
Introduction

After carefully examination of the first 7 chapters you should get familiar with

the ECOSTEP and you should be capable to use it as a positioning drive. This

could be:

Point-to-Point-Positioning

electronic gear box

analog nominal value +/-10 V

More complicated applications, especially multi-axe-systems using interfaces

like RS485, CANopen or Profibus DP, may require the use of the object list. As a

registered user of the ECOSTEP® you will get release notes as soon as there are

any innovations.

Wichtig: This documentation requires a thorough knowledge of electric plants

and relevant security rules (You will find the security rules with every delivered

ECOSTEP®).

Printing this documentation is possible with the print function of the browser. On

the left you find Hyperlinks for quick navigation within the content frame. The

text contains hyperlinks to other sides. To get back to the starting point press

the << - button once or twice.

The drive ECOSTEP/ ECOLIN is distributed with the program hsio.exe. For

running and adjusting the controller a serial extension lead is needed:

RS232 connection

Parametriersoftware HSIO

If you are within this workshop asked to address the controller with hsio, after

starting the program and one click on the RETURN button appears the following

picture:

Now make under PC-Interface Settings the above described inputs for COM and

IRQ and put in the corresponding ID number (Default 01 H) in accordance with

 PC COM1/IRQ4 oder COM2/IRQ3 ECOSTEP X5

 RxD 2 2

 TxD 3 3

 GND 5 5

the switch position of the DIP-switch. Press the ESC-button if you want to get

back to the former menu. In case of a communication mistake, check the cable

or change PC-Interface settings (com1/irq4 or com2/irq3). Otherwise you have

reached communicative control over the controller.

The rather abstract structure of the hsio is based on the clear definition of

CANopen at the DS402 according to CIA , which means "can in automation".

According to this rules the structure of an object- or address - list is generated.

This installation is not to be understood as an installation according to matters

of EMD (see the following PDF-pages safety instructions), but as a laboratory

construction for testing the function of the tool. The following materials are

needed:

Logic - supply (low voltage, safetely saperated from 230 VAC) or JAT

ECOBRAX200 with transformator

ECOSTEP®200 + connector set

motor + leads (power, encoder, RS232)

recommended is a mechanical system with limit switches

power pack (24 - 150 V DC)/ could be supplied by JAT

First you connect motor cables and controller.

The motor encoder uses signals according to RS422. The encoder is supplied

with 5 V by the controller at input X8.

1.0 Installation Step 1 of 2

1.1 Encoder connectors / D-Sub 9 pol. to female X8

The motors possess 2 phases, whose 4 cables are connected with (A/A + B/B)

of the connector X9. With the inputs (+) and (-) a holding brake (24 V, 1A) is

switched on.

The wiring system of X9 you find in the table below. The values in brackets are

in case you are using female connectors. The ground cable and shield should be

well mounted on the controller (see picture above). Over 60 VDC the GND-lead

is needed.

1.2 Motor power connector (with or without brake) at X9

 ECOSTEP X8 Signal Pin

connector

 1 5 V 12

 2 A 5

 3 B 8

 4 N 3

 5 free/ (24V) free/ (24 V)

 6 GND 10

 7 /A 6

 8 /B 1

 9 /N 4

 ECOSTEP
 Nema 34/42

4 Leads

 Nema 23

4 Leads

 Nema 17

4 Leads

 A 3 black white

 /A 1 orange yellow

 B 4 red red

 /B 2 brown blue

 GND green-yellow free/GND free

 Brake (–) separated cable Pin 3 thin black no brake

 Brake (+) separated cable Pin 1 thin brown no brake

The logic is separated galvanically from the suppliant. Please mind when

connecting the motor with 24 V. The hardware-enable is also connected with 24

V DC if not switched by a PLC.

1.3 Logic supply

The logic-suppliant of connector X4/Phoenix MC -1,5//3,81 must lie between 18

and 30 V. The outputs need 3 x 0,5 A, the brake 1 A and the controller about

0,3 A.

1.4 Hardware reset

After connecting the LED "run" blinks and "24 V" shines steadily green. If not,

please check the logic tension and the encoder connections. You can RESET the

mistake in turning the logic on and off or shortly lay 24 V at the reset- input of
connector X4.

1.5 Feedback check

The connector is now in its basic status. If you connect a PC via RS232 with the

connector and call up the program hsio, it is possible to see the encoder data

when turning the motor shaft (Main Menu\Device Profile DS402\Profile

Position Mode). If you have the master encoder also connected you should

control its working inside menu (Main Menu\Device Configuration\Master

Encoder).

1.6 Limit switch adjustment

The next step is adjusting the limit switch. This is generally a low-volt

active/high-volt-active. We connect (+) with 24 V from connector X4 and the

signal leads with the inputs of DIN6 and 7 and the signal mass with "ground"

under DIN8 on connector X3. The setting is generally connected to the reference

drive, that is why both items have got a separate chapter Appendix A-Limit

switches.

1.7 Powersupply

As last step in laboratorial installation we connect the controller with the power

supply. The DC bus of the amplifier needs not to be stabilised but smoothed. It

arrives at connector X10/Phoenix MSTB - 2,5//5,08. Now the motor is ready and

we can start with the next chapter.

Switching on the motor without load ! Before doing this we make a final check

and we proof whether the commutation parameters set correctly and the

maximum current is set according to the motor data sheet. Then we learn a

little bit about a state machine to get the system running.

2.1 Commutation

To check the first point we go inside hsio to:

(Main Menü\Device Profile DS402\Commutation Parameters)

If you purchased a rotative motor you will have normally the above parameter

preset. We see the 10 parameters of the object block 0x60F6. But anyway the

important parameters are find_current (60F6,06), the velocity dependend flux

angle v_preph_factor (60F6,03) and the encoder resolution parameter

commu_length (60F6,01) together with the amount of electrical poles

commu_poles (60F6,02), which is identical with the pole pair number at rotative

motors and identical 1 for linear motors.

For example a servostepper with 50 pole pairs and an encoder with resolution

2000 inc/ revolution has after the internal interpolation by four 160 pulses per

pole pair. If we write a zero into commu_poles the controller thinks we have

done the division 8000 by 50 and so we have to write 160 into commu_length.

The internal division is useful if one want to drive a motor with 30 pole pairs

with a 2000 puls encoder. The quotient is non regular, but the controller takes

care about that. In this case we write 8000 into commu_length and 30 into

commu_poles.

If you use a linear motor of pole pair length 32 mm together with an linear

encoder of resolution 1 µm you write 32 000 into commu_length and 1 into

commu_poles! At the object commu_find_method you choose the commutation

method. In general 3 is used for horizontal and 1 for vertical systems.

2.2 Current adjustment

To adjust the maximum current we go into the following menu Profile Torque

Mode.

2.0 First move Step 2 of 2

Important parameters for you as a user are:

max_current (6073,00) that is the upper limits of the the current

current_actual_value is the actual value set by the controller.

With this value we set the integral gain parameter according to the

friction current.

in tc_ixixt_current and tc_ixixt_thau we could set the current limit in

time measured in time period thau/seconds. This is used as a safety

function if one drives on block and the following error couldn't come.

