driver and then modifying the code, as
needed, to implement the desired driver functionality for your specific device.

DriverWizard also automates the creation of an INF file that registers your device
to work with WinDriver, which is an essential step in order tocorrectly identify and
handle USB devices using WinDriver. For an explanation on why you need to create
an INF file for your USB device, refer to section11.3.1of the manual. For detailed

http://www.jungo.com

3.9 WinDriver USB Architecture 40

information on creation of INF files with DriverWizard, refer to section5.2(see
specifically step3).

With WinDriver USB, all development is done in the user mode,using
familiar development and debugging tools and your favoritecompiler (such as
MSDEV/Visual C/C++, Borland Delphi, Borland C++ or Visual Basic).

3.9 WinDriver USB Architecture

Figure 3.4: WinDriver USB Architecture

3.10 Which Drivers Can I Write with WinDriver USB? 41

To access your hardware, your application calls the WinDriver kernel module using
functions from the WinDriver USB API. The high-level functions utilize the low-level
functions, which use IOCTLs to enable communication between the WinDriver
kernel module and your user-mode application. The WinDriver kernel module
accesses your USB device resources through the native operating system calls.

There are two layers responsible for abstracting the USB device to the USB device
driver. The upper layer is theUSB Driver (USBD) layer, which includes the USB
Hub Driver and the USB Core Driver. The lower level is theHost Controller Driver
(HCD) layer. The division of duties between the HCD and USBD layersis not
defined and is operating system dependent. Both the HCD and USBD are software
interfaces and components of the operating system, where the HCD layer represents a
lower level of abstraction.

TheHCD is the software layer that provides an abstraction of the host controller
hardware, while theUSBD provides an abstraction of the USB device and the data
transfer between the host software and the function of the USB device.

TheUSBD communicates with its clients (the specific device driver, for example)
through the USB Driver Interface (USBDI). At the lower level, the Core Driver and
USB Hub Driver implement the hardware access and data transfer by communicating
with the HCD using the Host Controller Driver Interface (HCDI).

The USB Hub Driver is responsible for identifying the addition and removal of
devices from a particular hub. When the Hub Driver receives asignal that a device
was attached or detached, it uses additional host software and the USB Core Driver to
recognize and configure the device. The software implementing the configuration can
include the hub driver, the device driver, and other software.

WinDriver USB abstracts the configuration procedure and hardware access described
above for the developer. With WinDriver’s USB API, developers can perform all the
hardware-related operations without having to master the lower-level implementation
for supporting these operations.

3.10 Which Drivers Can I Write with WinDriver
USB?

Almost all monolithic drivers (drivers that need to access specific USB devices) can
be written with WinDriver USB. In cases where a standard driver is required, e.g.
NDIS driver, SCSI driver, Display driver, USB to Serial portdrivers, USB layered
drivers, etc., use KernelDriver USB (also from Jungo).

For quicker development time, select WinDriver USB over KernelDriver USB
whenever possible.

Chapter 4

Installing WinDriver

This chapter takes you through the WinDriver installation process, and shows you
how to verify that your WinDriver is properly installed. Thelast section discusses the
uninstall procedure.

4.1 System Requirements

4.1.1 For Windows 98/Me

• An x86 processor

• Any 32-bit development environment supporting C, VB or Delphi

4.1.2 For Windows NT/2000/XP/Server 2003

• An x86 processor

• Any 32-bit development environment supporting C, VB or Delphi

4.1.3 For Windows CE

• An x86 / MIPS / ARM Windows CE 4.x - 5.0 (.Net) target platform

• Windows 2000/XP/Server 2003 host development platform

• Microsoft eMbedded Visual C++ with a corresponding targetSDK or
Microsoft Platform Builder with corresponding BSP (Board Support Package)
for the target platform

42

4.2 WinDriver Installation Process 43

4.1.4 For Linux

• Any 32-bit x86 architecture with a Linux 2.4.x or 2.6.x kernel
or:
An x86 64-bit architecture – AMD64 or Intel EM64T (x86_64) – with a Linux
2.4.x or 2.6.x kernel
or:
Any PowerPC 32-bit architecture with a Linux 2.4.x or 2.6.x kernel

• A GCC compiler

NOTE
The version of the GCC compiler should match the compiler version used for
building the running Linux kernel.

• Any 32-bit or 64-bit development environment (depending on your target
configuration) supporting C for user mode.

• On your development PC:glibc2.3.x

• libstdc++.so.5is required for running GUI WinDriver applications (e.g.
DriverWizard [5] ; Debug Monitor [7.2]).

4.2 WinDriver Installation Process

The WinDriver CD contains all versions of WinDriver for all the different operating
systems. The CD’s root directory contains the Windows 98/Meand 2000/XP/Server
2003 version. This will automatically begin when you insertthe CD into your CD
drive. The other versions of WinDriver are located in subdirectories, i.e.,\Linux,
\Wince and so on.

4.2.1 Windows 98/Me/2000/XP/Server 2003 WinDriver
Installation Instructions

NOTE
You must have administrative privileges in order to installWinDriver on Windows
98, Me, 2000, XP and Server 2003.

1. Insert the WinDriver CD into your CD-ROM drive.
(When installing WinDriver by downloading it from Jungo’s web site instead
of using the WinDriver CD, double click the downloaded WinDriver file
(WDxxx.EXE) in your download directory, and go to Step3).

4.2 WinDriver Installation Process 44

2. Wait a few seconds until the installation program starts automatically. If for
some reason it does not start automatically, double-click the fileWDxxx.EXE
(where xxx is the version number) and click theInstall WinDriver button.

3. Read the license agreement carefully, and clickYes if you accept its terms.

4. Choose the destination location in which to install WinDriver.

5. In theSetup Typescreen, choose one of the following:

• Typical – to install all WinDriver modules (generic WinDriver toolkit +
specific chipset APIs)

• Compact– to install only the generic WinDriver toolkit

• Custom– to choose which modules of WinDriver to install; you may
choose which APIs will be installed

6. After the installer finishes copying the required files, choose whether to view
the Quick Start guides.

7. You may be prompted to reboot your computer.

NOTE
The WinDriver installation defines aWD_BASEDIR environment variable, which
is set to point to the location of your WinDriver directory, as selected during the
installation. This variable is used during the DriverWizard [5] code generation – it
determines the default directory for saving your generatedcode and is used in the
include paths of the generated project/make files.

Therefore, if you decide to change the name and/or location of your WinDriver
directory after the installation, you should also edit the value of theWD_BASEDIR
environment variable and set it to point to the location of your new WinDriver
directory. You can edit the value ofWD_BASEDIR by following these steps:

1. Open theSystem Propertiesdialog:Start | System | Control Panel | System.

2. In theAdvancedtab, click theEnvironment Variables button.

3. In theSystem variablesbox, select theWD_BASEDIR variable and click the
Edit ... button or double-click the mouse on the variable.

4. In theEdit System Variabledialog, replace theVariable Value with the full
path to your new WinDriver directory, then clickOK , and clickOK again from
theSystem Propertiesdialog.

4.2 WinDriver Installation Process 45

The following steps are for registered users only:

In order to register your copy of WinDriver with the license you received from Jungo,
follow the steps below:

1. Activate DriverWizard GUI (Start | Programs | WinDriver | DriverWizard).

2. Select theRegister WinDriver option from theFile menu and insert the
license string you received from Jungo. Click theActivate Licensebutton.

3. To register source code that you developed during the evaluation period, refer
to the documentation ofWDU_Init() [A.3.1].

4.2.2 Windows CE WinDriver Installation Instructions

4.2.2.1 Installing WinDriver CE when Building New CE-basedPlatforms

The following instructions apply to platform developers who build Windows CE
kernel images using Windows CE Platform Builder:

NOTE
We recommend that you read Microsoft’s documentation and understand the
Windows CE and device driver integration procedure before you perform the
installation.

1. Run MicrosoftPlatform Builder and open your platform.

2. SelectOpen Build Release Directoryfrom theBuild menu.

3. Copy the WinDriver CE kernel file
\WinDriver \redist\TARGET_CPU\windrvr6.dll
to the%_FLATRELEASEDIR% subdirectory on your development platform
(should be the current directory in the new command window).

4. Append the contents of the file
\WinDriver \samples\wince_install\PROJECT_WD.REG
to the filePROJECT.REG in the%_FLATRELEASEDIR% subdirectory.

5. Append the contents of the file
\WinDriver \samples\wince_install\PROJECT_WD.BIB
to the filePROJECT.BIB in the%_FLATRELEASEDIR% subdirectory.

This step is only necessary if you want the WinDriver CE kernel file
(windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN).
This would be the case if you were transferring the file to yourtarget platform
using a floppy disk. If you prefer to have the filewindrvr6.dll loaded on
demand via the CESH/PPSH services, you need not carry out this step until
you build a permanent kernel.

4.2 WinDriver Installation Process 46

6. SelectMake Image from theBuild menu and name the new imageNK.BIN .

7. Download your new kernel to the target platform and initialize it either by
selectingDownload/Initialize from theTarget menu or by using a floppy disk.

8. Restart your target CE platform. The WinDriver CE kernel will automatically
load.

9. Compile and run the sample programs to make sure that WinDriver CE is
loaded and is functioning correctly. (See Section4.4, which describes how to
check your installation.)

4.2.2.2 Installing WinDriver CE when Developing Applications for CE
Computers

The following instructions apply to driver developers who do not build the Windows
CE kernel, but only download their drivers, built using Microsoft eMbedded Visual
C++, to a ready-made Windows CE platform:

1. Insert the WinDriver CD into your Windows host CD drive.

2. Exit from the auto installation.

3. Double click theCd_setup.exefile found in the\Wince directory on the CD.
This will copy all needed WinDriver files to your host development platform.

4. Copy the WinDriver CE kernel file
\WinDriver \redist\TARGET_CPU\windrvr6.dll
to the\WINDOWS subdirectory of your target CE computer.

5. Use the Windows CE Remote Registry Editor tool (ceregedt.exe) or the Pocket
Registry Editor (pregedt.exe) on your target CE computer to modify your
registry so that the WinDriver CE kernel is loaded appropriately. The file
\WinDriver \samples\wince_install\PROJECT_WD.REG contains the
appropriate changes to be made.

6. Restart your target CE computer. The WinDriver CE kernel will automatically
load. You will have to do a warm reset rather than just suspend/resume (use the
reset or power button on your target CE computer).

7. Compile and run the sample programs (see Section4.4, which describes how
to check your installation) to make sure that WinDriver CE isloaded and is
functioning correctly.

4.2 WinDriver Installation Process 47

4.2.2.3 Windows CE Installation Note

The WinDriver installation on the host Windows 2000/XP/Server 2003 PC defines
aWD_BASEDIR environment variable, which is set to point to the location of your
WinDriver directory, as selected during the installation.This variable is used during
the DriverWizard [5] code generation – it determines the default directory for saving
your generated code and is used in the include paths of the generated project/make
files.

Therefore, if you decide to change the name and/or location of your host WinDriver
directory after the installation, you should also edit the value of theWD_BASEDIR
environment variable and set it to point to the location of your new WinDriver
directory. You can edit the value ofWD_BASEDIR by following these steps:

1. Open theSystem Propertiesdialog:Start | System | Control Panel | System.

2. In theAdvancedtab, click theEnvironment Variables button.

3. In theSystem variablesbox, select theWD_BASEDIR variable and click the
Edit ... button or double-click the mouse on the variable.

4. In theEdit System Variabledialog, replace theVariable Value with the full
path to your new WinDriver directory, then clickOK , and clickOK again from
theSystem Propertiesdialog.

Note that if you install the WinDriver Windows 98/Me/2000/XP/Server 2003 tool-kit
on the same host PC, the installation will override the valueof theWD_BASEDIR
variable from the Windows CE installation.

4.2.3 Linux WinDriver Installation Instructions

4.2.3.1 Preparing the System for Installation

In Linux, kernel modules must be compiled with the same header files that the
kernel itself was compiled with. Since WinDriver installs the kernel module
windrvr6.o/.ko , it must compile with the header files of the Linux kernel during the
installation process.

Therefore, before you install WinDriver for Linux, verify that the Linux source code
and the fileversions.hare installed on your machine:

Install the Linux kernel source code:

• If you have yet to install Linux, install it, including the kernel source code, by
following the instructions for your Linux distribution.

4.2 WinDriver Installation Process 48

• If Linux is already installed on your machine, check whether the Linux source
code was installed. You can do this by looking for ‘linux’ in the/usr/src
directory. If the source code is not installed, either install it, or reinstall Linux
with the source code, by following the instructions for yourLinux distribution.

Install version.h:

• The fileversion.h is created when you first compile the Linux kernel source
code. Some distributions provide a compiled kernel withoutthe fileversion.h.
Look under/usr/src/linux/include/linux/ to see if you have this file. If you do
not, please follow these steps:

1. Type:
$ make xconfig

2. Save the configuration by choosingSave and Exit.

3. Type:
$ make dep

In order to run GUI WinDriver applications (e.g. DriverWizard [5] ; Debug
Monitor [7.2]) you must also have version 5.0 of thelibstdc++ library –
libstdc++.so.5. If you do not have this file, install it from the relevant RPM in your
Linux distribution (e.g.compat-libstdc++).

Before proceeding with the installation, you must also makesure that you have a
‘linux’ symbolic link. If you do not, please create one by typing:
/usr/src$ ln -s <target kernel>/ linux
For example, for the Linux 2.4 kernel type:
/usr/src$ ln -s linux-2.4/ linux

4.2.3.2 Installation

1. Insert the WinDriver CD into your Linux machine’s CD driveor copy the
downloaded file to your preferred directory.

2. Change directory to your preferred installation directory, for example to your
home directory:
$ cd ~

3. Extract the fileWDxxxLN.tgz (where ‘xxx’ is the version number):
$ tar xvzf /<file location>/WDxxxLN.tgz

For example:

• From a CD:
$ tar xvzf /mnt/cdrom/LINUX/WDxxxLN.tgz

4.2 WinDriver Installation Process 49

• From a downloaded file:
$ tar xvzf /home/username/WDxxxLN.tgz

4. Change directory to your WinDriverredist/ directory (the tar automatically
creates aWinDriver/ directory):
$ cd <path to your WinDriver directory>/redist/

5. Install WinDriver:

(a) <WinDriver directory>/redist/$./configure

NOTE
Theconfigure script creates amakefile based on your specific
running kernel. You may run theconfigure script based on
another kernel source you have installed, by adding the flag
--with-kernel-source=<path> to the configure script. The
<path> is the full path to the kernel source directory, e.g./usr/src/linux.

(b) <WinDriver directory>/redist/$ make

(c) Become super user:
<WinDriver directory>/redist/$ su

(d) Install the driver:
<WinDriver directory>/redist/# make install

6. Create a symbolic link so that you can easily launch the DriverWizard GUI:
$ ln -s <full path to WinDriver>/wizard/wdwizard/
usr/bin/wdwizard

7. Change the read and execute permissions on the filewdwizard so that ordinary
users can access this program.

8. Change the user and group IDs and give read/write permissions to the device
file /dev/windrvr6 depending on how you wish to allow users to access
hardware through the device.

If you are using a Linux 2.6.x kernel that has theudevfile system, change the
permissions by modifying your/etc/udev/permissions.d/50-udev.permissions
file. For example, add the following line to provide read and write permissions:
windrvr6:root:root:0666

Otherwise, use thechmod command, for example:
chmod /dev/windrvr6 666

9. Define a newWD_BASEDIR environment variable and set it to point to the
location of your WinDriver directory, as selected during the installation. This
variable is used in the make and source files of the WinDriver samples and
generated DriverWizard [5] code and is also used to determine the default

4.2 WinDriver Installation Process 50

directory for saving your generated DriverWizard project.If you do not define
this variable you will be instructed to do so when attemptingto build the
sample/generated code using the WinDriver makefiles.
NOTE: If you decide to change the name and/or location of yourWinDriver
directory after the installation, you should also edit the value of the
WD_BASEDIR environment variable and set it to point to the location of your
new WinDriver directory.

10. You can now start using WinDriver to access your hardwareand generate your
driver code!

TIP
To avoid the need to reload the driver module (windrvr6.o/.ko) each time you
restart your system, add the following line to your Linux/etc/rc.d/rc.localfile:
/sbin/modprobe windrvr6

The following steps are for registered users only

In order to register your copy of WinDriver with the license you received from Jungo,
follow the steps below:

1. Activate the DriverWizard GUI:
<path to WinDriver>/wizard/wdwizard

2. Select theRegister WinDriver option from theFile menu and insert the
license string you received from Jungo.

3. Click theActivate Licensebutton.

4. To register source code that you developed during the evaluation period, refer
to the documentation ofWDU_Init() [A.3.1].

Restricting Hardware Access on Linux

CAUTION!
Since/dev/windrvr6 gives direct hardware access to user programs, it may
compromise kernel stability on multi-user Linux systems. Please restrict access to
the DriverWizard and the device file/dev/windrvr6 to trusted users.

For security reasons the WinDriver installation script does not automatically
perform the steps of changing the permissions on/dev/windrvr6 and the
DriverWizard executable (wdwizard).

4.3 Upgrading Your Installation 51

4.3 Upgrading Your Installation

To upgrade to a new version of WinDriver on Windows, follow the steps outlined
in Section4.2.1, which illustrates the process of installing WinDriver forWindows
98/Me/2000/XP/Server 2003. You can either choose to overwrite the existing
installation or install to a separate directory.

After installation, start DriverWizard and enter the new license string, if you have
received one. This completes the upgrade of WinDriver.

To upgrade your source code, pass the new license string as a parameter to
WDU_Init() [A.3.1] (or to WD_License() [A.5.9] when using the oldWD_UsbXXX()
APIs).

The procedure for upgrading your installation on other operating systems is the
same as the one described above. Please check the respectiveinstallation sections
for installation details.

4.4 Checking Your Installation

4.4.1 On Your Windows, Linux and Solaris Machines

1. Start DriverWizard:
On Windows, by choosingPrograms | WinDriver | DriverWizard from
theStart menu, or using the shortcut that is automatically created onyour
Desktop. A third option for activating the DriverWizard on Windows is
by runningwdwizard.exefrom a command prompt under thewizard
sub-directory.
On Linux you can access the wizard application via the file manager under the
wizard sub-directory, or run the wizard application via a shell.

2. Make sure that your WinDriver license is installed (see Section4.2, which
explains how to install WinDriver). If you are an evaluationversion user, you
do not need to install a license.

4.5 Uninstalling WinDriver 52

4.4.2 On Your Windows CE Machine

1. Start DriverWizard on your Windows host machine by choosingPrograms |
WinDriver | DriverWizard from theStart Menu.

2. Make sure that your WinDriver license is installed. If youare an evaluation
version user, you do not need to install a license.

3. Plug your device into the computer, and verify that DriverWizard detects it.

4. Activate Visual C++ for CE.

5. Load one of the WinDriver samples, e.g.,
\WinDriver \samples\speaker\speaker.dsw.

6. Set the target platform to x86em in the Visual C++ WCE configuration toolbar.

7. Compile and run the speaker sample. The Windows host machine’s speaker
should be activated from within the CE emulation environment.

4.5 Uninstalling WinDriver

This section will help you to uninstall either the evaluation or registered version of
WinDriver.

4.5.1 On Windows 98/Me/2000/XP/Server 2003

NOTES

• ForWindows 98/Me, replace references towdreg below withwdreg16.

• ForWindows 2000/XP/Server 2003, you can also use thewdreg_gui.exe
utility instead ofwdreg.exe.

• wdreg.exe, wdreg_gui.exeandwdreg16.exeare found under the
WinDriver \util \ directory (see Chapter10 for details regarding these
utilities).

1. Close any open WinDriver applications, including DriverWizard, the Debug
Monitor (wddebug_gui.exe) and user-specific applications.

2. Uninstall any Plug-and-Play devices (USB/PCI/PCMCIA) that have been
registered with WinDriver via an INF file:

4.5 Uninstalling WinDriver 53

• OnWindows 2000/XP/Server 2003: Uninstall the device using the
wdreg utility:
wdreg -inf <path to the device-INF file>
uninstall

OnWindows 98/Me: Uninstall (Remove) the device manually from the
Device Manager.

• Verify that no INF files that register your device(s) with WinDriver’s
kernel module (windrvr6.sys) are found in the%windir% \inf directory
and/or%windir% \inf\other directory (Windows 98/Me).

3. Uninstall WinDriver:

• On the development PC, on which you installed the WinDriver toolkit:
RunStart | WinDriver | Uninstall , OR run theuninstall.exeutility from
theWinDriver \ installation directory.

The uninstall will stop and unload the WinDriver kernel module
(windrvr6.sys); delete the copy of thewindrvr6.inf file from the
%windir% \inf\ directory (on Windows 2000/XP/Server 2003)
or %windir% \inf \other\ directory (on Windows 98/Me); delete
WinDriver from Windows’Start menu; delete theWinDriver \
installation directory (except for files that you added to this directory);
and delete the short-cut icons to the DriverWizard and DebugMonitor
utilities from the Desktop.

• On a target PC, on which you installed the WinDriver kernel module
(windrvr6.sys), but not the entire WinDriver toolkit:
Use thewdreg utility to stop and unload the driver:
wdreg -inf <path to windrvr6.inf> uninstall

NOTE
When running this command,windrvr6.sys should reside in the same
directory aswindrvr6.inf .

(On the development PC, thewdreg uninstall command is executed for
you by the uninstall utility.)

4.5 Uninstalling WinDriver 54

NOTES

• If there are open handles to WinDriver when attempting to uninstall
it (either using theuninstall utility or by running thewdreg uninstall
command directly) – for example if there is an open WinDriver
application or a connected Plug-and-Play device that has been
registered to work with WinDriver via an INF file (on Windows
98/Me/2000/XP/Server 2003) – an appropriate warning message will
be displayed. The message will provide you with the option toeither
close the open application(s) / uninstall/disconnect the relevant device(s),
andRetry to uninstall the driver; orCancelthe uninstall of the driver,
in which case thewindrvr6.sys kernel driver will not be uninstalled.
This ensures that you do not uninstall the WinDriver kernel module
(windrvr6.sys) as long as it is being used.

• You can check if the WinDriver kernel module is loaded by running the
Debug Monitor utility (WinDriver \util \wddebug_gui.exe). When
the driver is loaded the Debug Monitor log displays driver and OS
information; otherwise it displays a relevant error message.
On the development PC the uninstall command will delete thisutility,
therefore in order to use it after you execute the uninstallation, create a
copy ofwddebug_gui.exebefore performing the uninstall procedure.

4. If windrvr6.sys was successfully unloaded, erase the following files (if they
exist):

• %windir% \system32\drivers\windrvr6.sys

• %windir% \inf\windrvr6.inf (Windows 2000/XP/Server 2003)

• %windir% \inf\Jungowindrvr6.inf (Windows 98/Me)

• %windir% \system32\wd_utils.dll

• %windir% \system32\wdnetlib.dll

5. Reboot the computer.

4.5 Uninstalling WinDriver 55

4.5.2 On Linux

NOTE
You must be logged in as root to perform the uninstall procedure.

1. Verify that the WinDriver module is not being used by another program:

• View a list of modules and the programs using each of them:
/# /sbin/lsmod

• Close any applications that are using the WinDriver module.

• Unload any modules that are using the WinDriver module:
/sbin# rmmod

2. Unload the WinDriver module:
/sbin# rmmod windrvr6

3. If you are not using a Linux 2.6.x kernel that supports theudevfile system,
remove the old device node in the/devdirectory:
/# rm -rf /dev/windrvr6

4. Remove the file.windriver.rc from the/etcdirectory:
/# rm -rf /etc/.windriver.rc

5. Remove the file.windriver.rc from $HOME :
/# rm -rf $HOME/.windriver.rc

6. If you created a symbolic link to DriverWizard, delete thelink using the
command:
/# rm -f /usr/bin/wdwizard

7. Delete the WinDriver installation directory using the command:
/# rm -rf ~/WinDriver

Chapter 5

Using DriverWizard

This chapter describes WinDriver DriverWizard’s hardwarediagnostics and driver
code generation capabilities.
To find out how you can use the WinDriver USB Device DriverWizard to develop
device firmware, refer to Chapter12.

5.1 An Overview

DriverWizard (included in the WinDriver toolkit) is a GUI-based diagnostics and
driver generation tool that allows you to write to and read from the hardware, before
writing a single line of code. The hardware is diagnosed through a Graphical User
Interface—memory ranges are read, registers are toggled and interrupts are checked.
Once the device is operating to your satisfaction, DriverWizard creates the skeletal
driver source code, with functions to access all your hardware resources.

If you are developing a driver for a device that is based on oneof the
enhanced-support USB chipsets (The Cypress EZ-USB family,Microchip
PIC18F4550, Texas Instruments TUSB3410, TUSB3210, TUSB2136, TUSB5052,
Silicon Laboratories C8051F320), we recommend you read Chapter8, which
explains WinDriver’s enhanced support for specific chipsets, before starting your
driver development.

DriverWizard can be used to diagnose your hardware and can generate an INF file
for hardware running under Windows 98/Me/2000/XP/Server 2003. Avoid using
DriverWizard to generate code for a device based on one of thesupported USB
chipsets [8], as DriverWizard generates generic code which will have tobe modified
according to the specific functionality of the device in question. Preferably, use the

56

5.2 DriverWizard Walkthrough 57

complete source code libraries and sample applications (supplied in the package)
tailored to the various USB chipsets.

DriverWizard is an excellent tool for two major phases in your HW/Driver
development:

Hardware diagnostics: After the hardware has been built, attach your device to a
USB port on your machine, and use DriverWizard to verify thatthe hardware is
performing as expected.

Code generation: Once you are ready to build your code, let DriverWizard generate
your driver code for you.

The code generated by DriverWizard is composed of the following elements:

Library functions for accessing each element of your device’s resources (memory
ranges, I/O ranges, registers and interrupts).

A 32-bit diagnostics program in console mode with which you can diagnose your
device. This application utilizes the special library functions described above.
Use this diagnostics program as your skeletal device driver.

A project workspace/solution that you can use to automatically load all of the
project information and files into your development environment.
For Linux, DriverWizard generates the required makefile.

5.2 DriverWizard Walkthrough

To use DriverWizard:

1. Attach your hardware to the computer:
Attach your device to a USB port on your computer.

2. Run DriverWizard and select your device:

(a) Click Start | Programs | WinDriver | DriverWizard or double click the
DriverWizard icon on your desktop (on Windows), or run thewdwizard
utility from the /WinDriver/wizard/ directory.

(b) Click Next in theChoose Your Projectdialog box.

(c) Select yourDevicefrom the list of devices detected by DriverWizard.

NOTE
On Windows 98, if you do not see your USB device in the list, reconnect
it and make sure theNew Hardware Found/Add New Hardware wizard
appears for your device. Do not close the dialog box until youhave generated
an INF for your device using the steps below.

5.2 DriverWizard Walkthrough 58

Figure 5.1: Select Your Device

3. Generate an INF file for DriverWizard:
Whenever developing a driver for a Plug and Play Windows operating system
(i.e., Windows 98/Me/2000/XP/Server 2003) you are required to install an
INF file for your device. This file will register your Plug and Play device to
work with thewindrvr6.sys driver. The file generated by the DriverWizard
in this step should later be distributed to your customers using Windows
98/Me/2000/XP/Server 2003, and installed on their PCs.
The INF file you generate here is also designed to enable DriverWizard to
diagnose your device. As explained earlier, this is required only when using
WinDriver to support a Plug and Play device (such as USB) on a Plug and

5.2 DriverWizard Walkthrough 59

Play system (Windows 98/Me/2000/XP/Server 2003). Additional information
concerning the need for an INF file is explained in Section11.3.1.

If you do not need to generate an INF file (e.g. if you are using
DriverWizard on Linux), skip this step and proceed to the next one.

To generate the INF file with the DriverWizard, follow the steps below:

(a) In theSelect Your Devicescreen, click theGenerate .INF filebutton or
click Next.

(b) DriverWizard will display information detected for your device – Vendor
ID, Product ID, Device Class, manufacturer name and device name – and
allow you to modify this information.

Figure 5.2: DriverWizard INF File Information

5.2 DriverWizard Walkthrough 60

(c) For multiple-interface USB devices, you can select to generate an INF file
either for the composite device or for a specific interface.

• When selecting to generate an INF file for a specific interface of a
multi-interface USB device the INF information dialog willindicate
for which interface the INF file is generated.

