WinDriver USB v7.02 User’s Guide

Jungo Ltd

COPYRIGHT

Copyright©1997 - 2005 Jungo Ltd. All Rights Reserved

Information in this document is subject to change withouta® The software
described in this document is furnished under a licensecageat. The software
may be used, copied or distributed only in accordance wahdagreement. No part
of this publication may be reproduced, stored in a retrigsyatem, or transmitted in
any form or any means, electronically or mechanically,udaig photocopying and
recording for any purpose without the written permissiodurigo Ltd.

Windows, Win32, Windows 98, Windows Me, Windows CE, Winddwg, Windows
2000, Windows XP and Windows Server 2003 are trademarks ofddoft Corp.
WinDriver and KernelDriver are trademarks of Jungo. Othank and product
names are trademarks or registered trademarks of thegatgapholders.

Contents

Table of Contents

List of Figures

1 WinDriver Overview

11
1.2

13
1.4
15
1.6
1.7
1.8

1.9

1.10
111

Introductionto WinDriver
Background
1.2.1 TheChallenge
1.2.2 The WinDriver Solution
conclusion. e
WinDriver Benefits
WinDriver Architecture
What Platforms Does WinDriver Support?
Limitations of the Different Evaluation Versions
How Do | Develop My Driver with WinDriver?
1.8.1 On Windows 98/Me/2000/XP/Server 2003 and Linux
1.8.2 OnWindowsCE

1.9.2 Utilities
1.9.3 WinDriver’'s Specific Chipset Support
194 Samples.
Can | Distribute the Driver Created with WinDriver?

Identifying the Right Tool for Your Development

2 Understanding Device Drivers

2.1
2.2

Device Driver Overview
Classification of Drivers According to Functionality
2.2.1 MonolithicDrivers
2.2.2 LayeredDrivers
2.2.3 MiniportDrivers

CONTENTS

2.3

Classification of Drivers According to Operating System.
2.3.1 WDMDrivers
2.3.2 VXDDrivers e
2.3.3 UnixDeviceDrivers
2.3.4 LinuxDeviceDrivers

2.4 The Entry Pointofthe Driver
2.5 Associating the Hardware to the Driver
2.6 CommunicatingwithDrivers
3 WinDriver USB Overview
3.1 IntroductiontoUSB
3.2 WinDriverUSBBenefits
3.3 USBComponents
3.4 DataFlowinUSBDevices
3.5 USBDataExchange.
3.6 USBDataTransferTypes
3.6.1 ControlTransfer
3.6.2 IsochronousTransfer
3.6.3 InterruptTransfer
3.6.4 BulkTransfer
3.7 USBConfiguration
3.8 WinDriverUSB e
3.9 WinDriver USB Architecture
3.10 Which Drivers Can | Write with WinDriverUSB?
4 Installing WinDriver
4.1 System Requirements L0 .
4,11 ForWindows98/Me
4.1.2 For Windows NT/2000/XP/Server2003
4.1.3 ForWindowsCE
414 ForLinux
4.2 WinDriver Installation Process

4.2.1 Windows 98/Me/2000/XP/Server 2003 WinDriver

Installation Instructions
4.2.2 Windows CE WinDriver Installation Instructions

4.2.2.1 Installing WinDriver CE when Building New

CE-based Platforms

4.2.2.2 Installing WinDriver CE when Developing

Applications for CE Computers

4.2.2.3 Windows CE Installation Note

4.2,3 Linux WinDriver Installation Instructions
4.2.3.1 Preparing the System for Installation
42.3.2 Installation

CONTENTS 4
4.3 Upgrading Your Installation 42
4.4 Checking Your Installation 42

4.4.1 On Your Windows, Linux and Solaris Machines 42
4.4.2 On Your Windows CE Machine 43
4.5 Uninstaling WinDriver o 43
4.5.1 On Windows 98/Me/2000/XP/Server2003 43
452 ONLINUXo v i 46

5 Using DriverWizard 47
5.1 AnOQverview 47
5.2 DriverWizard Walkthrough 48
5.3 DriverWizardNotes 58

5.3.1 LoggingWinDriverAPICalls 58
5.3.2 DriverWizardLogger 58
5.3.3 Automatic Code Generation 58
5.3.3.1 GeneratingtheCode 58
5.3.3.2 GeneratedUSBCode 58
5.3.3.3 Compiling the GeneratedCode 59
5.3.3.4 Visual Basic or Delphi Code Generation 59
5335 ForLinux:. 59
5.3.3.6 ForOtherOSsorIDEs: 59

6 Developing a Driver 60
6.1 Using the DriverWizard to Build a Device Driver 60
6.2 Writing the Device Driver Without the DriverWizard ... 61

6.2.1 Include the Required WinDriverFiles| 61
6.22 WriteYourCode 62
6.3 Developing Your Driver on Windows CE Platforms 62
6.4 Developing in Visual Basicand Delphi 63
6.4.1 Using DriverWizard 63
6.4.2 Samples 63
6.4.3 CreatingyourDriver 63

7 Debugging Drivers 64
7.1 User-Mode Debugging 64
7.2 DebugMonitor 64

7.2.1 Using Debug Monitor in Graphical Mode| 64
7.2.2 Using Debug Monitor in Console Mode 67
7.2.2.1 Using Debug Monitor on WindowsCE 67

8 Enhanced Support for Specific Chipsets 68
8.1 Overview e 68
8.2 Developing a Driver Using the Enhanced Chipset Support . . . 69

CONTENTS 5

9 USB Control Transfers 70
9.1 USB Control TransfersOverview 70
9.1.1 USBDataExchange170

9.1.2 More Aboutthe Control Transfer 71

9.1.3 TheSetupPacket 72

9.1.4 USB Setup PacketFormat 73

9.1.5 Standard Device RequestCodes 74

9.1.6 Setup PacketExample 74

9.2 Performing Control Transfers with WinDriver 76
9.2.1 Control Transfers with DriverWizard 76

9.2.2 Control Transfers with WinDriver APl 78

10 Dynamically Loading Your Driver 79
10.1 Why Do You Need a Dynamically Loadable Driver? 79
10.2 Windows 2000/XP/Server 2003and 98/Me 79
10.2.1 WindowsDriverTypes v v ... 79

10.2.2 The WDREG Utility 80

10.2.3 Dynamically Loading/Unloading windrvr6.sys INRds . . 81

10.3 LinUX 82
11 Distributing Your Driver 83
11.1 Getting a Valid License for WinDriver 83
11.2 Windows 98/Me and Windows 2000/XP/Server200384
11.2.1 Preparing the Distribution Package 84

11.2.2 Installing Your Driver on the Target Computer 84

11.3 CreatinganINFFile 87
11.3.1 Why Should | Create anINFFile? 87

12

11.3.2 How Do I Install an INF File When No Driver Exists? . . .88
11.3.3 How Do | Replace an Existing Driver Using the INF File? 89

11.4 WindowsCE 91
115 LinuX . ..o 92
11.5.1 WinDriver KernelModule 93
11.5.2 User-Mode Hardware Control Application/Sharededty . 93
11.5.3 Installation Script o 94
WinDriver USB Device 95
12.1 WinDriver USB Device Overview 95
12.2 System and Hardware Requirements 97
12.3 WinDriver Device Firmware (WDF) Directory Overview 97
12.3.1 ThecypressDirectory 98
12.3.2 The microchipDirectory 99
12.3.3 Thesilabs Directory 100

12.3.4 The WinDriver USB Device Firmware Libraries 102

CONTENTS 6

12.3.5 Buildingthe SampleCode 102
12.4 WinDriver USB Device Development Process 103
12.4.1 Define the Device USB Interface 103
12.4.1.1 EZ-USB Endpoint Buffers Configuration . . .108
12.4.2 Generate Device Firmware Code 109
12.4.3 Develop the Device Firmware 110
12.4.3.1 The Generated DriverWizard USB Device

FirmwareFiles 111
12.4.3.2 Build the Generated DriverWizard Firmware .112
12.4.3.3 Download the Firmware to the Device 113
12.4.4 Diagnose and Debug Your Hardware 114
12.4.5 Developa USB DeviceDriver 114
A WinDriver USB PC Host API Reference 115
A.1 WinDriver USB (WDU) Library Overview 115
A.1.1 Calling Sequence for WinDriverUSB 116

A.1.2 Upgrading from the WD_xxx USB API to the WDU_ xxx
APL . 119
A.2 USB-User Callback Functions 120
A.2.1 WDU_ATTACH CALLBACK() 120
A.2.2 WDU_DETACH CALLBACK(). 122
A.2.3 WDU_POWER_CHANGE_CALLBACK() 123
A3 USB-Functions 124
A31 WDU Init) 124
A.3.2 WDU_Setinterface() 126
A.3.3 WDU_GetDeviceAddr() 127
A.3.4 WDU_GetDevicelnfo(). 128
A.3.5 WDU_PutDevicelnfo() 129
A3.6 WDU_Uninit), 130
A3.7 WDU_Transfer() 131
A.3.8 WDU_Wakeup() 133
A.3.9 WDU_TransferDefaultPipe() 134
A.3.10 WDU_TransferBulk() 135
A.3.11 WDU _Transferlsoch() 136
A.3.12 WDU_TransferInterrupt() 137
A.3.13 WDU_HaltTransfer() 138
A.3.14 WDU_ResetPipe() o 139
A.3.15 WDU_ResetDevice()o v oo 140
A.3.16 WDU_GetLangIDs() 141
A.3.17 WDU_GetStringDesc()o 143
A4 USB-Structures e 145
A41 WDU _MATCH TABLE 146

A.4.2 WDU_EVENT_TABLE 147

CONTENTS

A43 WDUDEVICE
A44 WDU_CONFIGURATION.
A45 WDU_INTERFACE
A.4.6 WDU_ALTERNATE SETTING.
A.47 WDU_DEVICE DESCRIPTOR
A.4.8 WDU_CONFIGURATION_DESCRIPTOR
A.4.9 WDU_INTERFACE_DESCRIPTOR
A.4.10 WDU_ENDPOINT_DESCRIPTOR
A4.11 WDU_PIPE_INFO o
A5 General WD_xxxFunctions
A.5.1 Calling Sequence WinDriver —GeneralUse
A52 WD Open(). i
A5.3 WD Version()
A5.4 WD Close() i
AS55 WD _Debug()
A56 WD_DebugAdd().,
A5.7 WD_DebugDump().
A58 WD Sleep() e
A5.9 WD License()
A5.10 WD _LogStart()
A5.11 WD_LogStop() o
A5.12 WD _LogAdd()
A.6 WinDriver Status/ErrorCodes
A.6.1 Introduction,
A.6.2 Status Codes Returned by WinDriver
A.6.3 Status Codes ReturnedbyUSBD
A.7 User-Mode Utility Functions
A7.1 Stat2Str()
A7.2 getostype()
A7.3 ThreadStart()
A7.4 ThreadWait()
A.75 OsEventCreate(),
A7.6 OsEventClose()
A7.7 OskEventWait()
A.7.8 OsEventSignal()
A7.9 OsEventReset()
A.7.10 OsMutexCreate() i it
A.7.11 OsMutexClose() o
A.7.12 OsMutexLock()
A.7.13 OsMutexUnlock()
A.7.14 PrintDbgMessage()

B WinDriver USB Device Cypress EZ-USB FX2LP CY7C68013A API

CONTENTS 8
Reference 195
B.1 Firmware Library APl 195

B.1.1 Firmware Library Types 196
B.1.1.1 EP_DIR Enumeration 196
B.1.1.2 EP_TYPE Enumeration 196
B.1.1.3 EP_BUFFERING Enumeration 196

B.1.2 WDF_EP1INConfig()/ WDF_EP10OUTConfig() 197

B.1.3 WDF_EP2Config/ WDF_EP6Config() 198

B.1.4 WDF_EP4Config/ WDF_EP8Config() 199

B.1.5 WDF FIFOReset() 200

B.1.6 WDF_SkipOutPacket() 201

B.1.7 WDF_FIFOWrite() oo oo 202

B.1.8 WDF_FIFORead() 203

B.1.9 WDF_FIFOFuUll) 204

B.1.10 WDF_FIFOEmpty() 205

B.1.11 WDF_SetEPByteCount() 206

B.1.12 WDF_GetEPByteCount() 207

B.1.13 WDF_I2CInit() o o o 208

B.1.14 WDF_SetDigitLed() 208

B.1.15 WDF_I2CWrite() o 209

B.1.16 WDF_I2CRead() oo o v i it 210

B.1.17 WDF_I2CWaitForEEPROMWrite() 211

B.1.18 WDF_I2CGetStatus()« v v v oo 212

B.1.19 WDF_I2CClearStatus()« .. 212

B.2 Generated DriverWizard Firmware APl 213

B.2.1 WDF_Init() 213

B.2.2 WDF PoOl(). 214

B.2.3 WDF_Suspend(), 214

B.2.4 WDF Resume() 215

B.2.5 WDF_GetDescriptor() 215

B.2.6 WDF_SetConfiguration() 216

B.2.7 WDF_GetConfiguration() 217

B.2.8 WDF_SetInterface() 218

B.2.9 WDF Getinterface() 219

B.2.10 WDF_GetStatus() v v v v o 220

B.2.11 WDF ClearFeature() 220

B.2.12 WDF_SetFeature() 221

B.2.13 WDF_VendorCmnd() 221

C WinDriver USB Device Microchip PIC18F4550 API Reference 222
C.1 Firmware Library APl 222

C.1.1 Firmware LibraryTypes 223
C.1.1.1 EP_DIREnumeration 223

CONTENTS 9
C.1.1.2 EP_TYPEEnumeration 223
C.1.1.3 BD_STATUnion 224
C.1.14 BDTUnion 225
C.1.1.5 EP_DATAStructure. 225

C.1.2 WDF _EPConfig(). 226
C.1.3 WDF EPWrite() v it 228
C.1l4 WDF _EPRead() 229
C.15 WDF_ISEPBusy() 230
C.1.6 WDF_TriggerWriteTransfer() 231
C.1.7 WDF_TriggerReadTransfer(). 232
C.1.8 WDF_GetReadBytesCount() 233
C.1.9 WDF_DisableEP1to15() 234
C.2 Generated DriverWizard Firmware APl 235
C.21 WDF_Init() oo 235
C22 WDF Poll). 236
C.2.3 WDF_SOFHandler() 236
C.24 WDF_Suspend() 237
C.25 WDF Resume() v i v i i i i 237
C.2.6 WDF _ErrorHandler() 238
C.2.7 WDF_SetConfiguration() 239
C.2.8 WDF_Setinterface() 240
C.29 WDF_Getinterface() 241
C.2.10 WDF_VendorCmnd() 242
C.2.11 WDF ClearFeature() 243
C.2.12 WDF _SetFeature() 243
D WinDriver USB Device Silicon Laboratories C8051F320 API Rference 244
D.1 Firmware Library APl 244
D.1.1 wdf silabs lib.hTypes 245
D.1.1.1 EP_DIR Enumeration 245
D.1.1.2 EP_TYPEEnumeration 245
D.1.1.3 EP_BUFFERING Enumeration 245
D.1.1.4 EP_SPLIT Enumeration 246

D.1.2 ¢8051f320.h Types and General Definitions 246
D.1.2.1 Endpoint Address Definitions 246
D.1.2.2 Endpoint State Definitions 246
D.1.2.3 EP_INT_HANDLER Function Pointer 247
D.1.2.4 EPO_COMMAND Structure 247
D.1.25 EP_STATUS Structure 248
D.1.2.6 PEP_STATUS Structure Pointer 248
D.1.2.7 IF_STATUS Structure. 248
D.1.2.8 PIF_STATUS Structure Pointer 249

D.1.3 WDF_EPINConfig() 249

CONTENTS 10
D.1.4 WDF_EPOUTConfig() oo .. 250

D.1.5 WDF_HaltEndpoint(). 252

D.1.6 WDF_EnableEndpoint() 253

D.1.7 WDF_SetEPByteCount() 254

D.1.8 WDF_GetEPByteCount() 255

D.1.9 WDF _FIFOClear()« v i 256

D.1.10 WDF_FIFOFUll() oo oo 257

D.1.11 WDF_FIFOEmpty() oo 258

D.1.12 WDF_FIFOWrite() o o oo e 259

D.1.13 WDF_FIFORead() o v v i i i i 260

D.1.14 WDF_GetEPStatus() 261

D.2 Generated DriverWizard Firmware APl 262
D.2.1 WDF_USBReset() 262

D.2.2 WDF_SetAddressRequest() 263

D.2.3 WDF_SetFeatureRequest() 263

D.2.4 WDF_ClearFeatureRequest() 264

D.2.5 WDF_SetConfigurationRequest() 264

D.2.6 WDF_SetDescriptorRequest() 265

D.2.7 WDF_SetInterfaceRequest() 265

D.2.8 WDF_GetStatusRequest() 266

D.2.9 WDF_GetDescriptorRequest() 266

D.2.10 WDF_GetConfigurationRequest() 267

D.2.11 WDF_GetInterfaceRequest() 267

E Troubleshooting and Support 268
F Evaluation Version Limitations 269
F.1 Windows 98/Me/2000/XP/Server2003 269
F2 WindowsCE. 269
F.3 Linux e 269
F.4 DriverWizardGUI 270

G Purchasing WinDriver 271
H Distributing Your Driver — Legal Issues 272

Additional Documentation 273

List of Figures

11

2.1
2.2
2.3

3.1
3.2
3.3
3.4

51
5.2
5.3

54

55
5.6
5.7
5.8
59

7.1
7.2

9.1
9.2
9.3
9.4
9.5

WinDriver Architecture o 8
MonolithicDrivers 15
Layered Drivers e e 16
MiniportDrivers 17
USBENndpoints e 24
USBPIpPES o e 25
Device Descriptors 28
WinDriver USB Architecture 31
SelectYourDevice 49
DriverWizard INF File Information. 50
DriverWizard Multi-Interface Device INF File Informah — Specific
Interface 51
DriverWizard Multi-Interface Device INF File Informan —
CompositeDevice e 52
Select Device Interface L. 53
TestYourDevice 54
USBRequestsList 55
WritetoPipe e 56
Code GenerationOptions 57
Start Debug Monitor 65
SetTraceOptions e 66
USB DataExchange 71
USBReadandWrite 72
CustomRequest. e 76
RequestList 77
USBRequestLOg o it 77

11

LIST OF FIGURES 12

12.1 Create Device Firmware Project 104
12.2 Choose Your DevelopmentBoard 104
12.3 EditDevice Descriptor e 105
12.4 Configure Your Device 106
12.5 Define Interfaces and Endpoints 107
12.6 EZ-USB EndpointBuffers 108
12.7 Firmware Code Generation 109
A.1 WinDriver USB Calling Sequence 117
A.2 WinDriver USB Structures 145

A.3 WinDriver API CallingSequence 157

Chapter 1

WinDriver Overview

In this chapter you will explore the uses of WinDriver, anartethe basic steps of

creating your driver.
The WinDriver USB Device toolkit, for development of USBaefirmware code, is

outlined separately in Chaptdr2.

