

METRA HIT 28C Calibrator, Multimeter and Milliohmmeter

3-349-098-03 6/7.05

- Universal calibrator, simulator and multimeter
 mA / mV ... V / °C (Pt100/1000, Ni100/1000, type J, L, T, U, K, E, S, R, B and N thermocouples) / 30 ... 2000 Ω
- Dual mode simultaneous simulation and measurement (U/I)
- Simulation and sensing in absolute terms, and as percentages (scaled)
- Memory for calibration procedures and results
- Frequency and pulse generator
- Ramp and step functions
- Interface and METRAwin[®]90 calibration software
- Transmitter simulator (sink: 0 ... 24 mA)
- DKD calibration certificate included
- Rugged, EMC compliant design
- Precision multimeter (V, A, Ω, F, Hz, °C/°F)
 300,000 digits and triple display
- TRMS AC-measurement up to 1 kHz
- Milliohmmeter

4-wire measurement with 0.01 m Ω resolution

DRD

Calibration Certificate included

QUALITY MANAGEMENT SYSTEM

DQS certified per
DIN EN ISO 9001 reg. no.1262

Applications

Process engineers can use the METRA HIT 28C as a calibrator and a multimeter simultaneously, for example in order to simulate sensor conditions at the input of a transmitter while measuring and saving the output signal.

If the METRA HIT BD232 plug-in infrared interface adapter (accessory) is attached to the instrument, measurement and calibration results can be uploaded to a PC, where they can be recorded and printed as a calibration report. The multimeter can also be used as a data logger. METRAwin®10/METRAHit® PC software (accessory) allows for convenient evaluation and display of measurement data, and METRAwin®90 (accessory) can be used to create, upload and download calibration procedures, as well as for the generation of calibration certificates.

Calibrator with Loop Current Measuring Instrument

Universal Calibration Source

Integrated electronics generate mV, V and mA signals. Beyond this, the electronics are capable of simulating thermovoltages for various types of thermocouples for predefined temperatures (°C or °F), as well as for Pt and Ni temperature sensors.

Frequency and Pulse Generator

Continuous frequency signals can be generated by the METRA HIT 28C for testing PLCs, energy metering devices, flow rates and more. Amplitude is adjustable for the generated square-wave pulses, which are used to simulate sensor pulses. Predefined pulse runs are also generated at a chosen frequency.

Calibration and Simulation

Measuring transducers with a wide variety of input signals (voltage, thermovoltage, RTD and 2-wire resistance sensors etc.) can be directly connected and calibrated. If a multimeter is used (e.g. METRA HIT 26S), respective values can be measured at the measuring transducer's output, transmitted to a PC via an adapter if desired, displayed with the help of METRAwin®90 software and compared with the appropriate calibration specifications. Setpoint values and actual values are displayed, or printed as a certificate. When operated in the "mA sink" mode, the METRA HIT 28C simulates a 2-wire transmitter and pulls the selected current value from the device under test.

Data Storage

Individual values which have been manually saved (10 values per measuring range or sensor type), as well as complete calibration procedures are transferred to the integrated memory and can be queried one by one by pressing a key (forward or back). The calibrator is connected to a PC with the attached METRA HIT BD232 interface adapter (accessory). Individual values, intervals and ramps which have been created with the help of METRAwin[®]90 software can be saved as data files, uploaded to the calibrator and saved to non-volatile memory.

Calibrator, Multimeter and Milliohmmeter

Read-Out Modes for Source and Sink Functions

Calibration signals can be read out either manually (numerically with key entries), or automatically by means of intervals with intermediate steps, or as a ramp signal.

The METRA HIT 28C can thus be used as a precision pulse generator for dynamic testing.

Depending upon individual needs, desired dynamic response can be based upon full-scale value and the number of intermediate steps (intervals), or rise and dwell periods (ramp). This is especially helpful for long-term testing of laboratory and panel recorders, as well as measuring transducers, and for "one-man" control rooms.

Numeric Read-Out

Calibration values are set and read out manually with the help of the instrument's keypad immediately after the calibration function has been selected.

Interval

Continuous read-out of calibration values is triggered in steps between the minimum and maximum values selected at the device to be calibrated in this read-out mode. The following step can be triggered automatically (time per step: 1 s ... 60 minutes), or manually.

Ramp

Continuous read-out of calibration values is triggered in a stepless fashion between the minimum and maximum values selected at the device to be calibrated in this read-out mode. Ramp duration for rising and falling ramps can be set within a range of 1 second to 60 minutes.