Finally we proof the default values of the position and velocity loop parameter,

which are set for free shaft operation:

2.3 State control

Now we have made the presets and can look at the state control of the drive:

Main Menu\Device Profile DS402\Device State Control:

 Main Menu\Device Profile DS402\Profile Velocity Mode

 vel_para.vc_kp 50

 vel_para.vc_ki 1

 vel_para.vc_ilim 400

 vel_para.vc_error_filter_length 1

 vel_para.vc_output_filter_length 3

 Main Menu\Device Profile DS402\Position Control Function

 pc_para.pc_kp 3000

 pc_para.pc_vfff 10000

 Main Menu\Device Profile DS402\Profile Position Mode

 profile_acceleration 10 000

 profile_deceleration 10 000

With the help of the cursor we can move at the left side up and down. By

pressing RETURN one could set 0 to 1 and vice versa. The numbers in the

column define the "control word" which sends orders to the controller. The left

side is just readable because it shows the status of the controller. For more see

state machine.

Control word (6040,00): With this 16 bit object we control the status of the

controller:

Default state after logic on and power off :

(0000 0110) = 2^1+2^2 = 0x6 Hex

Controller on:

(0000 1111) = 2^0+...2^3 = 15 DEC = 0xF Hex

Homing Start (if operation mode is 6):

(0001 1111) = 31 DEC = 0x1F Hex

Relative positioning:

(0100 1111)- >(0101 1111) = 0x4F - > 0x5F Hex

Absolute positioning immediately:

(0011 1111) = 63 DEC = 0x3F Hex

Error Reset:

(1000 0000) = 128 DEC = 0x80 Hex

At the Status word (6041,00) we have the following important states:

Ready to Switch on = 1 DEC = 0x01 Hex

Fault = 8 DEC = 0x08 Hex

Target Reached = 1024 DEC = 0x400 Hex

Commutation Found = 0x4000 Hex

Reference Found = 0x8000 Hex

2.4 Modes of operation

In the menu Device Control one can see the status word as hexadecimal

number and can set the control word also as hexadecimal number. But mainly

we use this menu to set the modes_of_operation (6060,00).

The most important operation modes are:

Value 1 = Positioning (absolute or relative)

Value 3 = velocity mode with following error control

Value - 3 = velocity mode without following error control

Value - 4 = positioning mode without profile control, is used if one uses

the interface master encoder X7 as nominal value (e.g. Step & Direction

or electronic gearing)

Value 6 = Homing mode

Value 7 = interpolation mode with CANopen

2.5 Fast start

Now we switch on the drive::

the shaft is free

the LED 24V is green and the LED from RUN is flashing green

In Device Control the modes of operation is 1 and the control word is set

to 0x0F

we check, whether the bit Commutation Found in Device State Control is

1 or the status word has the value 0x4437 and the motor shaft resists

against manually rotation

if so we set the control word in Device Control to 0x3F

after this we go to menu Profile Position Mode:

Now we set the target_position to 8000 if profile_velocity equals 0, nothing

happens and we set the profile_velocity to 3 000 000 (350 U/min).

Attention - the motor should rotate one revolution:

It is making one revolution and the green LED's are still on.

Congratulation!

The motor is not running. Pity! Please check the following things again:

Switch off the logic - switch it on - start again at controller adjustment

If you are here the second time without success, then check the error

with the error code (main menu\device configuration\error flags) and call

your application engineer. If you've been successfully you can proof also

the homing and the limit switches.

To do this go back to menu Device Control, set the control word to 0x0F and

choose 6 for the modes_of_operation and switch the control word again to 0x1F

- for more info click here. We proof the limit switches by setting a new positive

target_position and activate DIN6. The motor shouldn't run further unless DIN6

is deactivated - for more info click here.

Anyway if you have still problems, check this. Above steps could be automated

by the use of offline programming.

Appendix A - Limit switches and homing

This chapter shows how to configure the end switch with free motor shaft and

how to choose the reference run mode. This is necessary if your drive system is

one which possesses clearly defined starting and ending positions. These are all

screw drives and belt systems with a permanently installed vehicle.

Limit switches

The end switches are connected with the inputs of X3:

DIN6 for limit +, i.e. limit in positive counting direction of the motor

DIN7 for limit-, i.e. limit in negative counting direction of the motor

DIN8 for the reference sensor

You can make out the counting direction of the motor by the change of the

actual position when turning the motor shaft by hand. The actual position is

shown in hsio as position_actual_value in (Main Menu\Device ProfileDS402

\Profile Position Mode). With the delivery configuration it happens generally

when the motor shaft is turned anti-clockwise.

Now appears as described in the introduction the main menu. By pressing

"return" you arrive the device configuration. Within this menu you can

navigate with the arrow buttons. By pressing ESC, you get one level higher.

Value inputs and submenus are reached by RETURN.

Arrived in Digital Input Configuration you see by Input State which inputs are

set. The value is coded with a normal SPS bitcode (glossary).

Input 6 "high as logic high" means 0x20

Input 7 high means 0x40

Input 6 + 7 high mean 0x60

High in our context means always logic activ . Which physically level is meaned

will be determined by the Input Polarity Mask.

In the above picture the Input Polarity Mask (inverts the masked inputs) is zero.

The Input State is 0x40, which means that input 7 is "high". If you enter 0x60

for Input Polarity Mask, in Input State appears a 0x20 Hex and input 6 is now

logically active whereas input 7 is logically inactive, because we have defined

the inputs 6 and 7 as closers!

In generell the value in Input State has to be compared with an AND or OR

connection with the value in CMP mask and gets a "1" in result if the boolean

value is TRUE. This 1 will be postprocessed within the controller (e.g. blocking

the motor).

Now you can check if your limit switches function on the right side by activating

them (1.0 Installation > Limit switch-adjustment). Please activate also the

reference switch DIN8. Within Input State must be added 0x80.

Homing

After configuring the limit switches we choose the reference run. We start the

homing in chapter First move. To configure the reference run we enter the

Device Profile DS402 menu and there the submenu Homing Mode

with the following parameters:

home_offset moves the zero (origin) by X increments

homing_method defines the reference method.

speed_during_search_for_switch defines the velocity to find the limit

switches

speed_during_search_for_zero defines the velocity to move to the

index or reference switch after the limit switch has been found

homing_acceleration defines overall acceleration during homing mode

In the above example one moves with 117 rpm to the low high side of the

negative limit switch. It is kept in the low district of the limit switch with about

11,7 rpm on the first index impulse of the encoder. The acceleration is about 20

rad/s².

Homing methods

The table below connects the type reference run with the according number of

CANopen DSP402.

Reference modi (Homing)

Because the methods are quite similar, only some are explained:

Method 1: see above.

Method 3: It is driven up to the L-H-puls of the reference sensor. At the 1.

index impulse it is stopped where the reference switch is low.

Method 7: It is driven from sidewards to the L-H-flank of the reference switch.

The positive limit switch is low and zeroes with the next index impulse, where

the reference switch is low.

