## Introduction

After carefully examination of the first 7 chapters you should get familiar with the ECOSTEP and you should be capable to use it as a positioning drive. This could be:

- Point-to-Point-Positioning
- electronic gear box
- analog nominal value +/-10 V

More complicated applications, especially multi-axe-systems using interfaces like RS485, CANopen or Profibus DP, may require the use of the object list. As a registered user of the ECOSTEP® you will get release notes as soon as there are any innovations.

**Wichtig**: This documentation requires a thorough knowledge of electric plants and relevant security rules (You will find the security rules with every delivered ECOSTEP®).

Printing this documentation is possible with the print function of the browser. On the left you find Hyperlinks for quick navigation within the content frame. The text contains hyperlinks to other sides. To get back to the starting point press the << - button once or twice.

The drive ECOSTEP/ ECOLIN is distributed with the program **hsio.exe**. For running and adjusting the controller a serial extension lead is needed:

TOP

#### RS232 connection

| PC COM1/IRQ4 oder COM2/IRQ3 | ECOSTEP X5 |
|-----------------------------|------------|
| RxD 2                       | 2          |
| TxD 3                       | 3          |
| GND 5                       | 5          |

#### Parametriersoftware HSIO

If you are within this workshop asked to address the controller with hsio, after starting the program and one click on the RETURN button appears the following picture:

| PC COM Adjustment<br>Offline Configuration<br>Device Configuration<br>Commu. Profile DS301<br>Device Profile DS402<br>Direct Object Editor |
|--------------------------------------------------------------------------------------------------------------------------------------------|

Now make under PC-Interface Settings the above described inputs for COM and IRQ and put in the corresponding ID number (Default 01 H) in accordance with

the switch position of the DIP-switch. Press the ESC-button if you want to get back to the former menu. In case of a communication mistake, check the cable or change PC-Interface settings (com1/irq4 or com2/irq3). Otherwise you have reached communicative control over the controller.

The rather abstract structure of the hsio is based on the clear definition of CANopen at the DS402 according to  ${\sf CIA}$ , which means "can in automation".

According to this rules the structure of an object- or address - list is generated.

.....

2001 > ECOSTEP ANTRIEBE / JENAER ANTRIEBSTECHNIK GMBH

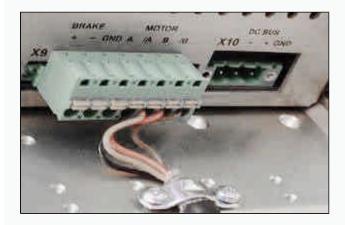
# 1.0 Installation

This installation is not to be understood as an installation according to matters of EMD (see the following PDF-pages safety instructions), but as a laboratory construction for testing the function of the tool. The following materials are needed:

- Logic supply (low voltage, safetely saperated from 230 VAC) or JAT ECOBRAX200 with transformator
- ECOSTEP®200 + connector set
- motor + leads (power, encoder, RS232)
- recommended is a mechanical system with limit switches
- power pack (24 150 V DC)/ could be supplied by JAT



First you connect motor cables and controller.



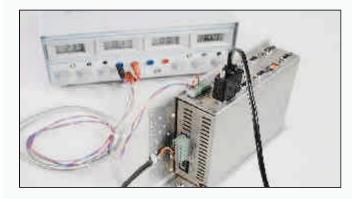

The motor encoder uses signals according to RS422. The encoder is supplied with 5 V by the controller at input X8.

## □ 1.1 Encoder connectors / D-Sub 9 pol. to female X8

| ECOSTEP X8 | Signal      | Pin          |
|------------|-------------|--------------|
|            |             | connector    |
| 1          | 5 V         | 12           |
| 2          | А           | 5            |
| 3          | В           | 8            |
| 4          | Ν           | 3            |
| 5          | free/ (24V) | free/ (24 V) |
| 6          | GND         | 10           |
| 7          | /A          | 6            |
| 8          | /В          | 1            |
| 9          | /N          | 4            |

The motors possess 2 phases, whose 4 cables are connected with (A/A + B/B) of the connector X9. With the inputs (+) and (-) a holding brake (24 V, 1A) is switched on.




The wiring system of X9 you find in the table below. The values in brackets are in case you are using female connectors. The ground cable and shield should be well mounted on the controller (see picture above). Over 60 VDC the GND-lead is needed.

TOP

## □ 1.2 Motor power connector (with or without brake) at X9

| ECOSTEP   | Nema 34/42<br>4 Leads | Nema 23<br>4 Leads | Nema 17<br>4 Leads |
|-----------|-----------------------|--------------------|--------------------|
| А         | 3                     | black              | white              |
| /A        | 1                     | orange             | yellow             |
| В         | 4                     | red                | red                |
| /B        | 2                     | brown              | blue               |
| GND       | green-yellow          | free/GND           | free               |
| Brake (-) | separated cable Pin 3 | thin black         | no brake           |
| Brake (+) | separated cable Pin 1 | thin brown         | no brake           |

The logic is separated galvanically from the suppliant. Please mind when connecting the motor with 24 V. The hardware-enable is also connected with 24 V DC if not switched by a PLC.



## 1.3 Logic supply

The logic-suppliant of connector X4/Phoenix MC -1,5//3,81 must lie between 18 and 30 V. The outputs need 3 x 0,5 A, the brake 1 A and the controller about 0,3 A.

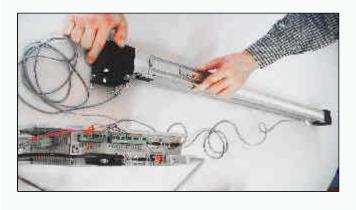
TOP

TOP

TOP

## 1.4 Hardware reset

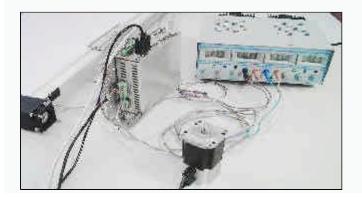
After connecting the LED "run" blinks and "24 V" shines steadily green. If not, please check the logic tension and the encoder connections. You can RESET the mistake in turning the logic on and off or shortly lay 24 V at the reset- input of connector X4.


## 1.5 Feedback check

The connector is now in its basic status. If you connect a PC via RS232 with the connector and call up the program hsio, it is possible to see the encoder data when turning the motor shaft (Main Menu\Device Profile DS402\Profile Position Mode). If you have the master encoder also connected you should control its working inside menu (Main Menu\Device Configuration\Master Encoder).



## 1.6 Limit switch adjustment


The next step is adjusting the limit switch. This is generally a low-volt active/high-volt-active. We connect (+) with 24 V from connector X4 and the signal leads with the inputs of DIN6 and 7 and the signal mass with "ground" under DIN8 on connector X3. The setting is generally connected to the reference drive, that is why both items have got a separate chapter Appendix A-Limit switches.



TOP

## 1.7 Powersupply

As last step in laboratorial installation we connect the controller with the power supply. The DC bus of the amplifier needs not to be stabilised but smoothed. It arrives at connector X10/Phoenix MSTB - 2,5//5,08. Now the motor is ready and we can start with the next chapter.



## 2.0 First move

Switching on the motor without load ! Before doing this we make a final check and we proof whether the commutation parameters set correctly and the maximum current is set according to the motor data sheet. Then we learn a little bit about a state machine to get the system running.

2.1 Commutation

To check the first point we go inside hsio to: (Main Menü\Device Profile DS402\Commutation Parameters)

| tc_para.tc_commu_length                                                  | 160        |
|--------------------------------------------------------------------------|------------|
| tc_para.tc_commu_poles<br>tc_para.tc_commu_v_preph_factor                | 0<br>80    |
| <pre>tc_para.tc_commu_c_preph_factor tc_para.tc_commu_max_prephase</pre> | 0<br>60    |
| <pre>tc_para.tc_commu_find_current</pre>                                 | 1032       |
| <pre>tc_para.tc_commu_find_delay tc_para.tc_commu_find_damping</pre>     | 1000       |
| tc_para.tc_commu_find_method                                             | Ő          |
| <pre>tc_para.tc_commu_offset pos_enc_res.encoder_increments</pre>        | 40<br>8000 |
| ···                                                                      |            |

If you purchased a rotative motor you will have normally the above parameter preset. We see the 10 parameters of the object block 0x60F6. But anyway the important parameters are *find\_current (60F6,06)*, the velocity dependend flux angle *v\_preph\_factor (60F6,03)* and the encoder resolution parameter *commu\_length (60F6,01)* together with the amount of electrical poles *commu\_poles (60F6,02)*, which is identical with the pole pair number at rotative motors and identical 1 for linear motors.

For example a servostepper with 50 pole pairs and an encoder with resolution 2000 inc/ revolution has after the internal interpolation by four 160 pulses per pole pair. If we write a zero into *commu\_poles* the controller thinks we have done the division 8000 by 50 and so we have to write 160 into *commu\_length*.

The internal division is useful if one want to drive a motor with 30 pole pairs with a 2000 puls encoder. The quotient is non regular, but the controller takes care about that. In this case we write 8000 into *commu\_length* and 30 into *commu\_poles*.

If you use a **linear motor** of pole pair length 32 mm together with an linear encoder of resolution 1 µm you write 32 000 into *commu\_length* and 1 into *commu\_poles*! At the object *commu\_find\_method* you choose the commutation method. In general 3 is used for horizontal and 1 for vertical systems.

TOP

#### 2.2 Current adjustment

To adjust the **maximum current** we go into the following menu *Profile Torque Mode*.

| Profile Torque Moo            | de   |
|-------------------------------|------|
| <pre>max_current</pre>        | 2047 |
| current_actual_value          | 0    |
| tc_para.tc_brake_delay        | 100  |
| tc_para.tc_ixixt_current      | 0    |
| tc_para.tc_ixixt_thau         | 1000 |
| tc_para.tc_fourier1           | 0    |
| tc_para.tc_fourier3           | 1000 |
| tc_para.tc_fourier5           | 0    |
| tc_para.tc_fourier7           | 0    |
| tc_para.tc_current_offset_a   | 2016 |
| tc_para.tc_current_offset_b   | 2016 |
| tc_para.tc_ixixt_actual_value | 2016 |
| tc_para.tc_ixixt_limit_value  |      |

Important parameters for you as a user are:

- max\_current (6073,00) that is the upper limits of the the current
- current\_actual\_value is the actual value set by the controller.
   With this value we set the integral gain parameter according to the friction current.
- in tc\_ixixt\_current and tc\_ixixt\_thau we could set the current limit in time measured in time period thau/seconds. This is used as a safety function if one drives on block and the following error couldn't come.

Finally we proof the default values of the position and velocity loop parameter, which are set for **free shaft operation**:

| Main Menu\Device Profile DS402\Profile Velocity | Mode       |
|-------------------------------------------------|------------|
| vel_para.vc_kp                                  | 50         |
| vel_para.vc_ki                                  | 1          |
| vel_para.vc_ilim                                | 400        |
| vel_para.vc_error_filter_length                 | 1          |
| vel_para.vc_output_filter_length                | 3          |
| Main Menu\Device Profile DS402\Position Control | I Function |
| pc_para.pc_kp                                   | 3000       |
| pc_para.pc_vfff                                 | 10000      |
| Main Menu\Device Profile DS402\Profile Position | Mode       |
| profile_acceleration                            | 10 000     |
| profile_deceleration                            | 10 000     |
|                                                 |            |

TOP

#### 2.3 State control

Now we have made the presets and can look at the state control of the drive:

Main Menu\Device Profile DS402\Device State Control:

| Control Word:                                                                                                                                                                                                                                                                                                                                 | e State Control —<br>Status Word:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Switch On<br>Disable Voltage<br>Quick Stop<br>Enable Operation<br>Setpoint Res. Start Home<br>Immed. Res. Res.<br>abs./rel. Res. Res.<br>Reset Fault<br>Halt<br>Reserved 1<br>Reserved 1<br>Reserver 2<br>Manufacturer specific 1<br>Manufacturer specific 3<br>Manufacturer specific 3<br>Manufacturer specific 4<br>Manufacturer specific 5 | 1       Ready to Switch On       1         1       Switched On       1         1       Operation Enable       1         1       Fault       0         1       Fault       0         0       Voltage Disabled       1         0       Quick Stop       1         0       Switch On Disable       0         0       Switch On Disable       0         0       Manufacturer specific 1       0         0       Remote       0         0       Target Reached       1         0       Internal Limit Active       0         0       Setp.Ack.       V=0       Hom.att.         0       Foll.Err.       Res.       Hom.Err.         0       Reference Found       10 | _ |

With the help of the cursor we can move at the left side up and down. By pressing RETURN one could set 0 to 1 and vice versa. The numbers in the column define the "control word" which sends orders to the controller. The left side is just readable because it shows the status of the controller. For more see state machine.