Temperature Simulation

The ten most common sensor types are available for the simulation of thermovoltages. Thermovoltages can be generated with reference to an internal (0 °C), or an external reference junction. Temperature for the external reference junction can be set at the calibrator or with a PC. This eliminates the need to connect the device to be calibrated with the calibrator via the respectively required compensating lead. A copper conductor between the calibrator and the device to be calibrated is sufficient in this case.

Characteristic Values

Calibrator

Calibration Function	Simulation Range	Resolution 30,000 Digits (4¾ places)	with a Load of	Intrinsic Error	Overload	
Direct	t Voltage Simula	ator		±(% s. + mV)	I _{max}	
	0±300 mV	0.01 mV	700 Ω	0.05 + 0.02		
v	0 3 V	0.1 mV	1000 Ω	0.05 + 0.2	18 mA	
v	0 10 V	1 mV	1000 Ω	0.05 + 2	10 IIIA	
	0 15 V	1 mV	1000 Ω	0.05 + 2		
	/ Frequency Ge g Ratio: 50% Am	plitude: 10 mV	15 V	±(% s. + Hz)	I _{max}	
Hz	1 Hz 1 kHz	0.1 8 Hz ¹⁾	1000 Ω	0.05 + 0.2	18 mA	
Curre	nt Source		max. load	±(% s. + μA)		
	4 20 mA					
mA	0 20 mA	1 μΑ	20 V	0.05 + 2		
	0 24 mA					
Curre	nt Sink			±(% s. + μA)	U _{max}	
	4 20 mA					
mA	0 20 mA	1 μΑ	V _{in} = 4 27 V	0.05 + 2	27 V	
	0 24 mA					
V_{in} : 4 27 V, I_{in} : 0 24 mA, $P_{in} = V_{in} \times I_{in} < 0.6 \text{ W}$						
Resistance-type Sensors Ω_2 and Ω_4			Sensor Current [mA]	±(% S. + Ω)	I _{max}	
Ω	52000 Ω ₂	0.1 Ω	0.05 0.1 4 5	0.05 + 0.2	5 m/	
22	$02000 \Omega_{4}$	0.1 12	0.05 <u>0.14</u> 5	0.05 + 0.2	5 mA	

¹⁾ Frequencies from 29 Hz onwards can only be set within a limited grid.

Simulator for Temperature Sensors (Resolution: 0.1 °K)

	Sensor Type	Simulation Range in °C	Simulation Range in °F	Intrinsic Error	Overload
	Resistance Therr	nometer per IEC	751	±(% of s.+K)	I _{max}
	Pt100	-200+850	-328+1562	0.1 + 0.5	5 mA
	Pt1000	-200+300	-328+572	0.1 + 0.2	3 IIIA
	Resistance Therr	nometer per DIN	43760	±(%v.E.+K)	I _{max}
	Ni100	−60+180	−76+356	0.1 + 0.5	5 mA
	Ni1000	−60+180	−76 …+356	0.1 + 0.2	S IIIA
	RTD-Fühlerstrom (0.05 <u>0.1 4</u>	. 5 mA	*	
ш	Thermocouples p	er DIN and/or IE	C 584-1	±(% of s+K) **	I _{max}
J∘ / J∘	K (NiCr/Ni)	-250+1372	-418+2501		
0	J (Fe/CuNi)	-210+1200	-346+2192		
	T (Cu/CuNi)	−270…+400	-454+ 7 52		
	B (Pt30Rh/Pt6Rh)	+500+1820	+932+3308		
	E (NiCr/CuNi)	-270+1000	-454+1832	0.1 + 0.5	18 mA
	R (Pt13Rh/Pt)	<i>−</i> 50…+1768	-58+3214	0.1 + 0.3	TOTIA
	N (CU/Cu10)	-270+1300	-454+2372		
	S (Pt10Rh/Pt)	-50+1768	-58+3214		
	L (Fe/CuNi)	-200+900	-328+1652		
	U (Cu/CuNi)	-200+600	-328+1112		

Without internal reference junction

 $\begin{array}{l} \text{rdg.} = \text{reading (measured value)} \\ \text{s.} = \text{setting} \\ \text{d} = \text{digit} \end{array}$

^{**} Relative to fixed reference temperature °C and thermovoltage of the thermocouple Reference junction, internal: 2 °K intrinsic error Reference junction, external: entry of -30 ... 40 °C