Method 17 - 31: Are like methods 1 -14 but without index impulse. The

example shows 19 and 20 which are comparable to 3 and 4.

Method 32: first index impulse anti-clockwise

Method 34: not described, assigns the zero on actual position.

Appendix B - Mechatronic

Now we put the motor on the load:

Electromechanical System:

Welcome to adjust the above motor drive system.

Take some time to understand the above situation. The abbreviations are

explained at the next table otherwise we used the common signs for integration

and multiplication in a control network.

 Abbreviation Meaning

 km torque constant

 Mm torque

 Jm motor inertia

You have to consider that one moves a load just by generating a static angle

between the load- and the motor shaft. Because of this there is always an

elastic reaction of the load (torque transmission). The only system where this is

not like this is the direct linear motor, but only if the bottom under the motor is

not swinging and the friction force is low compared to the cogging of the motor,

otherwise we have the same as in the rotative case. What happened often is

that under wrong controller parameter the motor tends to swing and one could

hear and feel it. The result is that the position stiffness is low.

Problem outline

To understand this oscillation and what is the reason for it and what kind of

parameter have to be adjusted to prevent this we draw the following picture in

mind:

We think of two ball systems, one with mass 10 kg coupled by a spring with

your hand and another 10 kg ball coupled with a steal rod with your hand. If

you try to move the one with the spring you will generate a special stretching

length depending on the acceleration and the friction constant of the bottom. If

you have a variation of the friction constant it will be quite difficult to generate a

constant moving of the ball, especially if the frequency of the variation is in a

special area. Then you push and pull but the ball doesn't do what you want. In

this case the system is instabil. With the rod system there will be no problem as

long as your arm are not getting elastic. May be after some time you check it

also with the spring and depending on the spring stiffness you realize two

things:

1. the time to change the velocity of the ball could just generated up to a

special inverse frequency (T = 1/ƒ)

2. you keep cool if there is just a small but high frequency riple on the velocity

according to friction nonlinearities

What did you do? - You have just set in your mind a low pass filter, which

means it does not matter you if there are some high frequency oscillations on

the velocity due to external distortions with rather low amplitude.

Control strategy

 vm motor speed

 sm value motor encoder

 cml mechanical elasticity

 Mü transfered torque

 ML load torque

 JL load inertia

 vL load speed

 fr sign(vL) nonlinear friction function

 sL position of the load

Therefore we learn here to set a low pass filter into the drive and to find the

right gain of the error correction due to the proportional and integral parameter

of the velocity control and the proportional parameter of the position control.

Firstly we calculate according to the load inertia and the available torque the

maximum acceleration needed in that way, that there will be enough torque to

compensate the friction. This is normally done together with the sales engineer

before buying. The result is a special motor and the right drive size

(ECOSTEP200 + 42N or 34N or ECOSTEP100 + 23S or 17S).

Secondly we determine the highest gain crossover frequency depending on the

resolution of the encoder, the maximum torque and the inertia of the load. This

is theoretical done with the help of our Applet adjust.xls and then by moving the

load by hand against the motor torque with modes of operation set to - 3 and

integral gain vel_para.vc_ki set to Zero. You should notice a high damping force

without hearing oscillations in the determined frequency range. Otherwise slow

down the gain vel_para.vc_kp and take care that the bode curve of the position

loop doesn't get a resonance. In this case turn pc_para.pc_kp down.

Adjustment

Finally we optimize the stabile system with the integral part of the velocity

control objects vel_para.vc_ki and vel_para.vc_ilim and with the velocity feed

forward parameter pc_para.pc_vfff to obtain a minimum average following

error. Sometimes (the mechanical rigidity is too low) you might set also the

torque feed forward parameter pc_para.pc_afff to achieve better performance.

It is suitable to move between 2 position automatically during this tuning.

During the above tuning we will stay in the two following menu at the software

hsio:

Appendix C - Interfaces

Overview

The ECOSTEP contains several interfaces, that can act parallel to set new

nominal values in the drive. We will describe the most importent in this chapter.

Analogous Interface (+/-10 V)

One of the still common interface is the is the +/-10 V (connector X3:

AIN+/signal and AIN- /ground where GND means shield) interface. To tell the

ECOSTEP to read from this interface, one could set the parameter through hsio

or direct address access . We will try to do it through the parameter set up

software. Please go to the following menu (.\device configuration\analog ports):

You have to change the red marked fields. The first one defines the target

object that will get the nominal value. In the above picture it is the nominal

velocity if you want to run the controller in closed loop velocity mode, that

means mode of operation is - 3. If you don't have an external position controller

you should use mode of operation 3, where the position controller is included.

The second field determines the resolution together with the third field - see

also scaling formula (Appendix F - Glossary). In our example the maximum

velocity at 10 V would be 1440 rpm. .

To start the regulation through the analogous port, one has to set the control

word to 0x000F and the mode of operation to - 3 or 3.

If one wants to set up a continuous change of limitation of the drive current

through the analogous port, one uses the maximum current (6073,00) as target

object and defines the resolution with factor = 2 and shift = 0. This would give

resolution of 10 mA if the maximum value at 10 V should be 6 A.

Master Encoder - Interface (RS422)

The master encoder interface X7 has the same pin code as the motor encoder

interface (1.0 Installation > Encoder connection diagram), except that it can

supply at PIN 5 additionaly 24 V for special measuring systems. To configure a

master- slave connection to several drives an encoder output X8 is connected

with the master encoder input X7 of one or more drives, which are then slaves

in the chain. To implement this interface, also directly with the object catalogue,

one has to follow up the next steps at (.\ device configuration\ master encoder

configuration):

We have to configure the red marked fields. In the first field we find again the

target object address to assign the values from the RS422 port. Normally we

take the velocity object (60FF,00). In the second field we choose the

countermode" 1 " for Step & Direction or " 2 " for Master/Slave. With gear factor

and gear divider one can scale the slave to the master drive (Electronic Gear),

that can modified during online processing. If you turn the control word to 0x0F

and mode of operation to - 4, the controller is already configured and the slaves

act according to the master encoder increments.

Serial Interface

The protocol of serial communication at the ECOSTEP (RS232, RS485,

CANopen) is leant on the CANopen-Standard DS301. The datatransfer is the

same for all this interfaces therefore we will show it just once. Just the transport

protocol parameter are different. For the RS232 we have 9600 Baud, 8 Databit,

no parity, 1 stop bit. Before the slave answers the master gets always an echo.

At the dataprotocol the low bytes are sent first. In the example below the host

PLC sets the velocity to 85000 [inc/ 64 s] to find the limit switch at homing

mode :

CANopen Interface

Connector X1, close up resistor 150 Ohm at the end of the bus between pin 2

and 7:

At CANopen we find two ways of data transmissions. The first is the serial data

object, SDO, which is leant on the standard DS301. At this type of data

transmission the slave tells the host that it has recieved the message (like

RS232 but faster, see baudrate object.