*Control word (6040,00)*: With this 16 bit object we control the status of the controller:

- Default state after logic on and power off : (0000 0110) = 2^1+2^2 = 0x6 Hex
- Controller on: (0000 1111) = 2^0+...2^3 = 15 DEC = 0xF Hex
   Homing Start (if operation mode is 6):
- (0001 1111) = 31 DEC = 0x1F Hex
- Relative positioning: (0100 1111) ->(0101 1111) = 0x4F -> 0x5F Hex
- Absolute positioning immediately:
   (0011 1111) = 63 DEC = 0x3F Hex
- Error Reset: (1000 0000) = 128 DEC = 0x80 Hex

At the *Status word (6041,00)* we have the following important states:

- Ready to Switch on = 1 DEC = 0x01 Hex
- Fault = 8 DEC = 0x08 Hex
- Target Reached = 1024 DEC = 0x400 Hex
- □ Commutation Found = 0x4000 Hex
- □ Reference Found = 0x8000 Hex

TOP

.....

## 2.4 Modes of operation

In the menu **Device Control** one can see the status word as hexadecimal number and can set the control word also as hexadecimal number. But mainly we use this menu to set the *modes\_of\_operation* (6060,00).



The most important operation modes are:

- Value 1 = Positioning (absolute or relative)
- Value 3 = velocity mode with following error control
- Value 3 = velocity mode without following error control
- Value 4 = positioning mode without profile control, is used if one uses the interface master encoder X7 as nominal value (e.g. Step & Direction or electronic gearing)
- Value 6 = Homing mode
- Value 7 = interpolation mode with CANopen

TOP

### 2.5 Fast start

Now we switch on the drive ::

- the shaft is free
- the LED 24V is green and the LED from RUN is flashing green
- In Device Control the modes of operation is 1 and the control word is set to 0x0F
- we check, whether the bit Commutation Found in Device State Control is
   1 or the status word has the value 0x4437 and the motor shaft resists
   against manually rotation
- □ if so we set the control word in Device Control to 0x3F

after this we go to menu Profile Position Mode:



Now we set the *target\_position* to 8000 if *profile\_velocity* equals 0, nothing happens and we set the *profile\_velocity* to 3 000 000 (350 U/min).

Attention - the motor should rotate one revolution:

It is making one revolution and the green LED's are still on. Congratulation!

- The motor is not running. Pity! Please check the following things again:
   Switch off the logic switch it on start again at controller adjustment
- If you are here the second time without success, then check the error with the error code (main menu\device configuration\error flags) and call your application engineer. If you've been successfully you can proof also the homing and the limit switches.

To do this go back to menu **Device Control**, set the *control word* to 0x0F and choose 6 for the *modes\_of\_operation* and switch the control word again to 0x1F - for more info click here. We proof the limit switches by setting a new positive *target\_position* and activate DIN6. The motor shouldn't run further unless DIN6 is deactivated - for more info click here.

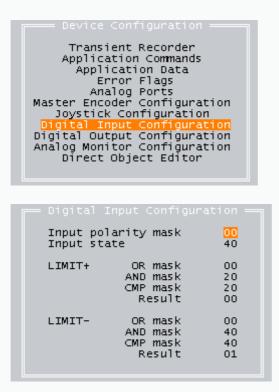
Anyway if you have still problems, check this. Above steps could be automated by the use of offline programming.

....

2001 > ECOSTEP ANTRIEBE / JENAER ANTRIEBSTECHNIK GMBH

# Appendix A - Limit switches and homing

This chapter shows how to configure the end switch with **free motor shaft** and how to choose the reference run mode. This is necessary if your drive system is one which possesses clearly defined starting and ending positions. These are all screw drives and belt systems with a permanently installed vehicle.


Limit switches

The end switches are connected with the inputs of X3:

- DIN6 for limit +, i.e. limit in positive counting direction of the motor
- DIN7 for limit-, i.e. limit in negative counting direction of the motor
- DIN8 for the reference sensor

You can make out the counting direction of the motor by the change of the actual position when turning the motor shaft by hand. The actual position is shown in hsio as *position\_actual\_value* in (Main Menu\Device ProfileDS402 \Profile Position Mode). With the delivery configuration it happens generally when the motor shaft is turned anti-clockwise.

Now appears as described in the introduction the main menu. By pressing "return" you arrive the **device configuration**. Within this menu you can navigate with the arrow buttons. By pressing ESC, you get one level higher. Value inputs and submenus are reached by RETURN.



Arrived in Digital Input Configuration you see by Input State which inputs are set. The value is coded with a normal SPS bitcode (glossary).

Input 6 "high as logic high" means 0x20 Input 7 high means 0x40 Input 6 + 7 high mean 0x60

*High* in our context means always *logic activ*. Which physically level is meaned will be determined by the Input Polarity Mask.

In the above picture the Input Polarity Mask (inverts the masked inputs) is zero. The Input State is 0x40, which means that input 7 is "high". If you enter 0x60 for Input Polarity Mask, in Input State appears a 0x20 Hex and input 6 is now logically active whereas input 7 is logically inactive, because we have defined the inputs 6 and 7 as closers!

In generell the value in Input State has to be compared with an AND or OR connection with the value in CMP mask and gets a "1" in result if the boolean value is TRUE. This 1 will be postprocessed within the controller (e.g. blocking the motor).

Now you can check if your limit switches function on the right side by activating them (1.0 Installation > Limit switch-adjustment). Please activate also the reference switch DIN8. Within Input State must be added 0x80.

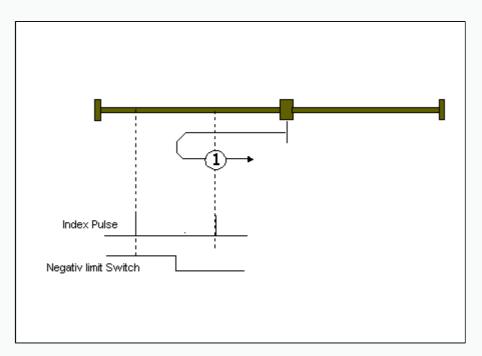
TOP

TOP

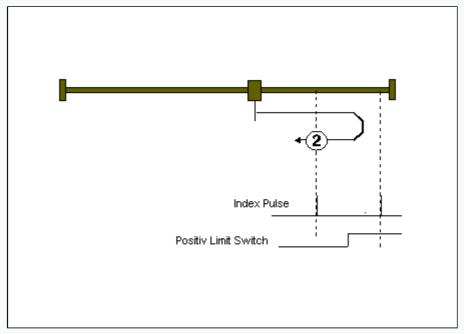
#### Homing

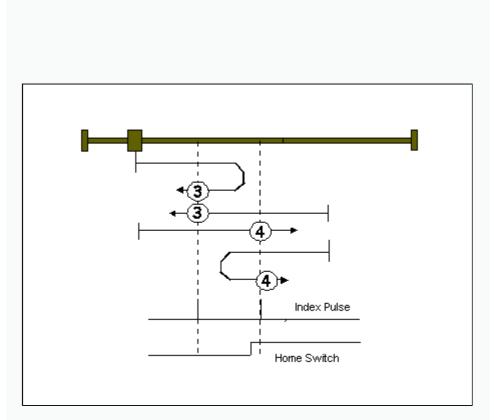
After configuring the limit switches we choose the reference run. We **start the homing** in chapter First move. To configure the reference run we enter the Device Profile DS402 menu and there the submenu **Homing Mode** 

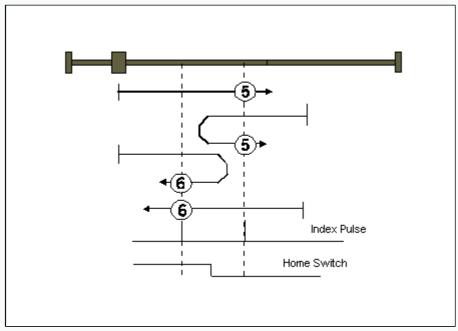


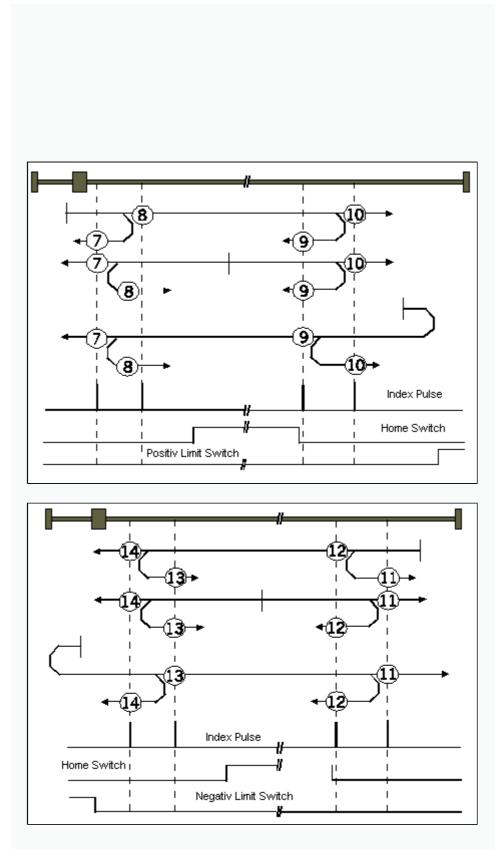

with the following parameters:

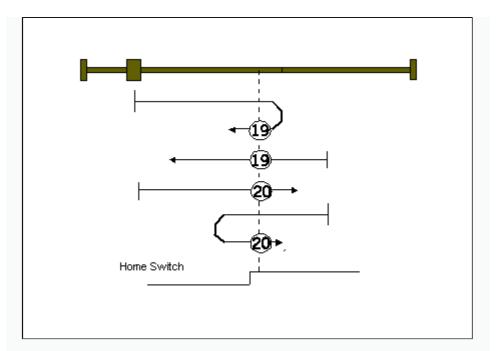
- home\_offset moves the zero (origin) by X increments
- homing\_method defines the reference method.
- speed\_during\_search\_for\_switch defines the velocity to find the limit switches
- speed\_during\_search\_for\_zero defines the velocity to move to the index or reference switch after the limit switch has been found
- homing\_acceleration defines overall acceleration during homing mode

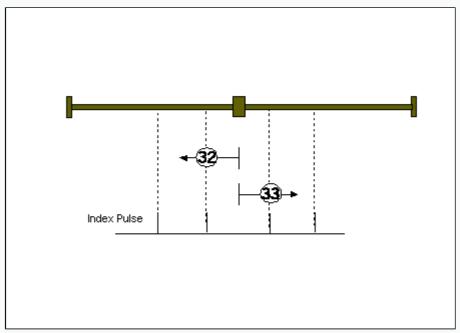

In the above example one moves with 117 rpm to the low high side of the negative limit switch. It is kept in the low district of the limit switch with about 11,7 rpm on the first index impulse of the encoder. The acceleration is about 20 rad/s<sup>2</sup>.


Homing methods


The table below connects the type reference run with the according number of CANopen DSP402.





# Reference modi (Homing)







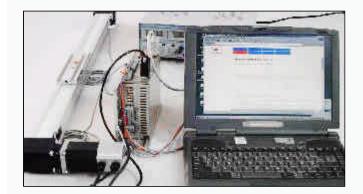




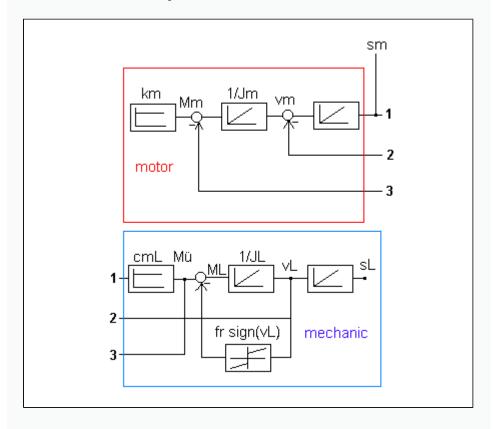



Because the methods are quite similar, only some are explained:

## Method 1: see above.


Method 3: It is driven up to the L-H-puls of the reference sensor. At the 1. index impulse it is stopped where the reference switch is low. Method 7: It is driven from sidewards to the L-H-flank of the reference switch. The positive limit switch is low and zeroes with the next index impulse, where the reference switch is low.