Calibrator, Multimeter and Milliohmmeter

Multimeter

Meas. Function	Measuring R	lange			on at Up- ge Limit		Input Im	pedance	for Max.	ic Error Resolution nce Conditions ±(% rdq + d)		erload acity ³⁾
			3000	00 ¹⁾	30 000 ¹⁾ 3000 ¹⁾	DC	;	AC ⁶⁾	DC	AC ⁶⁾	Value	Duration
	300	V	1	μV	10 μV	> 20	ΜΩ	11 M Ω // $<$ 50 pF	0.05 + 15	0.5 + 30 (>500d)	250 V DC AC	
V	3 m'	V	10	μ۷	100 μV	11	MΩ	$11~\text{M}\Omega~\text{//} < 50~\text{pF}$	0.05 + 15	0.2 + 30 (>100d)	eff	continuous
	30	٧	100	μ٧	1 mV	10	$M\Omega$	$10 \mathrm{M}\Omega/\!/ < 50 \mathrm{pF}$	0.05 + 15	0.2 + 30 (>100d)	sine	
	300	V	1 1	mV	10 mV	10	MΩ	$10 \mathrm{M}\Omega/\!/ < 50 \mathrm{pF}$	0.05 + 15	0.2 + 30 (>100d)	600 V	
	600	V	10 ı	mV	100 mV	10	MΩ	$10 \mathrm{M}\Omega/\!/ < 50 \mathrm{pF}$	0.05 + 15	0.2 + 30 (>100d)	CAT I	
						Voltage	drop at a	oprox. range limit		:		
						DC)	AC ⁶⁾	DC	AC ⁶⁾		
	3 m/	Α	10	nA	100 nA	160	mV	160 mV	0.05 + 15	0.5 + 30 (>100d)		
mA	30 m/	Α	100	nA	1 μΑ	200	mV	200 mV	0.05 + 15	0.5 + 30 (>100d)	0.36 A	continuous
	300 m/	Α	1	uА	10 μA	500	mV	500 mV	0.05 + 15	0.5 + 30 (>100d)	1	
					•	Open-circu	it voltage	Meas. current at upper range limit	±(% rc	lg. + d)		
	30 m ⊆	2			0.01 m Ω	0.6	V	100 mA	0.5 + 5			
	300 m ⊆	2			$0.1\mathrm{m}\Omega$	0.6	V	100 mA	0.5 + 5		±0.6 V	continuous
Ω_4	3 2	2			1 m Ω	0.6	V	10 mA	0.5 + 5			
	30 🖸	2			1 mΩ	0.6	V	10 mA	0.5 + 5			
	300 🖸	2	1 m	ıΩ		0.6	V	250 μΑ	0.07 +	20 ⁴⁾		
	3 k c	2	10 m	ıΩ		0.6	V	45 μA	0.07 +	15 ⁴⁾	050.1/	
	30 k s	2	100 m	ıΩ		0.6	V	4.5 μA	0.07 +	15	250 V DC	
Ω_2	300 k s	2	1	Ω		0.6	V	1.5 µA	0.07 +	15	AC	5 min.
	3 M2	2	10	Ω		0.6	V	150 nA	0.07 +	15	eff	
	30 MΩ	2	100	Ω		0.6	V	15 nA	1.5 + 1	5	sine	
Ω 🖈	300 🖸	2			0.1 Ω	3	V	1 mA	0.5 + 5			
→	3	٧			0.1 mV	6	V	1 mA	0.5 + 5		00.4	
Zener →	15	٧			1 mV	22	V	1 mA	1 + 5 (> 10 d)	22 V	continuous
						Discharge r	esistance	U _{0 max}	,	ig. + d)		
	3 n	F			1 pF		MΩ	3 V	1 + 5 4			
	30 n				10 pF		MΩ	3 V	1 + 5 4		250 V DC	
F	300 n	ıF			100 pF	1	MΩ	3 V	1 + 5		AC eff	5 min.
	3 μ	.F			1 nF	100	kΩ	3 V	1 + 5			
	30 μ				10 nF	11	kΩ	3 V	1 + 5		sine	
							f _{mir}	2)	±(% rc	lg. + d)		
	300 H	łz			0.01 Hz				, ,	,	250 V	
l	3 kH				0.1 Hz				0.05 +	r 5)	250 V	
Hz	100 kHz < 30				10 Hz	. 1	Hz		0.05 +	o ⁻ ′	100 V 30 V	continuous

Display: 5% places for DC and 4% places for AC, a different resolution and sampling rate can be selected in the rAtE menu for saving and transmitting measured values.

influences see page 4

Key

 $\begin{array}{l} \text{rdg.} = \text{reading (measured value)} \\ \text{d} = \text{digit} \end{array}$

²⁾ Lowest measurable frequency for sinusoidal measuring signals symmetrical to the zero point

3) At 0 ° ... + 40 °C

4) ZERO is displayed for "zero adjustment" function.