The other type is also very common when the communication is very fast and

the receive of the message need not to be echod. Ths type is called

processdataobject, PDO. Within a PDO one can transmit 8 byte data, which

means 1, 2 up to 8 objects of the object catalogue according to their size. There

are listener- and talker - PDO. By configuring the message - ID and the cycle

 Master ECOSTEP-Slave 1 ECOSTEP-Slave 2

 2 CAN_L 2 2

 7 CAN_H 7 7

 6 GND 6 GND

 9 CAN_V+ (8 - 24 VDC) 9 CAN_V+ (8 - 24 VDC)

time of transmission a PDO is configured.

It is very usefully that the slaves could send message to each other without a

master if the message - ID's are known by transmitter and receiver. In the

example below in the message - ID 182 it is sent every 10 ms the status word

of that slave. It is important to know which message - ID belongs to which

slave. In bigger nets the master configures the message -ID's. At nets with less

than 15 slaves there are default - ID's according to the value of the DIP -

switches of the slaves. For example : Slave (DIP - Switch - ID 1) has the

message - ID 181 and slave (DIP - Switch - ID 2) has message - ID 182.

Programmable Input/ Output

At the ECOSTEP one can call small subroutines according to digital signals at the

inputs at X3, so called inputs events. The 2 free configurable output one can

programm like below

(.\Device Configuration\Digital Output Configuration):

The value of the comparator of the outputs could be described according the

following formula:

Value = modus { ((value_mapping + offset)& AndMask)& CmpMask }

modus = 1 means negation, 0 no change

At the example output OUT1 turns "high" if the status word (6041,00) says, the

drive found the commutation and the reference. Actually the value says that the

drive only found the commutation. This will be discussed in the next chapter.

The address of the status word "0x60410010" is mapped to the lower bytes of

the address of the output_target_object_address 0x21600120. The code

0xC037 tells us that the controller is in a specific status (Bitcode : 1110 1100

0000 0011).

Output 2 (OUT2): Another status word comparison. It turns "high", if the target

of the controller task is reached and the "SET-Point" of the control word is also

set.

Appendix D - Offline Control

Courses, programming the I/Os

Apart from online operation (CANopen, RS232, RS485) the motion controller

ECOSTEP 200 is able to control configured sub-routines independently. So

standardised as well as mixed applications are possible (e.g. configuration by

RS232, sub-routine controlled by SPS).

Sequence

255 so called sequences can be deposited within the device. Each sequence has

got a sequence number to be called up with. Content of one sequence can be up

to eight writing accesses (allocation of value) to any writable objects of the

device's object catalogue . It is important to understand, that within one

controller cycle there will be excecuted just one sequence on block. In the

example below within sequence called number 2 a relative positioning of 20 000

encoder increments with a certain trapezium velocity profile (acceleration 25

000, braking acceleration 25 000, velocity 833 000) is shown. The control word

is set to 0x1F (should better done by the object "28400210" to prevent setting

the first 4 bits in the control word all the time).

After calling up a sequence these writings are settled in their configured order at

once, so no other sequence or online-access can push between.

The sequences can be called up by events. These events are generated by event

generators. Each event can be given a sequence number, that causes the right

sequence to run, if the event takes place. Because some events can happen at

the same time, the sequence numbers are arranged in a waiting loop and are

run one by one. Events can be e.g:

I/O Event

A puls on the input board X3 , in the example below are all 5 input events (L-H/

H-L) active, because Input Event Mask is 0x1F1F (where the low byte defines

the active L-H events and the high byte the H-L events), but just the first 2

inputs are used for calling sequences:

Progammable Events

the time course of a programmable timer

TRUE as boolean result of a comparison

after a successful positioning like in the first example Target reached

Call by another sequence which is done by writing the sequence number

into object (2118,00)

Some events can be related to the instruction if the sequence should be run

once or more times, other events are able to work out from the context a

sequence number depending on the situation of the inputs .

Online change of courses

What is very useful is to implement a writing access into one or more sequences

and just alter the position or another main variable through the field bus. In the

following sequences we wish to:

drive to zero after calling sequence 3

after reaching zero the drive goes immediately in master-slave mode

change the position in sequence 3 by writing online a new value to

object (2003,03)

1. Write access to target position with value 0

2. Write access to profile velocity with value 100 000

3. Write access to operation mode (1 = positioning)

4. Write access to put sequence 4 into next queue

1. Write access to control word "start motion"

2. Write access to call sequence 5 if event "target reached" is true

1. Write access to map the master encoder input to the target velocity

2. Write access to run mode "profile velocity with position control"

3. Write access to set the control word to 15.

Master-slave is active now!

First row:

In sequence number 3 subindex 2 and 3 we have placed the write access to

target position with value 2000 by writing on object (2003,02) the value

0x607A0020 and to object (2003,03) the decimal value 2000. This could be

done also via all field bus.

We see the result of this writing access. We have changed online the position in

the sequence structure without loading all data of the sequences again into the

drive.

This is a great advantage in time and for the bus activity.

Appendix E - Object catalogue

We are going to review in a brief form all the important parts of the object table

of the ECOSTEP. You can find the most objects in the initial explanation of the

software hsio. You have direct access to the object for writing and reading by

use of the Direct Object Editor in the hsio-software.

On the toolkit you will find also the programm rwosio2.exe, which is called by

the batch programms Upload and Download. After calling upload you will find

the objects and their values in the file *read.dat. The selection of the objects

you want to read or write you can chose in *reg.cfg. With save.dat you save

your download values on the flash of the ECOSTEP

All actions above can be done also with your own software written in JAVA,

VISUAL C or DELPHI if you follow the data protocoll explained in the menu

Interface. This object table should be used for those programmers. All values

should be hexadecimal in the datatransfer. In the text below we express

hexadecimal numbers through the standard notation 0x2F00. Index+Subindex

form a data record like 0x60400010 which you can read or write (RW), read or

write only (RO,WO) or map on another address (M).

Modes & Control: 0x6040 ff.

Index Sub Bits CMD Unit Description

 6040 00 10 RW,

M

bitcode control word changes status of drive

=>Statemachine

0x06 power off

0x0F power on

0x3F immediate absolute

positioning

0x4F relative positioning

0x2F absolute positioning

0x0F =>

0x1F

start motion

 6041 00 10 RO,

M

bitcode Status word shows status of drive

0x0001 ready to be powered on

0x0008 error detected

0x0400 target reached

0x4000 commutation found

0x8000 reference found

 6060 00 08 WO,

M

number modes of operation:

1 positioning with

position loop

3 velocity with position

loop

- 4 position loop

Sensor value Object: 0x6063 ff.

Target value object 0x607A ff.