Method 17 - 31: Are like methods 1 -14 but without index impulse. The example shows 19 and 20 which are comparable to 3 and 4. Method 32: first index impulse anti-clockwise


Method 34: not described, assigns the zero on actual position.

# Appendix B - Mechatronic

Now we put the motor on the load:



## Electromechanical System:



Welcome to adjust the above motor drive system.

Take some time to understand the above situation. The abbreviations are explained at the next table otherwise we used the common signs for integration and multiplication in a control network.

| Abbreviation | Meaning         |
|--------------|-----------------|
| km           | torque constant |
| Mm           | torque          |
| Jm           | motor inertia   |

| vm          | motor speed                 |
|-------------|-----------------------------|
| sm          | value motor encoder         |
| cml         | mechanical elasticity       |
| Mü          | transfered torque           |
| ML          | load torque                 |
| JL          | load inertia                |
| vL          | load speed                  |
| fr sign(vL) | nonlinear friction function |
| sL          | position of the load        |

You have to consider that one moves a load just by generating a static angle between the load- and the motor shaft. Because of this there is always an elastic reaction of the load (torque transmission). The only system where this is not like this is the direct linear motor, but only if the bottom under the motor is not swinging and the friction force is low compared to the cogging of the motor, otherwise we have the same as in the rotative case. What happened often is that under wrong controller parameter the motor tends to swing and one could hear and feel it. The result is that the position stiffness is low.

### Problem outline

To understand this oscillation and what is the reason for it and what kind of parameter have to be adjusted to prevent this we draw the following picture in mind:

We think of two ball systems, one with mass 10 kg coupled by a spring with your hand and another 10 kg ball coupled with a steal rod with your hand. If you try to move the one with the spring you will generate a special stretching length depending on the acceleration and the friction constant of the bottom. If you have a variation of the friction constant it will be quite difficult to generate a constant moving of the ball, especially if the frequency of the variation is in a special area. Then you push and pull but the ball doesn't do what you want. In this case the system is instabil. With the rod system there will be no problem as long as your arm are not getting elastic. May be after some time you check it also with the spring and depending on the spring stiffness you realize two things:

1. the time to change the velocity of the ball could just generated up to a special inverse frequency (T = 1/f)

2. you keep cool if there is just a small but high frequency riple on the velocity according to friction nonlinearities

What did you do? - You have just set in your mind a low pass filter, which means it does not matter you if there are some high frequency oscillations on the velocity due to external distortions with rather low amplitude.

TOP

TOP

Control strategy

Therefore we learn here to set a low pass filter into the drive and to find the right gain of the error correction due to the proportional and integral parameter of the velocity control and the proportional parameter of the position control.

**Firstly** we calculate according to the load inertia and the available torque the maximum acceleration needed in that way, that there will be enough torque to compensate the friction. This is normally done together with the sales engineer before buying. The result is a special motor and the right drive size (ECOSTEP200 + 42N or 34N or ECOSTEP100 + 23S or 17S).

**Secondly** we determine the highest gain crossover frequency depending on the resolution of the encoder, the maximum torque and the inertia of the load. This is theoretical done with the help of our Applet *adjust.xls* and then by moving the load by hand against the motor torque with modes of operation set to - 3 and integral gain vel\_para.vc\_ki set to Zero. You should notice a high damping force without hearing oscillations in the determined frequency range. Otherwise slow down the gain vel\_para.vc\_kp and take care that the bode curve of the position loop doesn't get a resonance. In this case turn pc\_para.pc\_kp down.

TOP

#### Adjustment

**Finally** we optimize the stabile system with the integral part of the velocity control objects *vel\_para.vc\_ki* and *vel\_para.vc\_ilim* and with the velocity feed forward parameter *pc\_para.pc\_vfff* to obtain a minimum average following error. Sometimes (the mechanical rigidity is too low) you might set also the torque feed forward parameter *pc\_para.pc\_afff* to achieve better performance. It is suitable to move between 2 position automatically during this tuning.

During the above tuning we will stay in the two following menu at the software hsio:

| target_velocity<br>vel_para.vc_kp<br>vel_para.vc_ki                                     | 0<br>100    |
|-----------------------------------------------------------------------------------------|-------------|
| vel_para.vc_ilim<br>vel_para.vc_error_filter_length<br>vel_para.vc_output_filter_length | 500         |
| velocity_sensor_actual_value<br>velocity_demand_value                                   | 3<br>0<br>0 |
| velocity_actual_value<br>velocity_control_effort                                        | 0<br>2      |

| Position Control F<br>following_error_window<br>position_window_time<br>position_demand_value*<br>position_actual_value*<br>control_effort<br>pc_para.pc_kp<br>pc_para.pc_dff<br>pc_para.pc_offf<br>pc_para.pc_cff0<br>pc_para.pc_cff1<br>pc_para.pc_cff1<br>pc_para.pc_cff1<br>pc_para.long_spion1<br>pc_para.long_spion3<br>pc_para.long_spion4 | unction<br>2000 inc<br>10 inc<br>0 inc<br>14826 inc<br>14645 inc<br>16000<br>4000<br>0<br>16384<br>0<br>0<br>0<br>0<br>0<br>-2<br>20000<br>58<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2001 > ECOSTEP ANTRIEBE / JENAER ANTRIEE                                                                                                                                                                                                                                                                                                          | STECHNIK GMBH                                                                                                                                                                                                  |  |

## Appendix C - Interfaces

## Overview

The ECOSTEP contains several interfaces, that can act parallel to set new nominal values in the drive. We will describe the most importent in this chapter.

# ☐ Analogous Interface (+/-10 V)

One of the still common interface is the is the +/-10 V (connector X3: AIN+/signal and AIN- /ground where GND means shield) interface. To tell the ECOSTEP to read from this interface, one could set the parameter through hsio or direct address access. We will try to do it through the parameter set up software. Please go to the following menu (.\device configuration\analog ports):



| Analog In | put Reg | jister Ma            | apping 6          | 0FF0020            |
|-----------|---------|----------------------|-------------------|--------------------|
| +00000 *  | 03000 * | (24 <mark>+00</mark> | ) =               | 0                  |
| highres_m | ode O   | hiç                  | ghres_ac          | tive O             |
| value[6]  | = {     | 1,<br>0,             | 4,<br>73,         | 1,<br>801 }        |
| offset[6] | = {     | 502,                 | 503,              | 509,               |
| ADC[6]    | = {     | 506,<br>502,<br>514, | 0,<br>507,<br>73, | 0}<br>509,<br>801} |
|           |         |                      |                   |                    |

You have to change the red marked fields. The first one defines the target object that will get the nominal value. In the above picture it is the nominal velocity if you want to run the controller in closed loop velocity mode, that means mode of operation is - 3. If you don't have an external position controller you should use mode of operation 3, where the position controller is included. The second field determines the resolution together with the third field - see also scaling formula (Appendix F - Glossary). In our example the maximum velocity at 10 V would be 1440 rpm.

To start the regulation through the analogous port, one has to set the control word to 0x000F and the mode of operation to - 3 or 3.

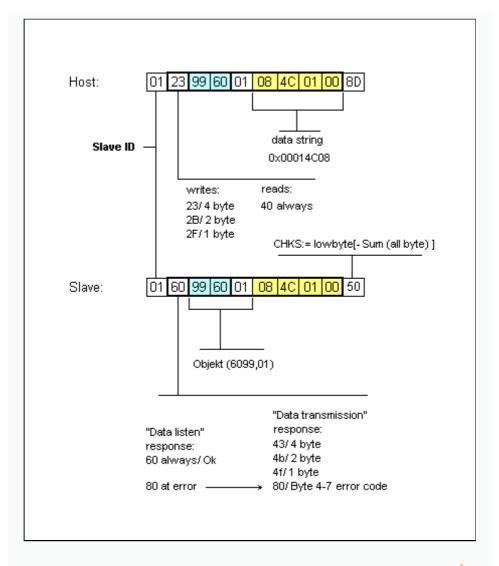
If one wants to set up a continuous change of limitation of the drive current through the analogous port, one uses the maximum current (6073,00) as target object and defines the resolution with factor = 2 and shift = 0. This would give resolution of 10 mA if the maximum value at 10 V should be 6 A.

☐ Master Encoder - Interface (RS422)

The master encoder interface X7 has the same pin code as the motor encoder interface (1.0 Installation > Encoder connection diagram), except that it can supply at PIN 5 additionaly 24 V for special measuring systems. To configure a master- slave connection to several drives an encoder output X8 is connected with the master encoder input X7 of one or more drives, which are then slaves in the chain. To implement this interface, also directly with the object catalogue, one has to follow up the next steps at (.\ device configuration\ master encoder configuration):

| Master Pos Mapping | 00000000 |
|--------------------|----------|
| Master Vel Mapping | 60FF0020 |
| Gear factor        | 10000    |
| Gear divider       | 10000    |
| Counter mode       | 01       |
| Master Pos Actual  | -1       |
| Gear Pos Actual    | -1       |
| Gear Vel Actual    | 0        |

Master Encoder Configuration :


| Master Pos Mapping | 00000000 |
|--------------------|----------|
| Master Vel Mapping | 60FF0020 |
| Gear factor        | 10000    |
| Gear divider       | 10000    |
| Counter mode       | 01       |
| Master Pos Actual  | -1       |
| Gear Pos Actual    | -1       |
| Gear Vel Actual    | 0        |

We have to configure the red marked fields. In the first field we find again the target object address to assign the values from the RS422 port. Normally we take the velocity object (60FF,00). In the second field we choose the countermode" 1 " for Step & Direction or " 2 " for Master/Slave. With gear factor and gear divider one can scale the slave to the master drive (Electronic Gear ), that can modified during online processing. If you turn the control word to 0x0F and mode of operation to - 4, the controller is already configured and the slaves act according to the master encoder increments.

TOP

#### Serial Interface

The protocol of serial communication at the ECOSTEP (RS232, RS485, CANopen) is leant on the CANopen-Standard DS301. The datatransfer is the same for all this interfaces therefore we will show it just once. Just the transport protocol parameter are different. For the RS232 we have 9600 Baud, 8 Databit, no parity, 1 stop bit. Before the slave answers the master gets always an echo. At the dataprotocol the low bytes are sent first. In the example below the host PLC sets the velocity to 85000 [inc/ 64 s] to find the limit switch at homing mode :



### CANopen Interface

Connector X1, close up resistor 150 Ohm at the end of the bus between pin 2 and 7:

| Master  | ECOSTEP-Slave 1       | ECOSTEP-Slave 2       |
|---------|-----------------------|-----------------------|
| 2 CAN_L | 2                     | 2                     |
| 7 CAN_H | 7                     | 7                     |
|         | 6 GND                 | 6 GND                 |
|         | 9 CAN_V+ (8 - 24 VDC) | 9 CAN_V+ (8 - 24 VDC) |

At CANopen we find two ways of data transmissions. The first is the serial data object, SDO, which is leant on the standard DS301. At this type of data transmission the slave tells the host that it has recieved the message (like RS232 but faster, see baudrate object.

The other type is also very common when the communication is very fast and the receive of the message need not to be echod. The type is called processdataobject, PDO. Within a PDO one can transmit 8 byte data, which means 1, 2 up to 8 objects of the object catalogue according to their size. There are listener- and talker - PDO. By configuring the message - ID and the cycle

time of transmission a PDO is configured.