NOTE
This manual outlines WinDriver's support fa¥SB devices onNindows

98/Me/2000/XP/Server2003/CE.NET and Linux

WinDriver also supports

development forPCI/PCMCIA/CardBus/ISA/ISAPnP/EISA/CompactPCI/PCI
Expressdevices. For detailed information regarding WinDrivetipport

for these buses, please refer to the WinDriver Product Lagemn our
web-site fitt p: // www. j ungo. com wi ndri ver. ht i) and to the WinDriver
PCI/PCMCIA/CardBus/ISA/ISAPNP/EISA/CompactPCI/PClgeass User’s
Manual, which is available on-line at:

http: //wmv. j ungo. con support/ manual s. ht m #manual s .

Support folUSB onWindows NT 4.0is provided in a separate tool-kit — see our
WinDriver USB for NT web-pageht t p: // www. j ungo. com! wdusb_nt . ht i .

1.1 Introduction to WinDriver

WinDriver is a development toolkit that dramatically sinfigls the difficult
task of creating device drivers and hardware access apiphsa WinDriver
includes a wizard and code generation features that auimatiatetect your

13

http://www.jungo.com/windriver.html
http://www.jungo.com/support/manuals.html#manuals
http://www.jungo.com/wdusb_nt.html

1.2 Background 14

hardware and generate the driver to access it from youregijgn. The driver
and application you develop using WinDriver is source canegatible between
all supported operating systems (WinDriver currently sarppWindows
98/Me/2000/XP/Server2003/CE.NET and Linux.). The drigdsinary compatible
between Windows 98/Me/2000/XP/Server 2003. WinDrivewnjies a complete
solution for creating high performance drivers.

Don't let the size of this manual fool you. WinDriver makeve®ping device
drivers an easy task that takes hours instead of months. dfitiss manual deals
with the features that WinDriver offers to the advanced .udemwever, most
developers will find that reading this chapter and glandirgugh the DriverWizard
and function reference chapters is all they need to suadssfrite their driver.

WinDriver supports development for all USB chipsets. Erdeahsupport is offereed
for Cypress, STMicroelectronics, Microchip, Texas Instants, Silicon Laboratories
and National Semiconductors chipsets, as outlined in @hdgitof the manual.

Visit Jungo’s web site dit t p: / / ww. j ungo. comfor the latest news about
WinDriver and other driver development tools that Jungeicf

Good luck with your project!

1.2 Background

1.2.1 The Challenge

In protected operating systems such as Windows and Linusggr@gmmer cannot
access hardware directly from the application level (usede), where development
work is usually done. Hardware can only be accessed fromimiitle operating
system itself (kernel mode or Ring-0), utilizing softwarednles called device
drivers. In order to access a custom hardware device fromphkcation level, a
programmer must do the following:

 Learn the internals of the operating system he is workin@/gimdows
98/Me/2000/XP/Server2003/CE.NET and Linux).

* Learn how to write a device driver.

» Learn new tools for developing/debugging in kernel modBKDETK,
DDI/DKI).

» Write the kernel-mode device driver that does the basidware input/output.

» Write the application in user mode that accesses the haedweough the
device driver written in kernel mode.

* Repeat the first four steps for each new operating systemhichwhe code
should run.

http://www.jungo.com

1.3 Conclusion 15

1.2.2 The WinDriver Solution

Easy Development:
WinDriver enables Windows 98/Me/2000/XP/Server2003NET and
Linux programmers to create USB-based device drivers irkarmely short
time. WinDriver allows you to create your driver in the faiailuser-mode
environment, using MSDEV/Visual C/C++, Borland Delphi,iBmd C++,
Visual Basic, GCC or any other 32-hit compiler. You do notcheehave any
device driver knowledge, nor do you have to be familiar wiplei@ting system
internals, kernel programming, the DDK, ETK or DDI/DKI.

Cross Platform: The driver created with WinDriver will run on Windows
98/Me/2000/XP/Server2003/CE.NET and Linux. In other veordnrite it
once, run it on many platforms.

Friendly Wizards: DriverWizard (included) is a graphical diagnostics todttlets
view your device’s resources and test the communicatiom the hardware,
by transferring data on the pipes and sending control regjugsfore writing
a single line of code. Once the device is operating to yousfaation,
DriverWizard creates the skeletal driver source codengigiccess functions
to all the resources on the hardware.

Kernel-Mode Performance: WinDriver's APl is optimized for performance.

1.3 Conclusion

Using WinDriver, a developer need only do the following teate an application that
accesses the custom hardware:

» Start DriverWizard and detect the hardware and its ressurc

« Automatically generate the device driver code from withiiverWizard,
or use one of the WinDriver samples as the basis for the adjait (see
Chaptei8 for an overview of WinDriver's enhanced support for specific
chipsets).

* Modify the user-mode application, as needed, using themged/sample
functions to implement the desired functionality for yoppécation.

Your hardware access application will run on all the supgmbglatforms:

Windows 98/Me/2000/XP/Server2003/CE.NET and Linux— jestompile the
code for the target platform. (The code is binary compatieieveen Windows
98/Me/2000/XP/Server 2003 platforms, so there is no neeeltoild the code when
porting the driver between these operating systems.)

1.4 WinDriver Benefits 16
1.4 WinDriver Benefits

e Easy user-mode driver development.

* Friendly DriverWizard allows hardware diagnostics witthavriting a single
line of code.

< Automatically generates the driver code for the projec@,iC# (.NET), Delphi
(Pascal) or Visual Basic.

e Support for any USB device, regardless of manufacturer.

« Enhanced support for Cypress, STMicroelectronics, Mibip, Texas
Instruments, Silicon Laboratories and National Semicaiholis USB
controllers, hiding from the developer the USB implemantatietails.

« Applications are binary-compatible across Windows 982@60/XP/Server
2003.

 Applications are source
code compatible across Windows 98/Me/2000/XP/ServerZIBMNET and
Linux.

» Can be used with common development environments, inofudi
MSDEV/Visual C/C++, MSDEV .NET, Borland Delphi, Borland @Builder,
Visual Basic, GCC or any other 32-bit compiler.

« No DDK, ETK, DDI or any system-level programming knowledgeuired.
e Supports multiple CPUs.

* Includes dynamic driver loader.

e Comprehensive documentation and help files.

 Detailed examples in C, C#, Visual Basic .NET, Delphi ansidl Basic 6.0.
* WHQL certifiable driver (Windows).

» Two months of free technical support.

< No runtime fees or royalties.

1.5 WinDriver Architecture 17

1.5 WinDriver Architecture

Your Application/DIIf
Shared Object

D Components You Write
[winDriver Components

Your Driver Code

. L]
. '
E :
: :
: :
' wd_utils DLL / H
H shared object 4
H :
L] »
" [}
» »
¥ [}
‘ :
: :

WinDriver API

Kernel Mode

WinDriver Kemel

Module
(windrvre.sysiolkoldll)

!

| Your Hardware |

Figure 1.1: WinDriver Architecture

For hardware access, your application calls one of the Wiebuser-mode
functions. The user-mode function calls the WinDriver ledywhich accesses the
hardware for you through the native calls of the operatirgjem.

1.6 What Platforms Does WinDriver Support?

WinDriver supports Windows 98/Me/2000/XP/Server2003MET and Linux.

The same source code will run on all supported platforms plgime-compile

it for the target platform. The source code is binary conipaticross Windows
98/Me/2000/XP/Server 2003, so executables created wittDviier can be ported
between these operating systems without re-compilation.

Even if your code is meant only for one of the supported opggalystems, using
WinDriver will give you the flexibility to move your driver tanother operating
system in the future without needing to change your code.

1.7 Limitations of the Different Evaluation Versions 18
1.7 Limitations of the Different Evaluation Versions

All the evaluation versions of WinDriver USB Host toolkitssfull featured. No
functions are limited or crippled in any way. The evaluatiension of WinDriver
varies from the registered version in the following ways:

« Each time WinDriver is activated, dgn-registeredmessage appears.

« When using the DriverWizard, a dialog box with a messagnsighat an
evaluation version is being run appears on every intenagtith the hardware.

« In the Linux and CE versions, the driver will remain opesatl for 60
minutes, after which time it must be restarted.

* The Windows evaluation version expires 30 days from the déinstallation.

For more details please refer to appenflix

1.8 How Do | Develop My Driver with WinDriver?

1.8.1 On Windows 98/Me/2000/XP/Server 2003 and Linux

1. Start DriverWizard and use it to diagnose your hardware-details in
Chaptels.

2. Let DriverWizard generate skeletal code for your drieenise one of the
WinDriver samples as the basis for your driver applicatese(Chapterg]
for details regarding WinDriver's enhanced support forcsfiechipsets).

3. Modify the generated/sample code to suit your applicétineeds.

4. Run and debug your driver.

NOTE
The code generated by DriverWizard is in fact a diagnostiogiam that contains

functions that perform data transfers on the device’s pipesd requests to the
control pipe, change the active alternate setting, repeispiand more.

1.8.2 On Windows CE

1. Plug your hardware into a Windows host machine.
2. Diagnose your hardware using DriverWizard.

3. Let DriverWizard generate your driver’s skeletal code.

1.9 What Does the WinDriver Toolkit Include? 19

4. Modify this code using eMbedded Visual C++ to meet youc#jeneeds. If
you are using Platform Builder, activate it and insert theegated-.pbp into
your workspace.

5. Test and debug your code and hardware from the CE emulatioring on the
host machine.

1.9 What Does the WinDriver Toolkit Include?

A printed version of this manual
« Two months of free technical support (Phone/Fax/Email)
* WinDriver modules
The WinDriver CD
— Utilities

— Chipset support APIs

— Sample files

1.9.1 WinDriver Modules

» WinDriver (WinDriver \include) — the general purpose hardware access
toolkit. The main files here are:

— windrvr.h : Declarations and definitions of WinDriver’s basic API.

— wdu_lib.h: Declarations and definitions of the WinDriver USB (WDU)
library, which provides convenient wrapper USB APIs.

— windrvr_int_thread.h : Declarations of convenient wrapper functions to
simplify interrupt handling.

— windrvr_events.h: Declarations of APIs for handling and Plug-and-Play
and power management events.

— utils.h: Declarations of general utility functions.

— status_strings.h Declarations of API for converting WinDriver status
codes to descriptive error strings.

« DriverWizard (WinDriver/wizard/wdwizard) — a graphical tool that
diagnoses your hardware and enables you to easily genegdar your
driver (refer to Chaptes for details).

1.9 What Does the WinDriver Toolkit Include? 20

» Graphical DebuggeiinDriver/util/wddebug_gui) — a graphical debugging
tool that collects information about your driver as it runs.
WinDriver also includes a console version of this program
(WinDriver/util/wddebug), which can be used on platforms that have no GUI
support, such as Windows CE.
For details regarding the Debug Monitor, refer to sectibg][

« WinDriver distribution package//inDriver/redist) — the files you include in
the driver distribution to customers.

 This manual — the full WinDriver manual (this document) iDR Windows
Help and HTML formats can be found under thénDriver/docs/ directory. L
formats.

1.9.2 Utilities

« USB_DIAG.EXE (/WinDriver/util/usb_diag.exe) — provides a list of the
USB devices installed and identifies the resources allddateeach one of
them and the resources used to access them.

The Windows CE version also includes:

* \REDIST\... \X86EMU\WINDRVR_CE_EMU.DLL : DLL that
communicates with the WinDriver kernel — for the x86 HPC eatioh mode
of Windows CE.

* \REDIST\... \X86EMU\WINDRVR_CE_EMU.LIB: an import library that
is used to link with WinDriver applications that are comgiker the x86 HPC
emulation mode of Windows CE.

1.9.3 WinDriver's Specific Chipset Support
WinDriver provides custom wrapper APIs and sample code f@omJSB
controllers (see Chapt@y, including for the following controllers:

e Cypress EZ-USB WinDriver/cypress

* Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TWSB5—
WinDriver/ti

* Silicon Laboratories C8051F320 USBMinDriver/silabs.
The samples directories typically include the followindpstirectories:

« <vendor>/lib/ — the custom API for the enhanced-support chip(s), written
using the WinDriver API.

1.10 Can I Distribute the Driver Created with WinDriver? 21

» <chip>/<sample_name>/ a sample diagnostics application for a specific
chip, which was written using the custom API from {ii# directory.
The sample application can be compiled and executed "as-is"

1.9.4 Samples

In addition to the samples provided for specific chips&t8.5, WinDriver includes
a variety of samples that demonstrate how to use WinDriviPsto communicate
with your device and perform various driver tasks.

* WinDriver/samples — C samples.
These samples also include the source code for the utiigiesl above1.9.3.

* WinDriver/delphi/samples — Delphi (Pascal) samples

e WinDriver/vb/samples — Visual Basic samples

1.10 Can | Distribute the Driver Created with
WinDriver?

Yes. WinDriver is purchased as a development toolkit, aryddmvice driver created
using WinDriver may be distributed, royalties free, in asaopies as you wish.
See the license agreemeWiaDriver/docs/license.tx{) for more details.

1.11 Identifying the Right Tool for Your Development

Jungo offers two driver development products: WinDrived &ernelDriver.

WinDriver is designed for monolithic type user-mode drivers. It eaglylou to
access your hardware directly from within your user-modgiaation, without
writing a kernel-mode device driver. Using WinDriver yowncgither access
your hardware directly from your application (in user modejvrite a DLL
that you can call from many different applications.

A USB driver developed with WinDriver will run on Windows
98/Me/2000/XP/Server2003/CE.NET and Linux.

Typically, using WinDriver a developer that has no previdtsger knowledge
can get a driver running in a matter of a few hours (comparegveral weeks
with a kernel-mode driver).

1.11 Identifying the Right Tool for Your Development 22

KernelDriver is intended for creating standard operating system inteinmaers
that require hardware access and that must communicatehgittperating
system or must be implemented in the kernel.

A USB driver created with KernelDriver can run on Windows
98/Me/2000/XP/Server2003/CE and Linux. KernelDriverdedically
simplifies the difficult task of creating kernel-mode deuvit&ers, by providing
a hardware access APl in the kernel mode, which is portabtsacthe
supported operating systems.

Chapter 2

Understanding Device Drivers

This chapter provides you with a general introduction toidewrivers and takes you
through the structural elements of a device driver.

NOTE

Using WinDriver, you do not need to familiarize yourself vthe internal workings
of driver development. As explained in Chapiesf the manual, WinDriver enables
you to communicate with your hardware and develop a driveydaoir device from
the user mode, using only WinDriver’s simple APls, withonyaeed for driver or

kernel development knowledge.

2.1 Device Driver Overview

Device drivers are the software segments that providestarface between the
operating system and the specific hardware devices suchaiséds, disks, tape
drives, video cards and network media. The device drivergsrthe device into
and out of service, sets hardware parameters in the desacsnits data from the
kernel to the device, receives data from the device and pétdsack to the kernel,
and handles device errors.

A driver acts like a translator between the device and progrihat use the device.
Each device has its own set of specialized commands thaitsrdyiver knows. In
contrast, most programs access devices by using generimands. The driver,
therefore, accepts generic commands from a program andrdresiates them into
specialized commands for the device.

23

2.2 Classification of Drivers According to Functionality 24

2.2 Classification of Drivers According to
Functionality

There are numerous driver types, differing in their funadility. This subsection
briefly describes three of the most common driver types.

2.2.1 Monolithic Drivers

Monolithic drivers are device drivers that embody all thedtionality needed to
support a hardware device. A monolithic driver is accesseahe or more user
applications, and directly drives a hardware device. Theedcommunicates with
the application through I/O control commands (IOCTLs) aridas the hardware
using calls to the different DDK, ETK, DDI/DKI functions.

Application

: Uszer Mode
Kermel Mode

HW

T

Figure 2.1: Monolithic Drivers

Monolithic drivers are supported in all operating systentdiding all Windows
platforms and all Unix platforms.

2.2 Classification of Drivers According to Functionality 25

2.2.2 Layered Drivers

Layered drivers are device drivers that are part of a stadewvice drivers that
together process an I/0 request. An example of a layeredrds\a driver that
intercepts calls to the disk and encrypts/decrypts all Haiag transferred to/from
the disk. In this example, a driver would be hooked on to tipedticthe existing driver
and would only do the encryption/decryption.

Layered drivers are sometimes also known as filter driveic aae supported in all
operating systems including all Windows platforms and aliX platforms.

Spplhication

Flearnel wdode

Figure 2.2: Layered Drivers

2.2.3 Miniport Drivers

A Miniport driver is an add-on to a class driver that supparisiport drivers. It is
used so the miniport driver does not have to implement athefftinctions required
of a driver for that class. The class driver provides thedaelsiss functionality for the
miniport driver.

A class driver is a driver that supports a group of devicesaimon functionality,
such as all HID devices or all network devices.

Miniport drivers are also called miniclass drivers or miidrs, and are supported in
the Windows NT (or 2000) family, namely Windows NT/2000/XkdeServer 2003.

2.3 Classification of Drivers According to Operating System 26

Application

E S Tser IMode

-y Kemel Mode

N

S\

Figure 2.3: Miniport Drivers

Windows NT/2000/XP/Server 2003 provide several drivessts (called ports) that
handle the common functionality of their class. It is thertathe user to add only
the functionality that has to do with the inner workings o gpecific hardware.

The NDIS miniport driver is one example of such a driver. TH2i8lminiport
framework is used to create network drivers that hook up t&N&mmunication
stacks, and are therefore accessible to common commuariaztils used

by applications. The Windows NT kernel provides driverstfa various
communication stacks and other code that is common to cornation cards. Due
to the NDIS framework, the network card developer does ne¢ hawrite all of this
code, only the code that is specific to the network card hevsldping.

2.3 Classification of Drivers According to Operating
Systems

2.3.1 WDM Drivers

WDM (Windows Driver Model) drivers are kernel-mode drivarithin the Windows
NT and Windows 98 operating system families. Windows NT fgrimicludes
Windows NT/2000/XP/Server 2003, and Windows 98 family urdgls Windows 98
and Windows Me.

WDM works by channeling some of the work of the device driveeoiportions of the
code that are integrated into the operating system. Thesep®of code handle all
of the low-level buffer management, including DMA and Plungi@lay (Pnp) device
enumeration.