(master/slave)

- 3 velocity loop (e.g. +/-

10V)

6 homing

Index Sub Bits CMD Unit Description

 6063 00 20 RO, M inc actual position value

 6069 00 20 RO, M inc/ 64 s actual velocity value

 606B 00 20 RO, M inc/ 64 s velocity demand value

 606C 00 20 RO, M inc/ 64 s velocity filtered actual value

 6078 00 10 RO integer current demand value

 60FD 00 20 RO bitcode status of the 10 digital inputs

DIN1-8, RESET, ExtEnable:

0x0201 0000 DIN1 is "high"

0x0280 0000 DIN8 (home

switch) is "high"

0x02C8 0000 DIN8,7 and 4 are

"high"

Index Sub Bits CMD Unit Description

 607A 00 20 RW,

M

inc target position in operation mode 1,

shift to demand position if control word

starts motion

 60FC 00 20 RO,

M

inc demand position in operation mode 1

 6081 00 20 RW,

M

inc/ 64 s maximum velocity of trapezium profile

in mode 1

 6083 00 20 RW,

M

16 inc/s² acceleration of the trapezium profile

1000 rad/s² is roughly 80 000

[inc/s²]

 6084 00 20 RW,

M

16*inc/s² deceleration of trapezium profile

 60FF 00 20 RW,

M

inc target velocity at mode 3,- 3 and - 4

Performance object 0x6065 ff.

Homing 0x6098 ff.

Commutation Object: 0x60F6

 6073 00 10 RW integer maximum current see glossary ->Idac

 607F 00 20 RW,M inc/ 64 s maximal possible profile velocity at

mode 1 and 3

example: resolution 8000 inc

1000 rpm are 8 533 333 [inc/

64 s]

Index Sub Bits CMD Unit Description

 6065 00 20 RW, M inc maximum following error at which

the drive switch on an error

2000 default value

60 good tuned drive

 6067 00 20 RW, M inc position window for "target reached

flag" - default is 10

 607D 01 20 RW, M inc minimum software endpositon

 607D 02 20 RW, M inc maximum Software endposition - if

both are zero they're not active

Index Sub Bits CMD Unit Description

 6098 00 08 RW,

M

integer methods: important homing

methods from 1 to 34

34 put the zero at the actual

position

 6099 01 20 RW,

M

inc/ 64 s velocity for searching limit switch

 6099 02 20 RW,

M

inc/ 64 s velocity for searching zero

 609A 00 20 RW,

M

16*inc/s² acceleration

 607C 00 20 RW,

M

inc home offset

Velocity Loop Object: 0x60F9

Index Sub Bits CMD Unit Description

 60F6 01 20 RW,

M

integer Number of increments per pole length

e.g. 50 poles and 8000 inc resolution

makes 160

 60F6 02 10 RW,

M

integer number of poles if value above is

encoder increments per revolution -

otherwise 0

 60F6 03 10 RW,

M

integer phase offset of current angle is

proportional to the velocity, values

between 80 and 400

 60F6 05 10 RW,

M

integer maximum phase offset of current angle ,

a quarter of pole length [inc]

 60F6 06 10 RW,

M

integer current peak value to find the

commutation

 60F6 07 10 RW,

M

integer time delay at commutation method 1

and 3

500 small load 1- 5 times the

motor inertia

1000 high load 20 - 50 times the

motor inertia

 60F6 09 10 RW,

M

integer commutation method

3 horizontal applications

1 weight compensation,

vertical applications

 60F6 11 10 RW,

M

12

A/2047
i² • t current limit in time period

0 - 2047 effective current range

 60F6 12 10 RW,

M

[s] time period to measure the effective

current

0 - 12000 time constant of all

motors are near 20 min

10 at small values safety

function e.g. driven on

block if the following

error couldn't come

Index Sub Bits CMD Unit Description

 60F9 01 10 RW,

M

inc/s vc_kp proportional value of velocity loop

50 soft gain

200 strong gain

 60F9 02 10 RW,

M

integer vc_ki integral value of velocity loop

0 no correction of transient

Position Loop Object: 0x60FB

deviations

1 default

2 strong correction, can cause

oszillations

 60F9 03 10
RW,

M
integer

vc_kilim limit value of vc_ki, vc_kilim

should be 10% higher than the static

digital friction current

 60F9 04 10 RW,

M

integer efilt digital input filter - velocity

loop gain is then efilt • vc_kp

1 default, no lead

compensation

2 stronger lead compensation

3 - 5 heavy load - low pass filter

 60F9 05 10 RW,

M

integer ofilt digital output filter for the velocity

loop

2 - 5 1-10 times load/motor inertia

15 - 45 10 - 100 times load/motor

inertia see Bode Analyse

Applet

Index Sub Bits CMD Unit Description

 60FB 01 10 RW,

M

unsigned pc_kp proportional value of position

loop

1000 default, soft correction

3000
necessary for middle

performance

8000

good performance in low

following error - high

position stiffness

 60FB 02 20 RW,

M

unsigned pc_amax prevents oscillations cause to

saturation effects in the motor

value = M0 / (load-inertia • 16 • 2 •

pi) • encoder-resolution

 60FB 03 10 RW,

M

integer pc_vfff feed forward velocity for higher

dynamic

0 - 3000 smooth starting

12000 - 16384 dynamic motion,

low following

error, important

for master-slave

 60FB 04 10 RW,

M

integer pc_afff feed forward current for strong

dynamic

value = 12A / 2^23 •

profile_acceleration

Save Objekt: 0x1010 ff.

CAN-PDO Objects: 0x1400-0x1A00

0x1400-7 (rx_parameter / read)

0x1600-7 (rx_mapping)

0x1800-7 (tx_parameter / write)

0x1A00-7 (tx_mapping)

Index Sub Bits CMD Unit Description

 1010 01 10 RW logic Store of all parameter - value 65766173

 1010 02 10 RW logic Store communication parameter - value

65766173

 1010 03 10 RW logic Store application parameter - value

65766173

 1010 04 10 RW logic Store offline programm flow - value

65766173

Index Sub Bits CMD Unit Description

 1400 01 20 RW unsigned Identifier for CAN-Read-PDO, Default

(201) for ID = 1

 1400 02 08 RW unsigned chose of listening

e.g. 0xFF := Listen if PDO-value

changed

0xXX < 0xFF := Listen at every XX-

times SYNC-event

 1400 03 10 RW 0.1 ms maximum cycle time to listen

 1600 00 08 RW unsigned value stands for number of objects -

attention one PDO can carry up to 8

byte = 0x40 bit

 1600 01 20 RW unsigned first object to be read, e.g. the status

word 0x60410010

 1600 07 20 RW unsigned 8th object to be read within one PDO -

just possible if all the other objects just

have 8 bit length

 1800 01 20 RW unsigned Identifier for CAN-Write-PDO, default

181 for ID = 1

 1800 02 08 RW unsigned Choice of transmission type

e.g.. 0xFF := Write if PDO-value has

changed

0xXX < 0xFF := Write at every XX-

Sequenz Objektregion: 0x2000-FF, 0x2120, 0x2121

times SYNC-event

 1800 03 10 RW 0.1 ms maximal cycle time for next writing

 1A00 00 08 RW unsigned value stands for number of objects -

attention one PDO can carry up to 8

byte = 0x40 bit

 1A00 01 20 RW unsigned first object to be read, e.g. the control

word 0x60400010

 1A00 07 20 RW unsigned 8th object to be write within one PDO -

just possible if all the other objects just

have 8 bit length

 1F80 00 20 RW unsigned who is boot-master ?