Figure 5.3: DriverWizard Multi-Interface Device INF File Information – Specific
Interface

• When selecting to generate an INF file for a composite deviceof a
multi-interface USB device, the INF information dialog provides
you with the option to either generate an INF file for the root device
itself, or generate an INF file for specific interfaces, whichyou can
select from the dialog.

5.2 DriverWizard Walkthrough 61

Figure 5.4: DriverWizard Multi-Interface Device INF File Information – Composite
Device

(d) When you are done, clickNext and choose the directory in which you
wish to store the generated INF file. DriverWizard will then automatically
generate the INF file for you.

OnWindows 2000/XP/Server 2003you can choose to automatically
install the INF file from the DriverWizard by checking theAutomatically
Install the INF file option in the DriverWizard’s INF generation dialog
(this option is checked by default for USB devices).
OnWindows 98/Meyou must install the INF file manually, using
WindowsAdd New Hardware Wizard or Upgrade Device Driver

5.2 DriverWizard Walkthrough 62

Wizard , as explained in Section11.3.
If the automatic INF file installation on Windows 2000/XP/Server 2003
fails, DriverWizard will notify you and provide manual installation
instructions for this OS as well.

(e) When the INF file installation completes, select and openyour device
from the list in theSelect Your Devicescreen.

4. Uninstall the INF file of your device:
You can use theUninstall option to uninstall the INF file of your device. Once
you uninstall the INF file, the device will no longer be registered to work with
thewindrvr6.sys, and the INF file will be deleted from the Windows root
directory.If you do not need to uninstall an INF file, skip this step and
proceed to the next one.

(a) In theSelect Your Devicescreen, click theUninstall .INF file button.

(b) Select the INF file to be removed.

5. Select the desired alternate setting:
The DriverWizard detects all the device’s supported alternate settings and
displays them. Select the desiredalternate settingfrom the displayed list.

Figure 5.5: Select Device Interface

5.2 DriverWizard Walkthrough 63

DriverWizard will display the pipes information for the selected alternate
setting.

NOTE
For USB devices with only one alternate setting configured, DriverWizard
automatically selects the detected alternate setting and therefore theSelect
Device Interfacedialog will not be displayed.

Figure 5.6: Test Your Device

6. Diagnose your device:
Before writing your device driver, it is important to make sure your hardware is
working as expected. Use DriverWizard to diagnose your hardware. All of your
activity will be logged in the DriverWizard log so that you may later analyze
your tests:

(a) Test your USB device’s pipes:
DriverWizard shows the pipe detected according to the selected
configuration\interface\alternate setting. In order to perform USB data
transfers follow the steps given below:

i. Select the desired pipe.

ii. For a control pipe (a bidirectional pipe), clickRead/Write to Pipe.
A new dialog will appear, allowing you to select a standard USB
request or define a custom request, as demonstrated in Figure5.7.

5.2 DriverWizard Walkthrough 64

Figure 5.7: USB Requests List

When you select one of the available standard USB requests, the
setup packet information for the selected request is automatically
filled and the request description is displayed in theRequest
Description box.

For a custom request, you are required to enter the setup packet
information and write data (if exists) yourself. The size ofthe setup
packet should be eight bytes and it should be defined using little
endian byte ordering. The setup packet information should conform
to the USB specification parameters (bmRequestType, bRequest,
wValue, wIndex, wLength).

5.2 DriverWizard Walkthrough 65

NOTE
More detailed information on the standard USB requests, on how to
implement the control transfer and how to send setup packetscan
be found in Chapter9.

iii. For an input pipe (moves data from device to host) clickListen to
Pipe. To successfully accomplish this operation with devices other
than HID, you need to first verify that the device sends data tothe
host. If no data is sent after listening for a short period of time,
DriverWizard will notify you that theTransfer Failed.

iv. To stop reading, clickStop Listen to Pipe.

v. For an output pipe (moves data from host to device), clickWrite to
Pipe. A new dialog box will appear (see Figure5.8), asking you to
enter the data to write. The DriverWizard log will contain the result
of the operation.

Figure 5.8: Write to Pipe

7. Generate the skeletal driver code:

(a) SelectGenerate Codefrom theBuild menu, or clickNext in theDefine
and Test Resources for Your Devicedialog box.

(b) In theSelect Code Generation Optionsdialog box that will appear,
choose the code language and development environment(s) for the
generated code and selectNext to generate the code.

5.2 DriverWizard Walkthrough 66

Figure 5.9: Code Generation Options

(c) Save your project (if required) and clickOK to open your development
environment with the generated driver.

(d) Close DriverWizard

8. Compile and run the generated code:

• Use this code as a starting point for your device driver. Modify where
needed to perform your driver’s specific functionality.

• The source code DriverWizard creates can be compiled with any
32-bit compiler, and will run on all supported platforms (Windows
98/Me/2000/XP/Server2003/CE.NET and Linux) without modification.

5.3 DriverWizard Notes 67

5.3 DriverWizard Notes

5.3.1 Logging WinDriver API Calls

You have the option to log all the WinDriver API calls using the DriverWizard, with
the API calls input and output parameters. You can select this option by selecting
theLog API calls option from theToolsmenu or by clicking on theLog API calls
toolbar icon in the DriverWizard’s opening window.

5.3.2 DriverWizard Logger

The wizard logger is the empty window that opens along with theDevice Resources
dialog box when you open a new project. The logger keeps trackof all of the input
and output during the diagnostics stage, so that you may analyze your device’s
physical performance at a later time. You can save the log forfuture reference. When
saving the project, your log is saved as well. Each log is associated with one project.

5.3.3 Automatic Code Generation

After you have finished diagnosing your device and have ensured that it runs
according to your specifications, you are ready to write yourdriver.

5.3.3.1 Generating the Code

ChooseGenerate Codefrom theBuild menu. DriverWizard will generate the source
code for your driver, and place it along with the project file (xxx.wdp, where "xxx" is
the project name). The files are saved in a directory DriverWizard creates for every
development environment and operating system selected in theGenerate Code
dialog box.

5.3.3.2 Generated USB Code

In the source code directory you now have a newxxx_diag.csource file (wherexxx
is the name you selected for your DriverWizard project). This file implements a
diagnostic USB application, which demonstrates how to use WinDriver’s USB API
to locate and communicate with your USB device(s), including detection of Plug and
Play events (device insertion/removal, etc.), performingread/write transfers on the
pipes, resetting the pipes and changing the device’s activealternate setting.
The generated application supports handling of multiple identical USB devices.

5.3 DriverWizard Notes 68

5.3.3.3 Compiling the Generated Code

For Windows 98, Me, 2000, XP, CE and Server 2003 (Using MSDEV):

1. For Windows platforms, DriverWizard generates the project files (for MSDEV
5, 6 and 7 (.Net), Borland C/C++ Builder, Visual Basic and Delphi). After
code generation, the chosen IDE (Integrated Development Environment) will
be launched automatically. You can then immediately compile and run the
generated code.

5.3.3.4 Visual Basic or Delphi Code Generation

This will generate Visual Basic or Delphi project and files, similar to the MSDEV
projects described in above [5.3.3.2].

5.3.3.5 For Linux:

1. DriverWizard creates a makefile for your project.

2. Compile the source code using the makefile generated by DriverWizard.

3. Use any compilation environment to build your code, preferably GCC.

5.3.3.6 For Other OSs or IDEs:

1. Create a new project in your IDE (Integrated development environment).

2. Include the source files created by DriverWizard in your project.

3. Compile and run the project.

4. The project contains a working example of the custom functions that
DriverWizard created for you. Use this example to create thefunctionality you
want.

Chapter 6

Developing a Driver

This chapter takes you through the WinDriver driver development cycle.

NOTE
If your device is based on one of the chipsets for which WinDriver provides
enhanced support (The Cypress EZ-USB family, Microchip PIC18F4550, Texas
Instruments TUSB3410, TUSB3210, TUSB2136, TUSB5052, Silicon Laboratories
C8051F320), read the following overview and then skip straight to Chapter8.

6.1 Using the DriverWizard to Build a Device Driver

• Use DriverWizard to diagnose your device: View the device’s configuration
information, transfer data on the device’s pipes, send standard requests to the
control pipe and reset the pipes. Verify that your device operates as expected.

• Use DriverWizard to generate skeletal code for your devicein C, Delphi or
Visual Basic. Refer to Chapter5 for details about DriverWizard.

• If you are using one of the specific chipsets for which WinDriver offers
enhanced support (The Cypress EZ-USB family, Microchip PIC18F4550,
Texas Instruments TUSB3410, TUSB3210, TUSB2136, TUSB5052, Silicon
Laboratories C8051F320), we recommend that you use the specific sample
code provided for your chip as your skeletal driver code. Formore details
regarding WinDriver’s enhanced support for specific chipsets, refer to
Chapter8.

• Use any 32-bit compiler (such as MSDEV/Visual C/C++, Borland Delphi,
Borland C++, Visual Basic, GCC) to compile the skeletal driver you need.

69

6.2 Writing the Device Driver Without the DriverWizard 70

• For Linux, use any compilation environment, preferably GCC to build your
code.

• That is all you need do to create your user-mode driver.

Please see AppendixA for a detailed description of WinDriver’s USB APIs.
To learn how to implement control transfers with WinDriver,refer to Chapter9 of the
manual.

6.2 Writing the Device Driver Without the
DriverWizard

There may be times when you select to write your driver directly, without using
DriverWizard. In either case, proceed according to the steps outlined below, or
choose a sample that most closely resembles what your drivershould do, and modify
it.

6.2.1 Include the Required WinDriver Files

1. Include the relevant WinDriver header files in your driverproject (all header
files are found under the/WinDriver/include directory).
All WinDriver projects require thewindrvr.h header file.
When using theWDU_xxx WinDriver USB API [A.1], include thewdu_lib.h
header file (this file already includeswindrvr.h).
Include any other header file that provides APIs that you wishto use from your
code (e.g. files from the/WinDriver/samples/shared/directory, which provide
convenient diagnostics functions.)

2. Include the relevant header files from your source code: For example, to use the
USB API from thewdu_lib.h header file, add the following line to the code:

#include "wdu_lib.h"

3. Link your code with thewd_utils DLL/shared object from theWinDriver/lib/
directory (wd_utils.lib / wd_utils_borland.lib (Borland C++ Builder) – for
Windows 98/Me/2000/XP/Server 2003 and Windows CE ;libwd_utils.so –
for Linux), or otherwise include the relevant WinDriver source files from the
WinDriver/src/ directory.

When using thewd_utils DLL/shared object, you will need to distribute
WinDriver/redist/wd_utils.dll (Windows 98/Me/2000/XP/Server 2003 and
Windows CE) /WinDriver/lib/libwd_utils.so (Linux) with your driver – see
Chapter11.

6.3 Developing Your Driver on Windows CE Platforms 71

4. Add any other WinDriver source files that implement API that you which to
use in your code (e.g. files from the/WinDriver/samples/shared/directory.)

6.2.2 Write Your Code

1. CallWDU_Init() [A.3.1] at the beginning of your program to initialize
WinDriver for your USB device and wait for the device-attachcallback. The
relevant device information will be provided in the attach callback.

2. Once the attach callback is received, you can start using one of the
WDU_Transfer() [A.3.7] functions family to send and receive data.

3. To finish, callWDU_Uninit() [A.3.6] to un-register from the device.

6.3 Developing Your Driver on Windows CE
Platforms

When developing your driver on Windows CE platforms, you must first register
your device to work with WinDriver. This is similar to installing an INF file for your
device when developing a driver for a Plug and Play Windows operating system (i.e.,
Windows 98, Me, 2000, XP or Server 2003). Refer to Section11.3for understanding
the INF file.

In order to register your USB device to work with WinDriver, you can perform one of
two of the following:

• Call WDU_Init() [A.3.1] before the device is plugged into the CE system.

OR

• You can add the following entry to the registry (can be addedto your
platform.reg file):

[HKEY_LOCAL_MACHINE\DRIVERS\USB\LoadClients\<ID>\Default\Default\WDR]:
"DLL"="windrvr6.dll"

<ID> is comprised of your vendor ID and product ID, separated by an
underscore character:<MY VENDOR ID>_<MY PRODUCT ID>.

Insert your device specific information to this key. The key registers
your device with Windows CE Plug-and-Play (USB driver) and enables
identification of the device during boot. You can refer to theregistry after
callingWDU_Init() and then this key will exist. From that moment the device
will be recognized by CE. If your device has a persistent registry, this addition
will remain until you remove it.

6.4 Developing in Visual Basic and Delphi 72

For more information, refer to MSDN Library, underUSB Driver Registry
Settingssection.

6.4 Developing in Visual Basic and Delphi

The entire WinDriver API can be used when developing driversin Visual Basic and
Delphi.

6.4.1 Using DriverWizard

DriverWizard can be used to diagnose your hardware and verify that it is working
properly before you start coding. You can then proceed to automatically generate
source code with the wizard in a variety of languages, including Delphi and Visual
Basic. For more information, refer to Chapter5 and Section6.4.3below.

6.4.2 Samples

Samples for drivers written using the WinDriver API in Delphi or Visual Basic can be
found in:

1. \WinDriver \delphi\samples

2. \WinDriver \vb\samples

Use these samples as a starting point for your own driver.

6.4.3 Creating your Driver

The method of development in Visual Basic is the same as the method in C using the
automatic code generation feature of DriverWizard.

Your work process should be as follows:

• Use DriverWizard to easily diagnose your hardware.

• Verify that it is working properly.

• Generate your driver code.

• Integrate the driver into your application.

• You may find it useful to use the WinDriver samples to get to know the
WinDriver API and as your skeletal driver code.

Chapter 7

Debugging Drivers

The following sections describe how to debug your hardware access application
code.

7.1 User-Mode Debugging

• Since WinDriver is accessed from user mode, we recommend that you first
debug your code using your standard debugging software.

7.2 Debug Monitor

Debug Monitor is a powerful graphical- and console-mode tool for monitoring all
activities handled by the
WinDriver kernel (windrvr6.sys/windrvr6.dll /windrvr6.o/.ko). You can use this
tool to monitor how each command sent to the kernel is executed.

Debug Monitor has two modes: graphical mode and console mode. The following
sections explain how to operate Debug Monitor in both modes.

7.2.1 Using Debug Monitor in Graphical Mode

Applicable for Windows 98, Me, 2000, XP, Server 2003 and Linux. You may also
use Debug Monitor to debug your Windows CE driver code running on CE emulation
on a Windows 2000/XP/Server 2003 platform. For Windows CE targets use Debug
Monitor in console mode.

73

7.2 Debug Monitor 74

1. Run the Debug Monitor using one the following three ways:

• The Debug Monitor is available aswddebug_guiin the
\WinDriver \util \ directory.

• The Debug Monitor can be launched from theToolsmenu in
DriverWizard.

• In Windows, useStart | Programs | WinDriver | Debug Monitor to start
Debug Monitor.

Figure 7.1: Start Debug Monitor

7.2 Debug Monitor 75

2. Activate and set the trace level using either theView | Debug Optionsmenu or
theChange Statusbutton.

Figure 7.2: Set Trace Options

• Status– Set trace on or off.

• Section– Choose what part of the WinDriver API you would like to
monitor. USB developers should select theUSBcheck box.

TIP
Choose carefully those sections that you would like to monitor.
Checking more options than necessary could result in an overflow of
information, making it harder for you to locate your problem.

• Level – Choose the level of messages you want to see for the resources
defined.

Error is the lowest level of trace, resulting in minimum output to the
screen.

Trace is the highest level of tracing, displaying every operationthe
WinDriver kernel performs.

• Select theSend WinDriver Debug Messages To Kernel Debugger
check box if you want debugging messages to be sent to an external
kernel debugger as well.

7.2 Debug Monitor 76

This option enables you to send to an external kernel debugger all the
debug information that is received from WinDriver’s kernelmodule
(which callsWD_DebugAdd() [A.5.6] in your code).
Now run your application, reproduce the problem, and view the debug
information in the external kernel debugger’s log.
Windows users can use Microsoft’s WinDbg tool, for example,which
is freely supplied with Microsoft’s Driver Development Kit(DDK) and
from Microsoft’s web site (Microsoft Debugging Tools page).

3. Once you have defined what you want to trace and on what level, click OK to
close theModify Status window.

4. Activate your program (step-by-step or in one run).

5. Watch the monitor screen for errors or any unexpected messages.

7.2.2 Using Debug Monitor in Console Mode

This tool is available in all supported operating systems. To use it, run:
\WinDriver\util> wddebug
with the appropriate switches.
For a list of switches that can be used with Debug Monitor in console mode, type:
\> wddebug
To see activity logged by the Debug Monitor, type:
\> wddebug dump.

7.2.2.1 Using Debug Monitor on Windows CE

On Windows CE, Debug Monitor is only available in console mode. You first need
to start a Windows CE command window (CMD.EXE) on the Windows CE target
computer and then run the programWDDEBUG.EXE inside this shell.

Chapter 8

Enhanced Support for Specific
Chipsets

8.1 Overview

In addition to the standard WinDriver API and the DriverWizard code generation
capabilities described in this manual, which support development of drivers for any
USB device, WinDriver offers enhanced support for specific chipsets. The enhanced
support includes custom API and sample diagnostics code, which are designed
specifically for these chipsets.

WinDriver’s enhanced support is currently available for the following chipsets: The
Cypress EZ-USB family, Microchip PIC18F4550, Texas Instruments TUSB3410,
TUSB3210, TUSB2136, TUSB5052, Silicon Laboratories C8051F320.

NOTE
The WinDriver USB Device toolkit’s enhanced support for development of
USB device firmware for the Cypress EZ-USB FX2LP CY7C68013A,Silicon
Laboratories C8051F320 and Microchip PIC18F4550 chipsets, is discussed
separately in Chapter12.

77

8.2 Developing a Driver Using the Enhanced Chipset Support 78

8.2 Developing a Driver Using the Enhanced Chipset
Support

When developing a driver for a device based on one of the enhanced-support chipsets
[8.1], you can use WinDriver’s chipset-set specific support by following these steps:

1. Locate the sample diagnostics program for your device under the
/WinDriver/chip_vendor/chip_name\ directory.

Most of the sample diagnostics program names are derived from the sample’s
main purpose (e.g.download_samplefor a firmware download sample)
and their source code can be found directly under the specificchip_name/
directory.
The program’s executable is found under a sub-directory foryour target
operating system (e.g.WIN32\ for Windows.)

2. Run the custom diagnostics program to diagnose your device and familiarize
yourself with the options provided by the sample program.

3. Use the source code of the diagnostics program as your skeletal device
driver and modify the code, as needed, to suit your specific development
needs. When modifying the code, you can utilize the custom WinDriver
API for your specific chip. The custom API is typically found under the
/WinDriver/chip_vendor/lib/ directory.

Chapter 9

USB Control Transfers

9.1 USB Control Transfers Overview

9.1.1 USB Data Exchange

The USB standard supports two kinds of data exchange betweenthe host and the
device:

Functional data exchange is used to move data to and from the device. There are
three types of data transfers: Bulk, Interrupt, and Isochronous transfers.

Control exchange is used to configure a device when it is first attached and can also
be used for other device-specific purposes, including control of other pipes on
the device. Control exchange takes place via a control pipe,mainly the default
Pipe 0, which always exists.

79

9.1 USB Control Transfers Overview 80

Figure 9.1: USB Data Exchange

9.1.2 More About the Control Transfer

The control transaction always begins with a setup stage. The setup stage is
followed by zero or more control data transactions (data stage) that carry the specific
information for the requested operation, and finally a status transaction completes the
control transfer by returning the status to the host.

During the setup stage, an 8-byte setup packet is used to transmit information to
the control endpoint of the device. The setup packet’s format is defined by the USB
specification.

A control transfer can be a read transaction or a write transaction. In a read
transaction the setup packet indicates the characteristics and amount of data to be
read from the device. In a write transaction the setup packetcontains the command
sent (written) to the device and the number of control data bytes that will be sent to
the device in the data stage.

Refer to Figure9.2(taken from the USB specification) for a sequence of read and
write transactions.
‘(in)’ indicates data flow from the device to the host.
‘(out)’ indicates data flow from the host to the device.

9.1 USB Control Transfers Overview 81

Figure 9.2: USB Read and Write

9.1.3 The Setup Packet

The setup packets (combined with the control data stage and the status stage) are used
to configure and send commands to the device. Chapter 9 of the USB specification
defines standard device requests. USB requests such as theseare sent from the host
to the device, using setup packets. The USB device is required to respond properly to
these requests. In addition, each vendor may define device-specific setup packets to
perform device-specific operations. The standard setup packets (standard USB device
requests) are detailed below. The vendor’s device-specificsetup packets are detailed
in the vendor’s data book for each USB device.

9.1 USB Control Transfers Overview 82

9.1.4 USB Setup Packet Format

The table below shows the format of the USB setup packet. For more information,
please refer to the USB specification athttp://www.usb.org.

Byte Field Description
0 bmRequest Type Bit 7: Request direction (0=Host to device – Out, 1=Device tohost - In).

Bits 5-6: Request type (0=standard, 1=class, 2=vendor, 3=reserved).
Bits 0-4: Recipient (0=device, 1=interface, 2=endpoint,3=other).

1 bRequest The actual request (see the Standard Device Request Codes table [9.1.5]).
2 wValueL A word-size value that varies according to the request. For example, in

theCLEAR_FEATURE request the value is used to select the feature, in the
GET_DESCRIPTOR request the value indicates the descriptor type and in the
SET_ADDRESS request the value contains the device address.

3 wValueH The upper byte of theValue word.
4 wIndexL A word-size value that varies according to the request. The index is

generally used to specify an endpoint or an interface.
5 wIndexH The upper byte of theIndex word.
6 wLengthL A word-size value that indicates the number of bytes to be transferred if

there is a data stage.
7 wLengthH The upper byte of theLength word.

http://www.usb.org

9.1 USB Control Transfers Overview 83

9.1.5 Standard Device Request Codes

The table below shows the standard device request codes.

bRequest Value
GET_STATUS 0
CLEAR_FEATURE 1
Reserved for future use 2
SET_FEATURE 3
Reserved for future use 4
SET_ADDRESS 5
GET_DESCRIPTOR 6
SET_DESCRIPTOR 7
GET_CONFIGURATION 8
SET_CONFIGURATION 9
GET_INTERFACE 10
SET_INTERFACE 11
SYNCH_FRAME 12

9.1.6 Setup Packet Example

This example of a standard USB device request illustrates the setup packet format and
its fields. The setup packet is in Hex format.

The following setup packet is for a control read transactionthat retrieves the device
descriptor from the USB device. The device descriptor includes information such as
USB standard revision, vendor ID and product ID.

GET_DESCRIPTOR (Device) Setup Packet

80 06 00 01 00 00 12 00

9.1 USB Control Transfers Overview 84

Setup packet meaning:

Byte Field Value Description
0 BmRequest Type 80 8h=1000b

bit 7=1 -> direction of data is from device
to host.

0h=0000b

bits 0..1=00 -> the recipient is the device.
1 bRequest 06 The Request is GET_DESCRIPTOR.
2 wValueL 00
3 wValueH 01 The descriptor type is device (values

defined in USB spec).
4 wIndexL 00 The index is not relevant in this setup

packet since there is only one device
descriptor.

5 wIndexH 00
6 wLengthL 12 Length of the data to be retrieved: 18(12h)

bytes (this is the length of the device
descriptor).

7 wLengthH 00

In response, the device sends the device descriptor data. A device descriptor of
Cypress EZ-USB Integrated Circuit is provided as an example:

Byte No. 0 1 2 3 4 5 6 7 8 9 10
Content 12 01 00 01 ff ff ff 40 47 05 80

Byte No. 11 12 13 14 15 16 17
Content 00 01 00 00 00 00 01

As defined in the USB specification, byte 0 indicates the length of the descriptor,
bytes 2-3 contain the USB specification release number, byte7 is the maximum
packet size for endpoint 00, bytes 8-9 are the Vendor ID, bytes 10-11 are the Product
ID, etc.

9.2 Performing Control Transfers with WinDriver 85

9.2 Performing Control Transfers with WinDriver

WinDriver allows you to easily send and receive control transfers on Pipe00, while
using DriverWizard to test your device. You can either use the API generated by
DriverWizard [5] for your hardware, or directly call the WinDriverWDU_Transfer()
[A.3.7] function from within your application.

9.2.1 Control Transfers with DriverWizard

1. ChoosePipe00and clickRead/Write To Pipe.

2. You can either enter a custom setup packet, or use a standard USB request.

• For a custom request: enter the required setup packet fields. For a write
transaction that includes a data stage, enter the data in theWrite to pipe
data (Hex)field. Click Read From Pipeor Write To Pipe according to
the required transaction (see Figure9.3).

Figure 9.3: Custom Request

9.2 Performing Control Transfers with WinDriver 86

• For a standard USB request: select a USB request from the requests
list, which includes requests such asGET_DESCRIPTOR
CONFIGURATION, GET_DESCRIPTOR DEVICE, GET_STATUS
DEVICE , etc. (see Figure9.4). The description of the selected request
will be displayed in theRequest Descriptionbox on the right hand of the
dialog window.

Figure 9.4: Request List

3. The results of the transfer, such as the data that was read or a relevant error, are
displayed in Driver Wizard’sLog window.
Figure9.5below shows the contents of theLog window after a successful
GET_DESCRIPTOR DEVICE request.

Figure 9.5: USB Request Log

9.2 Performing Control Transfers with WinDriver 87

9.2.2 Control Transfers with WinDriver API

To perform a read or write transaction on the control pipe, you can either use the
API generated by DriverWizard for your hardware, or directly call the WinDriver
WDU_Transfer() [A.3.7] function from within your application.

Fill the setup packet in theBYTE SetupPacket[8] array and call these functions to
send setup packets on Pipe00 and to retrieve control and status data from the device.

• The following sample demonstrates how to fill theSetupPacket[8] variable
with aGET_DESCRIPTOR setup packet:

setupPacket[0] = 0x80; /* BmRequstType */
setupPacket[1] = 0x6; /* bRequest [0x6 == GET_DESCRIPTOR] */
setupPacket[2] = 0; /* wValue */
setupPacket[3] = 0x1; /* wValue [Descriptor Type: 0x1 == DEVICE] */
setupPacket[4] = 0; /* wIndex */
setupPacket[5] = 0; /* wIndex */
setupPacket[6] = 0x12; /* wLength [Size for the returned buffer] */
setupPacket[7] = 0; /* wLength */

• The following sample demonstrates how to send a setup packet to the control
pipe (a GET instruction; the device will return the information requested in the
pBuffer variable):

WDU_TransferDefaultPipe(hDev, TRUE, 0, pBuffer, dwSize,
bytes_transferred, &setupPacket[0], 10000);

• The following sample demonstrates how to send a setup packet to the control
pipe (a SET instruction):

WDU_TransferDefaultPipe(hDev, FALSE, 0, NULL, 0,
bytes_transferred, &setupPacket[0], 10000);

For further information regardingWDU_TransferDefaultPipe(), refer to
SectionA.3.9. For further information regardingWDU_Transfer(), refer to
SectionA.3.7.

Chapter 10

Dynamically Loading Your
Driver

10.1 Why Do You Need a Dynamically Loadable
Driver?

When adding a new driver, you may be required to reboot the system in order for it
to load your new driver into the system. WinDriver is a dynamically loadable driver,
which enables your customers to start your application immediately after installing it,
without needing to reboot. You can dynamically load your driver whether you have
created a user-mode or a kernel-mode driver.

NOTE
In order to successfully UNLOAD your driver, make sure thereare no open handles
to the driver from WinDriver applications or from connecteddevices that were
registered with WinDriver using an INF file.

10.2 Windows 2000/XP/Server 2003 and 98/Me

10.2.1 Windows Driver Types

Windows drivers can be implemented as either of the following types:

• WDM (Windows Driver Model) drivers: Files with the extension .syson
Win98/Me/2000/XP/Server 2003 (e.g.windrvr6.sys).

88

10.2 Windows 2000/XP/Server 2003 and 98/Me 89

WDM drivers are installed via the installation of an INF file (see below).

• Non-WDM / Legacy drivers: These include drivers for non-Plug and Play
Windows operating systems (Windows NT 4.0) and files with theextension
.vxd on Windows 98/Me.

The WinDriver USB Windows kernel module –windrvr6.sys – is a full WDM
drivers, which can be installed using thewdreg utility, as explained in the following
sections.