It is very usefully that the slaves could send message to each other without a master if the message - ID's are known by transmitter and receiver. In the example below in the message - ID 182 it is sent every 10 ms the status word of that slave. It is important to know which message - ID belongs to which slave. In bigger nets the master configures the message -ID's. At nets with less than 15 slaves there are default - ID's according to the value of the DIP - switches of the slaves. For example : Slave (DIP - Switch - ID 1) has the message - ID 181 and slave (DIP - Switch - ID 2) has message - ID 182.

| RX-PD0 1       [8]         RX-PD0 2       [3]         RX-PD0 3       [3]         RX-PD0 4       [3]         RX-PD0 5       [3]         RX-PD0 6       [3]         RX-PD0 7       [3]         RX-PD0 8       [3] | ( 0×00000301,<br>( 0×80000000,<br>( 0×80000000,<br>( 0×80000000,<br>( 0×80000000,<br>( 0×80000000,                  | OXFF,<br>OXFF,                                                                | 0 }<br>0 }<br>0 }                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| TX-PDO 1 [3] =<br>TX-PDO 2 [3] =<br>TX-PDO 3 [3] =<br>TX-PDO 4 [3] =<br>TX-PDO 5 [3] =<br>TX-PDO 6 [3] =<br>TX-PDO 7 [3] =<br>TX-PDO 8 [3] =<br>Sync: 0x0080                                                    | { 0x00000281,<br>{ 0x80000000,<br>{ 0x80000000,<br>{ 0x80000000,<br>{ 0x80000000,<br>{ 0x80000000,<br>{ 0x80000000, | 0×FF,<br>0×FF,<br>0×FF,<br>0×FF,<br>0×FF,<br>0×FF,<br>0×FF,<br>0×FF,<br>0×FF, | 1000 }<br>1000 }<br>1000 }<br>1000 }<br>1000 }<br>1000 }<br>1000 }<br>0×0081 |

|                                       | PDO Mapping ———————————————————————————————————— |
|---------------------------------------|--------------------------------------------------|
| TX-PDO 1 [2] = { 60410010<br>???????  | · · · · · · · · · · · · · · · · · · ·            |
| TX-PDO 2 [0] = { ????????<br>???????? | ?, ????????, ???????, ???????,                   |
| TX-PDO 3 [0] = { ???????'<br>???????' | ?, ????????, ???????, ???????,                   |
| TX-PDO 4 [0] = { ????????<br>???????? | ?, ????????, ???????, ???????,                   |
| TX-PDO 5 [0] = { ???????'<br>???????  | ?, ????????, ???????, ???????,                   |
| TX-PDO 6 [0] = { ????????<br>???????? | ?, ????????, ???????, ???????,                   |
| TX-PDO 7 [0] = { ????????<br>???????? | ?, ????????, ???????, ???????,                   |
| TX-PDO 8 [0] = { ????????<br>???????? | ?, ????????, ???????, ???????,                   |
|                                       |                                                  |

TOP

## Programmable Input/ Output

At the ECOSTEP one can call small subroutines according to digital signals at the inputs at X3, so called inputs events. The 2 free configurable output one can programm like below

( .\Device Configuration\Digital Output Configuration ):

| Output 1: | Mapping<br>Offset<br>AndMask<br>CmpMask<br>Modus<br>TempReg<br>Value | 60410010<br>00000000<br>00004437<br>00004437<br>00000000<br>00000000<br>00000000<br>00004437  |
|-----------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Output 2: | Mapping<br>Offset<br>AndMask<br>CmpMask<br>Modus<br>TempReg<br>Value | 60410010<br>00000000<br>00000437<br>00000487<br>00000000<br>00000000<br>00000000<br>000004437 |

The value of the comparator of the outputs could be described according the following formula:

Value = modus { ((value\_mapping + offset)& AndMask)& CmpMask }
modus = 1 means negation, 0 no change

At the example output OUT1 turns "high" if the status word (6041,00) says, the drive found the commutation and the reference. Actually the value says that the drive only found the commutation. This will be discussed in the next chapter. The address of the status word "0x60410010" is mapped to the lower bytes of the address of the output\_target\_object\_address 0x21600120. The code 0xC037 tells us that the controller is in a specific status ( Bitcode : 1110 1100 0000 0011).

Output 2 (OUT2): Another status word comparison. It turns "high", if the target of the controller task is reached and the "SET-Point" of the control word is also set.

2001 > ECOSTEP ANTRIEBE / JENAER ANTRIEBSTECHNIK GMBH

## **Appendix D - Offline Control**

#### Courses, programming the I/Os

Apart from online operation (CANopen, RS232, RS485) the motion controller ECOSTEP 200 is able to control configured sub-routines independently. So standardised as well as mixed applications are possible (e.g. configuration by RS232, sub-routine controlled by SPS).

#### Sequence

255 so called sequences can be deposited within the device. Each sequence has got a sequence number to be called up with. Content of one sequence can be up to eight writing accesses (allocation of value) to any writable objects of the device's object catalogue . It is important to understand, that within one controller cycle there will be excecuted just one sequence on block. In the example below within sequence called number 2 a relative positioning of 20 000 encoder increments with a certain trapezium velocity profile (acceleration 25 000, braking acceleration 25 000, velocity 833 000) is shown. The control word is set to 0x1F (should better done by the object "28400210" to prevent setting the first 4 bits in the control word all the time).

| Sequence Nr.                                                                                                                 | 02: Valid = 1                                                                                                                                                         |                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1.: 60400010<br>2.: 60810020<br>3.: 60830020<br>4.: 60840020<br>5.: 607A0020<br>6.: 60400010<br>7.: 21400110<br>8.: 00000000 | $\begin{array}{c c} \Rightarrow & 833000 \\ \Rightarrow & 25000 \\ \Rightarrow & 25000 \\ \Rightarrow & 20000 \\ \Rightarrow & 31 \\ \Rightarrow & 32771 \end{array}$ | (0000000FH)<br>(000CB5E8H)<br>(000061A8H)<br>(000061A8H)<br>(00004E20H)<br>(000004E20H)<br>(0000001FH)<br>(00008003H)<br>(00000000H) |

After calling up a sequence these writings are settled in their configured order at once, so no other sequence or online-access can push between.

The sequences can be called up by events. These events are generated by event generators. Each event can be given a sequence number, that causes the right sequence to run, if the event takes place. Because some events can happen at the same time, the sequence numbers are arranged in a waiting loop and are run one by one. Events can be e.g:

TOP

#### I/O Event

A puls on the input board X3 , in the example below are all 5 input events (L-H/ H-L) active, because Input Event Mask is 0x1F1F (where the low byte defines the active L-H events and the high byte the H-L events), but just the first 2 inputs are used for calling sequences:

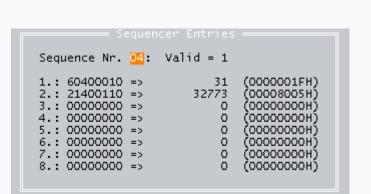
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                            | Input | Event | Mas |     | ut Ever<br>1F1F | Input State: 00 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|-----|-----------------|-----------------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                            |       |       |     |     |                 |                 |
| DINS L->H $\Rightarrow$ Seq 0000, H->L $\Rightarrow$ Seq 0000<br>LIM+ L->H $\Rightarrow$ Seq 0000, H->L $\Rightarrow$ Seq 0000<br>LIM- L->H $\Rightarrow$ Seq 0000, H->L $\Rightarrow$ Seq 0000 |       |       |     |     |                 |                 |
| LIM- L->H ⇒ Seq 0000, H->L ⇒ Seq 0000                                                                                                                                                           |       |       |     |     |                 |                 |
| HOME L->H $\Rightarrow$ Seq 0000, H->L $\Rightarrow$ Seq 0000                                                                                                                                   |       |       |     |     |                 |                 |
|                                                                                                                                                                                                 | HOME  | L->H  | ⇒   | Seq | 0000,           | H->L ⇒ Seq 0000 |

Progammable Events

- the time course of a programmable timer
- TRUE as boolean result of a comparison
- after a successful positioning like in the first example Target reached
- Call by another sequence which is done by writing the sequence number into object (2118,00)

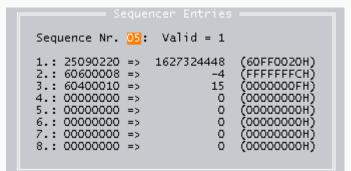
TOP

Some events can be related to the instruction if the sequence should be run once or more times, other events are able to work out from the context a sequence number depending on the situation of the inputs .


### Online change of courses

What is very useful is to implement a writing access into one or more sequences and just alter the position or another main variable through the field bus. In the following sequences we wish to:

- drive to zero after calling sequence 3
- after reaching zero the drive goes immediately in master-slave mode
- change the position in sequence 3 by writing online a new value to object (2003,03)
- 1. Write access to target position with value 0
- 2. Write access to profile velocity with value 100 000
- 3. Write access to operation mode (1 = positioning)
- 4. Write access to put sequence 4 into next queue


| s                                                                                                                            |                            | Entries                              |                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Sequence Nr.                                                                                                                 | 📴: Va                      | lid = 1                              |                                                                                                                       |
| 1.: 607A0020<br>2.: 60810020<br>3.: 60600008<br>4.: 21180008<br>5.: 00000000<br>6.: 00000000<br>7.: 00000000<br>8.: 00000000 | =><br>=><br>=><br>=><br>=> | 0<br>100000<br>4<br>0<br>0<br>0<br>0 | (00000000H)<br>(000186A0H)<br>(00000001H)<br>(000000004H)<br>(00000000H)<br>(00000000H)<br>(00000000H)<br>(00000000H) |

- 1. Write access to control word "start motion"
- 2. Write access to call sequence 5 if event "target reached" is true



- 1. Write access to map the master encoder input to the target velocity
- 2. Write access to run mode "profile velocity with position control"
- 3. Write access to set the control word to 15.

Master-slave is active now!



## First row:

In sequence number 3 subindex 2 and 3 we have placed the write access to target position with value 2000 by writing on object (2003,02) the value 0x607A0020 and to object (2003,03) the decimal value 2000. This could be done also via all field bus.

| Di        | rect Obj | ject Editor |           |
|-----------|----------|-------------|-----------|
| Index:    | 2003     | Index:      | 2003      |
| Subindex: | 3        | Subindex:   | 2         |
| Value:    | 2000     | Value:      | 607A0020H |
| Index:    | 1400     | Index:      | 1400      |
| Subindex: | 2        | Subindex:   | 3         |
| Value:    | 255      | Value:      | 00000000н |

We see the result of this writing access. We have changed online the position in the sequence structure without loading all data of the sequences again into the drive.

| Seque                                                                                                                                                | ncer Entries                                 |                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Sequence Nr. 💴:                                                                                                                                      | Valid = 1                                    |                                                                                                                       |
| 1.: 607A0020 =><br>2.: 60810020 =><br>3.: 60600008 =><br>4.: 21180008 =><br>5.: 00000000 =><br>6.: 00000000 =><br>7.: 00000000 =><br>8.: 00000000 => | 2000<br>100000<br>4<br>0<br>0<br>0<br>0<br>0 | (000007D0H)<br>(000186A0H)<br>(00000001H)<br>(000000004H)<br>(00000000H)<br>(00000000H)<br>(00000000H)<br>(00000000H) |

This is a great advantage in time and for the bus activity.

2001 > ECOSTEP ANTRIEBE / JENAER ANTRIEBSTECHNIK GMBH

## Appendix E - Object catalogue

We are going to review in a brief form all the important parts of the object table of the ECOSTEP. You can find the most objects in the initial explanation of the software hsio. You have direct access to the object for writing and reading by use of the *Direct Object Editor* in the hsio-software.