0 SPS/ PLCis boot-master

3 ECOSTEP is boot-master

Index Sub Bits CMD Unit Description

 2000 01 08 RW logic activation - 20XX mentiones sequence

0xXX

0 sequence is not active

1 sequence is active

 2000 02 20 RW unsigned target address of object

0x20000220 0x607A0020

the first object in sequence 0

corperates the target position

2000 03 20 RW unsigned value of previous object at

0x20000220 in sequence 0

0x20000320 0x00001F40

The value of the tarhet position is now

8000 inc

You have up to 8 target mappings in one sequence XX (20XX0220 =>

20XX0320) up to (20XX16 => 20XX1720).

If one sequence is called, than all the constructed mappings are processed

one after the other in the drive.

2120 01 08 RW unsigned sequence, activated by event DIN1 L-H

0x0020 sequence 0x20 are

called

2120 09 08 RW unsigned like above for event DIN1 H-L

0x0010 sequence 0x10 is called

 2120 08 08 RW unsigned like above for event DIN8 L-H

(BCD-coding)

0x 2120 06 08 = > 0x0F 00 is another example of coding the sequence number

to be called. In the example the logical sum of DIN1- 4 equals the sequence

number to be called at that time point where a strobe pulse activates DIN5

(F).

Timer Object: 0x2130

Event Object: 0x2140

 2120 10 08 RW unsigned like above for event DIN8 H-L

Index Sub Bits CMD Unit Description

2121 00 10 RW unsigned mask that activates the inputs

0x1F1F DIN1- 5 L-H and H-L

are active

0x010F DIN1 L-H and DIN 1- 5

H-L are active

2118 00 08 RW unsigned direct call of sequence number, used in

programming

0x21180008 => 0x20

sequence 0x20 are called

Index Sub Bits CMD Unit Description

2130 01 10 RW 80XX number of sequence that starts after a

waiting time

0x8012 starts sequence 0x12

2130 02 20 RW [ms] waiting period

0x21300110 = > 0x8012

0x21300220 = > 0x03E8

starts sequence 0x12 after

1 s

Index Sub Bits CMD Unit Description

2140 01 10 RW 80XX sequence 0xXX starts after target reached

flag

2140 02 10 RW 80XX sequence 0xXX starts after reference found

flag

2140 09 10 RW 80XX sequence 0xXX starts after switch on

Output Object: 0x2160 (OUT1), 0x2161 (OUT2)

Limit Switch Object: 0x2170, 0x2171 (Limit+), 0x2172 (Limit-)

 disable flag, ready output is low!

2140 0A 10 RW 80XX sequence 0xXX starts after ready to switch

on flag, ready output is high!

 2140 0B 10 RW 80XX sequence 0xXX starts after Switched on flag

 2140 0C 10 RW 80XX sequence 0xXX starts after Operation

enable flag

0x20020120 = > 0x01

0x20020220 = > 0x60600008

(modes of operation)

0x20020320 = > 0x06

0x20020420 = > 0x28400210

(control word.or)

0x20020520 = > 0x0010

0x21400C10 = > 0x8002

We've just programmed a homing start

sequence, that starts after Operation

enable flag see also =>

2140 10 10 RW 80XX sequence starts after hardware enable L =

>H

Index Sub Bits CMD Unit Description

 2160 01 20 RW unsigned
object address that is mapped to Output

1

 2160 02 20 RW unsigned
offset value will be added to the value

of he mapped_output1_object

 2160 03 20 RW unsigned

and_value, is the value that is

compared "and_boolean" to the result

of the previous operation

 2160 04 20 RW unsigned Compare_value

0x21600120 = > 0x60410010

(status word)

0x21600320 = > 0xC037

0x21600420 = > 0xC037

Output 1 goes high if the drive found

commutation and reference and is in

operation. Offset is not often used.

Index Sub Bits CMD Unit Description

Comparison Objects: 0x2180-3 Comparator 1 to 4.

If once the comparison is TRUE, the whole comparator has to be activated

again!

 2170 00 08 RW logic changes polarity of the 8 digital inputs

0x21700008 = > 0x60 (DIN6+7 are

low active)

 2171 02 08 RW logic boolean and_value for the positive limit

switch (DIN6)

0x21710208 = > 0x20 (DIN6 is

high if the input

polarity is 0x00)

 2171 03 08 RW logic boolean compare_value of the positiv limit

switch(DIN6)

0x21710208 = > 0x20 proofs

whether DIN6 is high

0x21710308 = > 0x20 default

DIN6 (0x40 default

DIN7) Mechanismus

 2171 04 08 RW logic status of positiv limit switch

0x00 not high

0x01 high, no further motion in (+)

direction possible

Index Sub Bits CMD Unit Description

2180 01 20 RW unsigned object mapped to be compared

cmp_object

 2180 02 20 RW unsigned offset to be added to the cmp_object

2180 03 20 RW unsigned and_value for boolean operation with

cmp-object, default 0xFFFF FFFF

2180 04 20 RW unsigned cmp_value which is compared to

cmp_object according to next

operator

 2180 05 10 RW unsigned choice of operation:

0x0001 = equal

0x0002 < smaller

0x0003 <= equal or smaller

0x0004 > bigger

0x0005 >= bigger or equal

0x0006 <> not equal

 2180 06 10 RW 0x80XX sequence 0xXX startet after TRUE

status of comparison

0x21800120 = > 0x606C0020

Counter Object: 0x2190 (Counter 1) bis 0x2193 (Counter 4)

Arithmetic Object: 0x21A0.

(velocity)

0x21800420 = > 0x00823555

(1000 rpm)

0x21800510 = > 0x0005

0x21800610 = > 0x8012 called

once

 2180 07 20 RW,M unsigned mappable temporary storage address

2180 08 20 RO unsigned value is 1 if comparison is TRUE

otherwise 0

Index Sub Bits CMD Unit Description

 2190 01 20 RW unsigned value added to counter

 2190 02 20 RW unsigned counter value

Index Sub Bits CMD Unit Description

 21A0 01 20 RW unsigned source object that should be modified

21A0 02 20 RW unsigned destination object that gets the result of

the operation

21A0 03 20 RW unsigned number that is operated with the source

object

 21A0 04 10 RW unsigned choice of operation:

0x0000 copy

0x0001 +

0x0002 -

0x0003 *

0x0004 /

 21A0 05 20 R 0x80XX result of operation

0x21A00120 = > 0x2D010020

(value out of table[1])

0x21A00320 = > 0x00000002

0x21A00410 = > 0x0003 (*)

0x21A00220 = > 0x607A0020

target position

Value from table[1] is multiplied by 2

and is copied into target position as

destination.

Table object: 0x21B0

Used to write values into the internal table 0x2D00-FF.

Capture Object: 0x21C0

Used to strobe actual positions.

Recording Object: 0x2201 ff.

One can specify and record up to 4 objects into arrays of size 1000 with a

minimum time step of one ms.

Index Sub Bits CMD Unit Description

21B0 01 20 RW unsigned source object which values should be

put into the table.

 21B0 02 08 RW unsigned write order

 21B0 03 08 RW integer position in the table

0x21B00120 = > 0x60630020

actual position

0x21B00308 = > 0xFF table

position 255

0x21B00208 = > 0x01 write order

the actual position is written into table

position 255 - used for teach-in!!