2.3 Classification of Drivers According to Operating System 27

WDM drivers are PnP drivers that support power managemetbgols, and include
monolithic drivers, layered drivers and miniport drivers.

2.3.2 VxD Drivers

VxD drivers are Windows 95/98/Me Virtual Device Driverstaf called VXDs
because the filenames end with the .vxd extension. VxD drizes typically
monolithic in nature. They provide direct access to haréveend privileged operating
system functions. VxD drivers can be stacked or layered yrfashion, but the driver
structure itself does not impose any layering.

2.3.3 Unix Device Drivers

In the classic Unix driver model, devices belong to one od¢hcategories: character
(char) devices, block devices and network devices. Dritreasimplement these
devices are correspondingly known as char drivers, blodledy or network drivers.
Under Unix, drivers are code units linked into the kernet tioa in privileged kernel
mode. Generally, driver code runs on behalf of a user-mogkcapion. Access to
Unix drivers from user-mode applications is provided via fite system. In other
words, devices appear to the applications as special dése¢hat can be opened.

Unix device drivers are either layered or monolithic drszek monolithic driver can
be perceived as a one-layer layered driver.

2.3.4 Linux Device Drivers

Linux device drivers are based on the classic Unix devioseedmodel. In addition,
Linux introduces some new characteristics.

Under Linux, a block device can be accessed like a charaetécal as in Unix, but
also has a block-oriented interface that is invisible touber or application.

Traditionally, under Unix, device drivers are linked wittetkernel, and the system is
brought down and restarted after installing a new drivemukiintroduces the concept
of a dynamically loadable driver called a module. Linux miedican be loaded or
removed dynamically without requiring the system to be slown. A Linux driver
can be written so that it is statically linked or written in adular form that allows

it to be dynamically loaded. This makes Linux memory usagg eéicient because
modules can be written to probe for their own hardware andachthemselves if they
cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are eitheydaed or monolithic
drivers.

2.4 The Entry Point of the Driver 28

2.4 The Entry Point of the Driver

Every device driver must have one main entry point, likerthien() functionin a
C console application. This entry pointis called ver Entry() in Windows and
i ni t_modul e() in Linux. When the operating system loads the device drités,
driver entry procedure is called.

There is some global initialization that every driver netedgerform only once when
it is loaded for the first time. This global initializationtise responsibility of the
DriverEntry()/init _nodul e() routine. The entry function also registers which
driver callbacks will be called by the operating system. Sehériver callbacks are
operating system requests for services from the driver. imddivs, these callbacks
are calleddispatch routinesand in Linux they are callefile operations Each
registered callback is called by the operating system asudtief some criteria, such
as disconnection of hardware, for example.

2.5 Associating the Hardware to the Driver

Operating systems differ in how they link a device to its driv

In Windows, the link is performed by the INF file, which regist the device to work
with the driver. This association is performed beforelhiever Ent ry() routine is
called. The operating system recognizes the device, lopls itis database which

INF file is associated with the device, and according to thefilé, calls the driver’'s
entry point.

In Linux, the link between a device and its driver is definethi@i ni t _nmodul e()
routine. The nit_nodul e() routine includes a callback which states what hardware
the driver is designated to handle. The operating systelmtbal driver’s entry point,
based on the definition in the code.

2.6 Communicating with Drivers

A driver can create an instance, thus enabling an applitc&tiopen a handle to the
driver through which the application can communicate wiith i

The applications communicate with the drivers using a fiteeas API (Application
Program Interface). Applications open a handle to the drgagCr eat eFi | e()

call (in Windows), oropen() call (in Linux) with the name of the device as the file
name. In order to read from and write to the device, the agfitin callsReadFi | e()
andWiteFile() (in Windows), orread(),wite() inLinux.

2.6 Communicating with Drivers 29

Sending requests is accomplished using an 1/0O controlazlgd
Devi cel oControl () (in Windows), and oct | () in Linux. In this 1/O control call,
the application specifies:

* The device to which the call is made (by providing the degibandle).
* An IOCTL code that describes which function this deviceldd@erform.
« A buffer with the data on which the request should be perémm

The IOCTL code is a number that the driver and the requesteeagon for a
common task.

The data passed between the driver and the application&psulated into a
structure. In Windows, this structure is called an I/O ResfjiRacket (IRP), and is
encapsulated by the 1/0 Manager. This structure is passéaltbe device driver,
which may modify it and pass it down to other device drivers.

Chapter 3

WinDriver USB Overview

This chapter explores the basic characteristics of the Ersal Serial Bus (USB) and
introduces WinDriver USB's features and architecture.

NOTE

The references to the WinDriver USB toolkit in this chaptate to the standard
WinDriver USB toolkit for development of USB host drivers.

The WinDriver USB Device toolkit, designed for developmehtUSB device
firmware, is discussed separately in Chagt@r

3.1 Introduction to USB

USB (Universal Serial Bus) is an industry standard extensgighe PC architecture
for attaching peripherals to the computer. It was origind#veloped in 1995 by
leading PC and telecommunication industry companies, asc¢htel, Compagq,
Microsoft and NEC. USB was developed to meet several neetts@ them the
needs for an inexpensive and widespread connectivityisaltdr peripherals in
general and for computer telephony integration in pardicun easy-to-use and
flexible method of reconfiguring the PC, and a solution foriagé large number
of external peripherals. The USB standard meets these needs

The USB specification allows for the connection of a maximdrhay peripheral
devices (including hubs) to the system, either on the santeopon different ports.

USB also supports Plug and Play installation and hot swappin

TheUSB 1.1standard supports both isochronous and asynchronousdaséetrs
and has dual speed data transfer: 1.5 Mb/s (megabits perdefcolow-speedUSB

30

3.2 WinDriver USB Benefits 31

devices and 12 Mb/s fdrigh-speedUSB devices (much faster than the original serial
port). Cables connecting the device to the PC can be up to iatemn(16.4 feet)

long. USB includes built-in power distribution for low pongevices and can provide
limited power (up to 500 mA of current) to devices attachedrenbus.

TheUSB 2.0standard supports a signalling rate of 480 Mb/s, known as
"high-speed”, which is 40 times faster than the USB 1.1 full-speed tramnsiie.

USB 2.0 is fully forward- and backward-compatible with USB &nd uses existing
cables and connectors.

USB 2.0 supports connections with PC peripherals that deogkpanded
functionality and require wider bandwidth. In additioncé#n handle a larger number
of peripherals simultaneously.

USB 2.0 enhances the user’s experience of many applicatiooisding interactive
gaming, broadband Internet access, desktop and Web pinlglishternet services
and conferencing.

Because of its benefits (described also in se@i@below), USB is currently
enjoying broad market acceptance.

3.2 WinDriver USB Benefits

This section describes the main benefits of the USB standaartha WinDriver USB
toolkit, which supports this standard:

« External connection, maximizing ease of use

« Self identifying peripherals supporting automatic maygpof function to driver
and configuration

« Dynamically attachable and re-configurable peripherals
« Suitable for device bandwidths ranging from a few Kb/s tadneds of Mb/s

e Supports isochronous as well as asynchronous transfes tyyger the same set
of wires

e Supports simultaneous operation of many devices (maltphnections)

* Supports a data transfer rate of up to 480 Mb/s (high-speet)SB 2.0 (for
the operating systems that officially support this stangand up to 12 Mb/s
(full-speed) for USB 1.1

» Guaranteed bandwidth and low latencies; appropriatesfephony, audio, etc.
(isochronous transfer may use almost the entire bus batiuwid

« Flexibility: supports a wide range of packet sizes and sewahge of data
transfer rates

3.3 USB Components 32

* Robustness: built-in error handling mechanism and dyoamsertion and
removal of devices with no delay observed by the user

e Synergy with PC industry; Uses commaodity technologies
» Optimized for integration in peripheral and host hardware

» Low-cost implementation, therefore suitable for devebent of low-cost
peripherals

* Low-cost cables and connectors

* Built-in power management and distribution

3.3 USB Components

The Universal Serial bus is comprised of the following prisneomponents:

USB Host: The USB host platform is where the USB host controller isahstl and
where the client software/device driver runs. TH&B Host Controlleis the
interface between the host and the USB peripherals. Thadestponsible
for detecting the insertion and removal of USB devices, rgamgathe control
and data flow between the host and the devices, providingptovedtached
devices and more.

USB Hub: A USB device that allows multiple USB devices to attach torgyks
USB port on a USB host. Hubs on the back plane of the hosts Heel caot
hubs Other hubs are callegkternal hubs

USB Function: A USB device that can transmit or receive data or control
information over the bus and that provides a function. A fiortis typically
implemented as a separate peripheral device that pluga ipdot on a hub
using a cable. However, it is also possible to createrapound devicevhich
is a physical package that implements multiple functiords@amembedded hub
with a single USB cable. A compound device appears to thedsathub with
one or more non-removable USB devices, which may have possgport the
connection of external devices.

3.4 Data Flow in USB Devices

During the operation of a USB device, the host can initiatew of data between the
client software and the device.

Data can be transferred between the host and only one denadinae peer to peer
communication However, two hosts cannot communicate directly, nor eanWSB

3.4 Data Flow in USB Devices 33

devices (with the exception of On-The-Go (OTG) devices, wlmme device acts as
the master (host) and the other as the slave.)

The data on the USB bus is transferred via pipes that run leeteeftware memory
buffers on the host and endpoints on the device.

Data flow on the USB bus is half-duplex, i.e. data can be tréteonly in one
direction at a given time.

An endpointis a uniquely identifiable entity on a USB device, which is sboerce

or terminus of the data that flows from or to the device. EacB d&vice, logical

or physical, has a collection of independent endpoints.tiiteee USB speeds (low,
full and high) all support one bi-directional control endgdendpoint zero) and 15
unidirectional endpoints. Each endpoint unidirectiomal@oint can be used for either
inbound or outbound transfers, so theoretically there Greupported endpoints.
Each endpoint has the following attributes: bus accessiéecy, bandwidth
requirement, endpoint number, error handling mechanisaxjmum packet size that
can be transmitted or received, transfer type and dire¢itnta or out of the device).

Endpoints

Memory
USB Buffers |

Device

Data Pipes/
Data Transfer

Figure 3.1: USB Endpoints

A pipeis a logical component that represents an association batese endpoint on
the USB device and software on the host. Data is moved to anddrdevice through
a pipe. A pipe can be either a stream pipe or a message pipendieg on the type

of data transfer used in the pipgtream pipesandle interrupt, bulk and isochronous
transfers, whilenessage pipesupport the control transfer type. The different USB
transfer types are discussed bel@f].

3.5 USB Data Exchange

3.5 USB Data Exchange

34

The USB standard supports two kinds of data exchange betavbest and a device:

functional data exchange and control exchange.

Functional data exchange is used to move data to and from the device. There are

three types of data transfers: bulk, interrupt and isocbusn

Control exchange is used to determine device identification and configuration

requirements and to configure a device, and can also be usethéy
device-specific purposes, including control of other pipeshe device.

Control exchange takes place via a control pipe, mainly gfawdtPipe Q

which always exists. The control transfer consists séap stag€in which
a setup packet is sent from the host to the device), an optitana stageand a

status stage

Figure3.2below depicts a USB device with one bi-directional contiiplep(endpoint)

and six functional data transfer pipes (endpoints), adtifiketh by WinDriver’s
DriverWizard utility (discussed in Chapt8y.

- Test Your Device
Cypresz Semiconductor Corp. - CYYCE8013 EZ-USE B2 USE 2.0 Development it

Pipes I

+ Fipeli Bulk direction:

out, packet zize: B4
(F‘ipeDE Bulk. direction: out, packet size: B4
(F‘ipeﬂﬂi Bulk. direction: out, packet size: 64
(F‘ipeB'I Bulk. direction: in, packet size: 64
(F‘ipeBE Bulk, direction: in, packet zize: 64
(F‘ipeBB Bulk, direction: in, packet zize: 64
Meut > Cancel |

II=I E3

(=
Edit |
Delete |
Read/\write |
ta pipe
Feszet Fipe |

Figure 3.2: USB Pipes

3.6 USB Data Transfer Types 35

More information on how to implement the control transfersieynding setup packets
can be found in Chapté&x

3.6 USB Data Transfer Types

The USB device (function) communicates with the host bydfaming data through
a pipe between a memory buffer on the host and an endpoineathetfice. USB
supports four different transfer types. A type is selectedafspecific endpoint
according to the requirements of the device and the softvildre transfer type of a
specific endpoint is determined in the endpoint descriptor.

The USB specification provides for the following data tramnsypes:

3.6.1 Control Transfer

Control Transfer is mainly intended to support configurat@mommand and status
operations between the software on the host and the device.

This transfer type is used for low-, full- and high-speedides.

Each USB device has at least one control pipe (default pigggh provides access
to the configuration, status and control information.

Control transfer is bursty, non-periodic communication.
The control pipe is bi-directional — i.e. data can flow in bditections.

Control transfer has a robust error detection, recoveryratnrdnsmission mechanism
and retries are made without the involvement of the driver.

The maximum packet size for control endpoints can be onlyt8fpr low-speed
devices; 8, 16, 32, or 64 hytes for full-speed devices; amy &hbytes for
high-speed devices.

3.6.2 Isochronous Transfer
Isochronous Transfer is most commonly used for time-degenidformation, such
as multimedia streams and telephony.

This transfer type can be used by full-speed and high-speddes, but not by
low-speed devices.

Isochronous transfer is periodic and continuous.

3.6 USB Data Transfer Types 36

The isochronous pipe is unidirectional, i.e. a certain emtpan either transmit
or receive information. Bi-directional isochronous conmination requires two
isochronous pipes, one in each direction.

USB guarantees the isochronous transfer access to the UsBviath (i.e. it
reserves the required amount of bytes of the USB frame) wdtimtded latency, and
guarantees the data transfer rate through the pipe, uhlessis less data transmitted.

Since timeliness is more important than correctness intyipis of transfer, no
retries are made in case of error in the data transfer. Haywhe=data receiver can
determine that an error occurred on the bus.

3.6.3 Interrupt Transfer

Interrupt Transfer is intended for devices that send aneivesmall amounts of data
infrequently or in an asynchronous time frame.

This transfer type can be used for low-, full- and high-speedces.

Interrupt transfer type guarantees a maximum service gama that delivery will be
re-attempted in the next period if there is an error on the bus

The interrupt pipe, like the isochronous pipe, is uniditl and periodical.

The maximum packet size for interrupt endpoints can be 8shytéess for low-speed
devices; 64 bytes or less for full-speed devices; and 1,98kkor less for high-speed
devices.

3.6.4 Bulk Transfer

Bulk Transfer is typically used for devices that transfegéaamounts of non-time
sensitive data, and that can use any available bandwidth,asiprinters and
scanners.

This transfer type can be used by full-speed and high-speades, but not by
low-speed devices.

Bulk transfer is non-periodic, large packet, bursty comioaition.

Bulk transfer allows access to the bus on an "as-availalasisbguarantees the data
transfer but not the latency, and provides an error checlhargsm with retries
attempts. If part of the USB bandwidth is not being used fbeotransfers, the
system will use it for bulk transfer.

Like the other stream pipes (isochronous and interrupg)bthik pipe is also
unidirectional, so bi-directional transfers require twalpoints.

The maximum packet size for bulk endpoints can be 8, 16, 3@4 dytes for
full-speed devices, and 512 bytes for high-speed devices.

3.7 USB Configuration 37
3.7 USB Configuration

Before the USB function (or functions, in a compound deviaa) be operated,

the device must be configured. The host does the configuriagdpyiring the
configuration information from the USB device. USB devicesart their attributes
by descriptors. Alescriptor is the defined structure and format in which the data is
transferred. A complete description of the USB descriptarsbe found in Chapter 9
of the USB Specification (sd® t p: / / ww. usb. or g for the full specification).

Itis bel%t t%view ‘he LlJSB descriptors as a hierarchical stineowith four levels:
" TheDeviceleve

» TheConfigurationlevel

* Thelnterfacelevel (this level may include an optional
sub-level calledhlternate Setting

e TheEndpointlevel

There is only one device descriptor for each USB device. Bawite has one
or more configurations, each configuration has one or moeefages, and each
interface has zero or more endpoints, as demonstratedime3g3 below.

Device Descriptor

Configuration Descriptor Configuration Descriptor
Interface Descriptor Interface Descriptor
Endpoint Endpoint
Descriptor Descriptor |

Figure 3.3: Device Descriptors

Device Level: The device descriptor includes general information abloaitiSB
device, i.e. global information for all of the device configtions. The device
descriptor identifies, among other things, the device dldfd device, hub,
locator device, etc.), subclass, protocol code, vendodé&vice ID and more.
Each USB device has one device descriptor.

http://www.usb.org

3.7 USB Configuration 38

Configuration Level: A USB device has one or more configuration descriptors.
Each descriptor identifies the number of interfaces groupéuk configuration
and the power attributes of the configuration (such as seifeped, remote
wakeup, maximum power consumption and more). Only one cor#ipn
can be loaded at a given time. For example, an ISDN adaptdttinaye two
different configurations, one that presents it with a singierface of 128 Kb/s
and a second that presents it with two interfaces of 64 Klk.ea

Interface Level: The interface is a related set of endpoints that present a
specific functionality or feature of the device. Each iraed may operate
independently. The interface descriptor describes thebemof the interface,
the number of endpoints used by this interface and the atter§pecific class,
subclass and protocol values when the interface operatepémdently.

In addition, an interface may haadternate settings The alternate settings
allow the endpoints or their characteristics to be vari¢erahe device is
configured.

Endpoint Level: The lowest level is the endpoint descriptor, which provithes
host with information regarding the endpoint’s data trangfpe and maximum
packet size. For isochronous endpoints, the maximum patets used
to reserve the required bus time for the data transfer -Heebandwidth.

Other endpoint attributes are its bus access frequencgpémtchumber, error
handling mechanism and direction.

The same endpoint can have different properties (and caesdly different
uses) in different alternate settings.

Seems complicated? Not at all! WinDriver automates the U&MBiguration process.
The included DriverWizard utility§] and USB diagnostics application scan the USB
bus, detect all USB devices and their configurations, iater$, alternate settings

and endpoints, and enable you to pick the desired configurbgfore starting driver
development.

WinDriver identifies the endpoint transfer type as detesadiim the endpoint
descriptor. The driver created with WinDriver containscalhfiguration information
acquired at this early stage.

3.8 WinDriver USB 39

3.8 WinDriver USB

WinDriver USB enables developers to quickly develop higinfprmance drivers for
USB-based devices, without having to learn the USB spetiicsior the operating
system’s internals.

Using WinDriver USB, developers can create USB drivers atthaving to use
the operating system’s development kits (such as the WiadaK); In addition,
Windows developers do not need to familiarize themselvéls Microsoft's Win32
Driver Module (WDM).