10.2.2 The WDREG Utility

WinDriver provides a utility for dynamically loading and unloading your driver,
which replaces the slower manual process using Windows’ Device Manager (which
can still be used for the device INF). ForWindows 2000/XP/Server 2003, this utility
is provided in two forms:wdreg andwdreg_gui. Both utilities can be found under
the\WinDriver \util directory, can be run from the command line, and provide the
same functionality. The difference is thatwdreg_guidisplays installation messages
graphically, whilewdreg displays them in console mode.
ForWindows 98/Me thewdreg16utility is provided.
This section describes the usage ofwdreg/ wdreg_gui/wdreg16on Windows
operating systems.

NOTE
The explanations and examples below refer towdreg, but forWindows
2000/XP/Server 2003you can replace any references towdreg with wdreg_gui.
ForWindows 98/Me, replace the references towdreg with wdreg16.

This section explains how to use thewdreg utility to install the WDMwindrvr6.sys
driver on Windows 98/Me/2000/XP/Server 2003, or to installINF files that register
USB devices to work with this driver on Windows 2000/XP/Server 2003.

NOTE
OnWindows 98/Meyou can only usewdreg16to install thewindrvr6.sys WDM
driver, by installingwindrvr6.inf but youcannotusewdreg16to install any other
INF files.

Usage:Thewdreg utility can be used in two ways as demonstrated here:

1. wdreg -inf <filename> [-silent] [-log <logfile>]
[install | uninstall | enable | disable]

2. wdreg -rescan <enumerator> [-silent] [-log <logfile>]

10.2 Windows 2000/XP/Server 2003 and 98/Me 90

• OPTIONS
wdreg supports several basic OPTIONS from which you can choose one,
some, or none:

-inf – The path of the INF file to be dynamically installed.

-rescan <enumerator> – Rescan enumerator (ROOT, USB, etc.) for
hardware changes. Only one enumerator can be specified.

-silent – Suppresses the display of messages of any kind. (Optional)

-log <logfile> – Logs all messages to the specified file. (Optional)

• ACTIONS
wdreg supports several basic ACTIONS:

install – Installs the INF file, copies the relevant files to their target locations,
dynamically loads the driver specified in the INF file name by replacing
the older version (if needed).

uninstall – Removes your driver from the registry so that it will not load on
next boot.

enable – Enables your driver.

disable – Disables your driver, i.e. dynamically unloads it, but thedriver will
reload after system boot.

NOTE
In order to successfully disable/uninstall WinDriver, youmust first close
any open handles to thewindrvr6.sys service. This includes closing
any open WinDriver applications and uninstalling (from theDevice
Manager or usingwdreg) any USB devices that are registered to work
with thewindrvr6.sys service (or otherwise removing such devices).
wdreg will display a relevant warning message if you attempt to stop
thewindrvr6.sys when there are still open handles to the service, and
will enable you to select whether to close all open handles and Retry, or
Cancel and reboot the PC to complete the command’s operation.

10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Files

When using WinDriver, you develop a user-mode application that controls and
accesses your hardware by using the generic driverwindrvr6.sys (WinDriver’s
kernel module). Therefore, you might want to dynamically load and unload the driver
windrvr6.sys – which you can do usingwdreg.

10.3 Linux 91

In addition, in WDM-compatible operating systems, you alsoneed to dynamically
load INF files for your Plug and Play devices.wdreg enables you to do so
automatically on Windows 2000, XP and Server 2003.
This section includes example implementations that are based on the detailed
description ofwdreg contained in the previous section.

Example implementations:

• To startwindrvr6.sys on Windows 98/Me/2000/XP/Server 2003:
\> wdreg -inf [path to windrvr6.inf] install
which loads thewindrvr6.inf file and starts thewindrvr6.sys service.

• To load an INF file nameddevice.inf, located under thec:\tmp directory, on
Windows 2000/XP/Server 2003:
\> wdreg -inf c:\tmp\device.inf install

To unload the driver/INF file, use the same commands, but simply replaceinstall in
the samples above withuninstall.

10.3 Linux

• To dynamically load WinDriver on Linux, execute:
/sbin/modprobe windrvr6

• To dynamically unload WinDriver, execute:
/sbin/rmmod windrvr6

• In addition, you can use thewdreg script under Linux to install (load)
windrvr6.o/.ko .
Example usage: To load your driver, execute:
\> wdreg <driver name.extension>

Chapter 11

Distributing Your Driver

Read this chapter in the final stages of driver development. It will guide you in
preparing your driver for distribution.

NOTE
ForWindows 2000/XP/Server 2003, all references towdreg in this chapter can
be replaced withwdreg_gui, which offers the same functionality but displays GUI
messages instead of console-mode messages.
ForWindows 98/Me, all references towdreg should be replaced withwdreg16.
For more information regarding thewdreg utility, see Chapter10.

11.1 Getting a Valid License for WinDriver

To purchase a WinDriver license, complete the order form, found under
\WinDriver \docs\order.txt , and fax or email it to Jungo. Complete details are
included on the order form. Alternatively, you can order WinDriver on-line. Visit
http://www.jungo.com for more details.

In order to install the registered version of WinDriver and to activate driver code that
you have developed during the evaluation period on the development machine, please
follow the installation instructions found in Section4.2above.

92

http://www.jungo.com

11.2 Windows 98/Me and Windows 2000/XP/Server 2003 93

11.2 Windows 98/Me and Windows 2000/XP/Server
2003

Distributing the driver you created is a multi-step process. First, create a distribution
package that includes all the files required for the installation of the driver on the
target computer. Second, install the driver on the target machine. This involves
installingwindrvr6.sys andwindrvr6.inf , and installing the specific INF file for your
device. Finally, you need to install and execute the hardware control application that
you developed with WinDriver. These steps can be performed usingwdreg utility.

11.2.1 Preparing the Distribution Package

Your distribution package should include the following files:

• Your hardware control application/DLL.

• windrvr6.sys (get this file from the WinDriver package under the
\WinDriver \redist directory).

• windrvr6.inf (get this file from the WinDriver package under the
\WinDriver \redist directory).

• wd_utils.dll (get this file from the WinDriver package under the
\WinDriver \redist directory).

• An INF file for your device.
You can generate this file with the DriverWizard, as explained in Section5.2.

11.2.2 Installing Your Driver on the Target Computer

NOTE
The user must have administrative privileges on the target computer in order to
install your driver.

Follow the instructions below in the order specified to properly install your driver on
the target computer:

11.2 Windows 98/Me and Windows 2000/XP/Server 2003 94

• Preliminary Steps:

– To avoid reboot, before attempting to install the driver make sure that
there are no open handles to thewindrvr6.sys service. This includes
verifying that there are no open applications that use this service and
that there are no connected Plug-and-Play devices that are registered to
work with windrvr6.sys – i.e., no INF files that point to this driver are
currently installed for any of the Plug-and-Play devices connected to the
PC, or the INF file is installed but the device is disabled. This may be
relevant, for example, when upgrading a driver developed with an earlier
version of WinDriver (version 6.0 and later only, since previous versions
used a different module name).
You should therefore either disable or uninstall all Plug-and-Play
devices that are registered to work with WinDriver from the Device
Manager (Properties | Uninstall, Properties | Disableor Remove
– on Win98/Me), or otherwise disconnect the device(s) from the PC.
If you do not do this, attempts to install the new driver usingwdreg
will produce a message that instructs the user to either uninstall all
devices currently registered to work with WinDriver, or reboot the PC
in order to successfully execute the installation command.OnWindows
2000, if another INF file was previously installed for the device,which
registered the device to work with the Plug-and-Play driverused in earlier
versions of WinDriver remove any INF file(s) for the device from the
%windir% \inf directory before installing the new INF file that you
created. This will prevent Windows from automatically detecting and
installing an obsolete file. You can search the INF directoryfor the
device’s vendor ID and device/product ID to locate the file(s) associated
with the device.

• Install WinDriver’s kernel module:

1. Copywindrvr6.sys andwindrvr6.inf to the same directory.

2. Use the utilitywdreg/wdreg16to install WinDriver’s kernel module on
the target computer.

On Windows 2000/XP/Server 2003 type from the command line:
\> wdreg -inf <path to windrvr6.inf> install
On Windows 98/Me type from the command line:
\> wdreg16 -inf <path to windrvr6.inf> install
For example, ifwindrvr6.inf andwindrvr6.sys are in thed:\MyDevice\
directory on the target computer, the command should be:
\> wdreg -inf d:\MyDevice\windrvr6.inf install
You can find the executable ofwdreg in the WinDriver package under the
\WinDriver \util directory. For a general description of this utility and its
usage, please refer to Chapter10.

11.2 Windows 98/Me and Windows 2000/XP/Server 2003 95

NOTE
wdreg is an interactive utility. If it fails, it will display a message
instructing the user how to overcome the problem. In some cases the
user may be asked to reboot the computer.

CAUTION!
When distributing your driver, take care not to overwrite a newer version
of windrvr6.sys with an older version of the file in Windows drivers
directory (%windir% \system32\drivers). You should configure your
installation program (if you are using one) or your INF file sothat the
installer automatically compares the time stamp on these two files and
does not overwrite a newer version with an older one.

• Install the INF file for your device (registering your Plug-and-Play device
with windrvr6.sys):

– Windows 2000/XP/Server 2003: Use the utilitywdreg to automatically
load the INF file.

To automatically install your INF file onWindows 2000/XP/Server 2003
and update Windows Device Manager, runwdreg with theinstall
command:
\> wdreg -inf <path to your INF file> install

NOTE
OnWindows 2000, if another INF file was previously installed for the
device, which registered the device to work with the Plug-and-Play
driver used in earlier versions of WinDriver remove any INF file(s)
for the device from the%windir% \inf directory before installing
the new INF file that you created. This will prevent Windows from
automatically detecting and installing an obsolete file. You can search
the INF directory for the device’s vendor ID and device/product ID to
locate the file(s) associated with the device.

– Windows 98/Me: Install the INF file manually using WindowsAdd New
Hardware Wizard or Upgrade Device Driver Wizard, as outlined in
detail in Section11.3below.

• Install the wd_utils DLL: If your hardware control application/DLL uses
thewd_utils DLL (as is the case for the sample and generated DriverWizard
WinDriver projects), copywd_utils.dll to the target’s%windir% \system32
directory.

11.3 Creating an INF File 96

• Install your hardware control application/DLL : Copy your hardware control
application/DLL to the target and run it!

11.3 Creating an INF File

Device information (INF) files are text files that provide information used by the Plug
and Play mechanism in Windows 98/Me/2000/XP/Server 2003 toinstall software
that supports a given hardware device. INF files are requiredfor hardware that
identifies itself, such as USB and PCI. An INF file includes allnecessary information
about a device and the files to be installed. When hardware manufacturers introduce
new products, they must create INF files to explicitly define the resources and files
required for each class of device.

In some cases, the INF file for your specific device is suppliedby the operating
system. In other cases, you will need to create an INF file for your device.
WinDriver’s DriverWizard can generate a specific INF file foryour device. The INF
file is used to notify the operating system that WinDriver nowhandles the selected
device.

For USB devices, you will not be able to access the device withWinDriver (either
from the DriverWizard or from the code) without first registering the device to
work with windrvr6.sys. This is done by installing an INF file for the device. The
DriverWizard will offer to automatically generate the INF file for your device.

You can use the DriverWizard to generate the INF file on the development machine
– as explained in Section5.2of the manual – and then install the INF file on any
machine to which you distribute the driver, as explained in the following sections.

11.3.1 Why Should I Create an INF File?

• To enable the DriverWizard to access USB devices.

• To stop the WindowsFound New Hardware Wizard from popping up after
each boot.

• To ensure that the operating system can assign physical addresses to a USB
device.

• To load the new driver created for the device.
An INF file must be created whenever developing a new driver for Plug and
Play hardware that will be installed on a Plug and Play system.

• To replace the existing driver with a new one.

11.3 Creating an INF File 97

11.3.2 How Do I Install an INF File When No Driver Exists?

NOTE
You must have administrative privileges in order to installan INF file on Windows
98, Me, 2000, XP and Server 2003.

• Windows 2000/XP/Server 2003:
On Windows 2000/XP/Server 2003 you can use thewdreg utility with the
install command to automatically install the INF file:
\> wdreg -inf <path to the INF file> install
See Section10.2.2of the manual for more information.
On the development PC, you can have the INF file automaticallyinstalled
when selecting to generate the INF file with the DriverWizard, by checking
theAutomatically Install the INF file option in the DriverWizard’s INF
generation window (see Section5.2).

It is also possible to install the INF file manually on Windows2000/XP/Server
2003, using either of the following methods:

– WindowsFound New Hardware Wizard: This wizard is activated when
the device is plugged in or, if the device was already connected, when
scanning for hardware changes from the Device Manager.

– WindowsAdd/Remove Hardware Wizard: Right-click the mouse on
My Computer , selectProperties, choose theHardware tab and click on
Hardware Wizard....

– WindowsUpgrade Device Driver Wizard: Select the device from the
Device Managerdevices list, selectProperties, choose theDriver tab
and click theUpdate Driver... button. On Windows XP and Windows
Server 2003 you can choose to upgrade the driver directly from the
Properties list.

In all the manual installation methods above you will need topoint Windows to
the location of the relevant INF file during the installation.
We recommend using thewdreg utility to install the INF file automatically,
instead of installing it manually.

• Windows 98/Me:
OnWindows 98/Meyou need to install the INF file for your USB device
manually, either via WindowsAdd New Hardware Wizard or Upgrade
Device Driver Wizard, as explained below:

– WindowsAdd New Hardware Wizard :

11.3 Creating an INF File 98

NOTE
This method can be used if no other driver is currently installed for the
device or if the user first uninstalls (removes) the current driver for the
device. Otherwise, WindowsNew Hardware Found Wizard, which
activates theAdd New Hardware Wizard , will not appear for this
device.

1. To activate the WindowsAdd New Hardware Wizard , attach
the hardware device to the computer or, if the device is already
connected, scan for hardware changes (Refresh).

2. When WindowsAdd New Hardware Wizard appears, follow its
installation instructions. When asked, point to the location of the INF
file in your distribution package.

– WindowsUpgrade Device Driver Wizard:

1. Open Windows Device Manager: From theSystem Properties
window (right-click onMy Computer and selectProperties) select
theDevice Managertab.

2. Select your device from theDevice Managerdevices list, choose the
Driver tab and click theUpdate Driver button.
To locate your device in the Device Manager, selectView devices by
connectionand navigate toStandard PC | PCI bus | PCI to USB
Universal Host Controller (or any other controller you are using
– OHCI/EHCI) | USB Root Hub | <your device>.

3. Follow the instructions of theUpgrade Device Driver Wizard that
opens. When asked, point to the location of the INF file in your
distribution package.

11.3.3 How Do I Replace an Existing Driver Using the INF File?

NOTE
You must have administrative privileges in order to replacea driver on Windows 98,
Me, 2000, XP and Server 2003.

1. OnWindows 2000, if you wish to upgrade the driver for USB devices
that have been registered to work with earlier versions of WinDriver,
we recommend that you first delete from Windows INF directory
(%windir% \inf) any previous INF files for the device, to prevent Windows
from installing an old INF file in place of the new file that you created. Look
for files containing your device’s vendor and device IDs and delete them.

11.3 Creating an INF File 99

2. Install your INF file:

• OnWindows 2000/XP/Server 2003you can automatically install the
INF file:
You can use thewdreg utility with the install command to
automatically install the INF file on Windows 2000/XP/Server 2003:
\> wdreg -inf <path to INF file> install
See Section10.2.2of the manual for more information.
On the development PC, you can have the INF file automatically
installed when selecting to generate the INF file with the DriverWizard,
by checking theAutomatically Install the INF file option in the
DriverWizard’s INF generation window (see Section5.2).

It is also possible to install the INF file manually on Windows
2000/XP/Server 2003, using either of the following methods:

– WindowsFound New Hardware Wizard: This wizard is activated
when the device is plugged in or, if the device was already
connected, when scanning for hardware changes from the Device
Manager.

– WindowsAdd/Remove Hardware Wizard: Right-click onMy
Computer, selectProperties, choose theHardware tab and click
onHardware Wizard....

– WindowsUpgrade Device Driver Wizard: Select the device from
theDevice Managerdevices list, selectProperties, choose the
Driver tab and click theUpdate Driver... button. On Windows
XP and Windows Server 2003 you can choose to upgrade the driver
directly from the Properties list.

In the manual installation methods above you will need to point Windows
to the location of the relevant INF file during the installation. If the
installation wizard offers to install an INF file other than the one you
have generated, selectInstall one of the other drivers and choose your
specific INF file from the list.
We recommend using thewdreg utility to install the INF file
automatically, instead of installing it manually.

• OnWindows 98/Meyou need to install the INF file manually via
WindowsAdd New Hardware Wizard or Upgrade Device Driver
Wizard , as explained below:

– WindowsAdd New Hardware Wizard :

11.4 Windows CE 100

NOTE
This method can be used if no other driver is currently installed for
the device or if the user first uninstalls (removes) the current driver
for the device. Otherwise, the WindowsFound New Hardware
Wizard , which activates theAdd New Hardware Wizard , will not
appear for this device.

(a) To activate the WindowsAdd New Hardware Wizard , attach
the hardware device to the computer or, if the device is already
connected, scan for hardware changes (Refresh).

(b) When WindowsAdd New Hardware Wizard appears, follow
its installation instructions. When asked, specify the location of
the INF file in your distribution package.

– WindowsUpgrade Device Driver Wizard:

(a) Open Windows Device Manager: From theSystem Properties
window (right click onMy Computer and selectProperties)
select theDevice Managertab.

(b) Select your device from theDevice Managerdevices list, open
it, choose theDriver tab and click theUpdate Driver button. To
locate your device in the Device Manager, selectView devices
by connectionand navigate toStandard PC | PCI bus | PCI to
USB Universal Host Controller (or any other controller you
are using – OHCI/EHCI) | USB Root Hub | <your device>.

(c) Follow the instructions of theUpgrade Device Driver Wizard
that opens. Locate the INF in your distribution package when
asked.

11.4 Windows CE

To distribute the driver you developed with WinDriver to a target Windows CE
platform, follow these steps:

1. Install WinDriver’s kernel DLL (windrvr6.dll) on the target computer:

• For WinDriver applications developed for target CE computers:
Copywindrvr6.dll from the\WinDriver \redist\TARGET_CPU
directory to theWindows\ directory on your target Windows CE
computer.

11.5 Linux 101

• When building new CE platforms:
Copywindrvr6.dll from the\WinDriver \redist\TARGET_CPU
directory to the%_FLATRELEASEDIR% directory and then append
the contents of the supplied filePROJECT_WD.BIB to the file
PROJECT.BIB. This will make the WinDriver kernel file a permanent
part of the Windows CE kernelNK.BIN . Then useMAKEIMG.EXE to
build the new Windows CE kernelNK.BIN . This process is similar to the
process of installing WinDriver CE with Platform Builder, as described in
section4.2.2.

2. Add WinDriver to the list of device drivers Windows CE loads on boot:

• For WinDriver applications developed for target CE computers:
Modify the registry according to the entries documented in the file
PROJECT_WD.REG. This can be done using the Windows CE Pocket
Registry Editor on the hand-held CE computer or by using the Remote
CE Registry Editor Tool supplied with the Windows CE Platform SDK.
You will need to have Windows CE Services installed on your Windows
Host System to use the Remote CE Registry Editor Tool.

• When building new CE platforms:
The required registry entries are made by appending the contents of
the filePROJECT_WD.REG to the Windows CE ETK configuration
file PROJECT.REG before building the Windows CE image using
MAKEIMG.EXE .

3. Install your hardware control application/DLL on the target.

If your hardware control application/DLL useswd_utils.dll (as is the case
for the sample and generated DriverWizard WinDriver projects), also copy
wd_utils.dll from theWinDriver \redist directory on the development PC to
the target’sWindows\ directory.

11.5 Linux

The Linux kernel is continuously under development and kernel data structures are
subject to frequent changes. To support such a dynamic development environment
and still have kernel stability, the Linux kernel developers decided that kernel
modules must be compiled with header files identical to thosewith which the kernel
itself was compiled. They enforce this by including a version number in the kernel
header files that is checked against the version number encoded into the kernel. This
forces Linux driver developers to facilitate recompilation of their driver based on the
target system’s kernel version.

11.5 Linux 102

11.5.1 WinDriver Kernel Module

Sincewindrvr6.o/.ko is a kernel module, it must be recompiled for every kernel
version on which it is loaded. To facilitate this, we supply the following components
to insulate the WinDriver kernel module from the Linux kernel:

• windrvr_gcc_v2.a, windrvr_gcc_v3.aandwindrvr_gcc_v3_regparm.a:
compiled object code for the WinDriver kernel module.windrvr_gcc_v2.a
is used for kernels compiled with gcc v2.x.x, andwindrvr_gcc_v3.a is used
for kernels compiled with gcc v3.x.x.windrvr_gcc_v3_regparm.ais used for
kernels compiled with gcc v3.x.x with theregparm flag.

• linux_wrappers.c/h: wrapper library source code files that bind the WinDriver
kernel module to the Linux kernel.

• linux_common.h, windrvr.h , wd_ver.h andwdusb_interface.h: header files
required for building the WinDriver kernel module on the target.

• wdusb_linux.c: used by WinDriver to utilize the USB stack.

• configure: a configuration script that creates amakefile that compiles and
inserts the modulewindrvr6.o/.ko into the kernel.

• makefile.in, wdreg andsetup_inst_dir: theconfigurescript usesmakefile.in,
which creates a makefile. This makefile calls thewdreg utility shell script and
setup_inst_dir, which we supply under theWinDriver/util directory. All three
must be copied to the target.

You need to distribute these components along with your driver source code or object
code.

11.5.2 User-Mode Hardware Control Application/Shared Objects

Copy the hardware control application/shared objects thatyou created with
WinDriver to the target.

If your hardware control application/shared objects use the libwd_utils.so shared
object (as is the case for the sample and generated DriverWizard WinDriver projects),
copylibwd_utils.so from theWinDriver/lib directory on the development PC to
the target’s library directory (/usr/lib/ – for 32-bit PowerPC or 32-bit x86 targets;
/user/lib64– for 64-bit x86 targets).

Since the user-mode hardware control application/shared objects do not have to be
matched against the kernel version number, you are free to distribute it as binary code
(if you wish to protect your source code from unauthorized copying) or as source
code.

11.5 Linux 103

CAUTION!
If you select to distribute your source code, make sure you donot distribute your
WinDriver license string, which is used in the code.

11.5.3 Installation Script

We suggest that you supply an installation shell script thatcopies your driver
executables/DLL to the correct locations (perhaps/usr/local/bin) and then invokes
make or gmaketo build and install the WinDriver kernel module.

Chapter 12

WinDriver USB Device

This chapter describes the WinDriver USB Device tool-kit for development of USB
device firmware for devices based on the Cypress EZ-USB FX2LPCY7C68013A,
Silicon Laboratories C8051F320 and Microchip PIC18F4550 development boards.

NOTE
The WinDriver USB Device tool-kit is currently only supported on Windows – see
section12.2for details regarding the supported operating systems.

12.1 WinDriver USB Device Overview

The WinDriver USB Device tool-kit simplifies and facilitates the development of
firmware for USB devices based on theCypress EZ-USB FX2LP CY7C68013A,
Silicon Laboratories C8051F320 and Microchip PIC18F4550development
boards. These development boards will henceforth be referred to in this chapter as
”the target boards” .

This tool-kit complements the WinDriver USB driver development tool-kit. Together
these tool-kits provide a complete USB device development software solution – both
for the device firmware and the host driver development stages.

USB device manufacturers need to support the Universal Serial Bus (USB)
specification (see Chapter3 for an overview of USB). The USB interface is
implemented in two levels: The lower level of the USB protocol is implemented via a
Serial Interface Engine (SIE). The higher layer of the protocol is implemented via the
device firmware.

104

12.1 WinDriver USB Device Overview 105

Firmwareconsists of software programs and data that define the device’s
configuration and are installed semi-permanently into memory using various types of
programmable ROM chips, such as PROMS, EPROMs, EEPROMs, andflash chips.

WinDriver USB Device enables developers of devices based onthe target boards to
easily create firmware that defines the desired USB interfacefor their target device,
using a Graphical User Interface (GUI).

WinDriver USB Device includesfirmware libraries for the target boards [12.3.4].
These libraries contain functions for performing common USB firmware
functionality, thus releasing device manufacturers of thetime-consuming effort of
writing this firmware code themselves.

WinDriver USB Device features the graphicalDriverWizard utility from the
WinDriver USB driver development tool-kit, but with different functionality, which
enables you todefine your device’s USB interface[12.4.1] – i.e. the device IDs
and device class, the number of interfaces, alternate settings and endpoints and their
attributes, etc. – using friendly GUI dialogs, and then proceed togenerate firmware
codefor the device, based on the information defined in the wizard’s dialogs [12.4.2].
The generated DriverWizard firmware code includes convenient APIs, which utilize
the WinDriver USB Device firmware library API to implement a fully functional
device firmware.

AppendicesB, C andD provide a detailed description of the WinDriver USB Device
firmware libraries and generated DriverWizard API.

NOTE
The provided APIs and the wizard options for your target board are based on
Chapter 9 of the USB 2.0 Specification and on the target board’s specification, thus
freeing you of the need to study these specifications yourself.

After generating the firmware code, you can proceed to modifyit, as needed, in
order to implement your desired firmware, using the WinDriver USB Device API
to simplify the development process [12.4.3]. When the firmware implementation
is completed, you can simply build the firmware [12.4.3.2] and download it to the
device [12.4.3.3].

The hardware diagnostics feature of the WinDriver USB driver development
DriverWizard, as outlined in Chapter5, is also available in the WinDriver USB
Device DriverWizard. Therefore, once you develop the firmware and download it
to the device, you can use DriverWizard todebug the hardwareby viewing the
device’s configuration and testing the communication with the device from the
wizard’s graphical interface [12.4.4].

If you are also a registered user of the WinDriver USB driver development tool-kit,
when the device firmware development and the hardware debugging is completed,
you can use the WinDriver USB tool-kit todevelop a driver for your device [12.4.5].

12.2 System and Hardware Requirements 106

12.2 System and Hardware Requirements

• Operating System: Windows 98/Me/2000/XP/Server 2003.
To compile and build the firmware code you need Windows 2000/XP/Server
2003.

• CPU architecture: Any x86 processor.

• The following development tools must be installed on your development PC in
order to build the sample and generated firmware code:

– For theCypress EZ-USB FX2LP CY7C68013Adevelopment board:
The Cypress EZ-USB FX2LP development kit.

– For theMicrochip PIC18F4550development board:
The Microchip mcc18 compiler.

– For theCypress EZ-USB FX2LP CY7C68013AandSilicon
Laboratories C8051F320development boards:
The Keil Cx51 development tools for 8x51, version 6.0 or above.

• The sample and generated firmware code also support the following optional
development environments:

– For theCypress EZ-USB FX2LP CY7C68013AandSilicon
Laboratories C8051F320boards:
The KeilµVision IDE, version 2.0 or above.

– For theMicrochip PIC18F4550development board:
The Microchip MPLAB IDE, version 7.20.

– For theSilicon Laboratories C8051F320development board:
The Silicon Laboratories IDE, version 1.9.

12.3 WinDriver Device Firmware (WDF) Directory
Overview

This section describes the directory structure and files of theWinDriver \wdf
directory.

Thewdf\ directory contains the following sub-directories:

• cypress\ directory: Contains files for devices based on the Cypress EZ-USB
FX2LP CY7C68013A development board.

• microchip\: This directory contains files for devices based on the Microchip
PIC18F4550 development board.

12.3 WinDriver Device Firmware (WDF) Directory Overview 107

• silabs\: This directory contains files for devices based on the Silicon
Laboratories C8051F320 development board.

12.3.1 The cypress Directory

TheWinDriver \wdf\cypress\ directory contains the following directories:

• FX2LP\ directory: Contains files for devices based on the FX2LP
CY7C68013A development board (henceforth in this section –”the FX2LP
board”).

TheFX2LP\ directory contains the following sub-directories and files:

• include\ directory:

– wdf_cypress_lib.h: Header file that contains firmware library types,
general definitions and function prototypes for devices based on the
FX2LP board. This file provides the interface of the board’s firmware
library (wdf_cypress_fx2lp_eval.lib– for evaluation users; For registered
users the library’s source code is created as part of the DriverWizard
device firmware code generation – see explanation regardingthe
WinDriver USB device firmware libraries in section12.3.4).