Index Sub Bits CMD Unit Description

21C0 01 10 RW 80XX jump starts sequence 0xXX after

21C0,02 goes from 0 to 1

21C0 02 20 RW integer counter if there is a L-H event on the

N-limpuls of the master encoder the

counter is incremented (=+)

21C0 03 20 RW integer result - if event 21C0,02 takes place

the actual position value is copied into

this address

 21C0 04 20 RW integer strobe contains the actual position if

object 21C0,02 goes from 0 to 1

Index Sub Bits CMD Unit Description

 2201 01 20 RW unsigned first recording object

Monitor Object: 0x2400-1

The ECOSTEP can output two independent analog monitors, each monitor is

mappable to any internal value. The output range is 0...5 V, zero is represented

by 2.5 V. The scaling formula is:

[V / dimension] = 1 V x internal dimension x factor / (256^(1 +

preshift)) / 120

2203 01 20 RO unsigned array with recorded values of

previous object

 2201 03 20 RW unsigned second recording object

2203 02 20 RO unsigned array with recorded values of

previous object

 2201 05 20 RW unsigned third recording object

2203 03 20 RO unsigned array with recorded values of

previous object

 2201 07 20 RW unsigned fourth recording object

2203 04 20 RO unsigned array with recorded values of

previous object

2210 00 10 RW unsigned counter size specifies how big the

array is

 2211 00 10 RW unsigned position in the recorded array

2214 00 10 RW unsigned time resolution of the recorded

arrays

recording example: actual velocity

0x22010120 = > 0x606C0020 actual velocity

0x22140010 = > 0x0005 time resolution 5 ms

0x22100010 = > 0x01F4 starts recording of 500 values

reading out of the recorded array:

0x22110010 = > 0x01F4 first recorded actual velocity value

0x22030120 read value v[t = 0.005]

0x22110010 = > 0x0001 last recorded value

0x22030120 read value v[t = 2.500]

Index Sub Bits CMD Unit Description

2400 01 20 RW unsigned Objekt, das auf MON1 gemappt

wird

2400 02 08 RW unsigned preshift je nach Wertedimension 0,

1 oder 2

 2400 03 10 RW unsigned Faktor normal zwischen 0x0001 -

0x7FFF

Analog Port: 0x2508

The analog port AIN+ and AIN- could be mapped to every internal object (RW),

mainly it is the velocity or the limit of the current value. The resolutionis -

512 ... 512 DAC.

Master-Slave Object: 0x2509

This is the right object to specify the target object for entries from connector

X7. In case of Master-Slave or Step/ Direction the velocity mapping is mainly

used.

 Beispiel: MON2 ist der aktuelle Stromwert

0x24010120 = > 0x60780010 aktueller Stromwert

0x240102008 = > 0x0000 preshift ist 0

0x24010310 = > 0x001E Faktor ist 30

mit der internen Unit des digitalen Stromwertes 2047/12A erhalten wir eine

Auflösung von 0.166 V/A an MON2

Index Sub Bits CMD Unit Description

 2508 01 20 RW unsigned target_object

2508 02 10 RW unsigned factor according to formula (glossar):

maximum value/ internal unit /

2^shift / 512

 2508 03 08 RW unsigned Shift often 0, 1, 2 or 3

 example: +/-10 V input for velocity loop with max. velocity of 1500 rpm

0x25080120 = > 0x60FF0020 target velocity

0x25080210 = > 0x03 shift is 3

0x24010310 = > 0x0C35 factor is 3125

with the internal dimension factor of 60/8000/64 to return "rpm" to the base of

"64 inc/s" we get the factor through 1500 / 60*8000*64 / 2^3 / 512

Index Sub Bits CMD Unit Description

 2509 02 20 RW unsigned velocity_mapping to (60FF,00)

 2509 03 10 RW unsigned gear_factor

 2509 04 10 RW unsigned gear_divider

 2509 05 08 RW unsigned

mode

0, 1 is 4 times Decoding

2 is step/ direction

master position value

one can write and read -

Joystick Object: 0x250A

Dieses Objekt ist in dieser Dokumentation noch nicht erläutert. Die Idee besteht

darin, eine nichtlineare Kennlinie einzugeben, die die analogen

Spannungssignale mit den digitalen Sollwerten eines Objektes verknüpft. Mehr

Info auf Anfrage.

 2509 06 20 RW unsigned
essential for phase synchronous

motion

 2509 07 20 RW unsigned slave position value

 example: electronic gear box

0x25090220 = > 0x60FF0020 target velocity

0x25090310 = > 0x07D0 factor is 2000

0x25090310 = > 0x03E8 divider is 1000

0x25090410 = > 0x00

The slave runs double as fast as the master without having less good

performance. It is possible to change the gear during operation according to a

comparator or external analog input to get an electronic disc.

Index Sub Bits CMD Unit Description

 250A 02 20 RW unsigned target_object mainly (60FF,00)

 03 10 RW integer offset

 04 10 RW integer filter

 05 10 RW integer hysteresis

 06 10 RW integer plimit

 07 10 RW integer nlimit

 08 20 RW integer pwindow

 09 20 RW integer nwindow

 10 20 RW integer jdefault

 11 20 RW integer pposition

 12 20 RW integer nposition

 13 08 RW,M unsigned joy_control

 14 08 RO,M unsigned joy_status

 15 10 RO,M integer joy_val

Error Object: 0x2600

Boolean Control Word Operation: 0x2840

Bus Parameter Object: 0x2F80, 0x2F90-2

Configuration of interfaces RS485 and CANopen.

 16 10 RO,M integer joy_output

 17 10 RO integer joy_act

 18 10 RO integer joy_last

 19 10 RO integer joy_new

Index Sub Bits CMD Unit Description

 2600 01 20 RW logic
mask could be used to disable error

types

 2600 02 20 RW logic error code: im hsio

 0x0000 0004 antivalence - encoder, e.g. distortion

0x0000 0008 encoder counting

0x0000 0010 drive temperature > 80°C

0x0000 0020 logik voltage < 18 V

0x0000 0040 bus voltage > 180 V

0x0000 0080 bus voltage < 24 V

0x0000 0100 short circuit "phase A"

0x0000 0200 short circuit "phase B"

0x0000 0400 short circuit at "Ready" or "OUT1,2" or "brake"

0x0000 1000 external Enable low, although the drive has been activated

(control word -> 0x000F)