The driver code developed with WinDriver USB is binary cotilpla across

the supported Windows platforms — Windows 98/Me/2000/X#8r 2003 —

and source code compatible across all supported operatitenss — Windows
98/Me/2000/XP/Server2003/CE.NET and Linux. (For an wgkate list of supported
operating systems, visit Jungo’s web sitehat p: / / waw. j ungo. com.

WinDriver USB is a generic tool kit that supports all USB dms from all vendors
and with all types of configurations.

WinDriver USB encapsulates the USB specification and agchite, letting you
focus on your application logic. WinDriver USB features graphical DriverWizard
utility [5], which enables you to easily detect your hardware, viewatsfiguration
information, and test it, before writing a single line of eodriverWizard first lets
you choose the desired configuration, interface and alies®iting combination,
using a friendly graphical user interface. After detectmgl configuring your USB
device, you can proceed to test the communication with thizde- perform data
transfers on the pipes, send control requests, reset ths,@fr. — in order to ensure
that all your hardware resources function as expected.

After your hardware is diagnosed, you can use DriverWizamtomatically
generate your device driver source code in C, Delphi or ViBaaic. WinDriver

USB provides user-mode APIs, which you can call from withiuyapplication in
order to implement the communication with your device. Thie®viver USB API
includes USB-unique operations such as reset of a pipe orieedd he generated
DriverWizard code implements a diagnostics applicatiomciv demonstrates

how to use WinDriver's USB API to drive your specific device.drder to use the
application you just need to compile and run it. You can justgrt your development
cycle by using this application as your skeletal driver drehtmodifying the code, as
needed, to implement the desired driver functionality fouryspecific device.

DriverWizard also automates the creation of an INF file tiegisters your device

to work with WinDriver, which is an essential step in ordectarectly identify and
handle USB devices using WinDriver. For an explanation og wdu need to create
an INF file for your USB device, refer to sectidd.3.1of the manual. For detailed

http://www.jungo.com

3.9 WinDriver USB Architecture

information on creation of INF files with DriverWizard, ref® sectionb.2 (see
specifically stef8).

With WinDriver USB, all developmentis done in the user magsng
familiar development and debugging tools and your favariepiler (such as
MSDEV/Visual C/C++, Borland Delphi, Borland C++ or VisuaaBic).

3.9 WinDriver USB Architecture

Your Application/DIlf
Shared Object

I:l Components Your Write

I:l WinDriver Components

[l os components Your Driver Code

(wd_utils) E

Hardware Components High-level

! WinDriver API
)

)

H WinDriver API

)

H

'

WWINDIVEr APl — — = e e e o e | e o e User Mode
Kernel Mode
WinDriver Kermel
Module
(windrvré.sysiofkoldIl)

usBDriver _ _
Interface
USE Host

Controller ———————— e e ——

Driver Interface Host Controller Driver (HCD)

\
(TEwetbaver [[[1] [Hetermtver] 11| ([[[[T1obc o 1]]]
_______________________________ Hardware

[\ estconvatien,
/ \
Reee] Rt
/ \
RN

Figure 3.4: WinDriver USB Architecture

3.10 Which Drivers Can | Write with WinDriver USB? 41

To access your hardware, your application calls the Wind®dkernel module using
functions from the WinDriver USB API. The high-level funatis utilize the low-level
functions, which use IOCTLs to enable communication betwtbe WinDriver
kernel module and your user-mode application. The WinDikeenel module
accesses your USB device resources through the nativetiogesgstem calls.

There are two layers responsible for abstracting the USB-dé¢w the USB device
driver. The upper layer is thdSB Driver (USBD) layer, which includes the USB
Hub Driver and the USB Core Driver. The lower level is thest Controller Driver
(HCD) layer. The division of duties between the HCD and USBD layersot

defined and is operating system dependent. Both the HCD aBidl%e software
interfaces and components of the operating system, wheitd@D layer represents a
lower level of abstraction.

TheHCD is the software layer that provides an abstraction of thé ¢cargtroller
hardware, while th&/SBD provides an abstraction of the USB device and the data
transfer between the host software and the function of thg dkvice.

The USBD communicates with its clients (the specific device driver gxample)
through the USB Driver Interfac&JSBDI). At the lower level, the Core Driver and
USB Hub Driver implement the hardware access and data gabgfcommunicating
with the HCD using the Host Controller Driver Interfadé@DI).

The USB Hub Driver is responsible for identifying the adalitiand removal of
devices from a particular hub. When the Hub Driver receiveigiaal that a device
was attached or detached, it uses additional host softwaréha@ USB Core Driver to
recognize and configure the device. The software implemeitiie configuration can
include the hub driver, the device driver, and other sofewar

WinDriver USB abstracts the configuration procedure andWvare access described
above for the developer. With WinDriver's USB API, developean perform all the
hardware-related operations without having to masterawei-level implementation
for supporting these operations.

3.10 Which Drivers Can | Write with WinDriver
USB?

Almost all monolithic drivers (drivers that need to accgsscific USB devices) can
be written with WinDriver USB. In cases where a standardedris required, e.qg.
NDIS driver, SCSI driver, Display driver, USB to Serial pdrivers, USB layered
drivers, etc., use KernelDriver USB (also from Jungo).

For quicker development time, select WinDriver USB overri&Driver USB
whenever possible.

Chapter 4

Installing WinDriver

This chapter takes you through the WinDriver installatidogess, and shows you
how to verify that your WinDriver is properly installed. Theest section discusses the
uninstall procedure.

4.1 System Requirements

41.1 For Windows 98/Me

e An x86 processor
e Any 32-bit development environment supporting C, VB or el

4.1.2 For Windows NT/2000/XP/Server 2003

e An x86 processor
* Any 32-bit development environment supporting C, VB or el

4.1.3 For Windows CE

e An x86 / MIPS / ARM Windows CE 4.x - 5.0 (.Net) target platform
« Windows 2000/XP/Server 2003 host development platform

« Microsoft eMbedded Visual C++ with a corresponding taigBeK or
Microsoft Platform Builder with corresponding BSP (BoanagpPort Package)
for the target platform

42

4.2 WinDriver Installation Process 43

4.1.4 For Linux

» Any 32-bit x86 architecture with a Linux 2.4.x or 2.6.x kein
or:
An x86 64-bit architecture — AMDG64 or Intel EM64k86_64 — with a Linux
2.4.xor 2.6.x kernel
or:
Any PowerPC 32-bit architecture with a Linux 2.4.x or 2.6exikel

* A GCC compiler

NOTE
The version of the GCC compiler should match the compilesiearused for
building the running Linux kernel.

Any 32-bit or 64-bit development environment (depending/our target
configuration) supporting C for user mode.

e On your development P@libc2.3.x

libstdc++.s0.5is required for running GUI WinDriver applications (e.g.
DriverWizard [B] ; Debug Monitor [7.2)).

4.2 WinDriver Installation Process

The WinDriver CD contains all versions of WinDriver for alfig different operating
systems. The CD’s root directory contains the Windows 98aki& 2000/XP/Server
2003 version. This will automatically begin when you ingég CD into your CD
drive. The other versions of WinDriver are located in suédiories, i.e.)\Linux,
\Wince and so on.

4.2.1 Windows 98/Me/2000/XP/Server 2003 WinDriver
Installation Instructions

NOTE
You must have administrative privileges in order to instsihDriver on Windows
98, Me, 2000, XP and Server 2003.

1. Insert the WinDriver CD into your CD-ROM drive.
(When installing WinDriver by downloading it from Jungo'sty site instead
of using the WinDriver CD, double click the downloaded Win@r file
(WDxxx.EXE) in your download directory, and go to St8p

4.2 WinDriver Installation Process 44

2. Wait a few seconds until the installation program stautsmatically. If for
some reason it does not start automatically, double-dfieKite WDxxx.EXE
(where xxx is the version number) and click timstall WinDriver button.

3. Read the license agreement carefully, and cliegif you accept its terms.
4. Choose the destination location in which to install Wiiver.
5. IntheSetup Typescreen, choose one of the following:

 Typical — to install all WinDriver modules (generic WinDriver todtk
specific chipset APIS)

» Compact- to install only the generic WinDriver toolkit

e Custom-—to choose which modules of WinDriver to install; you may
choose which APIs will be installed

6. After the installer finishes copying the required filesyabe whether to view
the Quick Start guides.

7. You may be prompted to reboot your computer.

NOTE

The WinDriver installation defines\8D_BASEDI R environment variable, which
is set to point to the location of your WinDriver directorg, selected during the
installation. This variable is used during the DriverWiz§s] code generation — it
determines the default directory for saving your generatetk and is used in the
include paths of the generated project/make files.

Therefore, if you decide to change the name and/or locafignur WinDriver
directory after the installation, you should also edit th&re of theAD BASEDI R
environment variable and set it to point to the location afijeew WinDriver
directory. You can edit the value BD_BASEDI R by following these steps:

1. Open theéSystem Propertiedialog: Start | System | Control Panel | System
2. In theAdvancedtab, click theEnvironment Variables button.

3. In theSystem variablesbox, select th&\D BASEDI R variable and click the
Edit ... button or double-click the mouse on the variable.

4. In theEdit System Variable dialog, replace th¥ariable Value with the full
path to your new WinDriver directory, then cli€K, and clickOK again from
the System Propertiesdialog.

4.2 WinDriver Installation Process 45

The following steps are for registered users only:

In order to register your copy of WinDriver with the licensewreceived from Jungo,
follow the steps below:

1. Activate DriverWizard GUI $tart | Programs | WinDriver | DriverWizard).

2. Select thé®ister WinDriver option from theFile menu and insert the
license string you received from Jungo. Click thetivate Licensebutton.

3. To register source code that you developed during theiatiah period, refer
to the documentation ®DU_I ni t () [A.3.1].

4.2.2 Windows CE WinDriver Installation Instructions
4.2.2.1 Installing WinDriver CE when Building New CE-basedPlatforms

The following instructions apply to platform developersabuild Windows CE
kernel images using Windows CE Platform Builder:

NOTE
We recommend that you read Microsoft's documentation amtrstand the
Windows CE and device driver integration procedure befotepgerform the
installation.

1. Run MicrosoftPlatform Builder and open your platform.
2. SelecOpen Build Release Directoryfrom theBuild menu.

3. Copy the WinDriver CE kernel file
\WinDriver \redist\TARGET_CPU\windrvr6.dll
to the% FLATRELEASEDIR% subdirectory on your development platform
(should be the current directory in the new command window).

4. Append the contents of the file
\WinDriver \sampleswince_instal\PROJECT_WD.REG
to the flePROJECT.REG in the%_ FLATRELEASEDIR% subdirectory.

5. Append the contents of the file
\WinDriver \sampleswince_instal\PROJECT_WD.BIB
to the flePROJECT.BIB in the%_ FLATRELEASEDIR% subdirectory.

This step is only necessary if you want the WinDriver CE kéfife
(windrvr6.dll) to be a permanent part of the Windows CE imag& BIN).
This would be the case if you were transferring the file to ytauget platform
using a floppy disk. If you prefer to have the filendrvr6.dll loaded on
demand via the CESH/PPSH services, you need not carry auttdp until
you build a permanent kernel.

4.2 WinDriver Installation Process 46

. SelectMake Image from theBuild menu and name the new imaly&.BIN .

. Download your new kernel to the target platform and itiz&it either by

selectingDownload/Initialize from theTarget menu or by using a floppy disk.

. Restart your target CE platform. The WinDriver CE kernél automatically

load.

. Compile and run the sample programs to make sure that WieiDCE is

loaded and is functioning correctly. (See Sectiof) which describes how to
check your installation.)

4.2.2.2 Installing WinDriver CE when Developing Applications for CE

Computers

The following instructions apply to driver developers whmrebt build the Windows
CE kernel, but only download their drivers, built using Misoft eMbedded Visual

C++,

1

2.
3.

to a ready-made Windows CE platform:
Insert the WinDriver CD into your Windows host CD drive.
Exit from the auto installation.

Double click theCd_setup.exdile found in the\Wince directory on the CD.
This will copy all needed WinDriver files to your host devetognt platform.

. Copy the WinDriver CE kernel file

\WinDriver \redist\TARGET_CPU\windrvr6.dll
to the\WINDOWS subdirectory of your target CE computer.

. Use the Windows CE Remote Registry Editor tam@régedt.exgor the Pocket

Registry Editor pregedt.exg on your target CE computer to modify your
registry so that the WinDriver CE kernel is loaded apprapha The file
\WinDriver \sampleswince_instal\PROJECT_WD.REG contains the
appropriate changes to be made.

. Restart your target CE computer. The WinDriver CE kerriklautomatically

load. You will have to do a warm reset rather than just susfresdme (use the
reset or power button on your target CE computer).

. Compile and run the sample programs (see Sedtigrwhich describes how

to check your installation) to make sure that WinDriver Cbeded and is
functioning correctly.

4.2 WinDriver Installation Process 47

4.2.2.3 Windows CE Installation Note

The WinDriver installation on the host Windows 2000/XPAgr2003 PC defines
aWD_BASEDI Renvironment variable, which is set to point to the locatibgaur
WinDriver directory, as selected during the installatidhis variable is used during
the DriverWizard p] code generation — it determines the default directory &virgy
your generated code and is used in the include paths of trexated project/make
files.

Therefore, if you decide to change the name and/or locafignur host WinDriver
directory after the installation, you should also edit th&re of theAD BASEDI R
environment variable and set it to point to the location afiyeew WinDriver
directory. You can edit the value #D_BASEDI R by following these steps:

1. Open theSystem Propertiedialog: Start | System | Control Panel | System
2. IntheAdvancedtab, click theEnvironment Variables button.

3. IntheSystem variablesbox, select th&\D_BASEDI R variable and click the
Edit ... button or double-click the mouse on the variable.

4. IntheEdit System Variable dialog, replace th¥ariable Value with the full
path to your new WinDriver directory, then cli€bK, and clickOK again from
the System Propertieddialog.

Note that if you install the WinDriver Windows 98/Me/200@XServer 2003 tool-kit
on the same host PC, the installation will override the valutae W) _BASEDI R
variable from the Windows CE installation.

4.2.3 Linux WinDriver Installation Instructions
4.2.3.1 Preparing the System for Installation

In Linux, kernel modules must be compiled with the same hefilds that the
kernel itself was compiled with. Since WinDriver instalteetkernel module
windrvr6.0/.ko, it must compile with the header files of the Linux kernel dgrthe
installation process.

Therefore, before you install WinDriver for Linux, verifiaat the Linux source code
and the fileversions.hare installed on your machine:

Install the Linux kernel source code:

* If you have yet to install Linux, install it, including thesknel source code, by
following the instructions for your Linux distribution.

4.2 WinDriver Installation Process 48

« If Linux is already installed on your machine, check whetthe Linux source
code was installed. You can do this by looking for ‘linux’ met/usr/src
directory. If the source code is not installed, either ilhgtaor reinstall Linux
with the source code, by following the instructions for yainmux distribution.

Install version.h:

e The fileversion.his created when you first compile the Linux kernel source
code. Some distributions provide a compiled kernel withbatfile version.h.
Look underfusr/src/linux/include/linux/ to see if you have this file. If you do
not, please follow these steps:

1. Type:
$ make xconfig

2. Save the configuration by choosiBgve and Exit

3. Type:
$ make dep

In order to run GUI WinDriver applications (e.g. DriverWizg5] ; Debug
Monitor [7.2]) you must also have version 5.0 of thiestdc++ library —
libstdc++.s0.5 If you do not have this file, install it from the relevant RPiMyiour
Linux distribution (e.g.compat-libstdc++).

Before proceeding with the installation, you must also msake that you have a
‘linux’ symbolic link. If you do not, please create one by iyQ:

fusr/src$ In -s <target kernel >/ |inux

For example, for the Linux 2.4 kernel type:

fusr/src$ In -s linux-2.4/ 1inux

4.2.3.2 Installation

1. Insert the WinDriver CD into your Linux machine’s CD drigecopy the
downloaded file to your preferred directory.

2. Change directory to your preferred installation diregtfor example to your

home directory:
$cd ~

3. Extract the fileVDxxxLN.tgz (where ‘xxx’ is the version number):
$ tar xvzf /<file location>/ WxxxLN.tgz

For example:

e From a CD:
$ tar xvzf /mmt/cdrom LI NUX/ WDxxXLN. t gz

4.2 WinDriver Installation Process 49

» From a downloaded file:
$ tar xvzf /hone/ usernanme/ WDxxxLN. t gz

4. Change directory to your WinDriveedist/ directory (the tar automatically
creates aVinDriver/ directory):
$ cd <path to your WnbDriver directory>/redist/

5. Install WinDriver:
(@) <WnbDriver directory>redist/$./configure

NOTE

Theconf i gur e script creates emakefile based on your specific
running kernel. You may run theonf i gur e script based on
another kernel source you have installed, by adding the flag

--w t h- ker nel - sour ce=<pat h> to the configure script. The
<path> is the full path to the kernel source directory, augr/src/linux.

(b) <WnDriver directory>/redist/$ make

(c) Become super user:
<WnDriver directory>/redist/$ su

(d) Install the driver:
<WnDriver directory>/redist/# make install

6. Create a symbolic link so that you can easily launch theddWizard GUI:
$1n-s <full path to WnDriver>/w zard/ wdwi zar d/
usr/ bi n/ wdwi zar d

7. Change the read and execute permissions on thedigzard so that ordinary
users can access this program.

8. Change the user and group IDs and give read/write pens$d the device
file /dev/windrvré depending on how you wish to allow users to access
hardware through the device.

If you are using a Linux 2.6.x kernel that has tev file system, change the
permissions by modifying youetc/udev/permissions.d/50-udev.permissions
file. For example, add the following line to provide read ardeyermissions:
wi ndrvr6:root:root: 0666

Otherwise, use thehnod command, for example:
chnod /dev/w ndrvr6 666

9. Define a neWw\D_BASEDI R environment variable and set it to point to the
location of your WinDriver directory, as selected during thstallation. This
variable is used in the make and source files of the WinDriaerdes and
generated DriverWizard] code and is also used to determine the default

4.2 WinDriver Installation Process 50

directory for saving your generated DriverWizard projétyou do not define
this variable you will be instructed to do so when attemptmguild the
sample/generated code using the WinDriver makefiles.

NOTE: If you decide to change the name and/or location of YimDriver
directory after the installation, you should also edit th&re of the

WD BASEDI R environment variable and set it to point to the location afityo
new WinDriver directory.