– wdf_cypress.h: Header file that contains the required firmware libraries
definitions and #include statements for utilizing the Cypress FX2LP API.

– periph.h: Header file that contains function prototypes for supporting
USB peripheral device functionality for devices based on the FX2LP
board. The functions’ implementation is dependant on the specific
configuration defined for the device. Theperiph.c source file
that contains the implementation for your device is createdby the
DriverWizard when generating device firmware code, based onthe USB
device configuration that you define in the wizard see the description of
the generated DriverWizard files [12.4.3.1].

• lib\ directory:

– wdf_cypress_fx2lp_eval.lib: Evaluation firmware library for the FX2LP
board (see explanation below [12.3.4]).

• samples\ directory: Device firmware samples for the FX2LP board.

– loopback\ directory: Loopback sample: The sample implements a
loopback, which fills the OUT endpoint’s FIFO buffer with thedata that is
read from the IN endpoint’s FIFO buffer.

* periph.c: Source file that contains sample implementation of the
functions declared in theperiph.h header file (discussed above.)

12.3 WinDriver Device Firmware (WDF) Directory Overview 108

* wdf_dscr.a51: Assembly file that contains sample descriptor data
tables definitions for the FX2LP board.

* build.bat : A utility for building the sample firmware code.
Note: The build utility uses the firmware evaluation library
(wdf_cypress_fx2lp_eval.lib).

* loopback_eval.hex: Sample loopback firmware for the FX2LP
board, created by building the sample code with thebuild.bat
utility. Note: The firmware uses the evaluation firmware library
(wdf_cypress_fx2lp_eval.lib).

12.3.2 The microchip Directory

TheWinDriver \wdf\microchip\ directory contains the following directories:

• 18F4550\ directory: Contains files for devices based on the PIC18F4550
development board.

The18F4550\ directory contains the following sub-directories and files:

• include\ directory:

– wdf_microchip_lib.h: Header file that contains firmware library types,
general definitions and function prototypes for devices based on the
PIC18F4550 board. This file provides the interface of the board’s
firmware library (wdf_microchip_18f4550_eval.lib– for evaluation
users; For registered users the library’s source code is created as part
of the DriverWizard device firmware code generation – see explanation
regarding the WinDriver USB device firmware libraries in section 12.3.4).

– wdf_microchip.h: Header file that contains general firmware library
definitions for the PIC18F4550 board. This header includes all other
required header files for the PIC18F4550 board, therefore when
developing firmware for this board you need only include thisheader
from your source files.

– types.h: Header file that defines data types for the PIC18F4550 board.

– periph.h: Header file that contains function prototypes for supporting
USB peripheral device functionality for devices based on the PIC18F4550
board. The functions’ implementation is dependant on the specific
configuration defined for the device. Theperiph.c source file
that contains the implementation for your device is createdby the
DriverWizard when generating device firmware code, based onthe USB
device configuration that you define in the wizard see the description of
the generated DriverWizard files [12.4.3.1].

12.3 WinDriver Device Firmware (WDF) Directory Overview 109

• lib\ directory:

– wdf_microchip_18f4550_eval.lib: Evaluation firmware library for the
PIC18F4550 board (see explanation below [12.3.4]).

• samples\ directory: Device firmware samples for the PIC18F4550 board.

– loopback\ directory: Loopback sample: The sample implements a
loopback, which fills the OUT endpoint’s FIFO buffer with thedata that is
read from the IN endpoint’s FIFO buffer.

* periph.c: C source file that contains sample implementation of the
functions declared in theperiph.h header file (discussed above.)

* wdf_dscr.h: Header file that contains sample device descriptor
information for the PIC18F4550 board.

* wdf_dscr.c: Source file that contains definition of device descriptor
data structures for the PIC18F4550 board.

* build.bat : A utility for building the sample firmware code.
Note: The build utility uses the firmware evaluation library
(wdf_microchip_18f4550_eval.lib).

* loopback_eval.hex: Sample loopback firmware for the PIC18F4550
board, created by building the sample code with thebuild.bat
utility. Note: The firmware uses the evaluation firmware library
(wdf_microchip_18f4550_eval.lib).

* loopback_eval.lkr: A linker file for the loopback sample.

* loopback_eval.mcp: Project file for building the loopback sample
from the Microchip MPLAB IDE.

12.3.3 The silabs Directory

TheWinDriver \wdf\silabs\ directory contains the following directories:

• F320\ directory: Contains files for devices based on the C8051F320
development board.

TheF320\ directory contains the following sub-directories and files:

• include\ directory:

– wdf_silabs_lib.h: Header file that contains firmware library types
and function prototypes for devices based on the C8051F320 board.
This file provides the interface of the board’s firmware library
(wdf_silabs_f320_eval.lib– for evaluation users; For registered users

12.3 WinDriver Device Firmware (WDF) Directory Overview 110

the library’s source code is created as part of the DriverWizard device
firmware code generation – see explanation regarding the WinDriver USB
device firmware libraries in section12.3.4).

– c8051f320.h: Header file that contains general firmware library
definitions for the C8051F320 board.

– c8051f320regs.h: Header file that contains register/bits definitions for the
C8051F320 board.

– periph.h: Header file that contains function prototypes for supporting
USB peripheral device functionality for devices based on the C8051F320
board. The functions’ implementation is dependant on the specific
configuration defined for the device. Theperiph.c source file that
contains the implementation for your device is created by DriverWizard
when generating device firmware code, based on the USB device
configuration that you define in the wizard see the description of the
generated DriverWizard files [12.4.3.1].

• lib\ directory:

– wdf_silabs_f320_eval.lib: Evaluation firmware library for the
C8051F320 board (see explanation below [12.3.4]).

• samples\ directory: Device firmware samples for the C8051F320 board.

– loopback\ directory: Loopback sample: The sample implements a
loopback, which fills the OUT endpoint’s FIFO buffer with thedata that is
read from the IN endpoint’s FIFO buffer.

* periph.c: C source file that contains sample implementation of the
functions declared in theperiph.h header file (discussed above.)

* wdf_dscr.h: Header file that contains sample device descriptor
information for the C8051F320 board.

* wdf_dscr.c: Source file that contains definition of device descriptor
data structures for the C8051F320 board.

* build.bat : A utility for building the sample firmware code.
Note: The build utility uses the firmware evaluation library
(wdf_silabs_f320_eval.lib).

* loopback_eval.hex: Sample loopback firmware for the C8051F320
board, created by building the sample code with thebuild.bat
utility. Note: The firmware uses the evaluation firmware library
(wdf_silabs_f320_eval.lib).

12.3 WinDriver Device Firmware (WDF) Directory Overview 111

12.3.4 The WinDriver USB Device Firmware Libraries

When generating firmware code with DriverWizard using the registered version of the
WinDriver USB Device tool-kit, the generated code includesWinDriver USB Device
firmware library source files, which contain API for performing common USB
firmware functionality (see the description of the generated files in section12.4.3.1.)
These source files are not part of the evaluation version of the tool-kit. In order to
enable an evaluation of WinDriver USB Device, this tool-kitincludes pre-compiled
evaluation libraries, which are utilized by the device firmware samples and the
generated DriverWizard evaluation firmware code.

The evaluation libraries provide the same functionality asthe registered library files,
subject to the following single limitation: they only enable you to perform a pre-set
number of transfers (25,000). When this amount is exceeded the library will cease to
work.

12.3.5 Building the Sample Code

To build the samples from theWinDriver \wdf\cypressFX2LP\samples\,
WinDriver \wdf\microchip18F4550\samples\ or
WinDriver \wdf\silabsF320\samples\ directory, use thebuild.bat utility for the
selected sample (e.g.
WinDriver \wdf\cypressFX2LP\samples\loopback\build.bat):

• For theCypress EZ-USB FX2LP CY7C68013AandSilicon Laboratories
C8051F320boards: verify that theKEIL variable in thebuild.bat file is set
to point to the location of your Keil development tools directory. The default
Keil directory used in thebuild.bat files isC:\Keil . If you installed Keil in
a different location, modify the following line in thebuild.bat file in order to
point to the correct location:

set KEIL=C:\Keil

For example, if you installed Keil underD:\MyTools\Keil , modify the line to:

set KEIL=D:\MyTools\Keil

• For theCypress EZ-USB FX2LP CY7C68013Asamples, verify that the
CYPRESS variable in thebuild.bat file is set to point to the location of your
Cypress EZ-USB development kit. The default directory usedin thebuild.bat
file is C:\Cypress. If you installed the Cypress EZ-USB development kit in
a different location, modify the following line in thebuild.bat file in order to
point to the correct location:

12.4 WinDriver USB Device Development Process 112

set CYPRESS=C:\Cypress

For example, if you installed the Cypress EZ-USB development kit under
D:\Cypress, modify the line to:

set CYPRESS=D:\Cypress

• For theMicrochip PIC18F4550samples, verify that theMCC variable in the
build.bat file is set to point to the location of your mcc18 directory. The
default directory used in thebuild.bat file is C:\mcc18. If you installed
the mcc18 compiler in a different location, modify the following line in the
build.bat file in order to point to the correct location:

set MCC=C:\mcc18

For example, if you installed the mcc18 compiler underD:\microchip\mcc18,
modify the line to:

set CYPRESS=D:\microchip\mcc18

• Run thebuild.bat utility to build the sample firmware.

12.4 WinDriver USB Device Development Process

Use WinDriver USB Device to develop firmware for your USB device (based on any
of the target boards) by following the steps below:

12.4.1 Define the Device USB Interface

Use the WinDriver USB Device DriverWizard utility to define your device’s USB
interface:

1. Run DriverWizard, using either of the following methods:

• Click Start | Programs | WinDriver | DriverWizard

• Double-click the DriverWizard icon on your desktop

• RunWinDriver \wizard\wdwizard.exe, either by double-clicking the
executable file or by running it from a command-line prompt.

12.4 WinDriver USB Device Development Process 113

2. Check theNew device firmware projectoption in the wizard’sChoose Your
Project dialog and clickNext ». Alternatively, you can also select to create a
new device firmware project from DriverWizard’sFile menu or by clicking the
firmware project icon in the wizard’s toolbar.

Figure 12.1: Create Device Firmware Project

3. Select your target development board from theChoose Your Development
Board dialog and clickOK .

Figure 12.2: Choose Your Development Board

12.4 WinDriver USB Device Development Process 114

4. In theEdit Device Descriptordialog, define the basic device descriptor
information for your target device – i.e. the vendor and device IDs,
manufacturer and device descriptions, device class and sub-class, etc.

Figure 12.3: Edit Device Descriptor

12.4 WinDriver USB Device Development Process 115

5. In theConfigure Your Devicedialog, proceed to define the desired USB
configuration for your device.

Figure 12.4: Configure Your Device

The dialog enables you to add device interfaces, add alternate settings for each
interface, and add the required endpoints for each alternate setting.

When adding components, the wizard allows you define the relevant attributes
for each component (such as the interface’s class and sub-class or the
endpoint’s address, transfer type, maximum packet size, etc.). The wizard
further assists you by only providing the relevant configuration options for your
device and by warning you if there is a potential error in yourconfiguration
definitions.

More information on how to configure the endpoints on theCypress EZ-USB
FX2LP CY7C68013A development board can be found at the end of this
section [12.4.1.1].

12.4 WinDriver USB Device Development Process 116

Figure 12.5: Define Interfaces and Endpoints

NOTE
Definition of multiple interfaces is not currently supported for the Silicon
Laboratories C8051F320 development board.

For the other target boards, if you select to define more than one interface,
DriverWizard will generate firmware code for acomposite device. The
wizard will warn you about this when you select to add a secondinterface.

You can also delete any component that you have added or edit the
configuration information, at any time, from the device configuration dialog.

6. You can select to save your DriverWizard device firmware project at any stage,
either from theFile menu or using the relevant icon in the wizard’s toolbar.
This will enable you to open the savedxxx.wdp device firmware project from
DriverWizard at a later time and resume where you left off.

When you have finished defining the device’s USB interface, proceed to generate
device firmware code, based on your DriverWizard definitions, as outlined in the
following section [12.4.2].

12.4 WinDriver USB Device Development Process 117

12.4.1.1 EZ-USB Endpoint Buffers Configuration

This section contains a quote from section 1.18 of the EZ-USBTechnical Reference
Manual (EZ-USB_TRM.pdf) regarding EZ-USB endpoint buffers configuration.
This information can be useful when using DriverWizard to define the endpoint
configuration for devices based on theCypress EZ-USB FX2LP CY7C68013A
development board.
For more information, refer to the EZ-USB Technical Manual,which is
available under theCypress\USB\Doc\FX2LP\ directory or on-line at:
http://www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf.

The USB Specification defines an endpoint as a source or sink ofdata. Since USB is
a serial bus, a device endpoint is actually a FIFO which sequentially empties or fills
with USB data bytes. The host selects a device endpoint by sending a 4-bit address
and a direction bit. Therefore, USB can uniquely address 32 endpoints, IN0 through
IN15 and OUT0 through OUT15.

From the EZ-USB’s point of view, an endpoint is a buffer full of bytes received
or held for transmission over the bus. The EZ-USB reads host data from an OUT
endpoint buffer, and writes data for transmission to the host to an IN endpoint buffer.

EZ-USB contains three 64-byte endpoint buffers, plus 4 KB ofbuffer space that can
be configured 12 ways, as indicated in Figure 1-16. The three 64-byte buffers are
common to all configurations.

Figure 12.6: EZ-USB Endpoint Buffers

http://www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf

12.4 WinDriver USB Device Development Process 118

12.4.2 Generate Device Firmware Code

Generate device firmware code from theConfigure Your Devicedialog, using either
of the following methods:

• Click theNext »button or use the Alt+N short-cut key.

• Select theGenerate Codetoolbar icon.

• From theBuild menu select theGenerate Codeoption.

The wizard’sSelect Code Generation Optionsdialog will be displayed:

Figure 12.7: Firmware Code Generation

12.4 WinDriver USB Device Development Process 119

Verify that all directory paths in the device firmware code generation dialog point to
the correct locations on your PC:

• For theCypress EZ-USB FX2LP CY7C68013AandSilicon Laboratories
C8051F320boards,Your Keil base directory should point to the installation
directory of the Keil Cx51 development tools for 8x51.

• For theCypress EZ-USB FX2LP CY7C68013Aboard,Your Cypress
USB directory should point to the location of the Cypress EZ-USB FX2LP
development kitCypress\USBdirectory.

• For theMicrochip PIC18F4550board,mcc18 base directoryshould point to
the installation directory of the Microchip MPLAB IDE.

You can select to generate a specificproject file for any of the supported
development environments for your board [12.2] by checking the relevant check-box
in theSelect Code Generation Optionsdialog.

When selecting to generate a project file for theKeil µVision IDE or Silicon
Laboratories IDE , the wizard will automatically change theIDE to Invoke to your
selected IDE. If you do not change the IDE to invoke, the wizard will attempt to
invoke this IDE after generating the code.

TheGenerate host side driver codeoption, shown in the dialog screen shots above,
is available during the evaluation of the tool-kit and for registered users of the
WinDriver USB driver development tool-kit. When this option is selected, in addition
to the device firmware code the wizard will also generate a skeletal WinDriver USB
device driver application for your USB device (as defined in the wizard). – see
Chapter5 and section12.4.5for details regarding the DriverWizard device driver
code generation.

12.4.3 Develop the Device Firmware

After you have generated the firmware code with the wizard, you are free to modify
it, as needed, in order to implement your desired firmware functionality, using
the library and generated WinDriver USB Device firmware API to facilitate your
development efforts.

The API of the USB firmware libraries and generated code is described in detail in
AppendicesB, C andD.

12.4 WinDriver USB Device Development Process 120

NOTE
When modifying the WinDriver library and generated device firmware code, make
sure that your code complies with your development board’s hardware specification:

• For theCypress EZ-USB FX2LP CY7C68013Adevelopment board:
EZ-USB_TRM.pdf – see specifically section 15.6Endpoint Configuration.
This document
is available under theCypress\USB\Doc\FX2LP\ directory or on-line at:
http://www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf.

• For theMicrochip PIC18F4550development board:39632b.pdf– see
specifically section 17.3USB RAMand 17.4Buffer Descriptors and
the Buffer Descriptors Table. This document is available on-line at:
http://ww1.microchip.com/downloads/en/DeviceDoc/39632b.pdf.

• For theSilicon Laboratories C8051F320development board:
C8051F32xRev1_1.pdf– see specifically sections 15.5FIFO
Managementand 15.11Configuring Endpoints 1-3. This document
is available under theSilabs\MCU\Documentation\Datasheets\
directory (if you installed the Silicon Laboratories IDE) or on-line at:
http://www.keil.com/dd/docs/datashts/silabs/c8051f32x.pdf.

12.4.3.1 The Generated DriverWizard USB Device Firmware Files

When generating device firmware code, DriverWizard createsanxxx_FW directory,
which contains the following files:

• periph.c: C source file, which includes implementation of functions for
supporting USB peripheral device functionality for your device. The functions’
implementation is derived from the specific device configuration that you
defined with DriverWizard.

Theperiph.h header file,
which declares the prototypes of the functions implementedin theperiph.c
source file, is found in theWinDriver \<device_dir>\include\ directory, e.g.
WinDriver \wdf\cypressFX2LP\include\ – see section12.3.

• Device descriptor information, which utilizes the devicedescriptor information
that you defined with DriverWizard:

– For theCypress EZ-USB FX2LP CY7C68013Adevelopment board:
wdf_dscr.a51: Assembly file.

http://www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39632b.pdf
http://www.keil.com/dd/docs/datashts/silabs/c8051f32x.pdf

12.4 WinDriver USB Device Development Process 121

– For theMicrochip PIC18F4550andSilicon Laboratories C8051F320
development boards:
wdf_desc.handwdf_desc.c: C files.

• xxx.lkr : A linker file for theMicrochip PIC18F4550 board.

• build.bat : A command-line utility for building the firmware code.

• xxx.Uv2/mcp/wsp: Project file for building the code from your selected IDE
(Keil µVision / Microchip MPLAB / Silicon Laboratories), providedyou
selected the relevant IDE from theSelect Code Generation Optionsdialog.

The following files contain the source code of the WinDriver USB Device firmware
library. These files are generated only when using theregistered versionof the
WinDriver USB Device tool-kit:

• main.c: C source file, which contains the implementation of the firmware’s
main entry point. For devices based on the Silicon Laboratories C8051F320
development board, the file also implements the required USBinterrupt service
routine (USB_ISR()).

• wdf_cypress_lib.c – for Cypress EZ-USB FX2LP CY7C68013A /
wdf_silabs_lib.c – for Silicon Laboratories C8051F320:
C source file, which contains the implementation of the WinDriver USB Device
firmware library functions for the target development boards.

12.4.3.2 Build the Generated DriverWizard Firmware

To build the generated firmware code for your device, use any of the following
alternative methods:

• Run the generatedbuild.bat utility from a command-line prompt.

• If you selected to generate a project file for on of the supported IDEs (Keil
µVision IDE – for the Cypress and Silicon Laboratories boards; Microchip
MPLAB IDE – for Microchip; Silicon Laboratories IDE - for Silicon
Laboratories), you can open the generated project file from your selected IDE
and simply build it.

The build output is anxxx.hexfirmware file (wherexxx is the name you selected for
your firmware project.)

12.4 WinDriver USB Device Development Process 122

NOTE
The generatedbuild.bat and specific-IDE project files are different for the
registered and for the evaluation version of WinDriver USB Device and produce a
different output.
Theevaluation versionof these files uses the evaluation firmware libraries
and the output firmware will be limited to a maximum of 25,000transfers (see
above [12.3.4].)
Theregistered versionuses the generated library source files and is not subject to
the evaluation limitations.

After registering your WinDriver USB Device tool-kit, openthe DriverWizard
device firmware project file that you created during the evaluation period (xxx.wdp)
and re-generate the firmware code with the wizard in order to create new registered
versions of thebuild.bat and project files. Then use these files to build a registered,
full-featured, firmware (xxx.hex), and download the firmware to the device.

12.4.3.3 Download the Firmware to the Device

After building the firmware, download it to the hardware using the board vendor’s
firmware download tools.

NOTE: For theCypress EZ-USB FX2LP CY7C68013AandMicrochip
PIC18F4550boards, if you also have a valid license for the WinDriver USBdriver
development tool-kit, or if you are using the evaluation version of the WinDriver
USB Device tool-kit (which also includes an evaluation of the WinDriver USB
driver development kit), you can download firmware to your device using the kit’s
sample firmware download application (Cypress: seedownload_sample.exein
theWinDriver \cypress\firmware_sample\WIN32\ directory; Microchip: see
bootloader_demo.exein the
WinDriver \microchip\pic18f4550\bootloader_sample\WIN32\ directory).

12.4 WinDriver USB Device Development Process 123

12.4.4 Diagnose and Debug Your Hardware

Once you have downloaded the firmware to the device, you can use the DriverWizard
utility to debug the firmware, as outlined in section5.2(refer to the USB explanations
in this Chapter.)NOTE: The device driver code generation option described in
section5.2 is not part of the WinDriver USB Device license.

12.4.5 Develop a USB Device Driver

When the device development is completed, if you have also purchased a license for
the WinDriver USB driver development tool-kit, or if you areusing the evaluation
version of WinDriver, you can proceed to use WinDriver to develop a driver for your
device, as explained in Chapter6.
As indicated in section12.4.2above, if you have a compatible license you will also
be given the option to generate a skeletal WinDriver USB device driver application
from DriverWizard’s firmware generation dialog.

Appendix A

WinDriver USB PC Host API
Reference

A.1 WinDriver USB (WDU) Library Overview

This section provides a general overview of WinDriver’s USBLibrary (WDU),
including:

• An outline of theWDU_xxx API calling sequence – see section [A.1.1]

• Instructions for upgrading code developed with the previous WinDriver USB
API, used in version 5.22 and earlier, to use the improvedWDU_xxx API – see
sectionA.1.2.
If you do not need to upgrade USB driver code developed with anolder version
of WinDriver, simply skip this section.

The WDU library’s interface is found in the/WinDriver/include/wdu_lib.h and
/WinDriver/include/windrvr.h header files, which should be included from any
source file that calls the WDU API. (wdu_lib.h already includeswindrvr.h).

124

A.1 WinDriver USB (WDU) Library Overview 125

A.1.1 Calling Sequence for WinDriver USB

The WinDriverWDU_xxx USB API is designed to support event-driven transfers
between your user-mode USB application and USB devices. This is in contrast to
earlier versions, in which USB devices were initialized andcontrolled using a specific
sequence of function calls.

You can implement the three user callback functions specified in the next
section:WDU_ATTACH_CALLBACK [A.2.1], WDU_DETACH_CALLBACK [A.2.2] and
WDU_POWER_CHANGE_CALLBACK [A.2.3] (at the very leastWDU_ATTACH_CALLBACK).
These functions are used to notify your application when a relevant system event
occurs, such as the attaching or detaching of a USB device. For best performance,
minimal processing should be done in these functions.

Your application callsWDU_Init() [A.3.1] and provides the criteria according to
which the system identifies a device as relevant or irrelevant. TheWDU_Init()
function must also pass pointers to the user callback functions.

Your application then simply waits to receive a notificationof an event. Upon receipt
of such a notification, processing continues. Your application may make use of any
functions defined in the high- or low-level APIs below. The high-level functions,
provided for your convenience, make use of the low-level functions, which in turn use
IOCTLs to enable communication between the WinDriver kernel module and your
user-mode application.

When exiting, your application callsWDU_Uninit() [A.3.6] to stop listening to
devices matching the given criteria and to un-register the notification callbacks for
these devices.

The following figure depicts the calling sequence describedabove. Each vertical line
represents a function or process. Each horizontal arrow represents a signal or request,
drawn from the initiator to the recipient. Time progresses from top to bottom.

A.1 WinDriver USB (WDU) Library Overview 126

Figure A.1: WinDriver USB Calling Sequence

A.1 WinDriver USB (WDU) Library Overview 127

The following piece of meta-code can serve as a framework foryour user-mode
application’s code:

attach()
{

...
if this is my device

/*
Set the desired alternate setting ;
Signal main() about the attachment of this device
*/

return TRUE;
else

return FALSE;
}

detach()
{

...
signal main() about the detachment of this device
...

}

main()
{

WDU_Init(...);

...
while (...)
{

/* wait for new devices */

...

/* issue transfers */

...
}
...
WDU_Uninit();

}

A.1 WinDriver USB (WDU) Library Overview 128

A.1.2 Upgrading from the WD_xxx USB API to the WDU_xxx
API

The WinDriverWDU_xxx USB API, provided beginning with version 6.00, is designed
to support event-driven transfers between your user-mode USB application and USB
devices. This is in contrast to earlier versions, in which USB devices were initialized
and controlled using a specific sequence of function calls.

As a result of this change, you will need to modify your USB applications that were
designed to interface with earlier versions of WinDriver toensure that they will work
with WinDriver v6.X on all supported platforms and not only on Microsoft Windows.
You will have to reorganize your application’s code so that it conforms with the
framework illustrated by the piece of meta-code provided inSectionA.1.1.

In addition, the functions that collectively define the USB API have been changed.
The new functions, described in the next few sections, provide an improved interface
between user-mode USB applications and the WinDriver kernel module. Note that
the new functions receive their parameters directly, unlike the old functions, which
received their parameters using a structure.

The table below lists the legacy functions in the left columnand indicates in the right
column which function or functions replace(s) each of the legacy functions. Use this
table to quickly determine which new functions to use in yournew code.

Problem Solution
High Level API

This function. . . has been replaced by. . .
WD_Open()
WD_Version()
WD_UsbScanDevice()

WDU_Init() [A.3.1]

WD_UsbDeviceRegister() WDU_SetInterface() [A.3.2]
WD_UsbGetConfiguration() WDU_GetDeviceInfo() [A.3.4]
WD_UsbDeviceUnregister() WDU_Uninit() [A.3.6]

Low Level API
This function. . . has been replaced by. . .
WD_UsbTransfer() WDU_Transfer() [A.3.7]

WDU_TransferDefaultPipe() [A.3.9]
WDU_TransferBulk() [A.3.10]
WDU_TransferIsoch() [A.3.11]
WDU_TransferInterrupt() [A.3.12]

USB_TRANSFER_HALT option WDU_HaltTransfer() [A.3.13]
WD_UsbResetPipe() WDU_ResetPipe() [A.3.14]
WD_UsbResetDevice()
WD_UsbResetDeviceEx()

WDU_ResetDevice() [A.3.15]

A.2 USB - User Callback Functions 129

A.2 USB - User Callback Functions

NOTE
Some of the functions described below take as parameters structures that are
comprised of several elements. These structures, indicated by (†), are described in
SectionA.4.

A.2.1 WDU_ATTACH_CALLBACK()

PURPOSE

• WinDriver calls this function when a new device, matching the given criteria, is
attached, provided it is not yet controlled by another driver.
This callback is called once for each matching interface.

PROTOTYPE

t y p e d e f BOOL (DLLCALLCONV *WDU_ATTACH_CALLBACK) (WDU_DEVICE_HANDLE hDevice ,
WDU_DEVICE * pDev ice In fo , PVOID pUserData) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ pDeviceInfo WDU_DEVICE * [A.4.3] Input (†)
➢ pUserData PVOID Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface
➢ pDeviceInfo Pointer to device configuration details; Valid until the endof

the function.
➢ pUserData Pointer that was passed toWDU_Init() [A.3.1] (in the event

table); Points to the user-mode data for the attach function.

A.2 USB - User Callback Functions 130

RETURN VALUE

If the WD_ACKNOWLEDGE flag was set in the call toWDU_Init() [A.3.1] (within
the dwOptions parameter), the callback function should check if it wants to control
the device, and if so - returnTRUE (otherwise - returnFALSE).
If the WD_ACKNOWLEDGE flag was not set in the call toWDU_Init(), then the return
value of the callback function is insignificant.

A.2 USB - User Callback Functions 131

A.2.2 WDU_DETACH_CALLBACK()

PURPOSE

• WinDriver calls this function when a controlled device hasbeen detached from the
system.