⁵⁾ Range 300 mV~: U_E = 100 mV_{eff/rms} . . . 300 mV_{eff/rms} 3 V~: U_E = 0,3 V_{eff/rms} . . . 30 V_{eff/rms} . . . 30 V_{eff/rms} 30 V~: U_E = 3 V_{eff/rms} . . . 30 V_{eff/rms} 600 V~: U_E = 30 V_{eff/rms} . . . 300 V_{eff/rms} 600 V~: U_E = 300 V_{eff/rms} . . . 600 V_{eff/rms} 600 V~: power limiting of 3 · 10⁶ V · Hz 60 20 45 . . . 65 Hz . . . 1 kHz sine, for alternating voltage TRMS_{AC}, influences see page 4

Calibrator, Multimeter and Milliohmmeter

				Intrinsic Error	Overload	Capacity 3)
Meas. Function	Temperature Sensor	Measuring Range	Resolution	for Max. Resolution under Reference Conditions $\pm(\% \text{ rdg.} + \text{ d})^{1)}$	Value	Duration
	Pt 100	-200.0 −100.0 °C		1 K		
		−100.0 +100.0 °C		0.8 K		
		+100.0 +850.0 °C		0.5 + 3		
	Pt 1000	−200.0 +100.0 °C		0.8 K		
		+100.0 +850.0 °C		0.5 + 3		
	Ni 100	-60.0 +180.0 °C		0.5 + 3		
	Ni 1000	-60.0 +180.0 °C		0.5 + 3		5 min.
	K (NiCr-Ni)	−250.0 +1372.0 °C		0.7 + 3 ²⁾	250 V	
°C/°F	J (Fe-CuNi)	−210.0 +1200.0 °C	0.1 K	0.8 + 3 2)	DC	
	T (Cu-CuNi)	−270.0 +400.0 °C		0.5 + 3 ²⁾	eff sine	
	B (Pt30Rh/Pt6Rh)	+100.0 +1820.0 °C		5 + 5 ²⁾		
	E (NiCr/CuNi)	−270.0 +1000.0 °C		0.5 + 3 ²⁾		
	R (Pt13Rh/Pt)	-50.0 +1768.0 °C		1 + 5 ²⁾		
	N (CU/Cu10)	−270.0 +1300.0 °C		0.5 + 3 ²⁾		
	S (Pt10Rh/Pt)	−50.0 +1768.0 °C		1 + 5 ²⁾		
	L (Fe/CuNi)	−200.0 +900.0 °C		1 + 5 ²⁾		
	U (Cu/CuNi)	−200.0 +600.0 °C		1 + 5 ²⁾		

Influence Error

Influencing Quantity	Sphere of In- fluence	Measured Quantity / Measuring Range ¹⁾	Influence Error ± (% rdg. + d)/10 K
		V DC, °C (TC)	0.1 + 10
		V AC	0.5 + 10
		3/30 mA DC	0.1 + 10
		3/30 mA AC	0.5 + 10
		300 mA DC, AC	0.5 + 10
		$300\Omega/3/30/300$ kΩ 2L	0.2 + 10
	0 +21 °C	3 MΩ 2L	0.5 + 10
		30 MΩ 2L	1 + 10
Temperature	and	Ω4L	1 + 10
	+25	3/30/300 nF/3/30 μF	0.5 + 10
	+40 °C	Hz	0.1 + 10
		°C (RTD)	0.2 + 10
		Source quantity 1)	
		mV/V, °C (TC)	0.1 + 10
		Ω, °C (RTD)	0.2 + 10
		mA source	0.1 + 10
		mA sink	0.1 + 10

Influencing Quantity	Frequency	Meas. Qty. / Meas. Range	Influence Error ²⁾ ± (% rdg. + d)
Frequency	> 20Hz 45Hz	300.00 mV	
V _{AC}	> 65Hz 1kHz	250.0 V	2 + 30

Influencing Quantity	Frequency	Meas. Qty. / Meas. Range	Influence Error ²⁾ ±(% rdg. + d)	
Frequency	> 20Hz 45Hz	3 mA		
I _{AC}	> 65Hz 1kHz	30 mA 300 mA	1 + 30	

Influencing Quantity	Sphere of Influ- ence		Measured Quantity / Measuring Range ¹⁾	Influence Error ²⁾
	Crest	1 2		±1 % rdg.
	Factor	2 4	V AC, A AC	±5 % rdg.
	CF	4 5		±7 % rdg.
Measured Quantity Waveshape			actor CF of the periodic quantity he displayed value: Current and Voltage M	