10. You can now start using WinDriver to access your hardwackegenerate your
driver code!

TP

To avoid the need to reload the driver modweéndrvr6.0/.ko) each time you
restart your system, add the following line to your Linfexc/rc.d/rc.localfile:
/ sbi n/ nodpr obe wi ndrvr 6

The following steps are for registered users only

In order to register your copy of WinDriver with the licensewreceived from Jungo,
follow the steps below:

1. Activate the DriverWizard GUI:
<path to WnDriver>/w zard/ wdw zard

2. Select thdRegister WinDriver option from theFile menu and insert the
license string you received from Jungo.

3. Click theActivate Licensebutton.

4. To register source code that you developed during theiatiah period, refer
to the documentation &MU I nit() [A.3.1].

Restricting Hardware Access on Linux

CAUTION!

Since/dev/windrvr6 gives direct hardware access to user programs, it may
compromise kernel stability on multi-user Linux systemigaBe restrict access to
the DriverWizard and the device fildev/windrvr6 to trusted users.

For security reasons the WinDriver installation scriptgloet automatically
perform the steps of changing the permissiongdav/windrvré and the
DriverWizard executablendwizard).

4.3 Upgrading Your Installation 51
4.3 Upgrading Your Installation

To upgrade to a new version of WinDriver on Windows, follow steps outlined
in Sectiond.2.1, which illustrates the process of installing WinDriver idindows
98/Me/2000/XP/Server 2003. You can either choose to overire existing
installation or install to a separate directory.

After installation, start DriverWizard and enter the negelise string, if you have
received one. This completes the upgrade of WinDriver.

To upgrade your source code, pass the new license stringasiaeter to
WU I nit() [A.3.1] (ortoWD_Li cense() [A.5.9] when using the olthD_UsbXXX()
APIs).

The procedure for upgrading your installation on other apeg systems is the
same as the one described above. Please check the respesttilation sections
for installation details.

4.4 Checking Your Installation

4.4.1 On Your Windows, Linux and Solaris Machines

1. Start DriverWizard:
On Windows, by choosingrograms | WinDriver | DriverWizard from
the Start menu, or using the shortcut that is automatically creategoom
Desktop. A third option for activating the DriverWizard onslows is
by runningwdwizard.exefrom a command prompt under tingzard
sub-directory.
On Linux you can access the wizard application via the file ag@n under the
wizard sub-directory, or run the wizard application via a shell.

2. Make sure that your WinDriver license is installed (seeti®a 4.2, which
explains how to install WinDriver). If you are an evaluatizersion user, you
do not need to install a license.

4.5 Uninstalling WinDriver 52

4.4.2 On Your Windows CE Machine

1.

Start DriverWizard on your Windows host machine by choeg8&rograms |
WinDriver | DriverWizard from theStart Menu.

. Make sure that your WinDriver license is installed. If yame an evaluation
version user, you do not need to install a license.

3. Plug your device into the computer, and verify that DWerard detects it.

4. Activate Visual C++ for CE.

5. Load one of the WinDriver samples, e.g.,

\WinDriver \samples speakeh speaker.dsw

6. Setthe target platform to x86em in the Visual C++ WCE canfi¢jon toolbar.
7. Compile and run the speaker sample. The Windows host melstspeaker

should be activated from within the CE emulation environten

4.5 Uninstalling WinDriver

This section will help you to uninstall either the evaluatir registered version of
WinDriver.

451 On Windows 98/Me/2000/XP/Server 2003

NOTES

» ForWindows 98/Me, replace references wdreg below withwdreg16.
» For Windows 2000/XP/Server 2003you can also use thedreg_gui.exe
utility instead ofwdreg.exe

» wdreg.exe wdreg_gui.exeandwdreg16.exeare found under the
WinDriver \util \ directory (see ChaptdiO for details regarding these
utilities).

1. Close any open WinDriver applications, including Drixézard, the Debug
Monitor (wddebug_gui.ex¢ and user-specific applications.

2. Uninstall any Plug-and-Play devices (USB/PCI/PCMCI#gtthave been
registered with WinDriver via an INF file:

4.5 Uninstalling WinDriver 53

On Windows 2000/XP/Server 2003Uninstall the device using the
wdreg utility:

wdreg -inf <path to the device-INF file>

uni nst al |

OnWindows 98/Me Uninstall (Remove) the device manually from the
Device Manager.

Verify that no INF files that register your device(s) with Mariver's
kernel moduleindrvré.sys) are found in thé&owindir% \inf directory
and/or%windir% \inf\other directory (Windows 98/Me).

3. Uninstall WinDriver:

On the development PG on which you installed the WinDriver toolkit:
RunStart | WinDriver | Uninstall , OR run theuninstall.exeutility from
theWinDriver \ installation directory.

The uninstall will stop and unload the WinDriver kernel mélu
(windrvr6.sys); delete the copy of theindrvr6.inf file from the
%windir% \inf\ directory (on Windows 2000/XP/Server 2003)

or %windir% \inf \other\ directory (on Windows 98/Me); delete
WinDriver from Windows’Start menu; delete thgvinDriver \
installation directory (except for files that you added tis tirectory);
and delete the short-cut icons to the DriverWizard and Débagitor
utilities from the Desktop.

On atarget PC, on which you installed the WinDriver kernel module
(windrvr6.sys), but not the entire WinDriver toolkit:

Use thewdreg utility to stop and unload the driver:

wdreg -inf <path to wi ndrvr6.inf> uninstall

NOTE
When running this commanujindrvr6.sys should reside in the same
directory aswindrvr6.inf .

(On the development PC, thdreg uninstall command is executed for
you by the uninstall utility.)

4.5 Uninstalling WinDriver 54

NOTES

« If there are open handles to WinDriver when attempting tiostall
it (either using thauninstall utility or by running thewdreg uninstall
command directly) — for example if there is an open WinDriver
application or a connected Plug-and-Play device that has be
registered to work with WinDriver via an INF file (on Windows
98/Me/2000/XP/Server 2003) — an appropriate warning ngesegall
be displayed. The message will provide you with the optiogitioer
close the open application(s) / uninstall/disconnect éevant device(s),
andRetry to uninstall the driver; o€ancelthe uninstall of the driver,
in which case thevindrvr6.sys kernel driver will not be uninstalled.
This ensures that you do not uninstall the WinDriver kernetioie
(windrvr6.sys) as long as it is being used.

* You can check if the WinDriver kernel module is loaded byming the
Debug Monitor utility VinDriver \util \wddebug_gui.ex¢ When
the driver is loaded the Debug Monitor log displays drived &5
information; otherwise it displays a relevant error messag
On the development PC the uninstall command will deletetttilisy,
therefore in order to use it after you execute the unindtatiacreate a
copy ofwddebug_gui.exebefore performing the uninstall procedure.

4. If windrvr6.sys was successfully unloaded, erase the following files (if the
exist):

* %windir% \system32drivers\windrvr6.sys

* %windir% \inf\windrvr6.inf (Windows 2000/XP/Server 2003)
* %windir% \inf\Jungowindrvr6.inf (Windows 98/Me)

* %windir% \system32wd_utils.dll

* %windir% \system32wdnetlib.dll

5. Reboot the computer.

4.5 Uninstalling WinDriver 55

45.2 On Linux

NOTE

You must be logged in as root to perform the uninstall procedu

1

N

. Verify that the WinDriver module is not being used by amsthrogram:

 View a list of modules and the programs using each of them:
[# [sbin/lsnod

» Close any applications that are using the WinDriver module

* Unload any modules that are using the WinDriver module:
/'sbin# r mmod

. Unload the WinDriver module:
[sbin# rmod wi ndrvr6

. If you are not using a Linux 2.6.x kernel that supportsutev file system,
remove the old device node in thaev directory:
[#rm-rf /dev/w ndrvr6

. Remove the filewindriver.rc from the/etcdirectory:
[#rm-rf /etc/.windriver.rc

. Remove the filewindriver.rc from $HOME:
[# rm-rf $HOVE/ .wi ndriver.rc

. If you created a symbolic link to DriverWizard, delete timk using the
command:
[# rm-f [usr/bin/wdw zard

. Delete the WinDriver installation directory using theramand:
[#rm-rf ~/WnDriver

Chapter 5

Using DriverWizard

This chapter describes WinDriver DriverWizard’s hardwaiaggnostics and driver
code generation capabilities.

To find out how you can use the WinDriver USB Device DriverWet develop
device firmware, refer to Chapt&p.

5.1 An Overview

DriverWizard (included in the WinDriver toolkit) is a GUlased diagnostics and
driver generation tool that allows you to write to and reamhfrthe hardware, before
writing a single line of code. The hardware is diagnosedublhoa Graphical User
Interface—memory ranges are read, registers are toggteohterrupts are checked.
Once the device is operating to your satisfaction, Drivexdhll creates the skeletal
driver source code, with functions to access all your hardwesources.

If you are developing a driver for a device that is based onafriee
enhanced-support USB chipsets (The Cypress EZ-USB falvityochip
PIC18F4550, Texas Instruments TUSB3410, TUSB3210, TUSBZIUSB5052,
Silicon Laboratories C8051F320), we recommend you reaghtend, which
explains WinDriver's enhanced support for specific chipse¢fore starting your
driver development.

DriverWizard can be used to diagnose your hardware and czargte an INF file
for hardware running under Windows 98/Me/2000/XP/Serd&3 Avoid using
DriverWizard to generate code for a device based on one afithported USB
chipsets 8], as DriverWizard generates generic code which will havieeanodified
according to the specific functionality of the device in dim@s Preferably, use the

56

5.2 DriverWizard Walkthrough 57

complete source code libraries and sample applicatioppligd in the package)
tailored to the various USB chipsets.

DriverWizard is an excellent tool for two major phases in yBlWW/Driver
development:

Hardware diagnostics: After the hardware has been built, attach your device to a
USB port on your machine, and use DriverWizard to verify thathardware is
performing as expected.

Code generation: Once you are ready to build your code, let DriverWizard gateer
your driver code for you.

The code generated by DriverWizard is composed of the fafigwlements:

Library functions for accessing each element of your device’s resources (memo
ranges, I/0 ranges, registers and interrupts).

A 32-bit diagnostics program in console mode with which you can diagnose your
device. This application utilizes the special library ftions described above.
Use this diagnostics program as your skeletal device driver

A project workspace/solution that you can use to automatically load all of the
project information and files into your development enviramt.
For Linux, DriverWizard generates the required makefile.

5.2 DriverWizard Walkthrough

To use DriverWizard:

1. Attach your hardware to the computer:
Attach your device to a USB port on your computer.

2. Run DriverWizard and select your device:

(a) Click Start | Programs | WinDriver | DriverWizard or double click the
DriverWizard icon on your desktop (on Windows), or run tixgwizard
utility from the /WinDriver/wizard/ directory.

(b) Click Nextin the Choose Your Projectdialog box.
(c) Select youbDevicefrom the list of devices detected by DriverWizard.

NOTE

On Windows 98, if you do not see your USB device in the listpretect

it and make sure thedew Hardware Found/Add New Hardware wizard
appears for your device. Do not close the dialog box until lyave generated
an INF for your device using the steps below.

5.2 DriverWizard Walkthrough

¥ select Your Device

58

Pleaze select vour device from the list of detected cards below, or
chooze "S54 card” for non plug & play cards.

PCI:
PCI:
PCI:
PCI:
PCI:
PCI:
PCI:
PCI:
PCI:
PCI:
PCI:

154, card [I0 ports / memory £ interupts]
Parallel port

YIRTUAL DEVICE

Wl
Wl
Wld
Wld
Wld
Wl
Wl

WTB2C693 chinaren za

WTE2C598 PCI-ta-PCI Bridge [(AGF)
WTE2CE8E/6264/6868 PCl-to-|SA bridge
WTE2CH3E PCI IDE Controller

WTE3CE7Z, WTE202 USE 2.0 Controller
WTE3CE7Z, WTE202 USE 2.0 Controller
YWTE2CE864 ACPI Power Management Contraller

Realtek. RBT81334/E/C Fast Ethemet Adapter
FL+< PCI 3030 PCl SMART arget 1/0 Accelerator
NVIDIA David NWE THNTZ Model B4 / THTZ2 Model 64 Pro

:1JSB: Anchor Chips, Inc. , Product 10: 0080

Device Description:

Refrezh
devices lizt

Edit PL
registers

Generate
IMF filz

Fenerate
KDF file

Uninztall
IMF filz

Yendor 1D: 0547, Praduct [D: 0080, Interface number: 00
Thiz device iz configured to wark with "WinDinver

"EZ-USE vid547 pida0 (wDE23)"

Mext »» I Cancel

Figure 5.1: Select Your Device

3. Generate an INF file for DriverWizard:
Whenever developing a driver for a Plug and Play Windows atjp@g system

(i.e., Windows 98/Me/2000/XP/Server 2003) you are requiceinstall an
INF file for your device. This file will register your Plug andbly device to

work with thewindrvr6.sys driver. The file generated by the DriverWizard

in this step should later be distributed to your customeirsgd/indows

98/Me/2000/XP/Server 2003, and installed on their PCs.

The INF file you generate here is also designed to enable Dyizard to

diagnose your device. As explained earlier, this is reguimdy when using

WinDriver to support a Plug and Play device (such as USB) olug &nd

5.2 DriverWizard Walkthrough 59

Play system (Windows 98/Me/2000/XP/Server 2003). Addaianformation
concerning the need for an INF file is explained in Secfidr8.1

If you do not need to generate an INF file (e.g. if you are using
DriverWizard on Linux), skip this step and proceed to the nex one.

To generate the INF file with the DriverWizard, follow the ssébelow:

(a) IntheSelect Your Devicescreen, click thé&enerate .INF file button or
click Next.

(b) DriverWizard will display information detected for yodevice — Vendor
ID, Product ID, Device Class, manufacturer name and devaoeen and
allow you to modify this information.

@Enter Information for INF File x|

Pleaze fill in the infarmation below for pour device.

This infarmation will be incorporated inka the IMF fils,
which ‘WinDriver will generate far your device.

The information pou specify will appear in the
Device Manager after the installation of the IMF file.

Yendar 1D: |D4b4 Froduct 1D |851 3

b anufacturer name: Il:ypress Semiconductor Corp.
Device narne; |3 EZ-USE F2 USE 2.0 Development kit
Device Class; I OTHER j

WinDiriver's unique Class.

|Jze thiz option for a non-standard type of device.
WfinDiriver will zet a new Class type for pour device,

v Automatically Install the INF file,
Mate: Thiz will replace any exizting driver you may have for your device.

Figure 5.2: DriverWizard INF File Information

5.2 DriverWizard Walkthrough 60

(c) For multiple-interface USB devices, you can select toggate an INF file
either for the composite device or for a specific interface.

« When selecting to generate an INF file for a specific interfafca
multi-interface USB device the INF information dialog wiiidicate
for which interface the INF file is generated.

@Enter Information for INF File x|

Pleaze fill in the infarmation below for pour device.

Thiz information will be incorporated into the IMF file,
which ‘WinDriver will generate far your device.

The information pou zpecify will appear in the
Device Manager after the installation of the IMF file.

Wendor |D: I':"“""I Product [D IEIED2

t arufacturer name: IF'hiIips
Device name: IDEVICE
Device Clazs: I OTHER j

WinDiriver's unique Class.

|Jze this option for a non-standard type of device.
WfinDiriver will zet a new Class type for pour device,

Thisg iz a multi-interface device.
Selected interface: 0

v Automatically Install the INF file,
Mate: Thiz will replace any exizting driver you may have for your device.

Figure 5.3: DriverWizard Multi-Interface Device INF Filaformation — Specific
Interface

* When selecting to generate an INF file for a composite device
multi-interface USB device, the INF information dialog pides
you with the option to either generate an INF file for the rostide
itself, or generate an INF file for specific interfaces, whjolu can
select from the dialog.

5.2 DriverWizard Walkthrough 61

@Enter Information for INF File |

Fleasze fil in the infarmation below for vour device,

This information will be incorporated inta the [MF file,
which ‘WinDriver will generate far your device.

The information you specify will appear in the
Device Manager after the inztallstion of the IMF fils.

WVendar 1D: ID‘“’"I Product 1D IDED2

M anufacturer name: I Philips
Device name:; IDE\-"ICE
Device Clazs: I OTHER j

WwinDriver's unique Clazs.

|Jze thiz option far a non-standard tpe of device,
WwinDinver will get a new Clazs type for pour device.

Thiz iz a multi-interface device.

¥ Generate INF file for the root device itzelf
" Generate INF file for the following device interfaces:

¥ Interface 0 V¥ Interface 1 V| Interface 2

v Automatically Install the INF file.
Mote: This will replace any existing driver you may have for your device.

oot

Figure 5.4: DriverWizard Multi-Interface Device INF Filaformation — Composite
Device

(d) When you are done, clidkext and choose the directory in which you
wish to store the generated INF file. DriverWizard will theri@matically
generate the INF file for you.

OnWindows 2000/XP/Server 200§ou can choose to automatically
install the INF file from the DriverWizard by checking tAeitomatically
Install the INF file option in the DriverWizard's INF generation dialog
(this option is checked by default for USB devices).

On Windows 98/Meyou must install the INF file manually, using
WindowsAdd New Hardware Wizard or Upgrade Device Driver

5.2 DriverWizard Walkthrough 62

Wizard, as explained in Sectiahl.3

If the automatic INF file installation on Windows 2000/XPr&er 2003
fails, DriverWizard will notify you and provide manual irdlation
instructions for this OS as well.

(e) When the INF file installation completes, select and o device
from the list in theSelect Your Devicescreen.

4. Uninstall the INF file of your device:
You can use th&ninstall option to uninstall the INF file of your device. Once
you uninstall the INF file, the device will no longer be regigtd to work with
thewindrvr6.sys, and the INF file will be deleted from the Windows root
directory.If you do not need to uninstall an INF file, skip this step and
proceed to the next one

(a) IntheSelect Your Devicescreen, click th&Jninstall .INF file button.
(b) Select the INF file to be removed.

5. Select the desired alternate setting:
The DriverWizard detects all the device’s supported adtsettings and
displays them. Select the desiralternate settingfrom the displayed list.

3l select Device Interface x|

Chooze interface settings for the device:

g 1
Config. 1: interface no. 0, alternate setting: 1
Config. 1: interface nio. 0, altemate setting: 2
Config. 1: interface nio. 0, altemate setting: 3

Interface information:

end-points: 1, class: 0xff, sub-clazs: 0x0, protocal: 00
1. end-point address: 0x82, attributes: 042
max packet size: B4 [0x40], Interval 1

Mext >3 I Cancel

Figure 5.5: Select Device Interface

5.2 DriverWizard Walkthrough 63

DriverWizard will display the pipes information for the seted alternate
setting.