PROTOTYPE

t y p e d e f vo id (DLLCALLCONV *WDU_DETACH_CALLBACK) (WDU_DEVICE_HANDLE hDevice ,
PVOID pUserData) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ pUserData PVOID Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface
➢ pUserData Pointer that was passed toWDU_Init() [A.3.1] (in the event

table); Points to the user-mode data for the attach function

RETURN VALUE

None

A.2 USB - User Callback Functions 132

A.2.3 WDU_POWER_CHANGE_CALLBACK()

PURPOSE

• WinDriver calls this function when a controlled device haschanged its power
settings.

PROTOTYPE

t y p e d e f BOOL (DLLCALLCONV *WDU_POWER_CHANGE_CALLBACK) (WDU_DEVICE_HANDLE hDevice,
DWORD dwPowerState , PVOID pUserData) ;

PARAMETERS

Name Type Input/Output
➢ dwPowerState DWORD Input
➢ pUserData PVOID Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface
➢ dwPowerState Number of the power state selected
➢ pUserData Pointer that was passed toWDU_Init() [A.3.1] (in the event

table); Points to the user-mode data for the attach function.

RETURN VALUE

TRUE/FALSE. Currently there is no significance to the returnvalue.

REMARKS

This callback is supported only in Windows operating systems, starting from
Windows 2000.

A.3 USB - Functions 133

A.3 USB - Functions

NOTE
Some of the functions described below take as parameters structures that are
comprised of many elements. These structures, indicated by(†), are described in
SectionA.4.

A.3.1 WDU_Init()

PURPOSE

• Starts listening to devices matching input criteria and registers notification callbacks
for these devices.

PROTOTYPE

DWORD WDU_Init (WDU_DRIVER_HANDLE * phDr iver ,
WDU_MATCH_TABLE * pMatchTables , DWORD dwNumMatchTables ,
WDU_EVENT_TABLE * pEventTab le , c o n s t cha r* sL i cense , DWORD dwOpt ions) ;

PARAMETERS

Name Type Input/Output
➢ phDriver WDU_DRIVER_HANDLE * Output
➢ pMatchTables WDU_MATCH_TABLE * [A.4.1] Input (†)
➢ dwNumMatchTables DWORD Input
➢ pEventTable WDU_EVENT_TABLE * [A.4.2] Input (†)
➢ sLicense const char * Input
➢ dwOptions DWORD Input

DESCRIPTION

Name Description
➢ phDriver Handle to the registration of events & criteria
➢ pMatchTables Array of match tables defining the devices’ criteria
➢ dwNumMatchTables Number of elements in pMatchTables
➢ pEventTable Addresses of notification callback functions for changes in

the device’s status + relevant data for the callbacks
➢ sLicense WinDriver’s license string

A.3 USB - Functions 134

Name Description
➢ dwOptions Can be zero (0) or:

WD_ACKNOWLEDGE – the user can seize control over the
device when returning value inWDU_ATTACH_CALLBACK
[A.2.1]

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.3 USB - Functions 135

A.3.2 WDU_SetInterface()

PURPOSE

• Sets the alternate setting for the specified interface.

PROTOTYPE

DWORD WDU_Set Inter face (WDU_DEVICE_HANDLE hDevice , DWORD dwInter faceNum ,
DWORD d w A l t e r n a t e S e t t i n g) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ dwInterfaceNum DWORD Input
➢ dwAlternateSetting DWORD Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface
➢ dwInterfaceNum The interface’s number
➢ dwAlternateSetting The desired alternate setting value

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.3 USB - Functions 136

A.3.3 WDU_GetDeviceAddr()

PURPOSE

• Gets USB address that the device uses. The address number iswritten to the caller
supplied pAddress.

PROTOTYPE

DWORD WDU_GetDeviceAddr (WDU_DEVICE_HANDLE hDevice ,
ULONG * pAddress) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ pAddress ULONG Output

DESCRIPTION

Name Description
➢ hDevice A unique identifier for a device/interface
➢ pAddress A pointer to ULONG, in which the result is returned

REMARKS

This function is supported on Windows only.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.3 USB - Functions 137

A.3.4 WDU_GetDeviceInfo()

PURPOSE

• Gets configuration information from a device, including all the descriptors in a
WDU_DEVICE [A.4.3] structure.
The caller should free *ppDeviceInfo after use by callingWDU_PutDeviceInfo()
[A.3.5].

PROTOTYPE

DWORD WDU_GetDeviceInfo (WDU_DEVICE_HANDLE hDevice ,
WDU_DEVICE ** ppDev i ce In fo) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ ppDeviceInfo WDU_DEVICE ** [A.4.3] Output (†)

DESCRIPTION

Name Description
➢ hDevice A unique identifier for a device/interface
➢ ppDeviceInfo Pointer to pointer to a buffer containing device information

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.3 USB - Functions 138

A.3.5 WDU_PutDeviceInfo()

PURPOSE

• Receives a device information pointer, allocated with a previous
WDU_GetDeviceInfo() [A.3.4] call, in order to perform the necessary cleanup.

PROTOTYPE

DWORD WDU_PutDeviceInfo (WDU_DEVICE* pDev i ce In fo) ;

PARAMETERS

Name Type Input/Output
➢ pDeviceInfo WDU_DEVICE * [A.4.3] Input

DESCRIPTION

Name Description
➢ pDeviceInfo Pointer to a buffer containing the device information, as

returned by a previous call toWDU_GetDeviceInfo()

RETURN VALUE

None

A.3 USB - Functions 139

A.3.6 WDU_Uninit()

PURPOSE

• Stops listening to devices matching a given criteria and unregisters the notification
callbacks for these devices.

PROTOTYPE

vo id WDU_Uninit (WDU_DRIVER_HANDLE hDr i ve r) ;

PARAMETERS

Name Type Input/Output
➢ hDriver WDU_DRIVER_HANDLE Input

DESCRIPTION

Name Description
➢ hDriver Handle to the registration received fromWDU_Init()

[A.3.1]

A.3 USB - Functions 140

A.3.7 WDU_Transfer()

PURPOSE

• Transfers data to or from a device.

PROTOTYPE

DWORD WDU_Transfer (WDU_DEVICE_HANDLE hDevice , DWORD dwPipeNum ,
DWORD fRead , DWORD dwOptions , PVOID pBuf fer , DWORD dwBuf ferS ize ,
PDWORD pdwBytesT rans fe r red , PBYTE pSetupPacket , DWORD dwTimeout) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ dwPipeNum DWORD Input
➢ fRead DWORD Input
➢ dwOptions DWORD Input
➢ pBuffer PVOID Input
➢ dwBufferSize DWORD Input
➢ pdwBytesTransferred PDWORD Output
➢ pSetupPacket PBYTE Input
➢ dwTimeout DWORD Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface received from

WDU_Init() [A.3.1]
➢ dwPipeNum The number of the pipe through which the data is

transferred
➢ fRead TRUE for read,FALSE for write

A.3 USB - Functions 141

Name Description
➢ dwOptions A bit mask flag:

•USB_ISOCH_NOASAP – For isochronous data transfers.
Setting this option instructs the lower driver (usbd.sys) to
use a preset frame number (instead of the next available
frame) while performing the data transfer. Use this flag if
you notice unused frames during the transfer, on low-speed
or full-speed devices (USB 1.1 only) and on Windows only
(excluding CE).
•USB_ISOCH_RESET – resets the isochronous pipe before
the data transfer. It also resets the pipe after minor errors
(consequently allowing to continue with the transfer).
•USB_ISOCH_FULL_PACKETS_ONLY – when set, do not
transfer less than packet size on isochronous pipes.

➢ pBuffer Address of the data buffer.
➢ dwBufferSize Number of bytes to transfer. The buffer size is not limited

to the device’s maximum packet size; therefore, you can
use larger buffers by setting the buffer size to a multiple
of the maximum packet size. Use large buffers to reduce
the number of context switches and thereby improve
performance.

➢ pdwBytesTransferred Number of bytes actually transferred.
➢ pSetupPacket An 8-byte packet to transfer to control pipes.
➢ dwTimeout Timeout interval of the transfer, in milliseconds (ms). If

dwTimeoutis zero, the function’s timeout interval never
elapses (infinite wait).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

The resolution of the timeout (the dwTimeout parameter) is according to the
operating system scheduler’s timeslot. For example, in Windows the timeout’s
resolution is 10 milliseconds (ms).

A.3 USB - Functions 142

A.3.8 WDU_Wakeup()

PURPOSE

• Enables/Disables the wakeup feature.

PROTOTYPE

DWORD WDU_Wakeup(WDU_DEVICE_HANDLE hDevice , DWORD dwOptions) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ dwOptions DWORD Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface.
➢ dwOptions Can be eitherWDU_WAKEUP_ENABLE – enables wakeup, or

WDU_WAKEUP_DISABLE – disables wakeup.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.3 USB - Functions 143

A.3.9 WDU_TransferDefaultPipe()

PURPOSE

• Transfers data to or from a device through the default pipe.

PROTOTYPE

DWORD WDU_TransferDefaul tP ipe (WDU_DEVICE_HANDLE hDevice ,
DWORD fRead , DWORD dwOptions , PVOID pBuf fer , DWORD dwBuf ferS ize ,
PDWORD pdwBytesT rans fe r red , PBYTE pSetupPacket , DWORD dwTimeout) ;

PARAMETERS

See description ofWDU_Transfer() [A.3.7].
Note thatdwPipeNum is not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

See description ofWDU_Transfer() [A.3.7] .

A.3 USB - Functions 144

A.3.10 WDU_TransferBulk()

PURPOSE

• Performs bulk data transfer to or from a device.

PROTOTYPE

DWORD WDU_TransferBulk (WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum , DWORD fRead , DWORD dwOptions , PVOID pBuf fer ,
DWORD dwBuf ferS ize , PDWORD pdwBytesT rans fe r red , DWORD dwTimeout) ;

PARAMETERS

See description ofWDU_Transfer() [A.3.7].
Note thatpSetupPacket is not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

See description ofWDU_Transfer() [A.3.7].

A.3 USB - Functions 145

A.3.11 WDU_TransferIsoch()

PURPOSE

• Performs isochronous data transfer to or from a device.

PROTOTYPE

DWORD WDU_TransferIsoch (WDU_DEVICE_HANDLE hDevice , DWORD dwPipeNum ,
DWORD fRead , DWORD dwOptions , PVOID pBuf fer , DWORD dwBuf ferS ize ,
PDWORD pdwBytesT rans fe r red , DWORD dwTimeout) ;

PARAMETERS

PARAMETERS

See description ofWDU_Transfer() [A.3.7].
Note thatpSetupPacket is not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

See description ofWDU_Transfer() [A.3.7].

A.3 USB - Functions 146

A.3.12 WDU_TransferInterrupt()

PURPOSE

• Performs interrupt data transfer to or from a device.

PROTOTYPE

DWORD W DU_Trans fe r I n te r rup t (WDU_DEVICE_HANDLE hDevice,
DWORD dwPipeNum , DWORD fRead , DWORD dwOptions , PVOID pBuf fer ,
DWORD dwBuf ferS ize , PDWORD pdwBytesT rans fe r red , DWORD dwTimeout) ;

PARAMETERS

See description ofWDU_Transfer() [A.3.7].
Note thatpSetupPacket is not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

See description ofWDU_Transfer() [A.3.7].

A.3 USB - Functions 147

A.3.13 WDU_HaltTransfer()

PURPOSE

• Halts the transfer on the specified pipe (only one simultaneous transfer per pipe is
allowed by WinDriver).

PROTOTYPE

DWORD WDU_HaltTransfer (WDU_DEVICE_HANDLE hDevice , DWORD dwPipeNum) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ dwPipeNum DWORD Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface
➢ dwPipeNum The number of the pipe

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.3 USB - Functions 148

A.3.14 WDU_ResetPipe()

PURPOSE

• Resets a pipe by clearing both the halt condition on the hostside of the pipe and
the stall condition on the endpoint. This function is applicable for all pipes except
pipe00.

PROTOTYPE

DWORD WDU_ResetPipe (WDU_DEVICE_HANDLE hDevice , DWORD dwPipeNum) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ dwPipeNum DWORD Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface
➢ dwPipeNum The pipe’s number

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

This function should be used if a pipe is halted, in order to clear the halt.

A.3 USB - Functions 149

A.3.15 WDU_ResetDevice()

PURPOSE

• Resets a device to help recover from an error, when a device is marked as connected
but is not enabled.

PROTOTYPE

DWORD WDU_ResetDevice (WDU_DEVICE_HANDLE hDevice , DWORDdwOpt ions) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ dwOptions DWORD Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface.
➢ dwOptions Can be either 0 orWD_USB_HARD_RESET – will reset the

device even if it is not disabled. After using this option
it is advised to set the interface of the device, using
WDU_SetInterface() [A.3.2].

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

• WDU_ResetDevice() is supported only on Windows.

• This function issues a request from the Windows USB driver to reset a hub
port, provided the Windows USB driver supports this feature.

A.3 USB - Functions 150

A.3.16 WDU_GetLangIDs()

PURPOSE

• Reads a list of supported language IDs and/or the number of supported language IDs
from a device.

PROTOTYPE

DWORD DLLCALLCONV WDU_GetLangIDs (WDU_DEVICE_HANDLE hDevice ,
PBYTE pbNumSupportedLangIDs , WDU_LANGID* pLangIDs , BYTE bNumLangIDs) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ pbNumSupportedLangIDs PBYTE Output
➢ pLangIDs WDU_LANGID * Output
➢ bNumLangIDs BYTE Input

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface.
➢ pbNumSupportedLangIDs Parameter to receive number of supported language IDs.
➢ pLangIDs Array of language IDs. IfbNumLangIDs is not 0 the

function will fill this array with the supported language IDs
for the device.

➢ bNumLangIDs Number of IDs in the pLangIDs array.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.3 USB - Functions 151

REMARKS

• If dwNumLangIDs is 0 the function will return only the number of
supported language IDs (inpbNumSupportedLangIDs) but will
not update the language IDs array (pLangIDs) with the actual IDs.
For this usagepLangIDs can beNULL (since it is not referenced) but
pbNumSupportedLangIDsmust not beNULL.

• pbNumSupportedLangIDs can beNULL if the user only wants to receive
the list of supported language IDs and not the number of supported IDs.
In this casebNumLangIDs cannot be 0 andpLangIDs cannot beNULL.

• If the device does not support any language IDs the functionwill
return success. The caller should therefore check the valueof
*pbNumSupportedLangIDs after the function returns.

• If the size of thepLangIDs array (bNumLangIDs) is smaller than the
number of IDs supported by the device (*pbNumSupportedLangIDs), the
function will read and return only the firstbNumLangIDs supported language
IDs.

A.3 USB - Functions 152

A.3.17 WDU_GetStringDesc()

PURPOSE

• Reads a string descriptor from a device by string index.

PROTOTYPE

DWORD DLLCALLCONV WDU_GetStringDesc (WDU_DEVICE_HANDLEhDevice ,
BYTE bS t r I ndex , PCHAR pcDescSt r , DWORD dwSize , WDU_LANGIDlangID) ;

PARAMETERS

Name Type Input/Output
➢ hDevice WDU_DEVICE_HANDLE Input
➢ bStrIndex BYTE Input
➢ pbBuf PBYTE Output
➢ dwBufSize DWORD Input
➢ langID WDU_LANGID Input
➢ pdwDescSize PDWORD Output

DESCRIPTION

Name Description
➢ hDevice A unique identifier for the device/interface
➢ bStrIndex A string index
➢ pbBuf The read string descriptor (the descriptor is returned as a

bytes array)
➢ dwBufSize The size ofpbBuf
➢ langID The language ID to be used in the get string descriptor

request that is sent to the device. If thelangID param is
0, the function will use the first supported language ID
returned from the device (if exists).

➢ pdwDescSize If not NULL, will be updated with the size of the returned
descriptor

A.3 USB - Functions 153

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

• If pbBuf is not large enough to hold the string descriptor (dwBufSize <
*pdwDescSize), the returned descriptor will be truncated todwBufSize
bytes.

A.4 USB - Structures 154

A.4 USB - Structures

The following figure depicts the structure hierarchy used byWinDriver’s USB API.
The arrays situated in each level of the hierarchy may contain more elements than
are depicted in the diagram. Arrows are used to represent pointers. In the interest of
clarity, only one structure at each level of the hierarchy isdepicted in full detail (with
all of its elements listed and pointers from it pictured).

Figure A.2: WinDriver USB Structures

A.4 USB - Structures 155

A.4.1 WDU_MATCH_TABLE

NOTE
(*) For all field members, if value is set to 0 – match all.

Name Type Description
wVendorId WORD Required USB Vendor ID to detect, as assigned

by USB-IF (*)
wProductId WORD Required USB Product ID to detect, as assigned

by the product manufacturer (*)
bDeviceClass BYTE The device’s class code, as assigned by USB-IF

(*)
bDeviceSubClass BYTE The device’s sub-class code, as assigned by

USB-IF (*)
bInterfaceClass BYTE The interface’s class code, as assigned by

USB-IF (*)
bInterfaceSubClass BYTE The interface’s sub-class code, as assigned by

USB-IF (*)
bInterfaceProtocol BYTE The interface’s protocol code, as assigned by

USB-IF (*)

A.4 USB - Structures 156

A.4.2 WDU_EVENT_TABLE

Name Type Description
pfDeviceAttach WDU_ATTACH_CALLBACK Will be called by WinDriver when a device is

attached
pfDeviceDetach WDU_DETACH_CALLBACK Will be called by WinDriver when a device is

detached
pfPowerChange WDU_POWER_CHANGE_CALLBACK Will be called by WinDriver when there is a

change in a device’s power state
pUserData PVOID Pointer to user-mode data to be passed to the

callbacks

A.4 USB - Structures 157

A.4.3 WDU_DEVICE

Name Type Description
Descriptor WDU_DEVICE_DESCRIPTOR Contains basic information about a device
Pipe0 WDU_PIPE_INFO Stores information about the device’s default pipe
pConfigs WDU_CONFIGURATION * Pointer to buffer containing information about a

device’s configurations
pActiveConfig WDU_CONFIGURATION * Pointer to buffer containing information about

the active configuration
pActiveInterface WDU_INTERFACE * Pointer to buffer containing information about

the active interface

A.4 USB - Structures 158

A.4.4 WDU_CONFIGURATION

Name Type Description
Descriptor WDU_CONFIGURATION_DESCRIPTOR Contains basic information about a configuration
dwNumInterfaces DWORD Number of interfaces supported by this

configuration
pInterfaces WDU_INTERFACE * Pointer to buffer containing information about

this configuration’s interfaces

A.4 USB - Structures 159

A.4.5 WDU_INTERFACE

Name Type Description
pAlternateSettings WDU_ALTERNATE_SETTING * Pointer to buffer containing information about

the interface’s alternate settings
dwNumAltSettings DWORD Number of alternate settings
pActiveAltSetting WDU_ALTERNATE_SETTING * Pointer to buffer containing information about

the active alternate setting

A.4 USB - Structures 160

A.4.6 WDU_ALTERNATE_SETTING

Name Type Description
Descriptor WDU_INTERFACE_DESCRIPTOR Contains basic information about an interface
pEndpointDescriptors WDU_ENDPOINT_DESCRIPTOR * Pointer to buffers containing information about a

device’s endpoints
pPipes WDU_PIPE_INFO * Pointer to buffers containing information about a

device’s pipes

A.4 USB - Structures 161

A.4.7 WDU_DEVICE_DESCRIPTOR

Name Type Description
bLength UCHAR Size, in bytes, of the descriptor (18 bytes)
bDescriptorType UCHAR Device descriptor (0x01)
bcdUSB USHORT Number of the USB specification with which the

device complies
bDeviceClass UCHAR The device’s class
bDeviceSubClass UCHAR The device’s sub-class
bDeviceProtocol UCHAR The device’s protocol
bMaxPacketSize0 UCHAR Maximum size of transferred packets
idVendor USHORT Vendor ID, as assigned by USB-IF
idProduct USHORT Product ID, as assigned by the product

manufacturer
bcdDevice USHORT Device release number
iManufacturer UCHAR Index of manufacturer string descriptor
iProduct UCHAR Index of product string descriptor
iSerialNumber UCHAR Index of serial number string descriptor
bNumConfigurations UCHAR Number of possible configurations

A.4 USB - Structures 162

A.4.8 WDU_CONFIGURATION_DESCRIPTOR

Name Type Description
bLength UCHAR Size, in bytes, of the descriptor
bDescriptorType UCHAR Configuration descriptor (0x02)
wTotalLength USHORT Total length, in bytes, of data returned
bNumInterfaces UCHAR Number of interfaces
bConfigurationValue UCHAR Configuration number
iConfiguration UCHAR Index of string descriptor that describes this

configuration
bmAttributes UCHAR Power settings for this configuration:

• D6 – self-powered
• D5 – remote wakeup (allows device to wake up
the host)

MaxPower UCHAR Maximum power consumption for this
configuration, in 2mAunits

A.4 USB - Structures 163

A.4.9 WDU_INTERFACE_DESCRIPTOR

Name Type Description
bLength UCHAR Size, in bytes, of the descriptor (9 bytes)
bDescriptorType UCHAR Interface descriptor (0x04)
bInterfaceNumber UCHAR Interface number
bAlternateSetting UCHAR Alternate setting number
bNumEndpoints UCHAR Number of endpoints used by this interface
bInterfaceClass UCHAR The interface’s class code, as assigned by

USB-IF
bInterfaceSubClass UCHAR The interface’s sub-class code, as assigned by

USB-IF
bInterfaceProtocol UCHAR The interface’s protocol code, as assigned by

USB-IF
iInterface UCHAR Index of string descriptor that describes this

interface

A.4 USB - Structures 164

A.4.10 WDU_ENDPOINT_DESCRIPTOR

Name Type Description
bLength UCHAR Size, in bytes, of the descriptor (7 bytes)
bDescriptorType UCHAR Endpoint descriptor (0x05)
bEndpointAddress UCHAR Endpoint address: Use bits 0-3 for endpoint

number, set bits 4-6 to zero (0), and set bit 7
to zero (0) for outbound data and one (1) for
inbound data (ignored for control endpoints)

bmAttributes UCHAR Specifies the transfer type for this endpoint
(control, interrupt, isochronous or bulk). See the
USB specification for further information.

wMaxPacketSize USHORT Maximum size of packets this endpoint can send
or receive

bInterval UCHAR Interval, in frame counts, for polling endpoint
data transfers.
Ignored for bulk and control endpoints.
Must equal 1 for isochronous endpoints.
May range from 1 to 255 for interrupt endpoints.

A.4 USB - Structures 165

A.4.11 WDU_PIPE_INFO

Name Type Description
dwNumber DWORD Pipe number; 0 for default pipe
dwMaximumPacketSize DWORD Maximum size of packets that can be transferred

using this pipe
type DWORD Transfer type for this pipe
direction DWORD Direction of transfer:

•USB_DIR_IN or USB_DIR_OUT for isochronous,
bulk or interrupt pipes. •USB_DIR_IN_OUT for
control pipes.

dwInterval DWORD Interval in milliseconds (ms).
Relevant only to interrupt pipes.

A.5 General WD_xxx Functions 166

A.5 General WD_xxx Functions

A.5.1 Calling Sequence WinDriver – General Use

The following is a typical calling sequence for the WinDriver API.

Figure A.3: WinDriver API Calling Sequence

A.5 General WD_xxx Functions 167

NOTES

(1) We recommend calling the WinDriver functionWD_Version() [A.5.3] after
callingWD_Open() [A.5.2] and before calling any other WinDriver function.
Its purpose is to return the WinDriver kernel module (windrvr) version number,
thus providing the means to verify that your application is version compatible
with the WinDriver kernel module.

(2) WD_DebugAdd() [A.5.6] andWD_Sleep() [A.5.8] can be called anywhere after
WD_Open().

(3) Visual Basic and Delphi programmers should note that this Function Reference
is C-oriented.
WinDriver Visual Basic and Delphi codes have been written asclosely as
possible to the C code, to enable maximal compatibility for all users.
Most of the APIs have a single implementation that can be usedfrom a C, VB
or Delphi application. However, some of the WinDriver functions require
a specific implementation for VB and Delphi. Please refer to the relevant
Delphi/Visual Basic samples and include files:

1. \WinDriver \delphi

2. \WinDriver \vb

A.5 General WD_xxx Functions 168

A.5.2 WD_Open()

PURPOSE

• Opens a handle to access the WinDriver kernel module. The handle is used by all
WinDriver APIs, and therefore must be called before any other WinDriver API is
called.

PROTOTYPE

HANDLE WD_Open () ;

RETURN VALUE

The handle to the WinDriver kernel module.
If device could not be opened, returns INVALID_HANDLE_VALUE.

REMARKS

If you are a registered user, please refer toWD_License() [A.5.9] function reference
to see an example of how to register your license.

EXAMPLE

HANDLE hWD;

hWD = WD_Open();
if (hWD==INVALID_HANDLE_VALUE)
{

printf("Cannot open WinDriver device\n");
}

A.5 General WD_xxx Functions 169

A.5.3 WD_Version()

PURPOSE

• Returns the version number of the WinDriver kernel module currently running.

PROTOTYPE

DWORD WD_Version (HANDLE hWD, WD_VERSION* pVer) ;

PARAMETERS

Name Type Input/Output
➢ hWD HANDLE Input
➢ pVer WD_VERSION *

❏ dwVer DWORD Output
❏ cVer[100] CHAR Output

DESCRIPTION

Name Description
hWD The handle to WinDriver’s kernel-mode driver received

from WD_Open() [A.5.2].
pVer WD_VERSION elements:
dwVer The version number.
cVer[100] Version info string.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

EXAMPLE

WD_VERSION ver;

BZERO(ver);
WD_Version(hWD, &ver);
printf("%s\n", ver.cVer)

A.5 General WD_xxx Functions 170

if (ver.dwVer<WD_VER)
{

printf("Error - incorrect WinDriver version\n");
}

A.5 General WD_xxx Functions 171

A.5.4 WD_Close()

PURPOSE

• Closes the access to the WinDriver kernel module.

PROTOTYPE

vo id WD_Close (HANDLE hWD) ;

PARAMETERS

Name Type Input/Output
➢ hWD HANDLE Input

DESCRIPTION

Name Description
hWD The handle to WinDriver’s kernel-mode driver received

from WD_Open() [A.5.2].

REMARKS

This function must be called when you finish using WinDriver kernel module.

EXAMPLE

WD_Close(hWD);

A.5 General WD_xxx Functions 172

A.5.5 WD_Debug()

PURPOSE

• Sets debugging level for collecting debug messages.

PROTOTYPE

DWORD WD_Debug(HANDLE hWD, WD_DEBUG* pDebug) ;

PARAMETERS

Name Type Input/Output
➢ hWD HANDLE Input
➢ pDebug WD_DEBUG * Input

❏ dwCmd DWORD Input
❏ dwLevel DWORD Input
❏ dwSection DWORD Input
❏ dwLevelMessageBox DWORD Input
❏ dwBufferSize DWORD Input

DESCRIPTION

Name Description
hWD The handle to WinDriver’s kernel-mode driver received

from WD_Open() [A.5.2].
pDebug WD_DEBUG elements:
dwCmd Debug command: Set filter, Clear buffer, etc.

For more details please refer to DEBUG_COMMAND in
windrvr.h .

dwLevel Used for dwCmd=DEBUG_SET_FILTER. Sets the
debugging level to collect: Error, Warning, Info, Trace.
For more details please refer to DEBUG_LEVEL in
windrvr.h .

dwSection Used for dwCmd=DEBUG_SET_FILTER. Sets the sections
to collect: IO, Mem, Int, etc. Use S_ALL for all.
For more details please refer to DEBUG_SECTION in
windrvr.h .

A.5 General WD_xxx Functions 173

Name Description
dwLevelMessageBox Used for dwCmd=DEBUG_SET_FILTER. Sets the

debugging level to print in a message box.
For more details please refer to DEBUG_LEVEL in
windrvr.h .

dwBufferSize Used for dwCmd=DEBUG_SET_BUFFER. The size of
buffer in the kernel.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

EXAMPLE

WD_DEBUG dbg;

BZERO(dbg);
dbg.dwCmd = DEBUG_SET_FILTER;
dbg.dwLevel = D_ERROR;
dbg.dwSection = S_ALL;
dbg.dwLevelMessageBox = D_ERROR;

WD_Debug(hWD, &dbg);

A.5 General WD_xxx Functions 174

A.5.6 WD_DebugAdd()

PURPOSE

• Sends debug messages to the debug log. Used by the driver code.