Influencing	Sphere of Influ-	Measured Quantity /	Influence Error
Quantity	ence	Measuring Range ¹⁾	
Relative	75%	V, A, Ω	1 x intrinsic error
Humidity	3 days	F, Hz	
	instrument off	°C	

Influencing Quantity	Sphere of Influence	Measuring Range	Damping ±dB
	Interference quantity max. 250 V \sim	V 	> 90 dB
Common Mode Interference Voltage	Interference quantity max. 250 V ~	300 mV 30 V ∼	> 80 dB
	50 Hz, 60 Hz sine	300 V ∼	> 70 dB
		1000 V ∼	> 60 dB
Series Mode Interference Voltage	Interference quantity: $V \sim$, respective nominal value of the measuring range, max. 250 V \sim , 50 Hz, 60 Hz sine	V 	> 60 dB
voitage	Interference quantity max. 250 V —	V ~	> 60 dB

 $^{^{1)}}$ Plus sensor deviation $^{2)}$ Without integrated reference junction, with internal reference temperature plus error $\pm 2~{\rm K}$

 $^{^{3)}}$ at 0 ° ... + 40 °C

¹⁾ With zero adjustment 2) Specified error valid as of display values of 10% of the measuring range

Calibrator, Multimeter and Milliohmmeter

Real-Time Clock

Accuracy ±1 minute per month

Temperature Influence 50 ppm/K

Power Supply

Battery 3 ea. 1.5 V AA-Size

alkaline-manganese batteries per IEC LR6,

or equivalent rechargeable battery

Service Life With alkaline-manganese batteries

(2200 mAh)

Measuring Function	Current	Service Life
V, Hz, mA, Ω_2 , F, °C	25 mA	70 h
Standby (MEM + clock)	350 μΑ	approx. 1 year
Calibration Function		Service Life
mV, thermocouple	48 mA	40 h
15 V	85 mA	20 h
Ω, RTD	95 mA	18 h
Sink, 20 mA	175 mA	10 h
Source, 20 mA	140 mA	12 h

Battery Test "4-" is displayed automatically if battery voltage drops to below approx. 3.5 V.

Mains Power with NA5/600 power line adapter

Reference Conditions

Ambient

Temperature +23 °C ± 2 K Relative Humidity $40 \dots 60\%$

Measured Quantity

Frequency 45 ... 65 Hz

Measured Quantity

Waveshape sine, deviation between RMS and

rectified value < 0.1%

Battery Voltage 4.5 V ±0.1 V

Response Time (Multimeter Functions)

Response Time (after manual range selection)

Measured Quantity / Measuring Range	Response Time for Digital Display	Measured Quantity Step Function
V DC, V AC A DC, A AC	1.5 s	from 0 to 80% of upper range limit value
300 Ω 3 MΩ	2 s	
30 MΩ	5 s	, , , , , , , , , , , , , , , , , , , ,
Continuity	< 50 ms	from ∞ to 50% of upper range limit value
*	1.5 s	or apportange inthe value
°C Pt100	max. 3 s	
3 nF 30 μF	max. 2 s	from 0 to 50%
>10 Hz	max. 1.5 s	of upper range limit value

Power Saving Circuit

The device is switched off automatically if none of the controls are activated for a period of approximately 10 minutes. The simulator is switched off after a period of only 5 minutes (sockets are current and voltage-free). Automatic shutdown can be deactivated.

Fuses

Fuse links **DMM** (mA measuring ranges):

F500mA/250V, 5 mm x 20 mm switching capacity 1.5 kA at 250 V AC

and ohmic load **Calibrator**:

M125mA/250V, 5 mm x 20 mm switching capacity 1.5 kA at 250 V AC

and ohmic load

Display

LCD panel (65 mm x 30 mm) with display of up to 3 measured values, unit of measure, type of current and various special functions

Display / Char. Height 7-segment characters

Main display: 12 mm Auxiliary display: 7 mm

Resolution 5¾ digit ≤ 309,999 counts

Overflow Display "OL" appears

Polarity Display "-" sign is displayed if positive pole

is connected to "L"

LCD Test All display segments available during oper-

ation of the 28C are activated after the

instrument is switched on.