On the toolkit you will find also the programm rwosio2.exe, which is called by the batch programms Upload and Download. After calling upload you will find the objects and their values in the file \*read.dat. The selection of the objects you want to read or write you can chose in \*reg.cfg. With save.dat you save your download values on the flash of the ECOSTEP

All actions above can be done also with your own software written in JAVA, VISUAL C or DELPHI if you follow the data protocoll explained in the menu Interface. This object table should be used for those programmers. All values should be hexadecimal in the datatransfer. In the text below we express hexadecimal numbers through the standard notation 0x2F00. Index+Subindex form a data record like 0x60400010 which you can read or write (RW), read or write only (RO,WO) or map on another address (M).

| Index | Sub | Bits | CMD             | Unit                              | Description                | n                              |
|-------|-----|------|-----------------|-----------------------------------|----------------------------|--------------------------------|
| 6040  | 00  | 10   | RW,<br>M        | bitcode                           | control word<br>=>Statemac | changes status of drive        |
|       |     |      |                 |                                   | 0x06                       | power off                      |
|       |     |      |                 |                                   | 0x0F                       | power on                       |
|       |     |      | 0x3F            | immediate absolute<br>positioning |                            |                                |
|       |     |      |                 |                                   | 0x4F                       | relative positioning           |
|       |     |      |                 |                                   | 0x2F                       | absolute positioning           |
|       |     |      | 0x0F =><br>0x1F | start motion                      |                            |                                |
| 6041  | 00  | 10   | RO,             | bitcode                           | Status word                | shows status of drive          |
|       |     |      | М               |                                   | 0x0001                     | ready to be powered on         |
|       |     |      |                 |                                   | 0x0008                     | error detected                 |
|       |     |      |                 |                                   | 0x0400                     | target reached                 |
|       |     |      |                 |                                   | 0x4000                     | commutation found              |
|       |     |      |                 |                                   | 0x8000                     | reference found                |
| 6060  | 00  | 08   | WO,             | number                            | modes of o                 | peration:                      |
|       |     |      | М               |                                   | 1                          | positioning with position loop |
|       |     |      |                 |                                   | 3                          | velocity with position loop    |
|       |     |      |                 |                                   | - 4                        | position loop                  |

#### □ Modes & Control: 0x6040 ff.

|     | (master/slave)                  |
|-----|---------------------------------|
| - 3 | velocity loop (e.g. +/-<br>10V) |
| 6   | homing                          |
|     | ~                               |

TOP

## □ Sensor value Object: 0x6063 ff.

| Index | Sub | Bits | CMD   | Unit      | Description                                                                                                                                                                         |
|-------|-----|------|-------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6063  | 00  | 20   | RO, M | inc       | actual position value                                                                                                                                                               |
| 6069  | 00  | 20   | RO, M | inc/ 64 s | actual velocity value                                                                                                                                                               |
| 606B  | 00  | 20   | RO, M | inc/ 64 s | velocity demand value                                                                                                                                                               |
| 606C  | 00  | 20   | RO, M | inc/ 64 s | velocity filtered actual value                                                                                                                                                      |
| 6078  | 00  | 10   | RO    | integer   | current demand value                                                                                                                                                                |
| 60FD  | 00  | 20   | RO    | bitcode   | status of the 10 digital inputs<br>DIN1-8, RESET, ExtEnable:<br>0x0201 0000 DIN1 is "high"<br>0x0280 0000 DIN8 (home<br>switch) is "high"<br>0x02C8 0000 DIN8,7 and 4 are<br>"high" |
|       |     |      |       |           | "nign"                                                                                                                                                                              |

# □ Target value object 0x607A ff.

| Index | Sub | Bits | CMD      | Unit                  | Description                                                                                                 |
|-------|-----|------|----------|-----------------------|-------------------------------------------------------------------------------------------------------------|
| 607A  | 00  | 20   | RW,<br>M | inc                   | target position in operation mode 1,<br>shift to demand position if control word<br>starts motion           |
| 60FC  | 00  | 20   | RO,<br>M | inc                   | demand position in operation mode 1                                                                         |
| 6081  | 00  | 20   | RW,<br>M | inc/ 64 s             | maximum <i>velocity</i> of trapezium profile<br>in mode 1                                                   |
| 6083  | 00  | 20   | RW,<br>M | 16 inc/s <sup>2</sup> | acceleration of the trapezium profile<br>1000 rad/s <sup>2</sup> is roughly 80 000<br>[inc/s <sup>2</sup> ] |
| 6084  | 00  | 20   | RW,<br>M | 16*inc/s²             | deceleration of trapezium profile                                                                           |
| 60FF  | 00  | 20   | RW,<br>M | inc                   | target velocity at mode 3,- 3 and - 4                                                                       |

| 6073 | 00 | 10 | RW   | integer   | maximum current see glossary ->Ida |                              | ac |
|------|----|----|------|-----------|------------------------------------|------------------------------|----|
| 607F | 00 | 20 | RW,M | inc/ 64 s | maximal possib<br>mode 1 and 3     | ble profile velocity at      |    |
|      |    |    |      |           | example:                           | resolution 8000 inc          |    |
|      |    |    |      |           | 1000 rpm                           | are 8 533 333 [inc/<br>64 s] |    |
|      |    |    |      |           |                                    |                              | ~  |

# □ Performance object 0x6065 ff.

| Index | Sub | Bits | CMD   | Unit | Description                                                           |                                 |
|-------|-----|------|-------|------|-----------------------------------------------------------------------|---------------------------------|
| 6065  | 00  | 20   | RW, M | inc  | maximum following error at which the drive switch on an error         |                                 |
|       |     |      |       |      | 2000                                                                  | good tuned drive                |
|       |     |      |       |      | 80                                                                    | good tuned drive                |
| 6067  | 00  | 20   | RW, M | inc  | position windo<br>flag" - default                                     | ow for "target reached<br>is 10 |
| 607D  | 01  | 20   | RW, M | inc  | minimum software endpositon                                           |                                 |
| 607D  | 02  | 20   | RW, M | inc  | maximum Software endposition - if<br>both are zero they're not active |                                 |
|       |     |      |       |      |                                                                       |                                 |

TOP

# Homing 0x6098 ff.

| Index | Sub | Bits | CMD      | Unit      | Description                                                                       |
|-------|-----|------|----------|-----------|-----------------------------------------------------------------------------------|
| 6098  | 00  | 08   | RW,<br>M | integer   | methods: important homingmethods from 1 to 3434put the zero at the actualposition |
| 6099  | 01  | 20   | RW,<br>M | inc/ 64 s | velocity for searching limit switch                                               |
| 6099  | 02  | 20   | RW,<br>M | inc/ 64 s | velocity for searching zero                                                       |
| 609A  | 00  | 20   | RW,<br>M | 16*inc/s² | acceleration                                                                      |
| 607C  | 00  | 20   | RW,<br>M | inc       | home offset                                                                       |
|       |     |      |          |           | TOP                                                                               |

Commutation Object: 0x60F6

| Index | Sub | Bits | CMD                                                   | Unit         | Description                                                                                                                                 |  |  |
|-------|-----|------|-------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 60F6  | 01  | 20   | RW,<br>M                                              | integer      | Number of increments per <i>pole length</i><br>e.g. 50 poles and 8000 inc resolution<br>makes 160                                           |  |  |
| 60F6  | 02  | 10   | RW,<br>M                                              | integer      | number of poles if value above is<br>encoder increments per revolution -<br>otherwise 0                                                     |  |  |
| 60F6  | 03  | 10   | RW,<br>M                                              | integer      | phase offset of current angle is<br>proportional to the velocity, values<br>between 80 and 400                                              |  |  |
| 60F6  | 05  | 10   | RW,<br>M                                              | integer      | maximum phase offset of current angle ,<br>a quarter of pole length [inc]                                                                   |  |  |
| 60F6  | 06  | 10   | RW,<br>M                                              | integer      | <i>current peak value</i> to find the commutation                                                                                           |  |  |
| 60F6  | 07  | 10   | RW,<br>M                                              | integer      | time delay at commutation method 1and 3\$\$500\$\$mall load 1- 5 times the<br>motor inertia1000high load 20 - 50 times the<br>motor inertia |  |  |
| 60F6  | 09  | 10   | RW,<br>M                                              | integer      | commutation method3horizontal applications1weight compensation,<br>vertical applications                                                    |  |  |
| 60F6  | 11  | 10   | RW,<br>M                                              | 12<br>A/2047 | <ul><li><i>i</i><sup>2</sup> • <i>t</i> current limit in time period</li><li>0 - 2047 effective current range</li></ul>                     |  |  |
| 60F6  | 12  | 10   | RW,<br>M                                              | [s]          | <i>time period</i> to measure the effective current                                                                                         |  |  |
|       |     |      | 0 - 12000 time constant of all motors are near 20 min |              |                                                                                                                                             |  |  |
|       |     |      |                                                       |              | 10 at small values safety<br>function e.g. <i>driven on</i><br><i>block</i> if the following<br>error couldn't come                         |  |  |
|       |     |      |                                                       |              | A                                                                                                                                           |  |  |

# Velocity Loop Object: 0x60F9

| Index | Sub | Bits | CMD      | Unit    | Descriptior                      | n                                                          |
|-------|-----|------|----------|---------|----------------------------------|------------------------------------------------------------|
| 60F9  | 01  | 10   | RW,<br>M | inc/s   | <i>vc_kp</i> propor<br>50<br>200 | rtional value of velocity loop<br>soft gain<br>strong gain |
| 60F9  | 02  | 10   | RW,<br>M | integer |                                  | al value of velocity loop<br>o correction of transient     |

|      |    |    |          |         | deviations1default2strong correction, can cause<br>oszillations                                                                                                   |
|------|----|----|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60F9 | 03 | 10 | RW,<br>M | integer | <i>vc_kilim</i> limit value of vc_ki, vc_kilim<br>should be 10% higher than the static<br>digital friction current                                                |
| 60F9 | 04 | 10 | RW,<br>M | integer | efilt digital input filter - velocityloop gain is then efilt • vc_kp1default, no lead<br>compensation2stronger lead compensation3 - 5heavy load - low pass filter |
| 60F9 | 05 | 10 | RW,<br>M | integer | ofilt digital output filter for the velocityloop2 - 51-10 times load/motor inertia15 - 4510 - 100 times load/motor<br>inertia see Bode Analyse<br>Applet          |
|      |    |    |          |         | TOP                                                                                                                                                               |

# Position Loop Object: 0x60FB

| Index | Sub | Bits | CMD      | Unit     | Description                                                                                                                                                  |                                                                              |                                                                          |
|-------|-----|------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 60FB  | 01  | 10   | RW,<br>M | unsigned | <i>pc_kp</i> pro                                                                                                                                             | portional                                                                    | value of position                                                        |
|       |     |      |          |          | 1000                                                                                                                                                         | default, s                                                                   | soft correction                                                          |
|       |     |      |          |          | 3000                                                                                                                                                         | necessar<br>performa                                                         | y for middle<br>nce                                                      |
|       |     |      |          |          | 8000                                                                                                                                                         | good performance in low<br>8000 following error - high<br>position stiffness |                                                                          |
| 60FB  | 02  | 20   | RW,<br>M | unsigned | <pre>pc_amax prevents oscillations cause to<br/>saturation effects in the motor<br/>value = M0 / (load-inertia • 16 • 2 •<br/>pi) • encoder-resolution</pre> |                                                                              | i the motor<br>inertia • 16 • 2 •                                        |
| 60FB  | 03  | 10   | RW,<br>M | integer  | <i>pc_vfff</i> fe<br>dynamic                                                                                                                                 | ed forward                                                                   | d velocity for higher                                                    |
|       |     |      |          |          | 0 - 3000                                                                                                                                                     |                                                                              | smooth starting                                                          |
|       |     |      |          |          | 12000 - 1                                                                                                                                                    | 6384                                                                         | dynamic motion,<br>low following<br>error, important<br>for master-slave |
| 60FB  | 04  | 10   | RW,<br>M | integer  | pc_afff feed forward current for strong<br>dynamic<br>value = 12A / 2^23 •<br>profile_acceleration                                                           |                                                                              | -                                                                        |

## Save Objekt: 0x1010 ff.

| Index | Sub | Bits | CMD | Unit  | Description                                     |
|-------|-----|------|-----|-------|-------------------------------------------------|
| 1010  | 01  | 10   | RW  | logic | Store of all parameter - value 65766173         |
| 1010  | 02  | 10   | RW  | logic | Store communication parameter - value 65766173  |
| 1010  | 03  | 10   | RW  | logic | Store application parameter - value 65766173    |
| 1010  | 04  | 10   | RW  | logic | Store offline programm flow - value<br>65766173 |
|       |     |      |     |       |                                                 |