PROTOTYPE

DWORD WD_DebugAdd (HANDLE hWD, WD_DEBUG_ADD* pData) ;

PARAMETERS

Name Type Input/Output
➢ hWD HANDLE Input
➢ pData WD_DEBUG_ADD *

❏ dwLevel DWORD Input
❏ dwSection DWORD Input
❏ pcBuffer CHAR [256] Input

DESCRIPTION

Name Description
hWD The handle to WinDriver’s kernel-mode driver received

from WD_Open() [A.5.2].
pData WD_DEBUG_ADD elements:
dwLevel Assigns the level in the Debug Monitor, in which the

data will be declared. If dwLevel is 0, D_ERROR will be
declared.
For more details please refer to DEBUG_LEVEL in
windrvr.h .

dwSection Assigns the section in the Debug Monitor, in which the data
will be declared. If dwSection is 0, S_MISC section will be
declared.
For more details please refer to DEBUG_SECTION in
windrvr.h .

pcBuffer The string to copy into the message log.

A.5 General WD_xxx Functions 175

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

EXAMPLE

WD_DEBUG_ADD add;

BZERO(add);
add.dwLevel = D_WARN;
add.dwSection = S_MISC;
sprintf(add.pcBuffer, "This message will be displayed in "

"the debug monitor\n");
WD_DebugAdd(hWD, &add);

A.5 General WD_xxx Functions 176

A.5.7 WD_DebugDump()

PURPOSE

• Retrieves debug messages buffer.

PROTOTYPE

DWORD WD_DebugDump (HANDLE hWD, WD_DEBUG_DUMP* pDebugDump) ;

PARAMETERS

Name Type Input/Output
➢ hWD HANDLE Input
➢ pDebug WD_DEBUG_DUMP * Input

❏ pcBuffer PCHAR Input/Output
❏ dwSize DWORD Input

DESCRIPTION

Name Description
hWD The handle to WinDriver’s kernel-mode driver received

from WD_Open() [A.5.2].
pDebugDump WD_DEBUG_DUMP elements:
pcBuffer Buffer to receive debug messages
dwSize Size of buffer in bytes

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

EXAMPLE

char buffer[1024];
WD_DEBUG_DUMP dump;
dump.pcBuffer=buffer;
dump.dwSize = sizeof(buffer);
WD_DebugDump(hWD, &dump);

A.5 General WD_xxx Functions 177

A.5.8 WD_Sleep()

PURPOSE

• Delays execution for a specific duration of time.

PROTOTYPE

DWORD WD_Sleep (HANDLE hWD, WD_SLEEP* pS leep) ;

PARAMETERS

Name Type Input/Output
➢ hWD HANDLE Input
➢ pSleep WD_SLEEP *

❏ dwMicroSeconds DWORD Input
❏ dwOptions DWORD Input

DESCRIPTION

Name Description
hWD The handle to WinDriver’s kernel-mode driver received

from WD_Open() [A.5.2].
pSleep WD_SLEEP elements:
dwMicroSeconds Sleep time in microseconds - 1/1,000,000 of a second.
dwOptions A bit mask flag:

• SLEEP_NON_BUSY - If set, delays execution without
consuming CPU resources. (Not relevant for under 17,000
micro seconds. Less accurate than busy sleep).
Default - Busy sleep.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.5 General WD_xxx Functions 178

REMARKS

Example usage: to access slow response hardware.

EXAMPLE

WD_Sleep slp;

BZERO(slp);
slp.dwMicroSeconds = 200;
WD_Sleep(hWD, &slp);

A.5 General WD_xxx Functions 179

A.5.9 WD_License()

PURPOSE

• Transfers the license string to the WinDriver kernel module and returns information
regarding the license type of the specified license string.

PROTOTYPE

DWORD WD_License (HANDLE hWD, WD_LICENSE* pL i cense) ;

PARAMETERS

Name Type Input/Output
➢ hWD HANDLE Input
➢ pLicense WD_LICENSE *

❏ cLicense[] CHAR Input
❏ dwLicense DWORD Output
❏ dwLicense2 DWORD Output

DESCRIPTION

Name Description
hWD The handle to WinDriver’s kernel-mode driver received

from WD_Open() [A.5.2].
pLicense WD_LICENSE elements:
cLicense[] A buffer to contain the license string that is to be transferred

to the WinDriver kernel module. If an empty string is
transferred, then WinDriver kernel module returns the
current license type to the parameter dwLicense.

dwLicense Returns the license type of the specified license string
(cLicnese). The return value is a mask of license type flags,
defined as an enum inwindrvr.h . 0 = Invalid license string.
Additional flags for determining the license type will be
returned in dwLicense2, if needed.

dwLicense2 Returns additional flags for determining the license type,
if dwLicense could not hold all the relevant information
(otherwise - 0).

A.5 General WD_xxx Functions 180

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

When using a registered version, this function must be called before any other
WinDriver API call, apart fromWD_Open(), in order to register the license from the
code.

Example usage: Add registration routine to your application.

EXAMPLE

DWORD RegisterWinDriver()
{

HANDLE hWD;
WD_LICENSE lic;
DWORD dwStatus = WD_INVALID_HANDLE;

hWD = WD_Open();
if (hWD!=INVALID_HANDLE_VALUE)
{

BZERO(lic);
// replace the following string with your license string
strcpy(lic.cLicense, "12345abcde12345.CompanyName");
dwStatus = WD_License(hWD, &lic);
WD_Close(hWD);

}

return dwStatus;
}

A.5 General WD_xxx Functions 181

A.5.10 WD_LogStart()

PURPOSE

• Opens a log file.

PROTOTYPE

DWORD WD_LogStart (c o n s t cha r* sFi leName , c o n s t cha r* sMode)

PARAMETERS

Name Type Input/Output
➢ sFileName const char * Input
➢ sMode const char * Input

DESCRIPTION

Name Description
sFileName Name of log file to be opened.
sMode Type of access permitted.

For example, when NULL orw, opens an empty file for
writing. If the given file exists, its contents are destroyed.
Whena, opens for writing at the end of the file (appending).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

REMARKS

Once a log file is opened, all API calls are logged in this file. You may add your own
printouts to the log file by callingWD_LogAdd() [A.5.12].

A.5 General WD_xxx Functions 182

A.5.11 WD_LogStop()

PURPOSE

• Closes a log file.

PROTOTYPE

VOID WD_LogStop ()

RETURN VALUE

None

A.5 General WD_xxx Functions 183

A.5.12 WD_LogAdd()

PURPOSE

• Adds user printouts into log file.

PROTOTYPE

VOID DLLCALLCONV WD_LogAdd (c o n s t cha r * sFormat [, argument] . . .)

PARAMETERS

Name Type Input/Output
➢ sFormat const char * Input
➢ argument Input

DESCRIPTION

Name Description
sFormat Format-control string
argument Optional arguments

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.6 WinDriver Status/Error Codes 184

A.6 WinDriver Status/Error Codes

A.6.1 Introduction

Most of the WinDriver API functions return a status code, where 0
(WD_STATUS_SUCCESS) means success and a non-zero value means failure. The
Stat2Str() andWDL_Stat2Str() can be used to retrieve the status description
string for a given status code. The status codes and their descriptive strings are listed
below.

A.6.2 Status Codes Returned by WinDriver

Status Code Description
WD_STATUS_SUCCESS Success
WD_STATUS_INVALID_WD_HANDLE Invalid WinDriver handle
WD_WINDRIVER_STATUS_ERROR Error
WD_INVALID_HANDLE Invalid handle
WD_INVALID_PIPE_NUMBER Invalid pipe number
WD_READ_WRITE_CONFLICT Conflict between read and write

operations
WD_ZERO_PACKET_SIZE Packet size is zero
WD_INSUFFICIENT_RESOURCES Insufficient resources
WD_UNKNOWN_PIPE_TYPE Unknown pipe type
WD_SYSTEM_INTERNAL_ERROR Internal system error
WD_DATA_MISMATCH Data mismatch
WD_NO_LICENSE No valid license
WD_NOT_IMPLEMENTED Function not implemented
WD_FAILED_ENABLING_INTERRUPT Failed enabling interrupt
WD_INTERRUPT_NOT_ENABLED Interrupt not enabled
WD_RESOURCE_OVERLAP Resource overlap
WD_DEVICE_NOT_FOUND Device not found
WD_WRONG_UNIQUE_ID Wrong unique ID
WD_OPERATION_ALREADY_DONE Operation already done
WD_USB_DESCRIPTOR_ERROR Usb descriptor error
WD_SET_CONFIGURATION_FAILED Set configuration operation failed
WD_CANT_OBTAIN_PDO Cannot obtain PDO
WD_TIME_OUT_EXPIRED Timeout expired
WD_IRP_CANCELED IRP operation cancelled
WD_FAILED_USER_MAPPING Failed to map in user space
WD_FAILED_KERNEL_MAPPING Failed to map in kernel space

A.6 WinDriver Status/Error Codes 185

Status Code Description
WD_NO_RESOURCES_ON_DEVICE No resources on the device
WD_NO_EVENTS No events
WD_INVALID_PARAMETER Invalid parameter
WD_INCORRECT_VERSION Incorrect WinDriver version installed
WD_TRY_AGAIN Try again
WD_INVALID_IOCTL Received an invalid IOCTL

A.6.3 Status Codes Returned by USBD

The following WinDriver status codes comply with USBD_XXX status codes
returned by the USB stack drivers.

Status Code Description
USBD Status Types
WD_USBD_STATUS_SUCCESS USBD: Success
WD_USBD_STATUS_PENDING USBD: Operation pending
WD_USBD_STATUS_ERROR USBD: Error
WD_USBD_STATUS_HALTED USBD: Halted
USBD Status Codes (NOTE: These are comprised of one of the status
types above and an error code, i.e., 0xXYYYYYYYL, where X=status
type and YYYYYYY=error code. The same error codes may also
appear with one of the other status types as well.)
HC (Host Controller) Status Codes (NOTE: These use the
WD_USBD_STATUS_HALTED status type.)
WD_USBD_STATUS_CRC HC status: CRC
WD_USBD_STATUS_BTSTUFF HC status: Bit stuffing
WD_USBD_STATUS_DATA_TOGGLE_MISMATCH HC status: Data toggle mismatch
WD_USBD_STATUS_STALL_PID HC status: PID stall
WD_USBD_STATUS_DEV_NOT_RESPONDING HC status: Device not responding
WD_USBD_STATUS_PID_CHECK_FAILURE HC status: PID check failed
WD_USBD_STATUS_UNEXPECTED_PID HC status: Unexpected PID
WD_USBD_STATUS_DATA_OVERRUN HC status: Data overrun
WD_USBD_STATUS_DATA_UNDERRUN HC status: Data underrun
WD_USBD_STATUS_RESERVED1 HC status: Reserved1
WD_USBD_STATUS_RESERVED2 HC status: Reserved2
WD_USBD_STATUS_BUFFER_OVERRUN HC status: Buffer overrun
WD_USBD_STATUS_BUFFER_UNDERRUN HC status: Buffer Underrun
WD_USBD_STATUS_NOT_ACCESSED HC status: Not accessed
WD_USBD_STATUS_FIFO HC status: Fifo
For Windows only:

A.6 WinDriver Status/Error Codes 186

Status Code Description
WD_USBD_STATUS_XACT_ERROR HC status: The host controller has set

the Transaction Error (XactErr) bit in
the transfer descriptor’s status field

WD_USBD_STATUS_BABBLE_DETECTED HC status: Babble detected
WD_USBD_STATUS_DATA_BUFFER_ERROR HC status: Data buffer error
For Windows CE only:
WD_USBD_STATUS_NOT_COMPLETE USBD: Transfer not completed
WD_USBD_STATUS_CLIENT_BUFFER USBD: Cannot write to buffer
For all platforms:
WD_USBD_STATUS_CANCELED USBD: Transfer cancelled
Returned by HCD (Host Controller Driver) if a transfer is submitted to
an endpoint that is stalled:
WD_USBD_STATUS_ENDPOINT_HALTED HCD: Transfer submitted to stalled

endpoint
Software Status Codes (NOTE: Only the error bit is set):
WD_USBD_STATUS_NO_MEMORY USBD: Out of memory
WD_USBD_STATUS_INVALID_URB_FUNCTION USBD: Invalid URB Jfunction
WD_USBD_STATUS_INVALID_PARAMETER USBD: Invalid parameter
Returned if client driver attempts to close an endpoint/interface or
configuration with outstanding transfers:
WD_USBD_STATUS_ERROR_BUSY USBD: Attempted to close

endpoint/interface/configuration with
outstanding transfer

Returned by USBD if it cannot complete a URB request. Typically this
will be returned in the URB status field (when the Irp is completed)
with a more specific NT error code. The Irp status codes are indicated
in WinDriver’s Debug Monitor tool (wddebug_gui):
WD_USBD_STATUS_REQUEST_FAILED USBD: URB request failed
WD_USBD_STATUS_INVALID_PIPE_HANDLE USBD: Invalid pipe handle
Returned when there is not enough bandwidth available to open a
requested endpoint:
WD_USBD_STATUS_NO_BANDWIDTH USBD: Not enough bandwidth for

endpoint
Generic HC (Host Controller) error:
WD_USBD_STATUS_INTERNAL_HC_ERROR USBD: Host controller error
Returned when a short packet terminates the transfer, i.e.,
USBD_SHORT_TRANSFER_OK bit not set:
WD_USBD_STATUS_ERROR_SHORT_TRANSFER USBD: Transfer terminated with short

packet

A.6 WinDriver Status/Error Codes 187

Status Code Description
Returned if the requested start frame is not within
USBD_ISO_START_FRAME_RANGE of the current USB frame
(NOTE: The stall bit is set):
WD_USBD_STATUS_BAD_START_FRAME USBD: Start frame outside range
Returned by HCD (Host Controller Driver) if all packets in an
isochronous transfer complete with an error:
WD_USBD_STATUS_ISOCH_REQUEST_FAILED HCD: Isochronous transfer completed

with error
Returned by USBD if the frame length control for a given HC (Host
Controller) is already taken by another driver:
WD_USBD_STATUS_FRAME_CONTROL_OWNED USBD: Frame length control already

taken
Returned by USBD if the caller does not own frame length control and
attempts to release or modify the HC frame length:
WD_USBD_STATUS_FRAME_CONTROL_NOT_OWNED USBD: Attempted operation on frame

length control not owned by caller
Additional software error codes added for USB 2.0 (for Windows
only):
WD_USBD_STATUS_NOT_SUPPORTED USBD: API not

supported/implemented
WD_USBD_STATUS_INAVLID_CONFIGURATION_DESCRIPTOR USBD: Invalid configuration descriptor
WD_USBD_STATUS_INSUFFICIENT_RESOURCES USBD: Insufficient resources
WD_USBD_STATUS_SET_CONFIG_FAILED USBD: Set configuration failed
WD_USBD_STATUS_BUFFER_TOO_SMALL USBD: Buffer too small
WD_USBD_STATUS_INTERFACE_NOT_FOUND USBD: Interface not found
WD_USBD_STATUS_INAVLID_PIPE_FLAGS USBD: Invalid pipe flags
WD_USBD_STATUS_TIMEOUT USBD: Timeout
WD_USBD_STATUS_DEVICE_GONE USBD: Device gone
WD_USBD_STATUS_STATUS_NOT_MAPPED USBD: Status not mapped
Extended isochronous error codes returned by USBD.
These errors appear in the packet status field of an isochronous
transfer:
WD_USBD_STATUS_ISO_NOT_ACCESSED_BY_HW USBD: The controller did not access

the TD associated with this packet
WD_USBD_STATUS_ISO_TD_ERROR USBD: Controller reported an error in

the TD
WD_USBD_STATUS_ISO_NA_LATE_USBPORT USBD: The packet was submitted in

time by the client but failed to reach the
miniport in time

A.6 WinDriver Status/Error Codes 188

Status Code Description
WD_USBD_STATUS_ISO_NOT_ACCESSED_LATE USBD: The packet was not sent

because the client submitted it too
late to transmit

A.7 User-Mode Utility Functions 189

A.7 User-Mode Utility Functions

This section describes a number of user-mode utility functions you will find useful for
implementing various tasks. These utility functions are multi-platform, implemented
on all operating systems supported by WinDriver.

A.7.1 Stat2Str()

PURPOSE

• Retrieves the status string that corresponds to a status code.

PROTOTYPE

const char * Stat2Str(DWORD dwStatus);

PARAMETERS

Name Type Input/Output
➢ dwStatus DWORD Input

DESCRIPTION

Name Description
dwStatus A numeric status code

RETURN VALUE

Returns the verbal status description (string) that corresponds to the specified numeric
status code.

REMARKS

See SectionA.6 for a complete list of status codes and strings.

A.7 User-Mode Utility Functions 190

A.7.2 get_os_type()

PURPOSE

• Retrieves the type of the operating system.

PROTOTYPE

OS_TYPE get_os_type();

RETURN VALUE

NoneReturns the type of the operating system.
If the operating system type is not detected, returns OS_CAN_NOT_DETECT.

A.7 User-Mode Utility Functions 191

A.7.3 ThreadStart()

PURPOSE

• Creates a thread.

PROTOTYPE

DWORD ThreadStart(HANDLE *phThread, HANDLER_FUNC pFunc, void *pData);

PARAMETERS

Name Type Input/Output
➢ phThread HANDLE * Output
➢ pFunc HANDLER_FUNC Input
➢ pData VOID * Input

DESCRIPTION

Name Description
phThread Returns the handle to the created thread
pFunc Starting address of the code that the new thread is to execute
pData Pointer to the data to be passed to the new thread

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 192

A.7.4 ThreadWait()

PURPOSE

• Waits for a thread to exit.

PROTOTYPE

void ThreadWait(HANDLE hThread);

PARAMETERS

Name Type Input/Output
➢ hThread HANDLE Input

DESCRIPTION

Name Description
hThread The handle to the thread whose completion is awaited

RETURN VALUE

None

A.7 User-Mode Utility Functions 193

A.7.5 OsEventCreate()

PURPOSE

• Creates an event object.

PROTOTYPE

DWORD OsEventCreate(HANDLE *phOsEvent);

PARAMETERS

Name Type Input/Output
➢ phOsEvent HANDLE * Output

DESCRIPTION

Name Description
phOsEvent The pointer to a variable that receives a handle to the newly

created event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 194

A.7.6 OsEventClose()

PURPOSE

• Closes a handle to an event object.

PROTOTYPE

void OsEventClose(HANDLE hOsEvent)

PARAMETERS

Name Type Input/Output
➢ hOsEvent HANDLE Input

DESCRIPTION

Name Description
hOsEvent The handle to the event object to be closed

RETURN VALUE

None

A.7 User-Mode Utility Functions 195

A.7.7 OsEventWait()

PURPOSE

• Waits until a specified event object is in the signaled stateor the time-out interval
elapses.

PROTOTYPE

DWORD OsEventWait(HANDLE hOsEvent, DWORD dwSecTimeout)

PARAMETERS

Name Type Input/Output
➢ hOsEvent HANDLE Input
➢ dwSecTimeout DWORD Input

DESCRIPTION

Name Description
hOsEvent The handle to the event object
dwSecTimeout Time-out interval of the event, in seconds.

If dwSecTimeout is INFINITE, the function’s time-out
interval never elapses.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 196

A.7.8 OsEventSignal()

PURPOSE

• Sets the specified event object to the signaled state.

PROTOTYPE

DWORD OsEventSignal(HANDLE hOsEvent);

PARAMETERS

Name Type Input/Output
➢ hOsEvent HANDLE Input

DESCRIPTION

Name Description
hOsEvent The handle to the event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 197

A.7.9 OsEventReset()

PURPOSE

• Resets the specified event object to the non-signaled state.

PROTOTYPE

DWORD OsEventReset(HANDLE hOsEvent);

PARAMETERS

Name Type Input/Output
➢ hOsEvent HANDLE Input

DESCRIPTION

Name Description
hOsEvent The handle to the event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 198

A.7.10 OsMutexCreate()

PURPOSE

• Creates a mutex object.

PROTOTYPE

DWORD OsMutexCreate(HANDLE *phOsMutex);

PARAMETERS

Name Type Input/Output
➢ phOsMutex HANDLE * Output

DESCRIPTION

Name Description
phOsMutex The pointer to a variable that receives a handle to the newly

created mutex object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 199

A.7.11 OsMutexClose()

PURPOSE

• Closes a handle to a mutex object.

PROTOTYPE

void OsMutexClose(HANDLE hOsMutex);

PARAMETERS

Name Type Input/Output
➢ hOsMutex HANDLE Input

DESCRIPTION

Name Description
hOsMutex The handle to the mutex object to be closed

RETURN VALUE

None

A.7 User-Mode Utility Functions 200

A.7.12 OsMutexLock()

PURPOSE

• Locks the specified mutex object.

PROTOTYPE

DWORD OsMutexLock(HANDLE hOsMutex)

PARAMETERS

Name Type Input/Output
➢ hOsMutex HANDLE Input

DESCRIPTION

Name Description
hOsMutex The handle to the mutex object to be locked

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 201

A.7.13 OsMutexUnlock()

PURPOSE

• Releases (unlocks) a locked mutex object.

PROTOTYPE

DWORD OsMutexUnlock(HANDLE hOsMutex);

PARAMETERS

Name Type Input/Output
➢ hOsMutex HANDLE Input

DESCRIPTION

Name Description
hOsMutex The handle to the mutex object to be unlocked

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code
otherwise [A.6].

A.7 User-Mode Utility Functions 202

A.7.14 PrintDbgMessage()

PURPOSE

• Sends debug messages to the debug monitor.

PROTOTYPE

void PrintDbgMessage(DWORD dwLevel, DWORD dwSection,
const char *format[, argument]...);

PARAMETERS

Name Type Input/Output
➢ dwLevel DWORD Input
➢ dwSection DWORD Input
➢ format const char * Input
➢ argument Input

DESCRIPTION

Name Description
dwLevel Assigns the level in the Debug Monitor, in which the data

will be declared. If dwLevel is 0, then D_ERROR will be
declared.
For more details please refer to DEBUG_LEVEL in
windrvr.h .

dwSection Assigns the section in the Debug Monitor, in which the data
will be declared. If dwSection is 0, then S_MISC section
will be declared.
For more details please refer to DEBUG_SECTION in
windrvr.h .

format Format-control string
argument Optional arguments, limited to 256 bytes

A.7 User-Mode Utility Functions 203

RETURN VALUE

None

Appendix B

WinDriver USB Device Cypress
EZ-USB FX2LP CY7C68013A
API Reference

B.1 Firmware Library API

This section describes the WinDriver USB Device firmware library API for the
Cypress EZ-USB FX2LP CY7C68013A development board. The functions and
general types and definitions described in this section are declared and defined
(respectively) in theFX2LP\include\wdf_cypress_lib.hheader file. The functions
are implemented in the generated DriverWizardwdf_cypress_lib.cfile – for
registered users, or in theFX2LP\wdf_cypress_fx2lp_eval.libevaluation firmware
library – for evaluation users (see section12.3.4for details).

NOTE
Registered users can modify the library source code. When modifying the code,
make sure that you comply with your development board’s hardware specification –
see note in section12.4.3.

204

B.1 Firmware Library API 205

B.1.1 Firmware Library Types

The APIs described in this section are defined inFX2LP\wdf_cypress_lib.h.

B.1.1.1 EP_DIR Enumeration

Enumeration of endpoint directions:

Enum Value Description
DIR_OUT Direction OUT (write from the host to the device)
DIR_IN Direction IN (read from the device to the host)

B.1.1.2 EP_TYPE Enumeration

Enumeration of endpoint types.
The endpoint’s type determines the type of transfers to be performed on the endpoint
– bulk, interrupt or isochronous.

Enum Value Description
ISOCHRONOUS Isochronous endpoint
BULK Bulk endpoint
INTERRUPT Interrupt endpoint

B.1.1.3 EP_BUFFERING Enumeration

Enumeration of endpoint buffering types:

Enum Value Description
DOUBLE_BUFFERING Double buffering
TRIPLE_BUFFERING Triple buffering
QUAD_BUFFERING Quadruple buffering

B.1 Firmware Library API 206

B.1.2 WDF_EP1INConfig() / WDF_EP1OUTConfig()

PURPOSE

• Configures endpoint 1 for IN transfers (WDF_EP1INConfig()) or OUT transfers
(WDF_EPOUTConfig()).

PROTOTYPE

vo id WDF_EP1INConfig(EP_TYPE type) ;
vo id WDF_EP1OUTConfig(EP_TYPE type) ;

PARAMETERS

Name Type Input/Output
➢ type EP_TYPE Input

DESCRIPTION

Name Description
type The endpoint’s transfer type [B.1.1.2]

RETURN VALUE

None

B.1 Firmware Library API 207

B.1.3 WDF_EP2Config / WDF_EP6Config()

NOTE
The prototype and description ofWDF_EP2Config() andWDF_EP6Config()
is identical, except for the endpoint number. The description below will refer
to endpoint 2, but you can simply replace all "2" references with "6" to get the
description ofWDF_EP6Config().

PURPOSE

• Configures endpoint 2.

PROTOTYPE

vo id WDF_EP2Config (EP_DIR d i r , EP_TYPE type ,
EP_BUFFERING b u f f e r i n g , i n t s i z e , i n t nPacketPerMF) ;

PARAMETERS

Name Type Input/Output
➢ dir EP_DIR Input
➢ type EP_TYPE Input
➢ buffering EP_BUFFERING Input
➢ size int Input
➢ nPacketPerMF int Input

DESCRIPTION

Name Description
dir The endpoint’s direction [B.1.1.1]
type The endpoint’s transfer type [B.1.1.2]
buffering The endpoint’s buffering type [B.1.1.3]
size The size of the endpoint’s FIFO buffer (in bytes)
nPacketPerMF Number of packets per microframe

RETURN VALUE

None

B.1 Firmware Library API 208

B.1.4 WDF_EP4Config / WDF_EP8Config()

NOTE
The prototype and description ofWDF_EP4Config() andWDF_EP8Config()
is identical, except for the endpoint number. The description below will refer
to endpoint 4, but you can simply replace all "4" references with "8" to get the
description ofWDF_EP8Config().

PURPOSE

• Configures endpoint 4.

PROTOTYPE

vo id WDF_EP4Config (EP_DIR d i r , EP_TYPE type) ;

PARAMETERS

Name Type Input/Output
➢ dir EP_DIR Input
➢ type EP_TYPE Input

DESCRIPTION

Name Description
dir The endpoint’s direction [B.1.1.1]
type The endpoint’s transfer type [B.1.1.2]

RETURN VALUE

None

B.1 Firmware Library API 209

B.1.5 WDF_FIFOReset()

PURPOSE

• Restores an endpoint’s FIFO (First In First Out) buffer to its default state.

PROTOTYPE

vo id WDF_FIFOReset(i n t ep) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input

DESCRIPTION

Name Description
ep Endpoint number (address)

RETURN VALUE

None

B.1 Firmware Library API 210

B.1.6 WDF_SkipOutPacket()

PURPOSE

• Signals an endpoint’s FIFO (First In First Out) buffer to ignore received OUT
packets.

PROTOTYPE

vo id WDF_SkipOutPacket (i n t ep) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input

DESCRIPTION

Name Description
ep Endpoint number (address)

RETURN VALUE

None

B.1 Firmware Library API 211

B.1.7 WDF_FIFOWrite()

PURPOSE

• Writes data to an endpoint’s FIFO (First In First Out) buffer.
The call to this function should be followed by a call toWDF_SetEPByteCount()
[B.1.11].

PROTOTYPE

vo id WDF_FIFOWrite (i n t ep , BYTE buf [] , i n t s i z e) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input
➢ buf BYTE [] Input
➢ size int Input

DESCRIPTION

Name Description
ep Endpoint number (address)
buf Data buffer to write
size Number of bytes to write

RETURN VALUE

None

B.1 Firmware Library API 212

B.1.8 WDF_FIFORead()

PURPOSE

• Reads data from an endpoint’s FIFO (First In First Out) buffer.
The call to this function should be preceded by a call toWDF_GetEPByteCount()
[B.1.12] in order to determine the amount of bytes to read.

PROTOTYPE

vo id WDF_FIFORead (i n t ep , BYTE buf [] , i n t s i z e) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input
➢ buf BYTE [] Output
➢ size int Input

DESCRIPTION

Name Description
ep Endpoint number (address)
buf Buffer to hold the read data
size Number of bytes to read from the FIFO buffer

RETURN VALUE

None

B.1 Firmware Library API 213

B.1.9 WDF_FIFOFull()

PURPOSE

• Checks if an endpoint’s FIFO (First In First Out) buffer is completely full.