Multimeter Electrical Safety

Safety Class II per EN 61010-1:2001/VDE 0411-1:2002

Measuring Category II Operating Voltage 250 V

Contamination

Degree 2 2

Test Voltage 2.2 kV~ per EN 61010-1:2001/

VDE 0411-1:2002

Calibrator, Multimeter and Milliohmmeter

Electromagnetic Compatibility (EMC)

Interference Emission EN 61326:2002 class B

Interference Immunity EN 61326:2002

IEC 61000-4-2: 1995/A1: 1998

8 kV atmosph. discharge

4 kV contact discharge

IEC 61000-4-3: 1995/A1: 1998

3 V/m

Standard Equipment

- 1 METRA HIT 28C calibrator with 3 batteries per IEC LR6 (AA size)
- 1 KS17 cable set (yellow) including two measurement cables (1 black, 1 yellow) with angle plugs and test probes
- 1 KS17 cable set (red and black)
- 1 operating instructions
- GH18 protective rubber holster
- 1 DKD calibration certificate

Data Interface

Data Transmission optical via infrared light through the

housing

with interface adapter as accessory

Type RS 232C, serial, per DIN 19241

Bidirectional baud rate (read and write)
(DMM ↔ PC)
BD232: 9600 baud

Warranty

3 years material and workmanship

1 year for calibration

Ambient Conditions

Accuracy Range 0 °C ... +40 °C Operating Temperature–10 °C ... +50 °C

Storage Temperature -25 °C ... +70 °C (without batteries) Relative Humidity 45% ... 75%, no condensation allowed

Elevation to 2,000 m

Mechanical Design

Protection Instrument: IP 50,

Connector sockets: IP 20

Extract from table on the meaning of IP codes

IP XY (1 st digit X)	Protection against foreign object entry	IP XY (2 nd digit Y)	Protection against the penetration of water
0	not protected	0	not protected
1	\geq 50.0 mm dia.	1	vertically falling drops
2	≥ 12.5 mm dia.	2	vertically falling drops with enclosure tilted 15°
3	≥ 2.5 mm dia.	3	spraying water
4	\geq 1.0 mm dia.	4	splashing water
5	dust protected	5	water jets

Dimensions 84 mm x 195 mm x 35 mm Weight approx. 420 gr. with batteries

Applicable Regulations and Standards

IEC 61 010-1/EN 61 010-1/ VDE 0411-1	Safety requirements for electrical equipment for measurement, control and laboratory use
EN 60529 VDE 0470 Part 1	Test instruments and test procedures Protection provided by enclosures (IP code)
DIN EN 61 326 VDE 0843 Part 20	Electrical equipment for measurement, control and laboratory use – EMC requirements

Calibrator, Multimeter and Milliohmmeter

METRAwin®90 Calibration Software (optional accessory)

This software allows for paperless documentation and management of calibration results, the creation of calibration procedures and remote control of the calibrator.

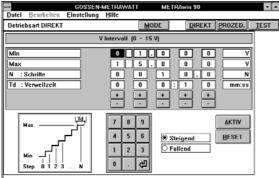
METRA HIT 28C sequence controls can be implemented online, or off-line after downloading complete calibration procedures.

METRA HIT BD232 Interface Adapter

The METRA HIT 28C calibrator can be set up, its parameters can be configured and measurement data can be uploaded to a PC with the help of the METRA HIT BD232 bidirectional adapter. The adapter has no memory of its own. It can be used to read out data from the memory integrated into the METRA HIT 28C. It supports all measuring functions and data formats included in the METRA HIT 20 series, and is included in the user-friendly BD-Pack 1.

Direct Entry at the Calibrator

The calibrator is controlled by the PC, and preset values are uploaded from the PC directly to the calibrator.


The following operating modes are provided with the indicated calibration ranges:

DIRECT A freely selectable, fixed numeric calibration value
 can be entered.

 INTERVAL Continuous read-out of calibration values from a calibration interval which can be subdivided into

intermediate steps as desired.

 RAMP
 Continuous, stepless read-out of calibration values from a calibration ramp with definable rise and dwell periods. The ramp function may also be operated continuously.

Direct Entry of Calibration Values

Calibrator Program (sequence operation)

A calibrator test program is created at the PC (e.g. with several test steps for a complex instrument or a group of systems components), stored to a data file and uploaded to memory at the METRA HIT 28C. Each calibration step can then be queried via the keypad at the METRA HIT 28C.