NOTE

For USB devices with only one alternate setting configured;ddWizard
automatically selects the detected alternate settinghardfore theSelect
Device Interfacedialog will not be displayed.

.. Test ¥our Device Mi=]
Cypress Semiconductor Corp. - CY7CEB01 3 EZ-USE F<2 USE 2.0 Development Kit
Fipes I
| Fiew

Pipe Mame Pipe Information Description
y"’F'ipeD'I Bulk direction: out, packet size: B4

. N . Delete
q"’F'|peD2 Bulk direction: out, packet zize: B4
\/F'!peljei Bulk d!rect!on: .DUt’ packetlsme: 64 Fead/wite
~ Pipefi Bulk direction: in, packet size: G4 to pipe
(F’ipeBE Bulk direction: in, packet size: 64
(F’ipeBS Bulk direction: in, packet size: 64 Reset Pipe |

Memt > Caticel |

Figure 5.6: Test Your Device

6. Diagnose your device:
Before writing your device driver, it is important to makesyour hardware is
working as expected. Use DriverWizard to diagnose yoursard. All of your
activity will be logged in the DriverWizard log so that you ynlater analyze
your tests:

(a) Testyour USB device’s pipes:
DriverWizard shows the pipe detected according to the s=dec
configurationinterface alternate setting. In order to perform USB data
transfers follow the steps given below:

i. Select the desired pipe.

ii. Fora control pipe (a bidirectional pipe), cliékead/Write to Pipe.
A new dialog will appear, allowing you to select a standardUS
request or define a custom request, as demonstrated in Eigure

5.2 DriverWizard Walkthrough 64

@Pipeﬂﬂ - Control

— Setup Packet —Action———————— [~ Request Description

Select a request: Read fram Pipe | Custom request;
p——— =] whteto Pie | S ————
| T reqL [Fill iny the setup packet fi_B|C|S ar'!d click
GET_DESCRIPTOR - COMFIGURATION Clear | "Read from Fipe" / "wfite to Pipe"
GET_DESCRIFTOR - DEVICE
GET_DESCRIPTOR - STRING File ta Fipe |
Fipe to File |

GET_STATUS - DEVICE
SaveWwrite Data |

GET_STATUS -ENDPOINT
GET_STATUS - INTERFACE

‘write to pipe data [Hex):

Figure 5.7: USB Requests List

When you select one of the available standard USB requésts, t
setup packet information for the selected request is autoatls
filled and the request description is displayed ineguest
Description box.

For a custom request, you are required to enter the setugpack
information and write data (if exists) yourself. The sizetu setup
packet should be eight bytes and it should be defined usttey lit
endian byte ordering. The setup packet information shooidarm
to the USB specification parametebsRequest Type, bRequest,
wval ue, Wl ndex, wLengt h).

5.2 DriverWizard Walkthrough 65

NOTE

More detailed information on the standard USB requests gmnth
implement the control transfer and how to send setup packets
be found in Chapte?.

iii. Foran input pipe (moves data from device to host) clitgten to
Pipe. To successfully accomplish this operation with devicé®ot
than HID, you need to first verify that the device sends dath¢o
host. If no data is sent after listening for a short periodrogt
DriverWizard will notify you that theTransfer Failed.

iv. To stop reading, cliclStop Listen to Pipe

v. For an output pipe (moves data from host to device), dlitke to
Pipe. A new dialog box will appear (see FigubeB), asking you to
enter the data to write. The DriverWizard log will contaie ttesult
of the operation.

x
Wit to pipe data [Hex): — Action

l Fead from Pipe |
Wwite to Pipe |
Clear |
File to Pipe |
Fipe ta File |
Save Wwiite Data |

Figure 5.8: Write to Pipe

7. Generate the skeletal driver code:

(a) SelecGenerate Codefrom theBuild menu, or clickNextin the Define
and Test Resources for Your Devicelialog box.

(b) IntheSelect Code Generation Optionsglialog box that will appear,
choose the code language and development environmenttagfo
generated code and sel®éiExt to generate the code.

5.2 DriverWizard Walkthrough 66

@SElf_‘Et Code Generation Options b

[t1 which language do youw want your code to be generated?

@ L Pascal [Delphi) © Vizual Bazic ¢ CH.MET ¢ Visual Basic NET

Generate project makefile for:

v 15 Developer Studio 6.5 I Borland Delphi
[~ M5 Developer Studio MET ™ Wisual Basic B
[T Microsoft eMbedded Visual C++ - for CE [T Linux Makefile
[HMicrozoft Platforn Builder C++ - Ffar CE - [Solaris b akefile
[Borland C++ Builder 3 I Tomado 2

[~ Borland C++ Builder 4 - §

[~ Generate KDF file for Windows MT Embedded
IDE to lnvake:
I kM5 Developer Studio 6.5 j

P st Cahcel |

Figure 5.9: Code Generation Options

(c) Save your project (if required) and cli€K to open your development
environment with the generated driver.

(d) Close DriverWizard
8. Compile and run the generated code:

 Use this code as a starting point for your device driver. Modhere
needed to perform your driver’s specific functionality.

» The source code DriverWizard creates can be compiled wigh a
32-bit compiler, and will run on all supported platforms @lows
98/Me/2000/XP/Server2003/CE.NET and Linux) without nfimgition.

5.3 DriverWizard Notes 67

5.3 DriverWizard Notes

5.3.1 Logging WinDriver API Calls

You have the option to log all the WinDriver API calls usingtBriverWizard, with
the API calls input and output parameters. You can selesfhiion by selecting
theLog API calls option from theTools menu or by clicking on th&og API calls
toolbar icon in the DriverWizard’s opening window.

5.3.2 DriverWizard Logger

The wizard logger is the empty window that opens along widDbvice Resources
dialog box when you open a new project. The logger keeps whak of the input
and output during the diagnostics stage, so that you mayzagbur device’s
physical performance at a later time. You can save the lofutare reference. When
saving the project, your log is saved as well. Each log is@ated with one project.

5.3.3 Automatic Code Generation

After you have finished diagnosing your device and have eukstinat it runs
according to your specifications, you are ready to write yhiver.

5.3.3.1 Generating the Code

ChooseGenerate Codefrom theBuild menu. DriverWizard will generate the source
code for your driver, and place it along with the project fitgx.wdp, where "xxx" is
the project name). The files are saved in a directory Driveaid creates for every
development environment and operating system selectée Bdnerate Code

dialog box.

5.3.3.2 Generated USB Code

In the source code directory you now have a new_diag.csource file (wherexx

is the name you selected for your DriverWizard project).siié implements a
diagnostic USB application, which demonstrates how to usefiver’'s USB API

to locate and communicate with your USB device(s), inclgdietection of Plug and
Play events (device insertion/removal, etc.), performesg/write transfers on the
pipes, resetting the pipes and changing the device’s agltiemate setting.

The generated application supports handling of multiptattal USB devices.

5.3 DriverWizard Notes 68

5.3.3.3 Compiling the Generated Code

For Windows 98, Me, 2000, XP, CE and Server 2003 (Using MSDEVY)

1. For Windows platforms, DriverWizard generates the midiées (for MSDEV
5, 6 and 7 (.Net), Borland C/C++ Builder, Visual Basic andibg). After
code generation, the chosen IDE (Integrated Developmaearitdiment) will
be launched automatically. You can then immediately coerguild run the
generated code.

5.3.3.4 Visual Basic or Delphi Code Generation

This will generate Visual Basic or Delphi project and filasitar to the MSDEV
projects described in abovg.B.3.2.

5.3.3.5 For Linux:

1. DriverWizard creates a makefile for your project.
2. Compile the source code using the makefile generated beidvizard.

3. Use any compilation environment to build your code, pediey GCC.

5.3.3.6 For Other OSs or IDEs:

1. Create a new project in your IDE (Integrated developmevirenment).
2. Include the source files created by DriverWizard in yowjgxt.
3. Compile and run the project.

4. The project contains a working example of the custom fanstthat
DriverWizard created for you. Use this example to creatduhetionality you
want.

Chapter 6

Developing a Driver

This chapter takes you through the WinDriver driver deveiept cycle

NOTE

If your device is based on one of the chipsets for which Win@rprovides
enhanced support (The Cypress EZ-USB family, MicrochipIlBEA550, Texas
Instruments TUSB3410, TUSB3210, TUSB2136, TUSB5052¢&iliLaboratories
C8051F320), read the following overview and then skip givaio ChapteB.

6.1 Using the DriverWizard to Build a Device Driver

« Use DriverWizard to diagnose your device: View the dexd@@nfiguration
information, transfer data on the device’s pipes, senddstahrequests to the
control pipe and reset the pipes. Verify that your devicerags as expected.

« Use DriverWizard to generate skeletal code for your dewide, Delphi or
Visual Basic. Refer to Chaptérfor details about DriverWizard.

« If you are using one of the specific chipsets for which Winerioffers
enhanced support (The Cypress EZ-USB family, MicrochipIBIe4550,
Texas Instruments TUSB3410, TUSB3210, TUSB2136, TUSB588i2on
Laboratories C8051F320), we recommend that you use théismammple
code provided for your chip as your skeletal driver code.rrore details
regarding WinDriver's enhanced support for specific chipsefer to
Chaptes8.

« Use any 32-bit compiler (such as MSDEV/Visual C/C++, Boddelphi,
Borland C++, Visual Basic, GCC) to compile the skeletal driyou need.

69

6.2 Writing the Device Driver Without the DriverWizard 70

* For Linux, use any compilation environment, preferably@i® build your
code.

e That is all you need do to create your user-mode driver.

Please see Appendixfor a detailed description of WinDriver's USB APIs.
To learn how to implement control transfers with WinDrivexfer to Chapte® of the
manual.

6.2 Writing the Device Driver Without the
DriverWizard

There may be times when you select to write your driver diyeatithout using
DriverWizard. In either case, proceed according to thessteplined below, or
choose a sample that most closely resembles what your dheerd do, and modify
it.

6.2.1 Include the Required WinDriver Files

1. Include the relevant WinDriver header files in your drigesject (all header
files are found under th&VinDriver/include directory).
All WinDriver projects require thevindrvr.h header file.
When using th&\DU_xxx WinDriver USB API [A.1], include thewdu_lib.h
header file (this file already includesndrvr.h).
Include any other header file that provides APIs that you washse from your
code (e.g. files from thAVinDriver/samples/shared/directory, which provide
convenient diagnostics functions.)

2. Include the relevant header files from your source codeefample, to use the
USB API from thewdu_lib.h header file, add the following line to the code:

#include "wdu_lib.h"

3. Link your code with thevd_utils DLL/shared object from th&/inDriver/lib/
directory (vd_utils.lib / wd_utils_borland.lib (Borland C++ Builder) — for
Windows 98/Me/2000/XP/Server 2003 and Windows Qiwd_utils.so—
for Linux), or otherwise include the relevant WinDriver soei files from the
WinDriver/src/ directory.

When using thevd_utils DLL/shared object, you will need to distribute
WinDriver/redist/wd_utils.dll (Windows 98/Me/2000/XP/Server 2003 and
Windows CE) WinDriver/lib/libwd_utils.so (Linux) with your driver — see
Chapterll.

6.3 Developing Your Driver on Windows CE Platforms 71

4. Add any other WinDriver source files that implement AP tyau which to
use in your code (e.g. files from ti&/inDriver/samples/shared/directory.)

6.2.2 Write Your Code

1. CallvoU I nit() [A.3.]] at the beginning of your program to initialize
WinDriver for your USB device and wait for the device-attaetiback. The
relevant device information will be provided in the attaeltilzack.

2. Once the attach callback is received, you can start usiegbthe
VWU _Transfer() [A.3.7] functions family to send and receive data.

3. To finish, calMDU_Uni ni t () [A.3.6] to un-register from the device.

6.3 Developing Your Driver on Windows CE
Platforms

When developing your driver on Windows CE platforms, you tfiust register

your device to work with WinDriver. This is similar to instialg an INF file for your
device when developing a driver for a Plug and Play Windowesaiing system (i.e.,
Windows 98, Me, 2000, XP or Server 2003). Refer to Sectibr3for understanding
the INF file.

In order to register your USB device to work with WinDrivegwycan perform one of
two of the following:

o CallWDU_Init() [A.3.1] before the device is plugged into the CE system.
OR

* You can add the following entry to the registry (can be adwegbur
platform.reg file):

[HKEY_LOCAL_MACHI NE\ DRI VERS\ USB\ LoadCl i ent s\ <I D>\ Def aul t\ Def aul t\ WDR] :
“DLL"="wi ndrvr6.dl "

<ID> is comprised of your vendor ID and product ID, separated by an
underscore charactesty VENDOR | D> <MY PRCDUCT | D>.

Insert your device specific information to this key. The kegisters

your device with Windows CE Plug-and-Play (USB driver) andlges
identification of the device during boot. You can refer to tbgistry after
callingWDU _Init() and then this key will exist. From that moment the device
will be recognized by CE. If your device has a persistentstegithis addition
will remain until you remove it.

6.4 Developing in Visual Basic and Delphi 72

For more information, refer to MSDN Library, undéSB Driver Registry
Settingssection.

6.4 Developing in Visual Basic and Delphi

The entire WinDriver API can be used when developing driire¥4sual Basic and
Delphi.

6.4.1 Using DriverWizard

DriverWizard can be used to diagnose your hardware andyvéiat it is working
properly before you start coding. You can then proceed toraatically generate
source code with the wizard in a variety of languages, inalg®elphi and Visual
Basic. For more information, refer to Chapfeand Sectior.4.3below.

6.4.2 Samples
Samples for drivers written using the WinDriver API in Deljph Visual Basic can be
found in:

1. \WinDriver \delphi\samples

2. \WinDriver \vb\samples

Use these samples as a starting point for your own driver.

6.4.3 Creating your Driver

The method of development in Visual Basic is the same as tltleadién C using the
automatic code generation feature of DriverWizard.

Your work process should be as follows:

« Use DriverWizard to easily diagnose your hardware.

Verify that it is working properly.

« Generate your driver code.

Integrate the driver into your application.

* You may find it useful to use the WinDriver samples to get torhe
WinDriver APl and as your skeletal driver code.

Chapter 7

Debugging Drivers

The following sections describe how to debug your hardwacess application
code.

7.1 User-Mode Debugging

» Since WinDriver is accessed from user mode, we recommezig/thu first
debug your code using your standard debugging software.

7.2 Debug Monitor

Debug Monitor is a powerful graphical- and console-modé fmomonitoring all
activities handled by the

WinDriver kernel (vindrvr6.sys/windrvr6.dll /windrvr6.0/.ko). You can use this
tool to monitor how each command sent to the kernel is exdcute

Debug Monitor has two modes: graphical mode and console mideefollowing
sections explain how to operate Debug Monitor in both modes.

7.2.1 Using Debug Monitor in Graphical Mode

Applicable for Windows 98, Me, 2000, XP, Server 2003 and kindou may also
use Debug Monitor to debug your Windows CE driver code rugioimn CE emulation
on a Windows 2000/XP/Server 2003 platform. For Windows Ggets use Debug
Monitor in console mode.

73

7.2 Debug Monitor 74

1. Run the Debug Monitor using one the following three ways:

e The Debug Monitor is available agddebug_guiin the
\WinDriver \util \ directory.

» The Debug Monitor can be launched from ffaols menu in
DriverWizard.

 In Windows, useStart | Programs | WinDriver | Debug Monitor to start
Debug Monitor.

EE'WinDriver Debug Monitor o m] [
File Edit View Help

IF=EEE)

wéinDriver Debugging Monitar w7 .00,

Running WinDriver w7 00 [Release Candidate 1] Jungo [c] 1997 - 2005 Build Date: Mar 7 2005 =86 575 134201
Time: Wed kar 915:28:11 2005

05: Windows MT 5.0 Build 0.0.2195 Service Pack 4

Figure 7.1: Start Debug Monitor

7.2 Debug Monitor 75

2. Activate and set the trace level using either\iewv | Debug Optionsmenu or
theChange Statusbutton.

EE'Debug Dptions x|

— Section

v 10 ¥ Dma
v Memary ¥ Kemel Plugin

W Interupts v Miscellaneous

I tn v PCI V¥ License

of ¥ PCHMCIA [V Card Fegistration
¥ 154 PnP ¥ Kemel Driver
v LUSB ¥ Ewvents

Lewel
[r Errar Wamn Info ' Trace

¥ Send debug messages to the operating system
kernel debugger

Ok I Carcel |

Figure 7.2: Set Trace Options

Status— Set trace on or off.

Section— Choose what part of the WinDriver API you would like to
monitor. USB developers should select th&B check box.

TP

Choose carefully those sections that you would like to nuonit
Checking more options than necessary could result in arfloweof
information, making it harder for you to locate your problem

Level — Choose the level of messages you want to see for the resource
defined.

Error is the lowest level of trace, resulting in minimum outputhe t
screen.

Trace is the highest level of tracing, displaying every operatium
WinDriver kernel performs.

* Select theSend WinDriver Debug Messages To Kernel Debugger
check box if you want debugging messages to be sent to amekter
kernel debugger as well.

7.2 Debug Monitor 76

This option enables you to send to an external kernel deladigbe
debug information that is received from WinDriver’s kerngbdule
(which callsWp_DebugAdd() [A.5.6] in your code).

Now run your application, reproduce the problem, and viesvdebug
information in the external kernel debugger’s log.

Windows users can use Microsoft's WinDbg tool, for exampliich
is freely supplied with Microsoft's Driver Development KIDDK) and
from Microsoft’s web site (Microsoft Debugging Tools page)

3. Once you have defined what you want to trace and on what lgied OK to
close theModify Status window.

4. Activate your program (step-by-step or in one run).

5. Watch the monitor screen for errors or any unexpectedagess

7.2.2 Using Debug Monitor in Console Mode

This tool is available in all supported operating systenwsude it, run:
\WnDriver\util> wddebug

with the appropriate switches.

For a list of switches that can be used with Debug Monitor insobe mode, type:
\> wddebug

To see activity logged by the Debug Monitor, type:

\> wddebug dunp.

7.2.2.1 Using Debug Monitor on Windows CE

On Windows CE, Debug Monitor is only available in console modou first need
to start a Windows CE command windo®@NID.EXE) on the Windows CE target
computer and then run the prograDDEBUG.EXE inside this shell.

Chapter 8

Enhanced Support for Specific
Chipsets

8.1 Overview

In addition to the standard WinDriver API and the DriverWizaode generation
capabilities described in this manual, which support dgwelent of drivers for any
USB device, WinDriver offers enhanced support for specliipsets. The enhanced
support includes custom API and sample diagnostics codiehveine designed
specifically for these chipsets.