TOP

# CAN-PDO Objects: 0x1400-0x1A00

0x1400-7 (rx\_parameter / read) 0x1600-7 (rx\_mapping) 0x1800-7 (tx\_parameter / write) 0x1A00-7 (tx\_mapping)

| Index | Sub | Bits | CMD | Unit     | Description                                                                                                                 |
|-------|-----|------|-----|----------|-----------------------------------------------------------------------------------------------------------------------------|
| 1400  | 01  | 20   | RW  | unsigned | Identifier for CAN-Read-PDO, Default<br>(201) for ID = 1                                                                    |
| 1400  | 02  | 08   | RW  | unsigned | chose of listening<br>e.g. 0xFF := Listen if PDO-value<br>changed<br>0xXX < 0xFF := Listen at every XX-<br>times SYNC-event |
| 1400  | 03  | 10   | RW  | 0.1 ms   | maximum cycle time to listen                                                                                                |
| 1600  | 00  | 08   | RW  | unsigned | value stands for <i>number of objects</i> -<br>attention one PDO can carry up to 8<br>byte = 0x40 bit                       |
| 1600  | 01  | 20   | RW  | unsigned | <i>first object</i> to be read, e.g. the status word 0x60410010                                                             |
| 1600  | 07  | 20   | RW  | unsigned | 8th object to be read within one PDO -<br>just possible if all the other objects just<br>have 8 bit length                  |
| 1800  | 01  | 20   | RW  | unsigned | Identifier for CAN-Write-PDO, default<br>181 for ID = 1                                                                     |
| 1800  | 02  | 08   | RW  | unsigned | Choice of transmission type<br>e.g 0xFF := Write if PDO-value has<br>changed<br>0xXX < 0xFF := Write at every XX-           |

|      |    |    |    |          | times SYNC-event                                                                                            |
|------|----|----|----|----------|-------------------------------------------------------------------------------------------------------------|
| 1800 | 03 | 10 | RW | 0.1 ms   | maximal cycle time for next writing                                                                         |
| 1A00 | 00 | 08 | RW | unsigned | value stands for <i>number of objects</i> -<br>attention one PDO can carry up to 8<br>byte = 0x40 bit       |
| 1A00 | 01 | 20 | RW | unsigned | <i>first object</i> to be read, e.g. the control word 0x60400010                                            |
| 1A00 | 07 | 20 | RW | unsigned | 8th object to be write within one PDO -<br>just possible if all the other objects just<br>have 8 bit length |
| 1F80 | 00 | 20 | RW | unsigned | <ul> <li>who is boot-master ?</li> <li>SPS/ PLCis boot-master</li> <li>ECOSTEP is boot-master</li> </ul>    |
|      |    |    |    |          | TOP                                                                                                         |

### Sequenz Objektregion: 0x2000-FF, 0x2120, 0x2121

| Index | Sub | Bits | CMD | Unit     | Description                                                                                                                         |
|-------|-----|------|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2000  | 01  | 08   | RW  | logic    | activation - 20XX mentiones sequence<br>0xXX<br>0 sequence is not active<br>1 sequence is active                                    |
| 2000  | 02  | 20   | RW  | unsigned | target address of object<br>0x20000220 0x607A0020<br>the first object in sequence 0<br>corperates the target position               |
| 2000  | 03  | 20   | RW  | unsigned | value of previous object at $0x20000220$ in sequence 0 $0x20000320$ $0x00001F40$ The value of the tarhet position is now $8000$ inc |

You have up to 8 target mappings in one sequence XX (20XX0220 => 20XX0320) up to (20XX16 => 20XX1720).

If one sequence is called, than all the constructed mappings are processed one after the other in the drive.

| 2120 | 01 | 08 | RW | unsigned | sequence, acti                                                      | vated by event DIN1 L-H  |
|------|----|----|----|----------|---------------------------------------------------------------------|--------------------------|
|      |    |    |    |          | 0x0020                                                              | sequence 0x20 are called |
| 2120 | 09 | 08 | RW | unsigned | like above for event <i>DIN1 H-L</i><br>0x0010 sequence 0x10 is cal |                          |
| 2120 | 08 | 08 | RW | unsigned | like above for event DIN8 L-H                                       |                          |
|      |    |    |    |          |                                                                     |                          |

| 2120 | 10 | 08 | RW | unsigned | like above for event DIN8 H-L |     |
|------|----|----|----|----------|-------------------------------|-----|
|      |    |    |    |          |                               | TOP |

### (BCD-coding)

0x 2120 06 08 = > 0x0F 00 is another example of coding the sequence number to be called. In the example the logical sum of DIN1- 4 equals the sequence number to be called at that time point where a strobe pulse activates DIN5 ( *F* ).

| Index | Sub | Bits | CMD | Unit     | Description                                                     |                         |                          |      |
|-------|-----|------|-----|----------|-----------------------------------------------------------------|-------------------------|--------------------------|------|
| 2121  | 00  | 10   | RW  | unsigned | mask that acti<br>0x1F1F<br>0x010F                              | DIN1- 5 L<br>are active | -H and H-L<br>and DIN 1- |      |
| 2118  | 00  | 08   | RW  | unsigned | direct call of se<br>programming<br>0x21180008<br>sequence 0x20 |                         | => 0x20                  | d in |
|       |     |      |     |          |                                                                 |                         |                          | TOP  |

#### . . . .

### Timer Object: 0x2130

| Index | Sub | Bits | CMD | Unit | Description                                |                                                                       |
|-------|-----|------|-----|------|--------------------------------------------|-----------------------------------------------------------------------|
| 2130  | 01  | 10   | RW  | 80XX | number of sequ<br>waiting time<br>0x8012   | uence that starts after a starts sequence 0x12                        |
| 2130  | 02  | 20   | RW  | [ms] | waiting period<br>0x21300110<br>0x21300220 | <pre>= &gt; 0x8012 = &gt; 0x03E8 starts sequence 0x12 after 1 s</pre> |
|       |     |      |     |      |                                            |                                                                       |

TOP

# Event Object: 0x2140

| Index | Sub | Bits | CMD | Unit | Description                                     |
|-------|-----|------|-----|------|-------------------------------------------------|
| 2140  | 01  | 10   | RW  | 80XX | sequence 0xXX starts after target reached flag  |
| 2140  | 02  | 10   | RW  | 80XX | sequence 0xXX starts after reference found flag |
| 2140  | 09  | 10   | RW  | 80XX | sequence 0xXX starts after switch on            |

|      |    |    |    |      | disable flag, ready                                                                                                  | output is low!                                                                                                                                                                                                                    |  |  |
|------|----|----|----|------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2140 | 0A | 10 | RW | 80XX | sequence 0xXX starts after <i>ready to switc</i><br>on flag, ready output is high!                                   |                                                                                                                                                                                                                                   |  |  |
| 2140 | 0B | 10 | RW | 80XX | sequence 0xXX st                                                                                                     | arts after Switched on flag                                                                                                                                                                                                       |  |  |
| 2140 | OC | 10 | RW | 80XX | enable flag<br>0x20020120<br>0x20020220<br>0x20020320<br>0x20020420<br>0x20020520<br>0x21400C10<br>We've just progra | tarts after Operation<br>= > $0x01$<br>= > $0x60600008$<br>(modes of operation)<br>= > $0x06$<br>= > $0x28400210$<br>(control word.or)<br>= > $0x0010$<br>= > $0x8002$<br>ammed a homing start<br>tarts after Operation<br>lso => |  |  |
| 2140 | 10 | 10 | RW | 80XX | sequence starts a<br>>H                                                                                              | fter hardware enable L =                                                                                                                                                                                                          |  |  |
|      |    |    |    |      |                                                                                                                      | ~                                                                                                                                                                                                                                 |  |  |

TOP

Output Object: 0x2160 (OUT1), 0x2161 (OUT2)

| Inde | k Sub | Bits | CMD | Unit     | Description                                                                                                                                                                                                                    |
|------|-------|------|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2160 | 01    | 20   | RW  | unsigned | object address that is mapped to <i>Output</i><br>1                                                                                                                                                                            |
| 2160 | 02    | 20   | RW  | unsigned | offset value will be added to the value<br>of he mapped_output1_object                                                                                                                                                         |
| 2160 | 03    | 20   | RW  | unsigned | and_value, is the value that is<br>compared "and_boolean" to the result<br>of the previous operation                                                                                                                           |
| 2160 | 04    | 20   | RW  | unsigned | Compare_value $0x21600120$ = > 0x60410010<br>(status word) $0x21600320$ = > 0xC037 $0x21600420$ = > 0xC037Output 1 goes high if the drive found<br>commutation and reference and is in<br>operation. Offset is not often used. |

TOP

□ Limit Switch Object: 0x2170, 0x2171 (Limit+), 0x2172 (Limit-)

| Index | Sub | Bits | CMD | Unit | Description |
|-------|-----|------|-----|------|-------------|
|       |     |      |     |      |             |

| 2170 | 00 | 08 | RW | logic | changes p<br>0x217000                                      | )08 = >    | the 8 digital inputs<br>• 0x60 (DIN6+7 are<br>active)                                                                               |
|------|----|----|----|-------|------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2171 | 02 | 08 | RW | logic | boolean a<br>switch (D<br>0x217102                         | IN6)       | for the positive limit<br>= > 0x20 (DIN6 is<br>high if the input<br>polarity is 0x00 )                                              |
| 2171 | 03 | 08 | RW | logic | boolean c<br>switch(DI<br>0x217102<br>0x217103             | N6)<br>208 | alue of the positiv limit<br>= > 0x20 proofs<br>whether DIN6 is high<br>= > 0x20 default<br>DIN6 (0x40 default<br>DIN7) Mechanismus |
| 2171 | 04 | 08 | RW | logic | status of positiv lim0x00not high0x01high, no<br>direction |            | further motion in (+)                                                                                                               |
|      |    |    |    |       |                                                            |            | TOP                                                                                                                                 |

# Comparison Objects: 0x2180-3 Comparator 1 to 4.

If once the comparison is TRUE, the whole comparator has to be activated again!

| Index | Sub | Bits | CMD | Unit     | Description                                                                       |        |
|-------|-----|------|-----|----------|-----------------------------------------------------------------------------------|--------|
| 2180  | 01  | 20   | RW  | unsigned | object mapped to be compared<br>cmp_object                                        |        |
| 2180  | 02  | 20   | RW  | unsigned | offset to be added to the cmp_                                                    | object |
| 2180  | 03  | 20   | RW  | unsigned | and_value for boolean operatio cmp-object, default 0xFFFF FFF                     |        |
| 2180  | 04  | 20   | RW  | unsigned | <pre>cmp_value which is compared to cmp_object according to next operator</pre>   |        |
| 2180  | 05  | 10   | RW  | unsigned | choice of operation:0x0001= equal0x0002< smaller                                  |        |
| 2180  | 06  | 10   | RW  | 0x80XX   | sequence 0xXX startet after Tf<br>status of comparison<br>0x21800120 = > 0x606C00 |        |

|      |    |    |      |          |                                  | (velocity)                   |
|------|----|----|------|----------|----------------------------------|------------------------------|
|      |    |    |      |          | 0x21800420                       | = > 0x00823555<br>(1000 rpm) |
|      |    |    |      |          | 0x21800510                       | = > 0x0005                   |
|      |    |    |      |          | 0x21800610                       | = > 0x8012 called            |
|      |    |    |      |          |                                  | once                         |
| 2180 | 07 | 20 | RW,M | unsigned | mappable temp                    | orary storage address        |
| 2180 | 08 | 20 | RO   | unsigned | value is 1 if cor<br>otherwise 0 | nparison is TRUE             |
|      |    |    |      |          |                                  | TOP                          |

# □ Counter Object: 0x2190 (Counter 1) bis 0x2193 (Counter 4)

| Index | Sub | Bits | CMD | Unit     | Description            |
|-------|-----|------|-----|----------|------------------------|
| 2190  | 01  | 20   | RW  | unsigned | value added to counter |
| 2190  | 02  | 20   | RW  | unsigned | counter value          |
|       |     |      |     |          | TOP                    |

### Arithmetic Object: 0x21A0.

| Index | Sub | Bits | CMD | Unit     | Description                                                                                                                                                                                                                                                                             |
|-------|-----|------|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21A0  | 01  | 20   | RW  | unsigned | source object that should be modified                                                                                                                                                                                                                                                   |
| 21A0  | 02  | 20   | RW  | unsigned | <i>destination object</i> that gets the result of the operation                                                                                                                                                                                                                         |
| 21A0  | 03  | 20   | RW  | unsigned | <i>number</i> that is operated with the source object                                                                                                                                                                                                                                   |
| 21A0  | 04  | 10   | RW  | unsigned | choice of op=ation:       0x0000     copy       0x0001     +       0x0002     -       0x0003     *       0x0004     /                                                                                                                                                                   |
| 21A0  | 05  | 20   | R   | 0×80XX   | result of operation $0x21A00120$ = > $0x2D010020$<br>(value out of table[1]) $0x21A00320$ = > $0x0000002$ $0x21A00410$ = > $0x0003$ (*) $0x21A00220$ = > $0x607A0020$<br>target positionValue from table[1] is multiplied by 2<br>and is copied into target position as<br>destination. |

# Table object: 0x21B0

Used to write values into the internal table 0x2D00-FF.