_	G	OSSEN-MET	RAWATT	METRAwin 91)	V		
Datei Bearbeiten Einstellung Hilfe								
Betriebsar	REKT PROZE	D. <u>I</u> EST						
Programm '	Programm 1.							
Schritt	Ausgabe	Funktion	Par. 1	Par. 2	Par. 3	Par. 4		
1.	V	Manuell	1,2345 V					
2.	V	Intervall	01,000 V	14,500 V	0025,0 N	001:50 mm		
3.	V	Rampe	01,000 V	10,000 V	000:50 mm:ss	000:10 mm		
4.	mA Quelle	Manuell	20,000 mA					
5.	mA Senke	Intervall	00,100 mA	20,000 mA	0005,0 N	000:50 mm		
6.	Ohm	Manuell	0100,0 Ohm					
7.	Ohm	Manuell	2000,0 Ohm					
8.	Ohm	Manuell	0150,0 Ohm					

Creation of a Test Program

Calibration "Test" Program in Accordance with ISO9001, 4.11

A calibration sequence can be pre-programmed in the TEST mode which can be run in selectable, individual steps, or fully automatically.

The calibration values and a freely definable comment are read out after each calibration step. After the output parameters of the device to be calibrated (e.g. a transducer) have been logged and evaluated with the multimeter, the measurement results are displayed in tabular form. Test sequence results can be saved to a data file or printed out as a calibration certificate. All requirements in accordance with ISO9001 Abs.11.4 are fulfilled.

Datei Bea		OSSEN-MET tellung Hilf		d I	METRAwin 9	U		
			_	- 17			T	_1
Betriebsar	t TEST	SCHRITT	RUN	STOR	DIE	REKT	PROZEC). IES
PASS-Proze	entanteil 50%	ÄNDERN						
Programm 1								
Schritt	Ausgabe	Funktion	F	ar. 1	Par. 2	P	ar. 3	Par. 4
1.	v	Manuell	1,!	5000 V				
Status:		Text		Warten	Sollwert		Min	Max
_				0:05	1,5000 V	1.4	400 V	1,55 \
Schritt	Ausgabe	Funktion	F	ar. 1	Par. 2	P	ar. 3	Par. 4
2.	v	Manuell	08	,250 V				
Status:		Text		Warten	Sollwert		Min	Max
_				0:15	8,2500 V	8,3	200 V	8,350
Schritt	Ausgabe	Funktion	F	ar. 1	Par. 2	P	ar. 3	Par. 4
3.	v	Manuell	0,1	500 V		1		
Status:		Text		Warten	Sollwert		Min	Max
_				0:05	0,150 V	0,	140 V	0,155
Schritt	Ausgabe	Funktion	F	ar. 1	Par. 2	P	ar. 3	Par. 4
4.	v	Manuell	12	,500 V				
Status:		Text		Warten	Sollwert		Min	Max
_				0:10	12,500 V	13	2,4 V	12,65
Schritt	Ausgabe	Funktion	F	ar. 1	Par. 2	P	ar. 3	Par. 4
5.	V	Manuell		000 V				
Capanas		·				_	u.	

Calibration Sequence for Measuring Transducer ("TEST" function)

Ausfertigendes Labor: Kalibriert von:	MUSTER KG MUSTERMANN		Zertikat Nr.: Kabbringerite METRA HI 288 S-Nr.: XXXXX-YYYYY-ZZZZ Kabbrierzettifikat: METRA HI 280 S-Nr.: WWW-ZZ-YYYYY Kabbrierzettifikat:				
Kalibrierdatum: Prttfling Fabrikat: MUSTER Typ: MULTIM Nummer: 328-45-33		METER					
Umgebung Temperatur: Luftfeuchtigkeit:	23 °C 65 %	,,,,,	Aı	rsteller t der Messung terschrift	GC	SSEN-METR Utimetertest	TTAWA
Angelegter Wert	Sollwert	Grenzwert Unten	Grenzwert Oben	Priffing Istwet	Priffing Abweichung	% Fehler der Spezifikation	PASS/Gr FAII
1,5000 V	1,5000 V	1,400 V	1,55 V	1,481 V	0.0190V	19%	PASSI
08.250 V	8,2500 V	8,200 V	8,350 V	8,28 V	0.0300V	30%	PASSI
0.1500 V	0.150 V	0.140 V	0,550 V 0.155 V	0,20 V 0.148 V	0.0020V	20%	PASSI
12,500 V	12,500 V	12,4 V	12.65 V	12.59 V	0.0020 V	60%	GRENZV
1,5000 V	1,500 V	1,45V	1,65 V	1.482 V	0.0180V	36%	PASSE
1,4444 V	1,300 V 1,4444 V	1,400 V	1,4788 V	1,402 V	0.0184V	41%	PASSI
1,2500 V	1,25 V	1,27	1,4700 V	1,425 V 1,283 V	0.0170V	34%	PASSI
Zusammenfassung: Me PASS (050%) = 6		Grenzfall (50	100%) = 1	FAIL ()	>100%) = 0		

Printout of a calibration certificate in accordance with ISO9001 including traceability (4.11b), calibration process (4.11c), measurement deviation (4.11d), pass/fail results (4.11g) and ambient conditions (4.11h)

Calibrator, Multimeter and Milliohmmeter

Milliohm measurement with Type KC4 Kelvin Clips

Kelvin clips provide for an easy way of contact between the METRA HIT 28C and low-resistance DUTs. They compensate for the disturbing influences of line and contact resistances. The KC4 set consists of two clamping clips with insulated, torsion-free jaws providing for a good clamping effect. They are capable of contacting very fine wires as well as rails and/or rods with a maximum diameter of 15 mm.