PROTOTYPE

BOOL WDF_FIFOFull (i n t ep) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input

DESCRIPTION

Name Description
ep Endpoint number (address)

RETURN VALUE

Returns TRUE if the endpoint’s FIFO buffer is full; otherwise returns FALSE.

B.1 Firmware Library API 214

B.1.10 WDF_FIFOEmpty()

PURPOSE

• Checks if an endpoint’s FIFO (First In First Out) buffer is empty.

PROTOTYPE

BOOL WDF_FIFOEmpty (i n t ep) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input

DESCRIPTION

Name Description
ep Endpoint number (address)

RETURN VALUE

Returns TRUE if the endpoint’s FIFO buffer is empty; otherwise returns FALSE.

B.1 Firmware Library API 215

B.1.11 WDF_SetEPByteCount()

PURPOSE

• Sets the bytes count of an endpoint’s FIFO (First In First Out) buffer.
The call to this function should be preceded by a call toWDF_FIFOWrite() [B.1.7] in
order to update the endpoint’s FIFO buffer with the data to betransferred to the host.

PROTOTYPE

vo id WDF_SetEPByteCount (i n t ep , WORD b y t e s _ c o u n t) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input
➢ bytes_count WORD Input

DESCRIPTION

Name Description
ep Endpoint number (address)
bytes_count Bytes count to set

RETURN VALUE

None

B.1 Firmware Library API 216

B.1.12 WDF_GetEPByteCount()

PURPOSE

• Gets the current bytes count of an endpoint’s FIFO (First InFirst Out) buffer.
This function should be called before callingWDF_FIFORead() [B.1.8] to read from
the endpoint’s FIFO buffer, in order to determine the amountof bytes to read.

PROTOTYPE

WORD WDF_GetEPByteCount (i n t ep) ;

PARAMETERS

Name Type Input/Output
➢ ep int Input

DESCRIPTION

Name Description
ep Endpoint number (address)

RETURN VALUE

Returns the endpoint’s FIFO bytes count.

B.1 Firmware Library API 217

B.1.13 WDF_I2CInit()

PURPOSE

• Initializes the I2C bus.

PROTOTYPE

vo id WDF_I2CInit (vo id) ;

RETURN VALUE

None

B.1.14 WDF_SetDigitLed()

PURPOSE

• Displays the specified digit in the development board’s digit LED.

PROTOTYPE

vo id WDF_SetDigitLed (i n t d i g i t) ;

PARAMETERS

Name Type Input/Output
➢ digit int Input

DESCRIPTION

Name Description
➢ digit The digit to diplay

RETURN VALUE

None

B.1 Firmware Library API 218

B.1.15 WDF_I2CWrite()

PURPOSE

• Writes data to a specified address on the I2C bus.

PROTOTYPE

BOOL WDF_I2CWrite (BYTE addr , BYTE len , BYTE xda ta* d a t) ;

PARAMETERS

Name Type Input/Output
➢ addr BYTE Input
➢ len BYTE Input
➢ dat xdata* Input

DESCRIPTION

Name Description
➢ addr The address to which to write
➢ len The number of bytes to write
➢ dat Pointer to a buffer containing the data to write

RETURN VALUE

Returns TRUE for a successful write operation; otherwise returns FALSE.

B.1 Firmware Library API 219

B.1.16 WDF_I2CRead()

PURPOSE

• Reads data from a specified address on the I2C bus.

PROTOTYPE

BOOL WDF_I2CRead (BYTE addr , BYTE len , BYTE xda ta* d a t) ;

PARAMETERS

Name Type Input/Output
➢ addr BYTE Input
➢ len BYTE Input
➢ dat xdata* Output

DESCRIPTION

Name Description
➢ addr The address from which to read
➢ len The number of bytes to read
➢ dat Pointer to a buffer containing the data that is read

RETURN VALUE

Returns TRUE for a successful read operation; otherwise returns FALSE.

B.1 Firmware Library API 220

B.1.17 WDF_I2CWaitForEEPROMWrite()

PURPOSE

• Waits for the completion of the current write operation on the specified I2C bus
address.

PROTOTYPE

vo id WDF_I2CWaitForEEPROMWrite (BYTE addr) ;

PARAMETERS

Name Type Input/Output
➢ addr BYTE Input

DESCRIPTION

Name Description
➢ addr The I2C bus address on which to wait

RETURN VALUE

None

B.1 Firmware Library API 221

B.1.18 WDF_I2CGetStatus()

PURPOSE

• Gets the current status of the I2C bus.

PROTOTYPE

i n t WDF_I2CGetStatus (vo id) ;

RETURN VALUE

Returns the I2C bus status.

B.1.19 WDF_I2CClearStatus()

PURPOSE

• Clears the I2C bus status from errors/NAKs.

PROTOTYPE

vo id WDF_I2CClearStatus (vo id) ;

RETURN VALUE

None

B.2 Generated DriverWizard Firmware API 222

B.2 Generated DriverWizard Firmware API

This section describes the WinDriver USB Device generated DriverWizard firmware
API for the Cypress EZ-USB FX2LP CY7C68013A development board. The
functions described in this section are declared in theFX2LP\include\periph.h
header file and implemented in the generated DriverWizardperiph.c file, according
to the device configuration information defined in the wizard.

The firmware’s entry point –main() in main.c (source code provided for registered
users only) – implements aTask Dispatcher, which calls theWDF_xxx() functions
declared inperiph.h (and implemented inperiph.c) in order to communicate with
the peripheral device.

NOTE
When modifying the generated code, make sure that you complywith your
development board’s hardware specification – see note in section [12.4.3].

B.2.1 WDF_Init()

PURPOSE

• Initializes the device.
This function is automatically called from the firmware’smain() function in order to
perform the required initialization to enable communication with the device.

PROTOTYPE

vo id WDF_Init (vo id) ;

RETURN VALUE

None

B.2 Generated DriverWizard Firmware API 223

B.2.2 WDF_Poll()

PURPOSE

• Polls the device for FIFO data.
The Task Dispatcher calls this function repeatedly while the device is idle.

PROTOTYPE

vo id WDF_Poll (vo id) ;

RETURN VALUE

None

B.2.3 WDF_Suspend()

PURPOSE

• This function is called by the Task Dispatcher before the device goes into suspend
mode.

PROTOTYPE

BOOL WDF_Suspend (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 224

B.2.4 WDF_Resume()

PURPOSE

• This function is called by the Task Dispatcher after the device resumes activity.

PROTOTYPE

BOOL WDF_Resume (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2.5 WDF_GetDescriptor()

PURPOSE

• This function is called by the Task Dispatcher when a GET DESCRIPTOR
command is received.

PROTOTYPE

BOOL WDF_GetDescr iptor (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 225

B.2.6 WDF_SetConfiguration()

PURPOSE

• This function is called by the Task Dispatcher when a SET CONFIGURATION
command is received.

PROTOTYPE

BOOL WDF_SetConf igura t ion (BYTE c o n f i g) ;

PARAMETERS

Name Type Input/Output
➢ config BYTE Input

DESCRIPTION

Name Description
config Configuration number to set

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 226

B.2.7 WDF_GetConfiguration()

PURPOSE

• This function is called by the Task Dispatcher when a GET CONFIGURATION
command is received.

PROTOTYPE

BOOL WDF_GetConf igurat ion (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 227

B.2.8 WDF_SetInterface()

PURPOSE

• This function is called by the Task Dispatcher when a SET INTERFACE command
is received.

PROTOTYPE

BOOL WDF_Set In ter face (BYTE i f c , BYTE a l t _ s e t) ;

PARAMETERS

Name Type Input/Output
➢ ifc BYTE Input
➢ alt_set BYTE Input

DESCRIPTION

Name Description
ifc Interface number to set
alt_set Alternate setting number to set

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 228

B.2.9 WDF_GetInterface()

PURPOSE

• This function is called by the Task Dispatcher when a GET INTERFACE command
is received.

PROTOTYPE

BOOL WDF_Get Inter face (BYTE i f c) ;

PARAMETERS

Name Type Input/Output
➢ ifc BYTE Input

DESCRIPTION

Name Description
ifc Interface number

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 229

B.2.10 WDF_GetStatus()

PURPOSE

• This function is called by the Task Dispatcher when a GET STATUS command is
received.

PROTOTYPE

BOOL WDF_GetStatus (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2.11 WDF_ClearFeature()

PURPOSE

• This function is called by the Task Dispatcher when a CLEAR FEATURE command
is received.

PROTOTYPE

BOOL WDF_ClearFeature (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 230

B.2.12 WDF_SetFeature()

PURPOSE

• This function is called by the Task Dispatcher when a SET FEATURE command is
received.

PROTOTYPE

BOOL WDF_SetFeature (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2.13 WDF_VendorCmnd()

PURPOSE

• This function is called by the Task Dispatcher when a vendor-specific command is
received.

PROTOTYPE

BOOL WDF_VendorCmnd (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

Appendix C

WinDriver USB Device
Microchip PIC18F4550 API
Reference

C.1 Firmware Library API

This section describes the WinDriver USB Device firmware library API for the
Microchip PIC18F4550 development board. The functions andgeneral types and
definitions described in this section are declared and defined (respectively) in the
18F4550\include\wdf_microchip_lib.h header file. The functions are implemented
in the generated DriverWizardwdf_microchip_lib.c file – for registered users, or in
the18F4550\wdf_microchip_18f4550_eval.libevaluation firmware library – for
evaluation users (see section12.3.4for details).

NOTE
Registered users can modify the library source code. When modifying the code,
make sure that you comply with your development board’s hardware specification –
see note in section12.4.3.

231

C.1 Firmware Library API 232

C.1.1 Firmware Library Types

The data types described in this section are defined in the18F4550\include\types.h
header file.

C.1.1.1 EP_DIR Enumeration

Enumeration of endpoint directions:

Enum Value Description
OUT Direction OUT (write from the host to the device)
IN Direction IN (read from the device to the host)

C.1.1.2 EP_TYPE Enumeration

Enumeration of endpoint types.
The endpoint’s type determines the type of transfers to be performed on the endpoint
– bulk, interrupt or isochronous.

Enum Value Description
ISOCHRONOUS Isochronous endpoint
BULK Bulk endpoint
INTERRUPT Interrupt endpoint

C.1 Firmware Library API 233

C.1.1.3 BD_STAT Union

Endpoint buffer descriptor status union type:

Name Type Description
➢ _byte byte
➢ struct

✦ BC8 bit field (1) Bit 8 of the endpoint’s last transfer byte count
✦ BC9 bit field (1) Bit 9 (MSB) of the endpoint’s last transfer byte

count
✦ BSTALL bit field (1) Buffer stall enable
✦ DTSEN bit field (1) Data toggle synchronization enable
✦ INCDIS bit field (1) Address increment disable
✦ KEN bit field (1) Buffer descriptor keep enable
✦ DTS bit field (1) Data toggle synchronization value
✦ UOWN bit field (1) USB ownership

➢ struct
✦ BC8 bit field (1) Bit 8 of the endpoint’s last transfer byte count
✦ BC9 bit field (1) Bit 9 (MSB) of the endpoint’s last transfer byte

count
✦ PID0 bit field (1) Bit 0 of the packet identifier
✦ PID1 bit field (1) Bit 1 of the packet identifier
✦ PID2 bit field (1) Bit 2 of the packet identifier
✦ PID3 bit field (1) Bit 3 of the packet identifier
✦ bit field (1) Reserved
✦ UOWN bit field (1) USB ownership

➢ struct
✦ bit field (2) Reserved
✦ PID bit field (4) Packet identifier
✦ bit field (2) Reserved

C.1 Firmware Library API 234

C.1.1.4 BDT Union

Endpoint buffer descriptor table union type:

Name Type Description
➢ struct

✦ Stat BD_STAT Buffer descriptor status [C.1.1.3]
✦ Cnt byte The endpoint’s last transfer byte count. The byte

count’s most significant bits are stored in theBC8
andBC9 fields of theBD_STAT union (Stat)

✦ ADRL byte Low buffer address
✦ ADRH byte High buffer address

➢ struct
✦ bit field (8) Reserved
✦ bit field (8) Reserved
✦ ADR byte* Pointer to the buffer address

C.1.1.5 EP_DATA Structure

Endpoint data structure type.

The structure consists of the following members:

Name Type Description
number byte Endpoint number
reg near byte* UEPn register address
max_packet word The endpoint’s maximum packet size (in bytes)
e_bdt BDT* Pointer to the endpoint’s even buffer descriptor

table [C.1.1.4]
o_bdt BDT* Pointer to the endpoint’s odd buffer descriptor

table [C.1.1.4]
e_buffer byte* Pointer to the endpoint’s even data buffer
o_buffer byte* Pointer to the endpoint’s odd data buffer

C.1 Firmware Library API 235

C.1.2 WDF_EPConfig()

PURPOSE

• Configures and enables a given endpoint for USB transfers.

PROTOTYPE

vo id WDF_EPConfig (
EP_DATA * ep_data ,
by te ep_num ,
EP_DIR d i r ,
EP_TYPE type ,
word max_packet ,
nea r by te * reg ,
BDT * e_bdt ,
by te * e _ b u f f e r ,
BDT * o_bdt ,
by te * o _ b u f f e r) ;

PARAMETERS

Name Type Input/Output
➢ ep_data EP_DATA* Input/Output
➢ ep_num byte Input
➢ dir EP_DIR Input
➢ type EP_TYPE Input
➢ max_packet word Input
➢ reg near byte* Input
➢ e_bdt BDT* Input
➢ e_buffer byte* Input
➢ o_bdt BDT* Input
➢ o_buffer byte* Input

DESCRIPTION

Name Description
➢ ep_data Pointer to an endpoint data structure [C.1.1.5]
➢ ep_num The endpoint’s number
➢ dir The endpoint’s direction [C.1.1.1]

C.1 Firmware Library API 236

Name Description
➢ type The endpoint’s transfer type [C.1.1.2]
➢ max_packet The endpoint’s maximum packet size (in bytes)
➢ reg Pointer to the endpoint’s UEPn register
➢ e_bdt Pointer to the endpoint’s even buffer descriptor table

[C.1.1.4]
➢ e_buffer Pointer to the endpoint’s even data buffer
➢ o_bdt Pointer to the endpoint’s odd buffer descriptor table

[C.1.1.4]
➢ o_buffer Pointer to the endpoint’s odd data buffer

RETURN VALUE

None

C.1 Firmware Library API 237

C.1.3 WDF_EPWrite()

PURPOSE

• Writes data to a given endpoint.
The call to this function should be followed by a call to
WDF_TriggerWriteTransfer() [C.1.6].

PROTOTYPE

vo id WDF_EPWrite(EP_DATA* ep_data , by te* b u f f e r , word l e n) ;

PARAMETERS

Name Type Input/Output
➢ ep_data EP_DATA* Input
➢ buffer byte* Input
➢ len word len

DESCRIPTION

Name Description
➢ ep_data Pointer to an endpoint data structure [C.1.1.5]
➢ buffer Pointer to a buffer containing the data to write
➢ len The number of bytes to write

RETURN VALUE

None

C.1 Firmware Library API 238

C.1.4 WDF_EPRead()

PURPOSE

• Reads data from a given endpoint.
The call to this function should be followed by a call to
WDF_TriggerReadTransfer() [C.1.7].

PROTOTYPE

word WDF_EPRead (EP_DATA* ep_data , by te* b u f f e r , word l e n) ;

PARAMETERS

Name Type Input/Output
➢ ep_data EP_DATA* Input
➢ buffer byte* Output
➢ len word len

DESCRIPTION

Name Description
➢ ep_data Pointer to an endpoint data structure [C.1.1.5]
➢ buffer Pointer to a buffer to be updated with the read data
➢ len The number of bytes to read

RETURN VALUE

Returns the number of bytes that were read.

C.1 Firmware Library API 239

C.1.5 WDF_IsEPBusy()

PURPOSE

• Checks if the given endpoint is currently busy.

PROTOTYPE

BOOL WDF_IsEPBusy (EP_DATA* ep_da ta) ;

PARAMETERS

Name Type Input/Output
➢ ep_data EP_DATA* Input

DESCRIPTION

Name Description
➢ ep_data Pointer to an endpoint data structure [C.1.1.5]

RETURN VALUE

Returns TRUE if the endpoint is currently busy; otherwise returns FALSE.

C.1 Firmware Library API 240

C.1.6 WDF_TriggerWriteTransfer()

PURPOSE

• Triggers a write data transfer on a given endpoint, transferring the USB ownership
of the relevant buffer descriptor to the SIE.

PROTOTYPE

vo id WDF_Tr iggerWr i teTrans fer (EP_DATA* ep_da ta) ;

PARAMETERS

Name Type Input/Output
➢ ep_data EP_DATA* Input

DESCRIPTION

Name Description
➢ ep_data Pointer to an endpoint data structure [C.1.1.5]

RETURN VALUE

None

C.1 Firmware Library API 241

C.1.7 WDF_TriggerReadTransfer()

PURPOSE

• Triggers a read data transfer on a given endpoint, transferring the USB ownership of
the relevant buffer descriptor to the SIE.

PROTOTYPE

vo id WDF_Tr iggerReadTransfer (EP_DATA* ep_da ta) ;

PARAMETERS

Name Type Input/Output
➢ ep_data EP_DATA* Input

DESCRIPTION

Name Description
➢ ep_data Pointer to an endpoint data structure [C.1.1.5]

RETURN VALUE

None

C.1 Firmware Library API 242

C.1.8 WDF_GetReadBytesCount()

PURPOSE

• Gets the current bytes count in a given endpoint’s read buffer.
This function should be called before callingWDF_EPRead() [C.1.4] to read from the
endpoint, in order to determine the amount of bytes to read.

PROTOTYPE

WORD WDF_GetReadBytesCount (EP_DATA* ep_da ta) ;

PARAMETERS

Name Type Input/Output
➢ ep_data EP_DATA* Input

DESCRIPTION

Name Description
➢ ep_data Pointer to an endpoint data structure [C.1.1.5]

RETURN VALUE

Returns the endpoint’s read buffer bytes count.

C.1 Firmware Library API 243

C.1.9 WDF_DisableEP1to15()

PURPOSE

• Disables endpoints 1 to 15.

PROTOTYPE

vo id WDF_DisableEP1to15 (vo id) ;

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 244

C.2 Generated DriverWizard Firmware API

This section describes the WinDriver USB Device generated DriverWizard firmware
API for the Microchip PIC18F4550 development board. The functions described
in this section are declared in the18F4550\include\periph.h header file and
implemented in the generated DriverWizardperiph.c file, according to the device
configuration information defined in the wizard.

The firmware’s entry point –main() in main.c (source code provided for registered
users only) – implements aTask Dispatcher, which calls theWDF_xxx() functions
declared inperiph.h (and implemented inperiph.c) in order to communicate with
the peripheral device.

NOTE
When modifying the generated code, make sure that you complywith your
development board’s hardware specification – see note in section [12.4.3].

C.2.1 WDF_Init()

PURPOSE

• Initializes the device.
This function is automatically called from the firmware’smain() function in order to
perform the required initialization to enable communication with the device.

PROTOTYPE

vo id WDF_Init (vo id) ;

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 245

C.2.2 WDF_Poll()

PURPOSE

• Polls the device for FIFO data.
The Task Dispatcher calls this function repeatedly while the device is idle.

PROTOTYPE

vo id WDF_Poll (vo id) ;

RETURN VALUE

None

C.2.3 WDF_SOFHandler()

PURPOSE

• Start of frame interrupt handler function.

PROTOTYPE

vo id WDF_SOFHandler (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2 Generated DriverWizard Firmware API 246

C.2.4 WDF_Suspend()

PURPOSE

• This function is called by the Task Dispatcher before the device goes into suspend
mode.

PROTOTYPE

BOOL WDF_Suspend (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2.5 WDF_Resume()

PURPOSE

• This function is called by the Task Dispatcher after the device resumes activity.

PROTOTYPE

BOOL WDF_Resume (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2 Generated DriverWizard Firmware API 247

C.2.6 WDF_ErrorHandler()

PURPOSE

• USB error interrupt handler function.

PROTOTYPE

vo id WDF_ErrorHandler (vo id) ;

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 248

C.2.7 WDF_SetConfiguration()

PURPOSE

• This function is called by the Task Dispatcher when a SET CONFIGURATION
command is received.

PROTOTYPE

vo id WDF_SetConf igura t ion (by te c o n f i g) ;

PARAMETERS

Name Type Input/Output
➢ config byte Input

DESCRIPTION

Name Description
➢ config Configuration number to set

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 249

C.2.8 WDF_SetInterface()

PURPOSE

• This function is called by the Task Dispatcher when a SET INTERFACE command
is received.

PROTOTYPE

vo id WDF_Set In ter face (by te i f c , by te a l t _ s e t) ;

PARAMETERS

Name Type Input/Output
➢ ifc byte Input
➢ alt_set byte Input

DESCRIPTION

Name Description
➢ ifc Interface number to set
➢ alt_set Alternate setting number to set

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 250

C.2.9 WDF_GetInterface()

PURPOSE

• This function is called by the Task Dispatcher when a GET INTERFACE command
is received.

PROTOTYPE

by te WDF_Get Inter face (by te i f c) ;

PARAMETERS

Name Type Input/Output
➢ ifc byte Input

DESCRIPTION

Name Description
➢ ifc Interface number

RETURN VALUE

Returns the number of the active alternate setting for the given interface.

C.2 Generated DriverWizard Firmware API 251

C.2.10 WDF_VendorCmnd()

PURPOSE

• This function is called by the Task Dispatcher when a vendor-specific command is
received.

PROTOTYPE

BOOL WDF_VendorCmnd (
by te bRequest ,
word wValue ,
word wIndex ,
word wLength) ;

PARAMETERS

Name Type Input/Output
➢ bRequest byte Input
➢ wValue word Input
➢ wIndex word Input
➢ wLength word Input

DESCRIPTION

Name Description
➢ bRequest The actual request
➢ wValue The request’swValue field
➢ wIndex The request’swIndex field
➢ wLength The number of bytes to transfer (if the request has a data

stage)

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2 Generated DriverWizard Firmware API 252

C.2.11 WDF_ClearFeature()

PURPOSE

• This function is called by the Task Dispatcher when a CLEAR FEATURE command
is received.

PROTOTYPE

BOOL WDF_ClearFeature (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2.12 WDF_SetFeature()

PURPOSE

• This function is called by the Task Dispatcher when a SET FEATURE command is
received.

PROTOTYPE

BOOL WDF_SetFeature (vo id) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

Appendix D

WinDriver USB Device Silicon
Laboratories C8051F320 API
Reference

D.1 Firmware Library API

This section describes the WinDriver USB Device firmware library API for the
Silicon Laboratories C8051F320 development board. The functions and general types
and definitions described in this section are declared and defined (respectively) in
theF320\include\wdf_silabs_lib.hheader file. The functions are implemented in
the generated DriverWizardwdf_silabs_lib.cfile – for registered users, or in the
F320\wdf_silabs_f320_eval.libevaluation firmware library – for evaluation users
(see section12.3.4for details).

NOTE
Registered users can modify the library source code. When modifying the code,
make sure that you comply with your development board’s hardware specification –
see note in section12.4.3.

253

D.1 Firmware Library API 254

D.1.1 wdf_silabs_lib.h Types

The APIs described in this section are defined inF320\wdf_silabs_lib.h.

D.1.1.1 EP_DIR Enumeration

Enumeration of endpoint directions:

Enum Value Description
DIR_OUT Direction OUT (write from the host to the device)
DIR_IN Direction IN (read from the device to the host)

D.1.1.2 EP_TYPE Enumeration

Enumeration of endpoint types.
The endpoint’s type determines the type of transfers to be performed on the endpoint
– bulk, interrupt or isochronous.

Enum Value Description
ISOCHRONOUS Isochronous endpoint
BULK Bulk endpoint
INTERRUPT Interrupt endpoint

D.1.1.3 EP_BUFFERING Enumeration

Enumeration of endpoint buffering types:

Enum Value Description
NO_BUFFERING No buffering
DOUBLE_BUFFERING Double buffering

D.1 Firmware Library API 255

D.1.1.4 EP_SPLIT Enumeration

Enumeration of endpoint’s FIFO (First In First Out) buffer split modes

Enum Value Description
NO_SPLIT Do not split the endpoint’s FIFO buffer
SPLIT Split the endpoint’s FIFO buffer

D.1.2 c8051f320.h Types and General Definitions

The APIs described in this section are defined inF320\c8051f320.h.

D.1.2.1 Endpoint Address Definitions

The following preprocessor definitions depict an endpoint’s address (i.e. its number):

Name Description
EP1_IN Endpoint 1, direction IN – address 0x81
EP1_OUT Endpoint 1, direction OUT – address 0x01
EP2_IN Endpoint 2, direction IN – address 0x82
EP2_OUT Endpoint 2, direction OUT – address 0x02
EP3_IN Endpoint 3, direction IN – address 0x83
EP3_OUT Endpoint 3, direction OUT – address 0x03

D.1.2.2 Endpoint State Definitions

The following preprocessor definitions depict an endpoint’s state:

Name Description
EP_IDLE The endpoint is idle
EP_TX The endpoint is transferring data
EP_ERROR An error occurred in the endpoint
EP_HALTED The endpoint is halted
EP_RX The endpoint is receiving data
EP_NO_CONFIGURED The endpoint is not configured

D.1 Firmware Library API 256

D.1.2.3 EP_INT_HANDLER Function Pointer

Endpoint interrupt handler function pointer type.

typedef void (*EP_INT_HANDLER)(PEP_STATUS);

D.1.2.4 EP0_COMMAND Structure

Control endpoint (Pipe 0) host command information structure type.

The structure consists of the following members:

Name Type Description
bmRequestType BYTE Request Type:

Bit 7: Request direction (0=Host to device - Out,
1=Device to host - In).
Bits 5-6: Request type (0=standard, 1=class,
2=vendor, 3=reserved).
Bits 0-4: Recipient (0=device, 1=interface,
2=endpoint,3=other).

bRequest BYTE The specific request
wValue WORD A WORD-size value that varies according to the

request
wIndex WORD A WORD-size value that varies according to the

request. This value is typically used to specify an
endpoint or an interface.

wLength WORD The length (in bytes) of the data segment for the
request – i.e. the number of bytes to transfer if
there is a data stage

D.1 Firmware Library API 257

D.1.2.5 EP_STATUS Structure

Endpoint status information structure type, used for IN, OUT and endpoint 0
(control) requests.

The structure consists of the following members:

Name Type Description
bEp BYTE Endpoint address [D.1.2.1]
uNumBytes UINT Number of bytes available for transfer
uMaxP UINT Maximum packet size
bEpState BYTE Endpoint state
pData void* Pointer to a data buffer used for transferring data

to/from the endpoint
wData WORD Storage for small data packets
pfIsr EP_INT_HANDLER Interrupt Service Routine (ISR) [D.1.2.3]

D.1.2.6 PEP_STATUS Structure Pointer

Pointer to anEP_STATUS structure [D.1.2.5].

D.1.2.7 IF_STATUS Structure

Interface status structure type.

The structure consists of the following members:

Name Type Description
bNumAlts BYTE Number of alternate settings choices for the

interface
bCurrentAlt BYTE Current active alternate setting for the interface
bIfNumber BYTE Interface number

D.1 Firmware Library API 258

D.1.2.8 PIF_STATUS Structure Pointer

Pointer to anIF_STATUS structure.