| Index | Sub | Bits | CMD | Unit     | Description                                                                                                                                                                                                                            |
|-------|-----|------|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21B0  | 01  | 20   | RW  | unsigned | <i>source object</i> which values should be put into the table.                                                                                                                                                                        |
| 21B0  | 02  | 08   | RW  | unsigned | write order                                                                                                                                                                                                                            |
| 21B0  | 03  | 08   | RW  | integer  | position in the table $0x21B00120$ = > $0x60630020$<br>actual position $0x21B00308$ = > $0xFF$ table<br>position 255 $0x21B00208$ = > $0x01$ write orderthe actual positionis written into table<br>position 255 - used for teach-in!! |
|       |     |      |     |          | ~                                                                                                                                                                                                                                      |

#### Capture Object: 0x21C0

Used to strobe actual positions.

| Index | Sub | Bits | CMD | Unit    | Description                                                                                                   |
|-------|-----|------|-----|---------|---------------------------------------------------------------------------------------------------------------|
| 21C0  | 01  | 10   | RW  | 80XX    | jump starts sequence 0xXX after 21C0,02 goes from 0 to 1                                                      |
| 21C0  | 02  | 20   | RW  | integer | <i>counter</i> if there is a L-H event on the N-limpuls of the master encoder the counter is incremented (=+) |
| 21C0  | 03  | 20   | RW  | integer | <i>result</i> - if event 21C0,02 takes place<br>the actual position value is copied into<br>this address      |
| 21C0  | 04  | 20   | RW  | integer | <i>strobe</i> contains the actual position if object 21C0,02 goes from 0 to 1                                 |
|       |     |      |     |         | TOP                                                                                                           |

# Recording Object: 0x2201 ff.

One can specify and record up to 4 objects into arrays of size 1000 with a minimum time step of one ms.

| Index | Sub | Bits | CMD | Unit     | Description            |
|-------|-----|------|-----|----------|------------------------|
| 2201  | 01  | 20   | RW  | unsigned | first recording object |
|       |     |      |     |          |                        |

TOP

| 2203     | 01         | 20       | RO        | unsigned        | array with recorded values of previous object      |  |  |
|----------|------------|----------|-----------|-----------------|----------------------------------------------------|--|--|
| 2201     | 03         | 20       | RW        | unsigned        | second recording object                            |  |  |
| 2203     | 02         | 20       | RO        | unsigned        | array with recorded values of previous object      |  |  |
| 2201     | 05         | 20       | RW        | unsigned        | third recording object                             |  |  |
| 2203     | 03         | 20       | RO        | unsigned        | array with recorded values of previous object      |  |  |
| 2201     | 07         | 20       | RW        | unsigned        | fourth recording object                            |  |  |
| 2203     | 04         | 20       | RO        | unsigned        | array with recorded values of previous object      |  |  |
| 2210     | 00         | 10       | RW        | unsigned        | <i>counter size</i> specifies how big the array is |  |  |
| 2211     | 00         | 10       | RW        | unsigned        | position in the recorded array                     |  |  |
| 2214     | 00         | 10       | RW        | unsigned        | time resolution of the recorded arrays             |  |  |
| recordin | g exam     | ple: act | ual veloc | ity             |                                                    |  |  |
| 0x22010  | )120       | = :      | > 0x6060  | 20020 actual    | velocity                                           |  |  |
| 0x22140  | 0010       | = :      | > 0x000   | 5 time resolut  | ion 5 ms                                           |  |  |
| 0x22100  | 0010       | = ;      | > 0x01F4  | a starts record | ling of 500 values                                 |  |  |
| reading  | out of t   | he recol | rded arra | iy:             |                                                    |  |  |
| 0x22110  | 0x22110010 |          |           | first recorde   | d actual velocity value                            |  |  |
| 0x22030  | 0120       | rea      | nd value  | v[t = 0.005]    |                                                    |  |  |
| 0x22110  | 010        | = :      | > 0x000   | 1 last recorde  | d value                                            |  |  |
| 0x22030  | 0120       | rea      | nd value  | v[t = 2.500]    |                                                    |  |  |
|          |            |          |           |                 |                                                    |  |  |


TOP

### Monitor Object: 0x2400-1

The ECOSTEP can output two independent analog monitors, each monitor is mappable to any internal value. The output range is 0...5 V, zero is represented by 2.5 V. The scaling formula is:

# [V / dimension] = 1 V x internal dimension x factor / $(256^{(1 + preshift)}) / 120$

| Index | Sub | Bits | CMD | Unit     | Description                                    |
|-------|-----|------|-----|----------|------------------------------------------------|
| 2400  | 01  | 20   | RW  | unsigned | Objekt, das auf <i>MON1</i> gemappt wird       |
| 2400  | 02  | 08   | RW  | unsigned | preshift je nach Wertedimension 0,<br>1 oder 2 |
| 2400  | 03  | 10   | RW  | unsigned | Faktor normal zwischen 0x0001 -<br>0x7FFF      |



#### Analog Port: 0x2508

The analog port AIN+ and AIN- could be mapped to every internal object (RW), mainly it is the velocity or the limit of the current value. The resolution is - 512  $\dots$  512 DAC.

| Index   | Sub     | Bits    | CMD        | Unit                 | Description                                                                               |  |  |
|---------|---------|---------|------------|----------------------|-------------------------------------------------------------------------------------------|--|--|
| 2508    | 01      | 20      | RW         | unsigned             | target_object                                                                             |  |  |
| 2508    | 02      | 10      | RW         | unsigned             | factor according to formula (glossar):<br>maximum value/ internal unit /<br>2^shift / 512 |  |  |
| 2508    | 03      | 08      | RW         | unsigned             | Shift often 0, 1, 2 or 3                                                                  |  |  |
| example | : +/-10 | V input | t for velo | <i>city loop</i> wit | h max. velocity of 1500 rpm                                                               |  |  |
| 0x25080 | 120     |         |            | = > 0x60H            | = > 0x60FF0020 target velocity                                                            |  |  |
| 0x25080 | 210     |         |            | = > 0x03             | = > 0x03 shift is 3                                                                       |  |  |
| 0x24010 | 310     |         |            | = > 0x0C3            | = > 0x0C35 factor is 3125                                                                 |  |  |
|         |         |         |            | •                    | 0/64 to return "rpm" to the base of<br>60*8000*64 / 2^3 / 512                             |  |  |

TOP

#### □ Master-Slave Object: 0x2509

This is the right object to specify the target object for entries from connector X7. In case of Master-Slave or Step/ Direction the velocity mapping is mainly used.

| Index | Sub | Bits | CMD | Unit     | Description                                              |
|-------|-----|------|-----|----------|----------------------------------------------------------|
| 2509  | 02  | 20   | RW  | unsigned | velocity_mapping to (60FF,00)                            |
| 2509  | 03  | 10   | RW  | unsigned | gear_factor                                              |
| 2509  | 04  | 10   | RW  | unsigned | gear_divider                                             |
| 2509  | 05  | 08   | RW  | unsigned | mode<br>0, 1 is 4 times Decoding<br>2 is step/ direction |
|       |     |      |     |          | master position value<br>one can write and read -        |

| 2509                                                                                                                                                                                                                      | 06  | 20 | RW | unsigned                          | essential for phase synchronou motion | S |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-----------------------------------|---------------------------------------|---|--|--|--|
| 2509                                                                                                                                                                                                                      | 07  | 20 | RW | unsigned                          | slave position value                  |   |  |  |  |
| example: electronic gear box                                                                                                                                                                                              |     |    |    |                                   |                                       |   |  |  |  |
| 0x250902                                                                                                                                                                                                                  | 220 |    | :  | = > 0x60FF0020 target velocity    |                                       |   |  |  |  |
| 0x250903                                                                                                                                                                                                                  | 310 |    | :  | = > 0x07D0 factor is 2000         |                                       |   |  |  |  |
| 0x250903                                                                                                                                                                                                                  | 310 |    | :  | = > <i>OxO3E8</i> divider is 1000 |                                       |   |  |  |  |
| 0x250904                                                                                                                                                                                                                  | 110 |    | :  | = > 0x00                          |                                       |   |  |  |  |
| The <i>slave</i> runs double as fast as the master without having less good performance. It is possible to change the gear during operation according to a comparator or external analog input to get an electronic disc. |     |    |    |                                   |                                       |   |  |  |  |
|                                                                                                                                                                                                                           |     |    |    |                                   |                                       | ~ |  |  |  |

TOP

# Joystick Object: 0x250A

Dieses Objekt ist in dieser Dokumentation noch nicht erläutert. Die Idee besteht darin, eine nichtlineare Kennlinie einzugeben, die die analogen Spannungssignale mit den digitalen Sollwerten eines Objektes verknüpft. Mehr Info auf Anfrage.

| Index | Sub | Bits | CMD  | Unit     | Description                    |
|-------|-----|------|------|----------|--------------------------------|
| 250A  | 02  | 20   | RW   | unsigned | target_object mainly (60FF,00) |
|       | 03  | 10   | RW   | integer  | offset                         |
|       | 04  | 10   | RW   | integer  | filter                         |
|       | 05  | 10   | RW   | integer  | hysteresis                     |
|       | 06  | 10   | RW   | integer  | plimit                         |
|       | 07  | 10   | RW   | integer  | nlimit                         |
|       | 08  | 20   | RW   | integer  | pwindow                        |
|       | 09  | 20   | RW   | integer  | nwindow                        |
|       | 10  | 20   | RW   | integer  | jdefault                       |
|       | 11  | 20   | RW   | integer  | pposition                      |
|       | 12  | 20   | RW   | integer  | nposition                      |
|       | 13  | 08   | RW,M | unsigned | joy_control                    |
|       | 14  | 08   | RO,M | unsigned | joy_status                     |
|       | 15  | 10   | RO,M | integer  | joy_val                        |
|       |     |      |      |          |                                |

| 16 | 10 | RO,M | integer | joy_output |
|----|----|------|---------|------------|
| 17 | 10 | RO   | integer | joy_act    |
| 18 | 10 | RO   | integer | joy_last   |
| 19 | 10 | RO   | integer | joy_new    |
|    |    |      |         | TOP        |

# Error Object: 0x2600

| Index    | Sub  | Bits   | CMD                                                                                 | Unit       | Description                               |  |  |
|----------|------|--------|-------------------------------------------------------------------------------------|------------|-------------------------------------------|--|--|
| 2600     | 01   | 20     | RW                                                                                  | logic      | mask could be used to disable error types |  |  |
| 2600     | 02   | 20     | RW                                                                                  | logic      | error code: im hsio                       |  |  |
| 0×0000 0 | 004  | antiv  | alence - e                                                                          | encoder, e | .g. distortion                            |  |  |
| 0x0000 0 | 800  | enco   | der count                                                                           | ing        |                                           |  |  |
| 0x0000 0 | 010  | drive  | temperat                                                                            | ture > 80° | C                                         |  |  |
| 0x0000 C | 020  | logik  | logik voltage < 18 V                                                                |            |                                           |  |  |
| 0x0000 0 | 040  | bus v  | oltage >                                                                            | 180 V      |                                           |  |  |
| 0x0000 0 | 080  | bus v  | bus voltage < 24 V                                                                  |            |                                           |  |  |
| 0x0000 0 | 100  | short  | circuit "p                                                                          | hase A"    |                                           |  |  |
| 0x0000 0 | 200  | short  | circuit "p                                                                          | hase B"    |                                           |  |  |
| 0x0000 0 | 400  | short  | circuit at                                                                          | "Ready" o  | or "OUT1,2" or "brake"                    |  |  |
| 0x0000 1 | .000 |        | external Enable low, although the drive has been activated (control word -> 0x000F) |            |                                           |  |  |
| 0x0000 2 | 2000 | follov | following error during operation                                                    |            |                                           |  |  |
| 0x0000 4 | 1000 | overs  | overspeed, encoder frequency > 4 MHz                                                |            |                                           |  |  |
| 0x0000 8 | 3000 | comm   | commutation not found                                                               |            |                                           |  |  |
| 0x0002 0 | 0000 | i²*t ⊧ | nas come                                                                            |            |                                           |  |  |

TOP

### □ Boolean Control Word Operation: 0x2840

| Index | Sub | Bits | CMD | Unit  | Description                                                     |
|-------|-----|------|-----|-------|-----------------------------------------------------------------|
| 2840  | 01  | 10   | RW  | logic | bit controlled and operation with the actual control word       |
| 2840  | 02  | 10   | RW  | logic | bit controlled <i>or</i> operation with the actual control word |