WinDriver's enhanced support is currently available far thllowing chipsets: The
Cypress EZ-USB family, Microchip PIC18F4550, Texas Instemts TUSB3410,
TUSB3210, TUSB2136, TUSB5052, Silicon Laboratories C§S20.

NOTE

The WinDriver USB Device toolkit's enhanced support for el@pment of
USB device firmware for the Cypress EZ-USB FX2LP CY7C6801Sikcon
Laboratories C8051F320 and Microchip PIC18F4550 chipg&etiscussed
separately in Chaptdr2.

77

8.2 Developing a Driver Using the Enhanced Chipset Support 78

8.2 Developing a Driver Using the Enhanced Chipset
Support

When developing a driver for a device based on one of the exdasupport chipsets
[8.1], you can use WinDriver’s chipset-set specific support Bipfang these steps:

1. Locate the sample diagnostics program for your device uiina
/WinDriver/chip_vendor/chip_name\ directory.

Most of the sample diagnostics program names are derivettfie sample’s
main purpose (e.glownload_samplefor a firmware download sample)
and their source code can be found directly under the spebific name/
directory.

The program’s executable is found under a sub-directorydar target
operating system (e.gVIN32\ for Windows.)

2. Run the custom diagnostics program to diagnose your eewid familiarize
yourself with the options provided by the sample program.

3. Use the source code of the diagnostics program as yowatakdevice
driver and modify the code, as needed, to suit your specifieldpment
needs. When modifying the code, you can utilize the customDAfver
API for your specific chip. The custom API is typically foundder the
/WinDriver/chip_vendor/lib/ directory.

Chapter 9

USB Control Transfers

9.1 USB Control Transfers Overview

9.1.1 USB Data Exchange

The USB standard supports two kinds of data exchange betivedrost and the
device:

Functional data exchange is used to move data to and from the device. There are
three types of data transfers: Bulk, Interrupt, and Isocbus transfers.

Control exchange is used to configure a device when it is first attached and an al
be used for other device-specific purposes, including obafrother pipes on
the device. Control exchange takes place via a control pipnly the default
Pipe 0, which always exists.

79

9.1 USB Control Transfers Overview

2 Test Your Device

Cypress Semiconductor Corp. - CYTCEB013 EZ-USE F<2 USE 2.0 Development kit

80

Pipes I
Control Pipe Pipe Mame
{Pipedy —— [1§
|+ Fipel
Functional + Pipel2
Pipes (Bulk | +/FipsD4

Interrupt + Pipes1

Isochronous) :;E:E:gg

Fipe Type

Eulk.
Builk.
Bulk.
Bulk.
Bulk.
Bulk.

Fipe Infarmation

direction; out, packet size; 64
direction: out, packet size: 64
direction: out, packet size: 64
direction: in, packet size: 64
direction: in, packet size: 64
direction: in, packet size: 64

Mewt »»

M[=1 E3

R
Edit
Delete

Fead write
to pipe

MLl

Feszet Pipe

Figure 9.1: USB Data Exchange

9.1.2 More About the Control Transfer

The control transaction always begins with a setup stage.s€tup stage is

followed by zero or more control data transactions (datgejtthat carry the specific
information for the requested operation, and finally a statansaction completes the
control transfer by returning the status to the host.

During the setup stage, an 8-byte setup packet is used wntraimformation to

the control endpoint of the device. The setup packet’s foisdefined by the USB

specification.

A control transfer can be a read transaction or a write tretitsa In a read

transaction the setup packet indicates the characteretid amount of data to be
read from the device. In a write transaction the setup pamkatiins the command
sent (written) to the device and the number of control datasithat will be sent to

the device in the data stage.

Refer to Figure.2 (taken from the USB specification) for a sequence of read and

write transactions.

‘(in)" indicates data flow from the device to the host.
‘(out)’ indicates data flow from the host to the device.

9.1 USB Control Transfers Overview 81

Setup Data Stage
stage {Cptonal) Status
: M \
Conirol - T
Write SETUP DATA [oud) | | DATA [out) | | DATA [ouf) Status (i)
Setup Data Stage
Stage I:OPJE\?_{HU Status
Ty I
Conirol
Road SETUP DATA (i) | | DATA fix) | | DATA (i) Smtus (ouf)
Setup Status
stage
R N N—
No-data SETUF | St () |
Conirol

Figure 9.2: USB Read and Write

9.1.3 The Setup Packet

The setup packets (combined with the control data stagehenstatus stage) are used
to configure and send commands to the device. Chapter 9 of$Bedgecification
defines standard device requests. USB requests such asthesnt from the host

to the device, using setup packets. The USB device is rejtoreespond properly to
these requests. In addition, each vendor may define dep@sfis setup packets to
perform device-specific operations. The standard setugepg¢standard USB device
requests) are detailed below. The vendor’s device-spegifig packets are detailed
in the vendor’s data book for each USB device.

9.1 USB Control Transfers Overview 82

9.1.4 USB Setup Packet Format

The table below shows the format of the USB setup packet. leoe mformation,
please refer to the USB specificatiorhat p: / / www. usb. or g.

Byte | Field Description

0 bmRequest Type Bit 7: Request direction (0O=Host to device — Out, 1=Devichast - In).
Bits 5-6: Request type (O=standard, 1=class, 2=vendoes&rved).
Bits 0-4: Recipient (O=device, 1=interface, 2=endpoitiBer).

1 bRequest The actual request (see the Standard Device Request Chiefota.g).

2 wValueL A word-size value that varies according to the request. kample, in
the CLEAR_FEATURE request the value is used to select the feature, in th
CGET_DESCRI PTOR request the value indicates the descriptor type and in
SET_ADDRESS request the value contains the device address.

3 wValueH The upper byte of th¥al ue word.

4 windexL A word-size value that varies according to the request. ftlex is
generally used to specify an endpoint or an interface.

5 windexH The upper byte of thendex word.

6 wlLengthL A word-size value that indicates the number of bytes to besteared if
there is a data stage.

7 wlLengthH The upper byte of theengt h word.

e
the

http://www.usb.org

9.1 USB Control Transfers Overview 83

9.1.5 Standard Device Request Codes

The table below shows the standard device request codes.

bRequest Value
GET_STATUS 0
CLEAR_FEATURE
Reserved for future use
SET_FEATURE
Reserved for future use
SET_ADDRESS
GET_DESCRIPTOR
SET_DESCRIPTOR
GET_CONFIGURATION
SET_CONFIGURATION
GET_INTERFACE 10
SET_INTERFACE 11
SYNCH_FRAME 12

O| 0| N[O O | W|IN| -

9.1.6 Setup Packet Example

This example of a standard USB device request illustratesetup packet format and
its fields. The setup packet is in Hex format.

The following setup packet is for a control read transactit retrieves the device
descriptor from the USB device. The device descriptor idetiinformation such as
USB standard revision, vendor ID and product ID.

GET_DESCRIPTOR (Device) Setup Packet

[80]06[00[01][00][00] 12]00]

9.1 USB Control Transfers Overview

Setup packet meaning:

84

Byte | Field Value | Description

0 BmRequest Type 80 8h=1000b
bit 7=1 -> direction of data is from device
to host.
0h=0000b
bits 0..1=00 -> the recipient is the device.

1 bRequest 06 | The Requestis GET_DESCRIPTOR.

2 wValueL 00

3 wValueH 01 The descriptor type is device (values
defined in USB spec).

4 windexL 00 | The indexis notrelevantin this setup
packet since there is only one device
descriptor.

5 windexH 00

6 wlLengthL 12 Length of the data to be retrieved: 18(12
bytes (this is the length of the device
descriptor).

7 wlLengthH 00

In response, the device sends the device descriptor dataviéeddescriptor of
Cypress EZ-USB Integrated Circuit is provided as an example

ByteNo.| O | 1 | 2|3 |4|5|6|7|8]| 9|10
Content | 12| 01 | 00 | O1 | ff | ff | ff | 40| 47| 05 | 80
ByteNo. | 11| 12 | 13| 14| 15| 16 | 17
Content | 00| 01 | 00| 00| 00 | 0O | 01

As defined in the USB specification, byte 0 indicates the eofthe descriptor,
bytes 2-3 contain the USB specification release number,big¢he maximum
packet size for endpoint 00, bytes 8-9 are the Vendor ID,$¥611 are the Product

ID, etc.

9.2 Performing Control Transfers with WinDriver 85
9.2 Performing Control Transfers with WinDriver

WinDriver allows you to easily send and receive control $fans on Pipe00, while
using DriverWizard to test your device. You can either ugeAR| generated by
DriverWizard [B] for your hardware, or directly call the WinDrivéDU_Tr ansf er ()
[A.3.7] function from within your application.

9.2.1 Control Transfers with DriverWizard

1. ChoosePipe00and clickRead/Write To Pipe.
2. You can either enter a custom setup packet, or use a stad& request.

 For a custom request: enter the required setup packet.fletds write
transaction that includes a data stage, enter the data Wtite to pipe
data (Hex)field. Click Read From Pipeor Write To Pipe according to
the required transaction (see Fig@r8).

€3 Pipe00 - Control x|
— Setup Packet — Actian — Request Description
Select a iequest Fiead fram Pipe | Custam request:
| Custom request =l ‘\wiite to Pipe | T T

Fillin the setup packet fields and click

Type FReguest wialue windex wlength &I TR T T BT
ll_ l_ l— l— l— File to Fipe |
| Fipe to File |

Save Wiite Data |

‘wiite to pipe data [Hex):

Figure 9.3: Custom Request

9.2 Performing Control Transfers with WinDriver 86

» For a standard USB request: select a USB request from thieses)
list, which includes requests such@ET_DESCRIPTOR
CONFIGURATION, GET_DESCRIPTOR DEVICE, GET_STATUS
DEVICE, etc. (see Figur8.4). The description of the selected request
will be displayed in th&Request Descriptionbox on the right hand of the
dialog window.

3} Pipe0o - Control x|
— Setup Packet — Action — Request Description
Select a request Read from Pipe | Custom request:

“wirite to Pipe | _____________

Fill in the setup packet fields and click

GET_DESCRIPTOR - COMFIGURATION 1 Clear | "Read from Pipe" / "white to Pipe"

GET_DESCRIPTOR - DEVICE

GET_DESCRIFTOR - STRING File to Fipe |
GET_STATUS - DEVICE

GET_STATUS - ENDPOINT Pipe tao File |
GET_STATUS - INTERFACE

Save Wiite Data |

‘wiite to pipe data [Hex):

Figure 9.4: Request List

3. The results of the transfer, such as the data that was reacktevant error, are
displayed in Driver Wizard'$ og window.
Figure9.5below shows the contents of theg window after a successful
GET_DESCRIPTOR DEVICE request.

“# Log H[=] E3

Tranzferred 15 EBytes from Pipe0od
12 01 0O 01 FF FF FF 40 47 05 31 21 04 00 00 00 |as BG.1'....
oo 01 | ..

Figure 9.5: USB Request Log

9.2 Performing Control Transfers with WinDriver 87

9.2.2 Control Transfers with WinDriver API

To perform a read or write transaction on the control pip&, gan either use the
API generated by DriverWizard for your hardware, or dirgctll the WinDriver
WU _Transfer () [A.3.7] function from within your application.

Fill the setup packet in thBYTE Set upPacket [8] array and call these functions to
send setup packets on Pipe00 and to retrieve control angs stata from the device.

« The following sample demonstrates how to fill t8et upPacket [8] variable
with a GET_DESCRI PTOR setup packet:

set upPacket [0]
set upPacket [1]
set upPacket [2]
set upPacket [3]
set upPacket [4]
set upPacket [5]
set upPacket [6]
set upPacket [7]

0x80;
0x6;
0;
0x1;
0;

0;
0x12;
0;

/*
/*
/*
/*
/*
/*
/*
/*

BnRequst Type */

bRequest [0x6 == GET_DESCRI PTOR] */

wval ue */

wval ue [Descriptor Type: Ox1 == DEVICE] */
w ndex */

w ndex */

wLength [Size for the returned buffer] */
wLength */

» The following sample demonstrates how to send a setup paxkee control
pipe (a GET instruction; the device will return the inforieatrequested in the

pBuffer variable):

WU _Transf er Def aul t Pi pe(hDev, TRUE, 0, pBuffer, dwSize,
bytes transferred, &setupPacket[0], 10000);

* The following sample demonstrates how to send a setup paxkee control

pipe (a SET instruction):

WU _Transf er Def aul t Pi pe(hDev, FALSE, 0, NULL, O,
bytes_transferred, &setupPacket[0], 10000);

For further information regardingDU_Tr ansf er Def aul t Pi pe(), refer to
SectionA.3.9. For further information regardindDU_Tr ansf er (), refer to

SectionA.3.7.

Chapter 10

Dynamically Loading Your
Driver

10.1 Why Do You Need a Dynamically Loadable
Driver?

When adding a new driver, you may be required to reboot thesys order for it
to load your new driver into the system. WinDriver is a dyneatly loadable driver,
which enables your customers to start your application idiately after installing it,
without needing to reboot. You can dynamically load youveirivhether you have
created a user-mode or a kernel-mode driver.

NOTE

In order to successfully UNLOAD your driver, make sure thare no open handles
to the driver from WinDriver applications or from connectielices that were
registered with WinDriver using an INF file.

10.2 Windows 2000/XP/Server 2003 and 98/Me

10.2.1 Windows Driver Types

Windows drivers can be implemented as either of the follgvtypes:

 WDM (Windows Driver Model) drivers: Files with the extensi.syson
Win98/Me/2000/XP/Server 2003 (e gindrvr6.sys).

88

10.2 Windows 2000/XP/Server 2003 and 98/Me 89

WDM drivers are installed via the installation of an INF fikeg below).

* Non-WDM / Legacy drivers: These include drivers for nomdPand Play
Windows operating systems (Windows NT 4.0) and files withetkiension
.vxd on Windows 98/Me.

The WinDriver USB Windows kernel modulewindrvr6.sys — is a full WDM
drivers, which can be installed using thereg utility, as explained in the following
sections.

10.2.2 The WDREG Uitility

WinDriver provides a utility for dynamically loading and leading your driver,

which replaces the slower manual process using Windowsideevanager (which
can still be used for the device INF). Pafindows 2000/XP/Server 2003this utility

is provided in two formswdreg andwdreg_gui. Both utilities can be found under
the\WinDriver \util directory, can be run from the command line, and provide the
same functionality. The difference is thatlreg_guidisplays installation messages
graphically, whilewdreg displays them in console mode.

ForWindows 98/Methewdreg16utility is provided.

This section describes the usagenafreg/ wdreg_guiwdregl6on Windows
operating systems.

NOTE

The explanations and examples below refewtiveg, but for Windows
2000/XP/Server 20030u can replace any referencesatdreg with wdreg_gui.
For Windows 98/Me, replace the referenceswareg with wdreg16.

This section explains how to use tivelreg utility to install the WDMwindrvr6.sys
driver on Windows 98/Me/2000/XP/Server 2003, or to indfdl files that register
USB devices to work with this driver on Windows 2000/XP/Szr2003.

NOTE
On Windows 98/Meyou can only usevdreg16to install thewindrvr6.sys WDM

driver, by installingwindrvr6.inf but youcannotusewdregl16to install any other
INF files.

Usage:Thewdreg utility can be used in two ways as demonstrated here:

1.wdreg -inf <filenane> [-silent] [-1og <logfile>]
[install | uninstall | enable | disable]

2. wdreg -rescan <enunerator> [-silent] [-1o0g <l ogfile>]

10.2 Windows 2000/XP/Server 2003 and 98/Me 90

* OPTIONS
wdreg supports several basic OPTIONS from which you can choosge one
some, Or none:

-inf — The path of the INF file to be dynamically installed.

-rescan <enumerator> — Rescan enumerator (ROOT, USB, etc.) for
hardware changes. Only one enumerator can be specified.

-silent — Suppresses the display of messages of any kind. (Optional)
-log <logfile> — Logs all messages to the specified file. (Optional)

* ACTIONS
wdreg supports several basic ACTIONS:

install — Installs the INF file, copies the relevant files to their &digcations,
dynamically loads the driver specified in the INF file name é&glacing
the older version (if needed).

uninstall — Removes your driver from the registry so that it will notdoan
next boot.

enable — Enables your driver.

disable — Disables your driver, i.e. dynamically unloads it, but thizer will
reload after system boot.

NOTE

In order to successfully disable/uninstall WinDriver, youst first close
any open handles to tiveindrvr6.sys service. This includes closing
any open WinDriver applications and uninstalling (from Device
Manager or usingvdreg) any USB devices that are registered to work
with thewindrvr6.sys service (or otherwise removing such devices).
wdreg will display a relevant warning message if you attempt t@sto
thewindrvr6.sys when there are still open handles to the service, and
will enable you to select whether to close all open handlesRetry, or
Cancel and reboot the PC to complete the command’s operation

10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Fles

When using WinDriver, you develop a user-mode applicatiat tontrols and
accesses your hardware by using the generic dviidrvr6.sys (WinDriver’'s

kernel module). Therefore, you might want to dynamicalgd@nd unload the driver
windrvr6.sys — which you can do usingdreg.

10.3 Linux 91

In addition, in WDM-compatible operating systems, you aised to dynamically
load INF files for your Plug and Play devicegdreg enables you to do so
automatically on Windows 2000, XP and Server 2003.

This section includes example implementations that aredan the detailed
description ofwdreg contained in the previous section.

Example implementations:

* To startwindrvr6.sys on Windows 98/Me/2000/XP/Server 2003:
\>wdreg -inf [path to windrvr6.inf] install
which loads thevindrvr6.inf file and starts thevindrvr6.sys service.

 To load an INF file namedevice.inf, located under the:\tmp directory, on
Windows 2000/XP/Server 2003:
\>wdreg -inf c:\tnmp\device.inf install

To unload the driver/INF file, use the same commands, butlgireplaceinstall in
the samples above witminstall

10.3 Linux

e To dynamically load WinDriver on Linux, execute:
/ sbi n/ modpr obe wi ndrvr6

* To dynamically unload WinDriver, execute:
[sbin/rmmod w ndrvr6

« In addition, you can use thedreg script under Linux to install (load)
windrvr6.0/.ko.
Example usage: To load your driver, execute:
\> wdreg <driver nane.extension>

Chapter 11

Distributing Your Driver

Read this chapter in the final stages of driver developmentilliguide you in
preparing your driver for distribution

NOTE

For Windows 2000/XP/Server 2003all references tavdreg in this chapter can

be replaced withwdreg_gui, which offers the same functionality but displays GUI
messages instead of console-mode messages.

For Windows 98/Me, all references tavdreg should be replaced witivdreg16.

For more information regarding tivedreg utility, see ChaptetO.