D.1.3 WDF_EPINConfig()

PURPOSE

• Configure endpoints 1-3 for IN transfers

PROTOTYPE

vo id WDF_EPINConfig (
PEP_STATUS pEpSta tus ,
BYTE address ,
EP_TYPE type ,
i n t maxPacketSize ,
EP_INT_HANDLER p f I s r ,
EP_BUFFERING b u f f e r i n g ,
EP_SPLIT sp l i tMode) ;

PARAMETERS

Name Type Input/Output
➢ pEpStatus PEP_STATUS Output
➢ address BYTE Input
➢ type EP_TYPE Input
➢ maxPacketSize int Input
➢ pfIsr EP_INT_HANDLER Input
➢ buffering EP_BUFFERING Input
➢ splitMode EP_SPLIT Input

DESCRIPTION

Name Description
pEpStatus Pointer to an endpoint’s status information structure

[D.1.2.6]. The function updates the structure with the
relevant status information.

address Endpoint address [D.1.2.1]
type The endpoint’s transfer type [D.1.1.2]

D.1 Firmware Library API 259

Name Description
maxPacketSize The endpoint’s maximum packet size
pfIsr The endpoint’s interrupt handler [D.1.2.3]
buffering The endpoint’s buffering type [D.1.1.3]
splitMode The endpoint’s split mode [D.1.1.4]

RETURN VALUE

None

D.1.4 WDF_EPOUTConfig()

PURPOSE

• Configure endpoints 1-3 for OUT transfers

PROTOTYPE

vo id WDF_EPOUTConfig (
PEP_STATUS pEpSta tus ,
BYTE address ,
EP_TYPE type ,
i n t maxPacketSize ,
EP_INT_HANDLER p f I s r ,
EP_BUFFERING b u f f e r i n g) ;

PARAMETERS

Name Type Input/Output
➢ pEpStatus PEP_STATUS Output
➢ address BYTE Input
➢ type EP_TYPE Input
➢ maxPacketSize int Input
➢ pfIsr EP_INT_HANDLER Input
➢ buffering EP_BUFFERING Input

D.1 Firmware Library API 260

DESCRIPTION

Name Description
pEpStatus Pointer to an endpoint’s status information structure

[D.1.2.6]. The function updates the structure with the
relevant status information.

address Endpoint address [D.1.2.1]
type The endpoint’s transfer type [D.1.1.2]
maxPacketSize The endpoint’s maximum packet size
pfIsr The endpoint’s interrupt handler [D.1.2.3]
buffering The endpoint’s buffering type [D.1.1.3]

RETURN VALUE

None

D.1 Firmware Library API 261

D.1.5 WDF_HaltEndpoint()

PURPOSE

• Halt an endpoint

PROTOTYPE

BYTE WDF_HaltEndpoint (PEP_STATUS pEpS ta tus) ;

PARAMETERS

Name Type Input/Output
➢ pEpStatus PEP_STATUS Input/Output

DESCRIPTION

Name Description
pEpStatus Pointer to an endpoint’s status information structure

[D.1.2.6]

RETURN VALUE

Returns the endpoint’s state [D.1.2.2].

D.1 Firmware Library API 262

D.1.6 WDF_EnableEndpoint()

PURPOSE

• Enable an endpoint

PROTOTYPE

BYTE WDF_EnableEndpoint (PEP_STATUS pEpS ta tus) ;

PARAMETERS

Name Type Input/Output
➢ pEpStatus PEP_STATUS Input/Output

DESCRIPTION

Name Description
pEpStatus Pointer to an endpoint’s status information structure

[D.1.2.6]

RETURN VALUE

Returns the endpoint’s state [D.1.2.2].

D.1 Firmware Library API 263

D.1.7 WDF_SetEPByteCount()

PURPOSE

• Sets the bytes count of an endpoint’s FIFO (First In First Out) buffer.
The call to this function should be preceded by a call toWDF_FIFOWrite() [D.1.12]
in order to update the endpoint’s FIFO buffer with the data tobe transferred to the
host.

PROTOTYPE

vo id WDF_SetEPByteCount (BYTE bEp , UINT b y t e s _ c o u n t) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input
➢ bytes_count UINT Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]
bytes_count Bytes count to set

RETURN VALUE

None

D.1 Firmware Library API 264

D.1.8 WDF_GetEPByteCount()

PURPOSE

• Gets the current bytes count of an endpoint’s FIFO (First InFirst Out) buffer.
This function should be called before callingWDF_FIFORead() [D.1.13] to read from
the endpoint’s FIFO buffer, in order to determine the amountof bytes to read.

PROTOTYPE

UINT WDF_GetEPByteCount (BYTE bEp) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]

RETURN VALUE

Returns the endpoint’s FIFO bytes count.

D.1 Firmware Library API 265

D.1.9 WDF_FIFOClear()

PURPOSE

• Empties and endpoint’s FIFO (First In First Out) buffer

PROTOTYPE

vo id WDF_FIFOClear (BYTE bEp) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]

RETURN VALUE

None

D.1 Firmware Library API 266

D.1.10 WDF_FIFOFull()

PURPOSE

• Checks if an endpoint’s FIFO (First In First Out) buffer is completely full

PROTOTYPE

BOOL WDF_FIFOFull (BYTE bEp) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]

RETURN VALUE

Returns TRUE if the endpoint’s FIFO buffer is full; otherwise returns FALSE.

D.1 Firmware Library API 267

D.1.11 WDF_FIFOEmpty()

PURPOSE

• Checks if an endpoint’s FIFO (First In First Out) buffer is empty

PROTOTYPE

BOOL WDF_FIFOEmpty (BYTE bEp) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]

RETURN VALUE

Returns TRUE if the endpoint’s FIFO buffer is empty; otherwise returns FALSE.

D.1 Firmware Library API 268

D.1.12 WDF_FIFOWrite()

PURPOSE

• Write data to an endpoint’s FIFO (First In First Out) buffer.
The call to this function should be followed by a call toWDF_SetEPByteCount()
[D.1.7].

PROTOTYPE

vo id WDF_FIFOWrite (BYTE bEp , UINT uNumBytes , BYTE* pData) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input
➢ pData BYTE* Input
➢ uNumBytes UINT Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]
pData Data buffer to write
uNumBytes Number of bytes to write

RETURN VALUE

None

D.1 Firmware Library API 269

D.1.13 WDF_FIFORead()

PURPOSE

• Read data from an endpoint’s FIFO (First In First Out) buffer.
The call to this function should be preceded by a call toWDF_GetEPByteCount()
[D.1.8] in order to determine the amount of bytes to read.

PROTOTYPE

vo id WDF_FIFORead (BYTE bEp , UINT uNumBytes , BYTE* pData) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input
➢ pData BYTE* Output
➢ uNumBytes UINT Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]
pData Buffer to hold the read data
uNumBytes Number of bytes to read from the FIFO buffer

RETURN VALUE

None

D.1 Firmware Library API 270

D.1.14 WDF_GetEPStatus()

PURPOSE

• Gets an endpoint’s status information

PROTOTYPE

PEP_STATUS WDF_GetEPStatus (BYTE bEp) ;

PARAMETERS

Name Type Input/Output
➢ bEp BYTE Input

DESCRIPTION

Name Description
bEp Endpoint address [D.1.2.1]

RETURN VALUE

Returns a pointer to a structure that holds the endpoint’s status information [D.1.2.6].

D.2 Generated DriverWizard Firmware API 271

D.2 Generated DriverWizard Firmware API

This section describes the WinDriver USB Device generated DriverWizard firmware
API for the Silicon Laboratories C8051F320 development board. The functions
described in this section are declared in theF320\include\periph.h header file and
implemented in the generated DriverWizardperiph.c file, according to the device
configuration information defined in the wizard.

NOTE
When modifying the generated code, make sure that you complywith your
development board’s hardware specification – see note in section [12.4.3].

D.2.1 WDF_USBReset()

PURPOSE

• Initializes the device status information to zero (0) and resets all endpoints

PROTOTYPE

vo id WDF_USBReset(vo id) ;

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API 272

D.2.2 WDF_SetAddressRequest()

PURPOSE

• Handles a SET ADDRESS request

PROTOTYPE

vo id WDF_SetAddressRequest (vo id) ;

RETURN VALUE

None

D.2.3 WDF_SetFeatureRequest()

PURPOSE

• Handles a SET ADDRESS request

PROTOTYPE

vo id WDF_SetFeatureRequest (vo id) ;

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API 273

D.2.4 WDF_ClearFeatureRequest()

PURPOSE

• Handles a CLEAR FEATURE request

PROTOTYPE

vo id WDF_ClearFeatureRequest (vo id) ;

RETURN VALUE

None

D.2.5 WDF_SetConfigurationRequest()

PURPOSE

• Handles a SET CONFIGURATION request

PROTOTYPE

vo id WDF_SetConf igura t ionRequest (vo id) ;

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API 274

D.2.6 WDF_SetDescriptorRequest()

PURPOSE

• Handles a SET DESCRIPTOR request

PROTOTYPE

vo id WDF_SetDescr ip torRequest (vo id) ;

RETURN VALUE

None

D.2.7 WDF_SetInterfaceRequest()

PURPOSE

• Handles a SET INTERFACE request

PROTOTYPE

vo id WDF_Set In ter faceRequest (vo id) ;

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API 275

D.2.8 WDF_GetStatusRequest()

PURPOSE

• Handles a GET STATUS request

PROTOTYPE

vo id WDF_GetStatusRequest (vo id) ;

RETURN VALUE

None

D.2.9 WDF_GetDescriptorRequest()

PURPOSE

• Handles a GET DESCRIPTOR request

PROTOTYPE

vo id WDF_GetDescr iptorRequest (vo id) ;

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API 276

D.2.10 WDF_GetConfigurationRequest()

PURPOSE

• Handles a GET CONFIGURATION request

PROTOTYPE

vo id WDF_GetConf igura t ionRequest (vo id) ;

RETURN VALUE

None

D.2.11 WDF_GetInterfaceRequest()

PURPOSE

• Handles a GET INTERFACE request

PROTOTYPE

vo id WDF_Get In ter faceRequest (vo id) ;

RETURN VALUE

None

Appendix E

Troubleshooting and Support

Please refer tohttp://www.jungo.com/support for addition resources for
developers, including:

• Technical documents

• FAQs

• Samples

• Quick start guides

277

http://www.jungo.com/support

Appendix F

Evaluation Version Limitations

F.1 Windows 98/Me/2000/XP/Server 2003

• Each time WinDriver is activated, anUnregisteredmessage appears.

• When using the DriverWizard, a dialog box with a message stating that an
evaluation version is being run appears on every interaction with the hardware.

• WinDriver will function for only 30 days after the originalinstallation.

F.2 Windows CE

• Each time WinDriver is activated, anUnregisteredmessage appears.

• The WinDriver CE Kernel (windrvr6.dll) will operate for no more than 60
minutes at a time.

• WinDriver CE emulation on Windows 2000/XP/Server 2003 will stop working
after 30 days.

F.3 Linux

• Each time WinDriver is activated, anUnregisteredmessage appears.

• When using the DriverWizard, a dialog box with a message stating that an
evaluation version is being run appears on every interaction with the hardware.

278

F.4 DriverWizard GUI 279

• WinDriver’s kernel module will work for no more then 60 minutes at a time.
In order to continue working, the WinDriver kernel module must be reloaded
(remove and insert the module) using the following commands:
To remove:
/sbin/rmmod windrvr6
To insert:
/sbin/modprobe windrvr6

F.4 DriverWizard GUI

• Each time WinDriver is activated, anUnregisteredmessage appears.

• When using the DriverWizard, a dialog box with a message stating that an
evaluation version is being run appears on every interaction with the hardware.

Appendix G

Purchasing WinDriver

Fill in the order form found inStart | WinDriver | Order Form on your Windows
start menu, and send it to Jungo via email, fax or mail (see details below).

Your WinDriver package will be sent to you via Fedex or standard postal mail. The
WinDriver license string will be emailed to you immediately.

E M A I L

Support: support@jungo.com

Sales: sales@jungo.com

P H O N E / F A X

Phone:

USA (Toll-Free): 1-877-514-0537

Worldwide: +972-9-8859365

Fax:

USA (Toll-Free): 1-877-514-0538

Worldwide: +972-9-8859366

W E B:

http://www.jungo.com

P O S T A L A D D R E S S

Jungo Ltd.
P.O.Box 8493
Netanya 42504
ISRAEL

280

mailto:support@jungo.com
mailto:sales@jungo.com
http://www.jungo.com

Appendix H

Distributing Your Driver –
Legal Issues

WinDriver is licensed per-seat. The WinDriver license allows one developer on a
single computer to develop an unlimited number of device drivers, and to freely
distribute the created drivers without royalties, as outlined in the license agreement
in theWinDriver/docs/license.txt file.

281

Appendix I

Additional Documentation

Updated Manual

The most updated WinDriver User’s manual can be found on Jungo’s site at:
http://www.jungo.com/support/manuals.html#manuals

Version History

If you wish to view WinDriver version history, please refer to
http://www.jungo.com/wdver.html. Here you will be able to view a list of all
new features, enhancements and fixes which have been added ineach WinDriver
version.

Technical Documents

For additional information, you may refer to the Technical Documents database on
our site at:
http://www.jungo.com/support/tech_docs_indexes/main_index.html.
The Technical Documents database includes detailed descriptions of WinDriver’s
features, utilities and APIs and their correct usage, troubleshooting of common
problems, useful tips and answers to frequently asked questions.

282

http://www.jungo.com/support/manuals.html#manuals
http://www.jungo.com/wdver.html
http://www.jungo.com/support/tech_docs_indexes/main_index.html

	Table of Contents
	List of Figures
	1 WinDriver Overview
	1.1 Introduction to WinDriver
	1.2 Background
	1.2.1 The Challenge
	1.2.2 The WinDriver Solution

	1.3 Conclusion
	1.4 WinDriver Benefits
	1.5 WinDriver Architecture
	1.6 What Platforms Does WinDriver Support?
	1.7 Limitations of the Different Evaluation Versions
	1.8 How Do I Develop My Driver with WinDriver?
	1.8.1 On Windows 98/Me/2000/XP/Server 2003 and Linux
	1.8.2 On Windows CE

	1.9 What Does the WinDriver Toolkit Include?
	1.9.1 WinDriver Modules
	1.9.2 Utilities
	1.9.3 WinDriver's Specific Chipset Support
	1.9.4 Samples

	1.10 Can I Distribute the Driver Created with WinDriver?
	1.11 Identifying the Right Tool for Your Development

	2 Understanding Device Drivers
	2.1 Device Driver Overview
	2.2 Classification of Drivers According to Functionality
	2.2.1 Monolithic Drivers
	2.2.2 Layered Drivers
	2.2.3 Miniport Drivers

	2.3 Classification of Drivers According to Operating Systems
	2.3.1 WDM Drivers
	2.3.2 VxD Drivers
	2.3.3 Unix Device Drivers
	2.3.4 Linux Device Drivers

	2.4 The Entry Point of the Driver
	2.5 Associating the Hardware to the Driver
	2.6 Communicating with Drivers

	3 WinDriver USB Overview
	3.1 Introduction to USB
	3.2 WinDriver USB Benefits
	3.3 USB Components
	3.4 Data Flow in USB Devices
	3.5 USB Data Exchange
	3.6 USB Data Transfer Types
	3.6.1 Control Transfer
	3.6.2 Isochronous Transfer
	3.6.3 Interrupt Transfer
	3.6.4 Bulk Transfer

	3.7 USB Configuration
	3.8 WinDriver USB
	3.9 WinDriver USB Architecture
	3.10 Which Drivers Can I Write with WinDriver USB?

	4 Installing WinDriver
	4.1 System Requirements
	4.1.1 For Windows 98/Me
	4.1.2 For Windows NT/2000/XP/Server 2003
	4.1.3 For Windows CE
	4.1.4 For Linux

	4.2 WinDriver Installation Process
	4.2.1 Windows 98/Me/2000/XP/Server 2003 WinDriver Installation Instructions
	4.2.2 Windows CE WinDriver Installation Instructions
	4.2.2.1 Installing WinDriver CE when Building New CE-based Platforms
	4.2.2.2 Installing WinDriver CE when Developing Applications for CE Computers
	4.2.2.3 Windows CE Installation Note

	4.2.3 Linux WinDriver Installation Instructions
	4.2.3.1 Preparing the System for Installation
	4.2.3.2 Installation

	4.3 Upgrading Your Installation
	4.4 Checking Your Installation
	4.4.1 On Your Windows, Linux and Solaris Machines
	4.4.2 On Your Windows CE Machine

	4.5 Uninstalling WinDriver
	4.5.1 On Windows 98/Me/2000/XP/Server 2003
	4.5.2 On Linux

	5 Using DriverWizard
	5.1 An Overview
	5.2 DriverWizard Walkthrough
	5.3 DriverWizard Notes
	5.3.1 Logging WinDriver API Calls
	5.3.2 DriverWizard Logger
	5.3.3 Automatic Code Generation
	5.3.3.1 Generating the Code
	5.3.3.2 Generated USB Code
	5.3.3.3 Compiling the Generated Code
	5.3.3.4 Visual Basic or Delphi Code Generation
	5.3.3.5 For Linux:
	5.3.3.6 For Other OSs or IDEs:

	6 Developing a Driver
	6.1 Using the DriverWizard to Build a Device Driver
	6.2 Writing the Device Driver Without the DriverWizard
	6.2.1 Include the Required WinDriver Files
	6.2.2 Write Your Code

	6.3 Developing Your Driver on Windows CE Platforms
	6.4 Developing in Visual Basic and Delphi
	6.4.1 Using DriverWizard
	6.4.2 Samples
	6.4.3 Creating your Driver

	7 Debugging Drivers
	7.1 User-Mode Debugging
	7.2 Debug Monitor
	7.2.1 Using Debug Monitor in Graphical Mode
	7.2.2 Using Debug Monitor in Console Mode
	7.2.2.1 Using Debug Monitor on Windows CE

	8 Enhanced Support for Specific Chipsets
	8.1 Overview
	8.2 Developing a Driver Using the Enhanced Chipset Support

	9 USB Control Transfers
	9.1 USB Control Transfers Overview
	9.1.1 USB Data Exchange
	9.1.2 More About the Control Transfer
	9.1.3 The Setup Packet
	9.1.4 USB Setup Packet Format
	9.1.5 Standard Device Request Codes
	9.1.6 Setup Packet Example

	9.2 Performing Control Transfers with WinDriver
	9.2.1 Control Transfers with DriverWizard
	9.2.2 Control Transfers with WinDriver API

	10 Dynamically Loading Your Driver
	10.1 Why Do You Need a Dynamically Loadable Driver?
	10.2 Windows 2000/XP/Server 2003 and 98/Me
	10.2.1 Windows Driver Types
	10.2.2 The WDREG Utility
	10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Files

	10.3 Linux

	11 Distributing Your Driver
	11.1 Getting a Valid License for WinDriver
	11.2 Windows 98/Me and Windows 2000/XP/Server 2003
	11.2.1 Preparing the Distribution Package
	11.2.2 Installing Your Driver on the Target Computer

	11.3 Creating an INF File
	11.3.1 Why Should I Create an INF File?
	11.3.2 How Do I Install an INF File When No Driver Exists?
	11.3.3 How Do I Replace an Existing Driver Using the INF File?

	11.4 Windows CE
	11.5 Linux
	11.5.1 WinDriver Kernel Module
	11.5.2 User-Mode Hardware Control Application/Shared Objects
	11.5.3 Installation Script

	12 WinDriver USB Device
	12.1 WinDriver USB Device Overview
	12.2 System and Hardware Requirements
	12.3 WinDriver Device Firmware (WDF) Directory Overview
	12.3.1 The cypress Directory
	12.3.2 The microchip Directory
	12.3.3 The silabs Directory
	12.3.4 The WinDriver USB Device Firmware Libraries
	12.3.5 Building the Sample Code

	12.4 WinDriver USB Device Development Process
	12.4.1 Define the Device USB Interface
	12.4.1.1 EZ-USB Endpoint Buffers Configuration

	12.4.2 Generate Device Firmware Code
	12.4.3 Develop the Device Firmware
	12.4.3.1 The Generated DriverWizard USB Device Firmware Files
	12.4.3.2 Build the Generated DriverWizard Firmware
	12.4.3.3 Download the Firmware to the Device

	12.4.4 Diagnose and Debug Your Hardware
	12.4.5 Develop a USB Device Driver

	A WinDriver USB PC Host API Reference
	A.1 WinDriver USB (WDU) Library Overview
	A.1.1 Calling Sequence for WinDriver USB
	A.1.2 Upgrading from the WD_xxx USB API to the WDU_xxx API

	A.2 USB - User Callback Functions
	A.2.1 WDU_ATTACH_CALLBACK()
	A.2.2 WDU_DETACH_CALLBACK()
	A.2.3 WDU_POWER_CHANGE_CALLBACK()

	A.3 USB - Functions
	A.3.1 WDU_Init()
	A.3.2 WDU_SetInterface()
	A.3.3 WDU_GetDeviceAddr()
	A.3.4 WDU_GetDeviceInfo()
	A.3.5 WDU_PutDeviceInfo()
	A.3.6 WDU_Uninit()
	A.3.7 WDU_Transfer()
	A.3.8 WDU_Wakeup()
	A.3.9 WDU_TransferDefaultPipe()
	A.3.10 WDU_TransferBulk()
	A.3.11 WDU_TransferIsoch()
	A.3.12 WDU_TransferInterrupt()
	A.3.13 WDU_HaltTransfer()
	A.3.14 WDU_ResetPipe()
	A.3.15 WDU_ResetDevice()
	A.3.16 WDU_GetLangIDs()
	A.3.17 WDU_GetStringDesc()

	A.4 USB - Structures
	A.4.1 WDU_MATCH_TABLE
	A.4.2 WDU_EVENT_TABLE
	A.4.3 WDU_DEVICE
	A.4.4 WDU_CONFIGURATION
	A.4.5 WDU_INTERFACE
	A.4.6 WDU_ALTERNATE_SETTING
	A.4.7 WDU_DEVICE_DESCRIPTOR
	A.4.8 WDU_CONFIGURATION_DESCRIPTOR
	A.4.9 WDU_INTERFACE_DESCRIPTOR
	A.4.10 WDU_ENDPOINT_DESCRIPTOR
	A.4.11 WDU_PIPE_INFO

	A.5 General WD_xxx Functions
	A.5.1 Calling Sequence WinDriver -- General Use
	A.5.2 WD_Open()
	A.5.3 WD_Version()
	A.5.4 WD_Close()
	A.5.5 WD_Debug()
	A.5.6 WD_DebugAdd()
	A.5.7 WD_DebugDump()
	A.5.8 WD_Sleep()
	A.5.9 WD_License()
	A.5.10 WD_LogStart()
	A.5.11 WD_LogStop()
	A.5.12 WD_LogAdd()

	A.6 WinDriver Status/Error Codes
	A.6.1 Introduction
	A.6.2 Status Codes Returned by WinDriver
	A.6.3 Status Codes Returned by USBD

	A.7 User-Mode Utility Functions
	A.7.1 Stat2Str()
	A.7.2 get_os_type()
	A.7.3 ThreadStart()
	A.7.4 ThreadWait()
	A.7.5 OsEventCreate()
	A.7.6 OsEventClose()
	A.7.7 OsEventWait()
	A.7.8 OsEventSignal()
	A.7.9 OsEventReset()
	A.7.10 OsMutexCreate()
	A.7.11 OsMutexClose()
	A.7.12 OsMutexLock()
	A.7.13 OsMutexUnlock()
	A.7.14 PrintDbgMessage()

	B WinDriver USB Device Cypress EZ-USB FX2LP CY7C68013A API Reference
	B.1 Firmware Library API
	B.1.1 Firmware Library Types
	B.1.1.1 EP_DIR Enumeration
	B.1.1.2 EP_TYPE Enumeration
	B.1.1.3 EP_BUFFERING Enumeration

	B.1.2 WDF_EP1INConfig() / WDF_EP1OUTConfig()
	B.1.3 WDF_EP2Config / WDF_EP6Config()
	B.1.4 WDF_EP4Config / WDF_EP8Config()
	B.1.5 WDF_FIFOReset()
	B.1.6 WDF_SkipOutPacket()
	B.1.7 WDF_FIFOWrite()
	B.1.8 WDF_FIFORead()
	B.1.9 WDF_FIFOFull()
	B.1.10 WDF_FIFOEmpty()
	B.1.11 WDF_SetEPByteCount()
	B.1.12 WDF_GetEPByteCount()
	B.1.13 WDF_I2CInit()
	B.1.14 WDF_SetDigitLed()
	B.1.15 WDF_I2CWrite()
	B.1.16 WDF_I2CRead()
	B.1.17 WDF_I2CWaitForEEPROMWrite()
	B.1.18 WDF_I2CGetStatus()
	B.1.19 WDF_I2CClearStatus()

	B.2 Generated DriverWizard Firmware API
	B.2.1 WDF_Init()
	B.2.2 WDF_Poll()
	B.2.3 WDF_Suspend()
	B.2.4 WDF_Resume()
	B.2.5 WDF_GetDescriptor()
	B.2.6 WDF_SetConfiguration()
	B.2.7 WDF_GetConfiguration()
	B.2.8 WDF_SetInterface()
	B.2.9 WDF_GetInterface()
	B.2.10 WDF_GetStatus()
	B.2.11 WDF_ClearFeature()
	B.2.12 WDF_SetFeature()
	B.2.13 WDF_VendorCmnd()

	C WinDriver USB Device Microchip PIC18F4550 API Reference
	C.1 Firmware Library API
	C.1.1 Firmware Library Types
	C.1.1.1 EP_DIR Enumeration
	C.1.1.2 EP_TYPE Enumeration
	C.1.1.3 BD_STAT Union
	C.1.1.4 BDT Union
	C.1.1.5 EP_DATA Structure

	C.1.2 WDF_EPConfig()
	C.1.3 WDF_EPWrite()
	C.1.4 WDF_EPRead()
	C.1.5 WDF_IsEPBusy()
	C.1.6 WDF_TriggerWriteTransfer()
	C.1.7 WDF_TriggerReadTransfer()
	C.1.8 WDF_GetReadBytesCount()
	C.1.9 WDF_DisableEP1to15()

	C.2 Generated DriverWizard Firmware API
	C.2.1 WDF_Init()
	C.2.2 WDF_Poll()
	C.2.3 WDF_SOFHandler()
	C.2.4 WDF_Suspend()
	C.2.5 WDF_Resume()
	C.2.6 WDF_ErrorHandler()
	C.2.7 WDF_SetConfiguration()
	C.2.8 WDF_SetInterface()
	C.2.9 WDF_GetInterface()
	C.2.10 WDF_VendorCmnd()
	C.2.11 WDF_ClearFeature()
	C.2.12 WDF_SetFeature()

	D WinDriver USB Device Silicon Laboratories C8051F320 API Reference
	D.1 Firmware Library API
	D.1.1 wdf_silabs_lib.h Types
	D.1.1.1 EP_DIR Enumeration
	D.1.1.2 EP_TYPE Enumeration
	D.1.1.3 EP_BUFFERING Enumeration
	D.1.1.4 EP_SPLIT Enumeration

	D.1.2 c8051f320.h Types and General Definitions
	D.1.2.1 Endpoint Address Definitions
	D.1.2.2 Endpoint State Definitions
	D.1.2.3 EP_INT_HANDLER Function Pointer
	D.1.2.4 EP0_COMMAND Structure
	D.1.2.5 EP_STATUS Structure
	D.1.2.6 PEP_STATUS Structure Pointer
	D.1.2.7 IF_STATUS Structure
	D.1.2.8 PIF_STATUS Structure Pointer

	D.1.3 WDF_EPINConfig()
	D.1.4 WDF_EPOUTConfig()
	D.1.5 WDF_HaltEndpoint()
	D.1.6 WDF_EnableEndpoint()
	D.1.7 WDF_SetEPByteCount()
	D.1.8 WDF_GetEPByteCount()
	D.1.9 WDF_FIFOClear()
	D.1.10 WDF_FIFOFull()
	D.1.11 WDF_FIFOEmpty()
	D.1.12 WDF_FIFOWrite()
	D.1.13 WDF_FIFORead()
	D.1.14 WDF_GetEPStatus()

	D.2 Generated DriverWizard Firmware API
	D.2.1 WDF_USBReset()
	D.2.2 WDF_SetAddressRequest()
	D.2.3 WDF_SetFeatureRequest()
	D.2.4 WDF_ClearFeatureRequest()
	D.2.5 WDF_SetConfigurationRequest()
	D.2.6 WDF_SetDescriptorRequest()
	D.2.7 WDF_SetInterfaceRequest()
	D.2.8 WDF_GetStatusRequest()
	D.2.9 WDF_GetDescriptorRequest()
	D.2.10 WDF_GetConfigurationRequest()
	D.2.11 WDF_GetInterfaceRequest()

	E Troubleshooting and Support
	F Evaluation Version Limitations
	F.1 Windows 98/Me/2000/XP/Server 2003
	F.2 Windows CE
	F.3 Linux
	F.4 DriverWizard GUI

	G Purchasing WinDriver
	H Distributing Your Driver -- Legal Issues
	I Additional Documentation