0x0000 2000 following error during operation

0x0000 4000 overspeed, encoder frequency > 4 MHz

0x0000 8000 commutation not found

0x0002 0000 i²*t has come

Index Sub Bits CMD Unit Description

2840 01 10 RW logic bit controlled and operation with the

actual control word

2840 02 10 RW logic bit controlled or operation with the actual

control word

Device Info + Software Version object 0x2FE0

Index Sub Bits CMD Unit Description

2F80 00 08 RW unsigned ID-address addition 0 - 127 to DIP-

switch value

 2F81/82 00 08 RW unsigned Baud Rate objects for CAN bus

1 MBit/s (40m) 2F81 = > 0x00

2F82 = > 0x14

500 kBit/s (130m) 2F81 = > 0x00

2F82 = > 0x1C

250 kBit/s (270m) 2F81 = > 0x01

2F82 = > 0x1C

125 kBit/s (530m) 2F81 = > 0x03

2F82 = > 0x1C

50 kBit/s (1.3km) 2F81 = > 0x47

2F82 = > 0x2F

20 kBit/s (3.3km) 2F81 = > 0x53

2F82 = > 0x2F

 2F90 00 08 RW unsigned type of interface

0 Standard RS485

1 JETTER RS485

 2F91 00 08 RW unsigned Baudrate

0x3F 9.6 kBaud

0x1F 19.2 kBaud

0x0F 38.4 kBaud

2F92 00 08 RW unsigned IndexHigh

0x60 for Jetter RS485 to declare

objects at high byte

0x60XX address

Index Sub Bits CMD Unit Description

 2FE0 01 20 RO unsigned software version e.g. 29

2FE0 03 20 RO unsigned date of modification

0x0315490 means 20010128, which

says 1/28/2001

Appendix F - Glossary

At this chapter we will have a brief view on terms we often use but they might

be not known generally.

Mapping

The value of an object at address Subindex-Index-Bitlength is another Objekt

address. This pointer concept is known at many high level programming

languages. For example the whole address of the actual master position is

2509-06-20. If you want to compare the position with some specified values

you "map" it at the address of the comparator target 2180-01-20. This

procedure is called mapping and generates a very powerful concept. Objects

capable to be mapped are signed with "M" in the object catalog.

Statemachine

The system motor plus drive we define as a system with different discrete

states. From the mechanical engineering we know the state space describtion

where (s(t), v(t), t) determines the whole system at any time. This is true also

for our drive - motor - system, but we want to know also whether the power is

turned on, whether there is an error or whether the nominal target is reached

and some more things. In CANopen we've therefore a status word. Its bitcode

determines a special drive status. By use of the control word one can change

the states in those directions defining the statemachine. We want to describe

now the following important tasks, where we could observe these statemachine:

Switch on of the drive

Start homing

Making a positioning in absolute mode

Notwendig sind die folgenden Objekte:

 Object Meaning Address

Status word consisting of important flags: error, commutation,

Ready, target reached, reference found, motor

switched on/ off

60410010

Control word determines states: power on motor, Enable, Reset,

Start motion, motion absolut or relative

60400010

Operation

mode

e.g. 1 Positioning , 6 Homing 60600008

 Homing e.g. 32 means "at next index puls" 60980008

Profile

velocity

Velocity at v(t)-trapezium, unit conversion below 60810020

 Acceleration positive slope in v(t) 60830020

Therefore we have the following course:

We choose the homing method : Number 32 (60980008 => 0x20) and control

homing.

To start a motion we initiate first the value for the deceleration and the

acceleration and then:

 Deceleration negative slope in v(t) 60840020

Target

position

defined in increments 607A0020

Action/ Course Control

word

Status

word

Status

 Logic on! 0x0006 0x0031 ready to get power

 Power on! 0x000f

 0x4437 Commutation found, no error, power on

 Power off! 0x0006

 0x4031 as above without power

Action/

Course

Control

word

Status

word

Operation

mode

Status

 0x000F 0x4437 0x01 Motor on power, controller

on

 Homing 32 0x06

 Start! 0x001F

 0xD437 Reference found

Ready to make

a positioning

absolute/

relative

0x000F /

0x004F

 0x01

 0xC437 "Set point/ Start" fifth flag

in control word appears as

0x1000 in the status word.

Important, because the

controller acts just on

0x000F => 0x001F puls

Action Control-

word

Status

word

Velocity Target

position

Status

 0x000F 0xC437 100 1/min = 0x000B

71B0

8000 inc Init

 Start! 0x001F

With these small operation we can manage 80% of the communication. To

make a RESET one puts 0x80 to the control word, checks whether the status

word says 0x0031 and then we go on like at the first step.

Address

An address is specified in the following way: first the index (consisting of four

hexadecimal numbers), further the subindex (consisting of two hexadecimal

numbers) and at the end a two hexadecimal code for the bit length of the data.

We take the status word as an example:

(Index, Subindex, Bitlength) = (6041,00,10) or 60410010

Bitcode

Bitcode means we reproduce several event states by a code (1000 1110), that

could be 8 bit, 16 bit or 32 bit and convert them into hexadecimal numbers. An

example is the distribution of the states high / low at the 8 digital inputs. We

would code DIN6 to 8 high active and all the others low by the number (1110

0000) which is 0xE0.

Velocity internal scaling

value in rpm is 60 • internal value [inc/64 s] / 64 / encoder resolution

Analog target value

skaling the analog port:

[-10V ..10V] - > factor [internal unit] / conversion factor [internal unit / Volt] /

2^shift / 512

Example to determine the factor at constant shift:

Maximum velocity is 1440 U/min => 1440/ [60/ 8000/ 64] / 2^3 / 512 = 3000

Scaling acceleration

value in rad/s² is equal to internal value[16 inc/s²] • 16 • 2 • pi / encoder

resolution, 1 g at a belt of 100 mm/rev with encoder 8000 inc is equal to 9.81 /

(0.1/ 2 • pi) • 8000 / (16 • 2 • pi) = 4969 [16 inc/s²] in the drive

 0xD037 Moving

 0xD437 Target

reached

Digital current

digital current also called Idac is measured in units from 0 - 2047. This could be

converted to Ampere by: value • maximum drive current [A] / 2047. The

ECOSTEP200 could reach 12 A peak and the ECOSTEP100 roughly 7 A.

Digital friction current

digital friction current [Idac] : could be measured indirectly by averaging the

current objekt 6078,00 at slow speed. This value is multiplied by 1.2 and could

be used as first approximation for the limit value of the integral parameter in

the velocity loop vc_kilim.

Automatic reverse mode

automatic reverse in position mode: You keep the motor in an uncritical position

to have at least 45° freedom in both directions. Your installations is already

done correctly. Then you switch on the the logik and fill in the following values

into the right side of the Direct Object Editor (Hex-values):

Index Subindex Hex value

2040 01 1

2040 02 60400010

2040 03 3F

2040 04 21400B10

2040 05 8041

2041 01 1

2041 02 607A0020

2041 03 0

2041 04 21400110

2041 05 8042

2042 01 1

2042 02 607A0020

2042 03 200

2042 04 21400110

2042 05 8041

2118 0 40

switch off:

2041 05 8000

Data storage into the drive flash

You can store the data through hsio in: (Main Menü\Device Profile DS301

\Save/Init):

Table of errors in hsio

You find the error in the following menu: Main Menu\Device Configuration\Error

Flags

Error window latest version 2001

	Introduction
	1.0 Installation
	2.0 First move
	Appendix A - Limit switches and homing
	Appendix B - Mechatronic
	Appendix C - Interfaces
	Appendix D - Offline Control
	Appendix E - Object catalogue
	Appendix F - Glossary