TOP

Bus Parameter Object: 0x2F80, 0x2F90-2

 $\label{eq:configuration} Configuration \ of \ interfaces \ RS485 \ and \ CAN open.$ 

| Index   | Sub | Bits | CMD | Unit     | Description                                                                                                                                                                                                                    |
|---------|-----|------|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2F80    | 00  | 08   | RW  | unsigned | ID-address addition 0 - 127 to DIP-<br>switch value                                                                                                                                                                            |
| 2F81/82 | 00  | 08   | RW  | unsigned | Baud Rate objects for CAN bus1 MBit/s (40m) $2F81 = > 0x00$<br>$2F82 = > 0x14$ 500 kBit/s (130m) $2F81 = > 0x00$<br>$2F82 = > 0x1C$ 250 kBit/s (270m) $2F81 = > 0x01$<br>$2F82 = > 0x1C$ 125 kBit/s (530m) $2F81 = > 0x03$<br> |
| 2F90    | 00  | 08   | RW  | unsigned | type of interface<br>0 Standard RS485<br>1 JETTER RS485                                                                                                                                                                        |
| 2F91    | 00  | 08   | RW  | unsigned | Baudrate0x3F9.6 kBaud0x1F19.2 kBaud0x0F38.4 kBaud                                                                                                                                                                              |
| 2F92    | 00  | 08   | RW  | unsigned | IndexHigh<br>0x60 for Jetter RS485 to declare<br>objects at high byte<br>0x60XX address                                                                                                                                        |
|         |     |      |     |          | TOP                                                                                                                                                                                                                            |

TOP

□ Device Info + Software Version object 0x2FE0

|     | Index                                                 | Sub | Bits | CMD | Unit     | Description                                                                      |  |  |
|-----|-------------------------------------------------------|-----|------|-----|----------|----------------------------------------------------------------------------------|--|--|
|     | 2FE0                                                  | 01  | 20   | RO  | unsigned | software version e.g. 29                                                         |  |  |
|     | 2FE0                                                  | 03  | 20   | RO  | unsigned | <i>date</i> of modification<br>0x0315490 means 20010128, which<br>says 1/28/2001 |  |  |
|     | Says 1/20/2001                                        |     |      |     |          |                                                                                  |  |  |
| 200 | 2001 > ECOSTEP ANTRIEBE / JENAER ANTRIEBSTECHNIK GMBH |     |      |     |          |                                                                                  |  |  |

# **Appendix F - Glossary**

At this chapter we will have a brief view on terms we often use but they might be not known generally.

#### Mapping

The value of an object at address Subindex-Index-Bitlength is another Objekt address. This pointer concept is known at many high level programming languages. For example the whole address of the actual master position is 2509-06-20. If you want to compare the position with some specified values you "map" it at the address of the comparator target 2180-01-20. This procedure is called mapping and generates a very powerful concept. Objects capable to be mapped are signed with "M" in the object catalog.

#### Statemachine

The system motor plus drive we define as a system with different discrete states. From the mechanical engineering we know the state space describtion where (s(t), v(t), t) determines the whole system at any time. This is true also for our drive - motor - system, but we want to know also whether the power is turned on, whether there is an error or whether the nominal target is reached and some more things. In CANopen we've therefore a status word. Its bitcode determines a special drive status. By use of the control word one can change the states in those directions defining the statemachine. We want to describe now the following important tasks, where we could observe these statemachine:

- Switch on of the drive
- Start homing
- Making a positioning in absolute mode

Notwendig sind die folgenden Objekte:

| Object              | Meaning                                                                                                                 | Address  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|----------|
| Status word         | consisting of important flags: error, commutation,<br>Ready, target reached, reference found, motor<br>switched on/ off | 60410010 |
| Control word        | determines states: power on motor, Enable, Reset,<br>Start motion, motion absolut or relative                           | 60400010 |
| Operation<br>mode   | e.g. 1 Positioning , 6 Homing                                                                                           | 60600008 |
| Homing              | e.g. 32 means "at next index puls"                                                                                      | 60980008 |
| Profile<br>velocity | Velocity at $v(t)$ -trapezium, unit conversion below                                                                    | 60810020 |
| Acceleration        | positive slope in v(t)                                                                                                  | 60830020 |

| Deceleration       | negative slope in v(t) | 60840020 |
|--------------------|------------------------|----------|
| Target<br>position | defined in increments  | 607A0020 |

Therefore we have the following course:

| Action/ Course | Control<br>word | Status<br>word | Status                                |
|----------------|-----------------|----------------|---------------------------------------|
| Logic on!      | 0x0006          | 0x0031         | ready to get power                    |
| Power on!      | 0x000f          |                |                                       |
|                |                 | 0x4437         | Commutation found, no error, power on |
| Power off!     | 0x0006          |                |                                       |
|                |                 | 0x4031         | as above without power                |

We choose the homing method : Number 32 (60980008 => 0x20) and control homing.

| Action/<br>Course                                      | Control<br>word      | Status<br>word | Operation<br>mode | Status                                                                                                                                                                  |
|--------------------------------------------------------|----------------------|----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | 0x000F               | 0x4437         | 0x01              | Motor on power, controller<br>on                                                                                                                                        |
| Homing 32                                              |                      |                | 0x06              |                                                                                                                                                                         |
| Start!                                                 | 0x001F               |                |                   |                                                                                                                                                                         |
|                                                        |                      | 0xD437         |                   | Reference found                                                                                                                                                         |
| Ready to mak<br>a positioning<br>absolute/<br>relative | e 0x000F /<br>0x004F |                | 0×01              |                                                                                                                                                                         |
|                                                        |                      | 0xC437         |                   | "Set point/ Start" fifth flag<br>in control word appears as<br>0x1000 in the status word.<br>Important, because the<br>controller acts just on<br>0x000F => 0x001F puls |

To start a motion we initiate first the value for the deceleration and the acceleration and then:

| Action | Control-<br>word | Status<br>word | Velocity                   | Target position | Status |
|--------|------------------|----------------|----------------------------|-----------------|--------|
|        | 0x000F           | 0xC437         | 100 1/min = 0x000B<br>71B0 | 8000 inc        | Init   |
| Start! | 0x001F           |                |                            |                 |        |
|        |                  |                |                            |                 |        |

|                              | 0xD0                                                                                           | 37                                     |                          |                            | Moving                                  |
|------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|----------------------------|-----------------------------------------|
|                              | 0xD4                                                                                           | 37                                     |                          |                            | Target                                  |
|                              |                                                                                                |                                        |                          |                            | reached                                 |
| make a RES                   | mall operation we<br>ET one puts 0x80<br>x0031 and then w                                      | to the control w                       | ord, chec                | ks whether                 |                                         |
|                              |                                                                                                |                                        |                          |                            | TOP                                     |
| Address                      |                                                                                                |                                        |                          |                            |                                         |
| An address i                 | a anacified in the                                                                             | following wove f                       | irct tha in              | day (concis                | ting of four                            |
| hexadecimal<br>numbers) ar   | s specified in the<br>I numbers), furthe<br>nd at the end a tw<br>status word as a             | er the subindex (<br>vo hexadecimal c  | consistin                | g of two he                | xadecimal                               |
| (Index, Sul                  | bindex, Bitlengt                                                                               | h) = (6041,00,                         | 10) or 6                 | 0410010                    |                                         |
|                              |                                                                                                |                                        |                          |                            |                                         |
| Bitcode                      |                                                                                                |                                        |                          |                            |                                         |
| could be 8 b<br>example is t | ns we reproduce<br>it, 16 bit or 32 bit<br>he distribution of<br>DIN6 to 8 high ac<br>is 0xE0. | t and convert the<br>the states high , | em into h<br>/ low at tl | exadecimal<br>ne 8 digital | numbers. An<br>inputs. We<br>mber (1110 |
|                              |                                                                                                |                                        |                          |                            | TOP                                     |
| Velocity                     | internal scaling                                                                               | 9                                      |                          |                            |                                         |
| value in rpm                 | is 60 • internal v                                                                             | /alue [inc/64 s] /                     | ' 64 / enc               | oder resolu                | tion                                    |
|                              |                                                                                                |                                        |                          |                            |                                         |
| Analog                       | target value                                                                                   |                                        |                          |                            |                                         |
| skaling the a                | analog port.                                                                                   |                                        |                          |                            |                                         |
| -                            | ] - > factor [inter                                                                            | nal unit] / conve                      | rsion fact               | or [internal               | unit / Volt] /                          |
| Example to o                 | determine the fac                                                                              |                                        |                          |                            |                                         |
| Maximum ve                   | elocity is 1440 U/ı                                                                            | min => 1440/ [6                        | 60/ 8000/                | 64] / 2^3                  | 512 = 3000 / 512 /                      |
|                              |                                                                                                |                                        |                          |                            | 101                                     |
|                              |                                                                                                |                                        |                          |                            |                                         |
| Scaling                      | acceleration                                                                                   |                                        |                          |                            |                                         |

resolution, 1 g at a belt of 100 mm/rev with encoder 8000 inc is equal to  $9.81 / (0.1/2 \cdot pi) \cdot 8000 / (16 \cdot 2 \cdot pi) = 4969 [16 inc/s<sup>2</sup>] in the drive$ 

# Digital current

digital current also called Idac is measured in units from 0 - 2047. This could be converted to Ampere by: value  $\bullet$  maximum drive current [A] / 2047. The ECOSTEP200 could reach 12 A peak and the ECOSTEP100 roughly 7 A.

TOP

#### Digital friction current

digital friction current [Idac] : could be measured indirectly by averaging the current objekt 6078,00 at slow speed. This value is multiplied by 1.2 and could be used as first approximation for the limit value of the integral parameter in the velocity loop vc\_kilim.

#### Automatic reverse mode

automatic reverse in position mode: You keep the motor in an uncritical position to have at least 45° freedom in both directions. Your installations is already done correctly. Then you switch on the the logik and fill in the following values into the right side of the Direct Object Editor (Hex-values):

| Index  | Subindex | Hex value |
|--------|----------|-----------|
| 2040   | 01       | 1         |
| 2040   | 02       | 60400010  |
| 2040   | 03       | 3F        |
| 2040   | 04       | 21400B10  |
| 2040   | 05       | 8041      |
| 2041   | 01       | 1         |
| 2041   | 02       | 607A0020  |
| 2041   | 03       | 0         |
| 2041   | 04       | 21400110  |
| 2041   | 05       | 8042      |
| 2042   | 01       | 1         |
| 2042   | 02       | 607A0020  |
| 2042   | 03       | 200       |
| 2042   | 04       | 21400110  |
| 2042   | 05       | 8041      |
| 2118   | 0        | 40        |
| switch | off:     |           |
| 2041   | 05       | 8000      |

#### Data storage into the drive flash

You can store the data through hsio in: (Main Menü\Device Profile DS301 \Save/Init):

| Save Parameter - all                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------|
| Save Parameter - Communication                                                                                             |
| Save Panameter - Drive Config                                                                                              |
| Save Parameter - Offline Config                                                                                            |
| Init Parameter - all<br>Init Parameter - Communication<br>Init Parameter - Drive Config<br>Init Parameter - Offline Config |

TOP

# Table of errors in hsio

You find the error in the following menu: *Main Menu\Device Configuration\Error Flags* 

#### Error window latest version 2001

| FAULT_H8SWD_BIT        | 0 | enable |
|------------------------|---|--------|
| FAULT_REGLERWD_BIT     | 0 | enable |
| FAULT_ENC_ERROR_BIT    | 0 | enable |
| FAULT_MOTENCCAP_BIT    | 0 | enable |
| FAULT_MAENCCAP_BIT     | 0 | enable |
| FAULT_OVERTEMP_BIT     | 0 | enable |
| FAULT_UVMESS_BIT       | 0 | enable |
| FAULT_OV_ERROR_BIT     | 0 | enable |
| FAULT_UV_ERROR_BIT     | 0 | enable |
| FAULT_A_ERROR_BIT      | 0 | enable |
| FAULT_B_ERROR_BIT      | 0 | enable |
| FAULT_OUT_DIAG_BIT     | 0 | enable |
| FAULT_EX_ENABLE_BIT    | 0 | enable |
| FAULT_FOLLOWINGERR_BIT | 1 | enable |
| FAULT_OVERSPEEDERR_BIT | 0 | enable |
| FAULT_COMMUFINDERR_BIT | 0 | enable |
| FAULT_ABORT_CONN_BIT   | 0 | enable |
| FAULT_IXIXT_BIT        | 0 | enable |
|                        |   |        |

2001 > ECOSTEP ANTRIEBE / JENAER ANTRIEBSTECHNIK GMBH