For measurements below 30 Ω , a 4-pole connection is strongly recommended.

Order Information

Description	Туре	Article Number
Calibrator, see standard equipment for METRA HIT 28 C	METRA HIT 28C	M231A
Hardware Accessories		
Charger 230 V~/5 V, 600 mA	NA5/600	Z218F
Probe for voltage measurement in power installations to 1000 V	KS30	GTZ 3204 000 R0001
Pt100 temperature sensor for surface and immersion measurements, -40 +600 °C	Z3409	GTZ 3409 000 R0001
Pt1000 temperature sensor for measurement in gases and liquids, -50 +220 °C	TF220	Z102A
Pt100 oven sensor, −50 +550 °C	TF550	GTZ 3408 000 R0001
Ten adhesive Pt100 temperature sensors, -50 +550 °C	TS Chipset	GTZ 3406 000 R0001
Imitation leather carrying pouch for METRA HIT	F829	GTZ 3301 000 R0003
Cordura belt pouch for METRA HIT multimeters	HitBag	Z115A
Imitation leather ever-ready case with cable compartment	F836	GTZ 3302 000 R0001
Ever-ready case for 2 METRA HIT, 2 adapters and accessories	F840	GTZ 3302 001 R0001
Hard case for one METRA HIT and accessories	HC20	Z113A
Hard case for two METRA HIT and accessories	HC30	Z113B
Fuse link for mA measuring ranges	F500mA/250V	Z109F
Fuse link for calibrator	M125mA/250V	Z109G

Description	Туре	Article Number
Kelvin clips (1 set = 2 units) for 4-pole connection of low-resistance DUTs, cable length 120 cm	KC4	Z227A
Kelvin probes (1 set = 2 units) with double steel tips for 4-pole connection of low-resistance DUTs	KC27	Z227B
Software Accessory		
1-channel pack consisting of: METRA HIT BD232, bidirectional interface adapter, RS 232 interface cable, METRAwin®10/METRA HIT analysis software and installation instructions	BD-Pack 1	Z215A
Calibrator pack consisting of: METRA HIT BD232, bidirectional interface adapter, RS 232 interface cable, METRAwin®90 calibration software and installation instructions	CP1	GTZ 3231 100 R0001
Calibrator pack consisting of METRA HIT 28 C, METRAwin®10/METRA HIT, METRAwin®90-2, RS 232 interface cable, BD232, KC2, HC30 and 1ASi battery set	CP28	M231B
Bidirectional interface adapter	BD232	GTZ 3242 100 R0001
RS 232 interface cable, 2 m	Z3241	GTZ 3241 000 R0001
METRAwin [®] 10/METRA HIT software update and installation instructions	Z3240	GTZ 3240 000 R0001
Calibration software for controlling the METRA HIT 28C and for analysis of calibration results	METRAwin [®] 90-2	
Accessory Clip-On Current Transformers	and Current Sen	sors *
Clip-on current transformer 1 200 A~, 1000:1, <u>4865</u> 400 Hz	WZ11A ^{D)}	Z208A
WZ12A Clip-On Current Transformers / So frequency range: 4565500 Hz, clip op	ensors D ^{D)} pening: Ø 15 mm	max. cable dia.
Clip-on current transformer 15 A 180 A, 1000:1	WZ12A	Z219A
Clip-on current sensor 10 mA 100 A; 100 mV/A	WZ12B	Z219B
Clip-on current sensor selectable, 1 mA 15 A; 1 mV/mA und 1 A 150 A; 1 mV/A	WZ12C	Z219C
Clip-on current transformer 30 mA 150 A, 1000:1	WZ12D	Z219D

Data sheet available

Edited in Germany • Subject to change without notice • A pdf version is available on the internet

Phone +49-(0)-911-8602-0

www.gossenmetrawatt.com

Fax +49-(0)-911-8602-669

Please refer to the Test and Measurement Catalog for further information on clip-on current transformers and current sensors