11.1 Getting a Valid License for WinDriver

To purchase a WinDriver license, complete the order formnébunder
\WinDriver \docs\order.txt, and fax or email it to Jungo. Complete details are
included on the order form. Alternatively, you can order Dfiiver on-line. Visit
http:// ww:.j ungo. comfor more details.

In order to install the registered version of WinDriver andittivate driver code that
you have developed during the evaluation period on the dpwe¢ént machine, please
follow the installation instructions found in Sectidr? above.

92

http://www.jungo.com

11.2 Windows 98/Me and Windows 2000/XP/Server 2003 93

11.2 Windows 98/Me and Windows 2000/XP/Server
2003

Distributing the driver you created is a multi-step procéssst, create a distribution
package that includes all the files required for the indialteof the driver on the
target computer. Second, install the driver on the targething. This involves
installingwindrvré.sys andwindrvr6.inf , and installing the specific INF file for your
device. Finally, you need to install and execute the hardwantrol application that
you developed with WinDriver. These steps can be perfornsethuvdreg utility.

11.2.1 Preparing the Distribution Package

Your distribution package should include the followingdile
 Your hardware control application/DLL.

» windrvr6.sys (get this file from the WinDriver package under the
\WinDriver \redist directory).

e windrvr6.inf (get this file from the WinDriver package under the
\WinDriver \redist directory).

« wd_utils.dll (get this file from the WinDriver package under the
\WinDriver \redist directory).

* An INF file for your device.
You can generate this file with the DriverWizard, as expldimeSections.2

11.2.2 Installing Your Driver on the Target Computer

NOTE
The user must have administrative privileges on the tamyeiputer in order to
install your driver.

Follow the instructions below in the order specified to prtypmstall your driver on
the target computer:

11.2 Windows 98/Me and Windows 2000/XP/Server 2003 94

 Preliminary Steps:

— To avoid reboot, before attempting to install the driver malre that
there are no open handles to thimdrvr6.sys service. This includes
verifying that there are no open applications that use #vigice and
that there are no connected Plug-and-Play devices tha¢gistered to
work with windrvr6.sys —i.e., no INF files that point to this driver are
currently installed for any of the Plug-and-Play devicesrerted to the
PC, or the INF file is installed but the device is disabled.sThay be
relevant, for example, when upgrading a driver developél an earlier
version of WinDriver (version 6.0 and later only, since poexs versions
used a different module name).

You should therefore either disable or uninstall all Plugi-delay
devices that are registered to work with WinDriver from thevige
Manager Properties | Uninstall, Properties | Disableor Remove

—on Win98/Me), or otherwise disconnect the device(s) fromRC.

If you do not do this, attempts to install the new driver usiviyeg

will produce a message that instructs the user to eitheistadirall
devices currently registered to work with WinDriver, or oglbthe PC

in order to successfully execute the installation comm&rwindows
200Q if another INF file was previously installed for the deviadich
registered the device to work with the Plug-and-Play driuaed in earlier
versions of WinDriver remove any INF file(s) for the devicerfr the
%windir% \inf directory before installing the new INF file that you
created. This will prevent Windows from automatically dxireg and
installing an obsolete file. You can search the INF direcforghe
device’s vendor ID and device/product ID to locate the f)leisociated
with the device.

* Install WinDriver's kernel module:
1. Copywindrvr6.sys andwindrvr6.inf to the same directory.

2. Use the utilitywdreg/wdreg16to install WinDriver's kernel module on
the target computer.

On Windows 2000/XP/Server 2003 type from the command line:
\>wdreg -inf <path to windrvr6.inf> install

On Windows 98/Me type from the command line:

\> wdregl6 -inf <path to windrvr6.inf> install

For example, ifvindrvr6.inf andwindrvr6.sys are in thed:\MyDevice\
directory on the target computer, the command should be:

\> wdreg -inf d:\MyDevice\wi ndrvr6.inf install

You can find the executable wfdreg in the WinDriver package under the
\WinDriver \util directory. For a general description of this utility and its
usage, please refer to Chapié€r

11.2 Windows 98/Me and Windows 2000/XP/Server 2003 95

NOTE

wdreg is an interactive utility. If it fails, it will display a mesge
instructing the user how to overcome the problem. In somescte
user may be asked to reboot the computer.

CAUTION!

When distributing your driver, take care not to overwritesaver version
of windrvr6.sys with an older version of the file in Windows drivers
directory @owindir% \system32drivers). You should configure your
installation program (if you are using one) or your INF fileteat the
installer automatically compares the time stamp on thesditas and
does not overwrite a newer version with an older one.

« Install the INF file for your device (registering your Plug-and-Play device
with windrvr6.sys):

— Windows 2000/XP/Server 2003Use the utilitywdreg to automatically
load the INF file.

To automatically install your INF file oiVindows 2000/XP/Server 2003
and update Windows Device Manager, mdreg with thei nst al |
command:

\>wdreg -inf <path to your INF file> install

NOTE

OnWindows 200Q if another INF file was previously installed for the
device, which registered the device to work with the Plug-&tay
driver used in earlier versions of WinDriver remove any INE(8)

for the device from th&owindir% \inf directory before installing

the new INF file that you created. This will prevent Windowsr
automatically detecting and installing an obsolete fileu ¥an search
the INF directory for the device’s vendor ID and device/prodD to
locate the file(s) associated with the device.

— Windows 98/Me Install the INF file manually using Windowsdd New
Hardware Wizard or Upgrade Device Driver Wizard, as outlined in
detail in Sectiorl1.3below.

« Install the wd_utils DLL: If your hardware control application/DLL uses
thewd_utils DLL (as is the case for the sample and generated DriverWizard
WinDriver projects), copyvd_utils.dll to the target'®owindir% \system32
directory.

11.3 Creating an INF File 96

* Install your hardware control application/DLL : Copy your hardware control
application/DLL to the target and run it!

11.3 Creating an INF File

Device information (INF) files are text files that provideanfation used by the Plug
and Play mechanism in Windows 98/Me/2000/XP/Server 2003stall software

that supports a given hardware device. INF files are reqdiineldardware that
identifies itself, such as USB and PCI. An INF file includesw@tessary information
about a device and the files to be installed. When hardwarefaetarers introduce
new products, they must create INF files to explicitly defimetesources and files
required for each class of device.

In some cases, the INF file for your specific device is supgiiethe operating
system. In other cases, you will need to create an INF file doir glevice.
WinDriver’s DriverWizard can generate a specific INF file jamur device. The INF
file is used to notify the operating system that WinDriver rftamdles the selected
device.

For USB devices, you will not be able to access the device WithDriver (either
from the DriverWizard or from the code) without first registeg the device to

work with windrvr6.sys. This is done by installing an INF file for the device. The
DriverWizard will offer to automatically generate the INkeffor your device.

You can use the DriverWizard to generate the INF file on theeliigament machine
— as explained in Sectidh2 of the manual — and then install the INF file on any
machine to which you distribute the driver, as explainedhafollowing sections.

11.3.1 Why Should | Create an INF File?

* To enable the DriverWizard to access USB devices.

* To stop the Window&ound New Hardware Wizard from popping up after
each boot.

« To ensure that the operating system can assign physicedssis to a USB
device.

* To load the new driver created for the device.
An INF file must be created whenever developing a new drivePfog and
Play hardware that will be installed on a Plug and Play system

 To replace the existing driver with a new one.

11.3 Creating an INF File 97

11.3.2 How Do | Install an INF File When No Driver Exists?

NOTE

You must have administrative privileges in order to insaalllNF file on Windows
98, Me, 2000, XP and Server 2003.

* Windows 2000/XP/Server 2003
On Windows 2000/XP/Server 2003 you can usewviaeeg utility with the
i nstal |l command to automatically install the INF file:
\>wdreg -inf <path to the INF file> install
See Sectiori0.2.20f the manual for more information.
On the development PC, you can have the INF file automatigaballed
when selecting to generate the INF file with the DriverWizéylchecking
the Automatically Install the INF file option in the DriverWizard's INF
generation window (see Sectiéi).

Itis also possible to install the INF file manually on Windo2@00/XP/Server
2003, using either of the following methods:

— WindowsFound New Hardware Wizard: This wizard is activated when
the device is plugged in or, if the device was already corateathen
scanning for hardware changes from the Device Manager.

— WindowsAdd/Remove Hardware Wizard: Right-click the mouse on
My Computer, selectProperties, choose thélardware tab and click on
Hardware Wizard....

— WindowsUpgrade Device Driver Wizard: Select the device from the
Device Managerdevices list, seled®roperties, choose th®river tab
and click theUpdate Driver... button. On Windows XP and Windows
Server 2003 you can choose to upgrade the driver directiy fhe
Properties list.

In all the manual installation methods above you will needdmt Windows to
the location of the relevant INF file during the installation

We recommend using thedreg utility to install the INF file automatically,
instead of installing it manually.

* Windows 98/Me
On Windows 98/Meyou need to install the INF file for your USB device
manually, either via Windowadd New Hardware Wizard or Upgrade
Device Driver Wizard, as explained below:

— WindowsAdd New Hardware Wizard:

11.3 Creating an INF File 98

NOTE

This method can be used if no other driver is currently itetiflor the
device or if the user first uninstalls (removes) the curreived for the
device. Otherwise, Windowsew Hardware Found Wizard, which
activates theAdd New Hardware Wizard, will not appear for this
device.

1. To activate the WindowAdd New Hardware Wizard, attach
the hardware device to the computer or, if the device is direa
connected, scan for hardware chandgesffesh).

2. When WindowsAdd New Hardware Wizard appears, follow its
installation instructions. When asked, point to the lamatf the INF
file in your distribution package.

— WindowsUpgrade Device Driver Wizard:

1. Open Windows Device Manager: From tBgstem Properties
window (right-click onMy Computer and selecProperties) select
the Device Managertab.

2. Select your device from tHeevice Managerdevices list, choose the
Driver tab and click théJpdate Driver button.
To locate your device in the Device Manager, seldetv devices by
connectionand navigate t&tandard PC | PCl bus | PCI to USB
Universal Host Controller (or any other controller you are using
— OHCI/EHCI) | USB Root Hub | <your device>.

3. Follow the instructions of thelpgrade Device Driver Wizard that
opens. When asked, point to the location of the INF file in your
distribution package.

11.3.3 How Do | Replace an Existing Driver Using the INF File?

NOTE
You must have administrative privileges in order to replackiver on Windows 98,
Me, 2000, XP and Server 2003.

1. OnWindows 200qQ if you wish to upgrade the driver for USB devices
that have been registered to work with earlier versions afD¥iver,
we recommend that you first delete from Windows INF directory
(%windir% \inf) any previous INF files for the device, to prevent Windows
from installing an old INF file in place of the new file that yoreated. Look
for files containing your device’s vendor and device IDs aakbtk them.

11.3 Creating an INF File 99

2. Install your INF file:

e OnWindows 2000/XP/Server 200you can automatically install the
INF file:
You can use thevdreg utility with the i nst al | command to
automatically install the INF file on Windows 2000/XP/Sar26803:
\>wdreg -inf <path to INF file> install
See Sectiori0.2.20f the manual for more information.
On the development PC, you can have the INF file automatically
installed when selecting to generate the INF file with the/&nivizard,
by checking thedutomatically Install the INF file option in the
DriverWizard’s INF generation window (see Secti®i2).

It is also possible to install the INF file manually on Windows
2000/XP/Server 2003, using either of the following methods

— WindowsFound New Hardware Wizard: This wizard is activated
when the device is plugged in or, if the device was already
connected, when scanning for hardware changes from the®evi
Manager.

— WindowsAdd/Remove Hardware Wizard: Right-click onMy
Computer, selectProperties, choose thédardware tab and click
onHardware Wizard....

— WindowsUpgrade Device Driver Wizard: Select the device from
the Device Managerdevices list, seled®roperties, choose the
Driver tab and click th&Jpdate Driver... button. On Windows
XP and Windows Server 2003 you can choose to upgrade the drive
directly from the Properties list.

In the manual installation methods above you will need top@iindows
to the location of the relevant INF file during the instalbati If the
installation wizard offers to install an INF file other thdretone you
have generated, seldastall one of the other drivers and choose your
specific INF file from the list.

We recommend using thedreg utility to install the INF file
automatically, instead of installing it manually.

* OnWindows 98/Meyou need to install the INF file manually via
WindowsAdd New Hardware Wizard or Upgrade Device Driver
Wizard, as explained below:

— WindowsAdd New Hardware Wizard:

11.4 Windows CE 100

NOTE

This method can be used if no other driver is currently itestifior
the device or if the user first uninstalls (removes) the aurdeiver
for the device. Otherwise, the Windowsund New Hardware
Wizard, which activates thédd New Hardware Wizard, will not
appear for this device.

(&) To activate the Windowadd New Hardware Wizard, attach
the hardware device to the computer or, if the device is direa
connected, scan for hardware changes (Refresh).

(b) When WindowsAdd New Hardware Wizard appears, follow
its installation instructions. When asked, specify thatan of
the INF file in your distribution package.

— WindowsUpgrade Device Driver Wizard:

(a) Open Windows Device Manager: From Bystem Properties
window (right click onMy Computer and selecProperties)
select theDevice Managertab.

(b) Select your device from tHeevice Managerdevices list, open
it, choose thdriver tab and click théJpdate Driver button. To
locate your device in the Device Manager, seMetv devices
by connectionand navigate t&tandard PC | PCI bus | PCI to
USB Universal Host Controller (or any other controller you
are using — OHCI/EHCI) | USB Root Hub | <your device>

(c) Follow the instructions of thepgrade Device Driver Wizard
that opens. Locate the INF in your distribution package when
asked.

11.4 Windows CE

To distribute the driver you developed with WinDriver to aget Windows CE
platform, follow these steps:

1. Install WinDriver’s kernel DLL gindrvr6.dll) on the target computer:

e For WinDriver applications developed for target CE congpsit
Copywindrvr6.dil from the\WinDriver \redist\TARGET_CPU
directory to thewindows)\ directory on your target Windows CE
computer.

11.5 Linux 101

* When building new CE platforms:
Copywindrvr6.dil from the\WinDriver \redist\TARGET_CPU
directory to theo FLATRELEASEDIR% directory and then append
the contents of the supplied fikRROJECT_WD.BIB to the file
PROJECT.BIB. This will make the WinDriver kernel file a permanent
part of the Windows CE kern®&K.BIN . Then useMAKEIMG.EXE to
build the new Windows CE kern&IK.BIN . This process is similar to the
process of installing WinDriver CE with Platform Buildes described in
sectiond.2.2

2. Add WinDriver to the list of device drivers Windows CE |@agoh boot:

e For WinDriver applications developed for target CE congpsit
Modify the registry according to the entries documentedafile
PROJECT_WD.REG. This can be done using the Windows CE Pocket
Registry Editor on the hand-held CE computer or by using thméte
CE Registry Editor Tool supplied with the Windows CE Platio8DK.
You will need to have Windows CE Services installed on youndlgiws
Host System to use the Remote CE Registry Editor Tool.

* When building new CE platforms:
The required registry entries are made by appending theotmof
the filePROJECT_WD.REG to the Windows CE ETK configuration
file PROJECT.REG before building the Windows CE image using
MAKEIMG.EXE .

3. Install your hardware control application/DLL on theget.

If your hardware control application/DLL usesl_utils.dll (as is the case

for the sample and generated DriverWizard WinDriver prigg@lso copy
wd_utils.dll from theWinDriver \redist directory on the development PC to
the target'dVindows\ directory.

11.5 Linux

The Linux kernel is continuously under development and &kdlata structures are
subject to frequent changes. To support such a dynamicamweint environment
and still have kernel stability, the Linux kernel develapdecided that kernel
modules must be compiled with header files identical to thagewhich the kernel
itself was compiled. They enforce this by including a vensimimber in the kernel
header files that is checked against the version number eddotb the kernel. This
forces Linux driver developers to facilitate recompilatiaf their driver based on the
target system'’s kernel version.

11.5 Linux 102

11.5.1 WinDriver Kernel Module

Sincewindrvr6.0/.ko is a kernel module, it must be recompiled for every kernel
version on which it is loaded. To facilitate this, we suppig following components
to insulate the WinDriver kernel module from the Linux kerne

e windrvr_gcc_v2.a windrvr_gcc_v3.aandwindrvr_gcc_v3_regparm.a
compiled object code for the WinDriver kernel modulgndrvr_gcc_v2.a
is used for kernels compiled with gcc v2.x.x, amthdrvr_gcc_v3.ais used
for kernels compiled with gcc v3.x.xvindrvr_gcc_v3_regparm.ais used for
kernels compiled with gcc v3.x.x with tlregparm flag.

* linux_wrappers.c/h: wrapper library source code files that bind the WinDriver
kernel module to the Linux kernel.

« linux_common.h, windrvr.h , wd_ver.handwdusb_interface.h header files
required for building the WinDriver kernel module on thegetr.

» wdusb_linux.c: used by WinDriver to utilize the USB stack.

« configure: a configuration script that createsmakefile that compiles and
inserts the moduleiindrvr6.o/.ko into the kernel.

* makefile.in, wdreg andsetup_inst_dir. the configure script usesnakefile.in,
which creates a makefile. This makefile calls wdreg utility shell script and
setup_inst_dir, which we supply under thé/inDriver/util directory. All three
must be copied to the target.

You need to distribute these components along with youedseurce code or object
code.

11.5.2 User-Mode Hardware Control Application/Shared Obgcts

Copy the hardware control application/shared objectsytbatcreated with
WinDriver to the target.

If your hardware control application/shared objects usdilthwd_utils.so shared
object (as is the case for the sample and generated DrivardWinDriver projects),
copylibwd_utils.so from theWinDriver/lib directory on the development PC to
the target’s library directory@sr/lib/ — for 32-bit PowerPC or 32-bit x86 targets;
/user/lib64 — for 64-bit x86 targets).

Since the user-mode hardware control application/shasgtts do not have to be
matched against the kernel version number, you are freestalulite it as binary code
(if you wish to protect your source code from unauthorizepy@iog) or as source
code.

11.5 Linux 103

CAUTION!
If you select to distribute your source code, make sure yonaddistribute your

WinDriver license string, which is used in the code.

11.5.3 |Installation Script

We suggest that you supply an installation shell script ¢bates your driver
executables/DLL to the correct locations (perh&yss/local/bin) and then invokes
make or gmaketo build and install the WinDriver kernel module.

Chapter 12

WinDriver USB Device

This chapter describes the WinDriver USB Device tool-kitfevelopment of USB
device firmware for devices based on the Cypress EZ-USB FEXMAZ68013A,
Silicon Laboratories C8051F320 and Microchip PIC18F45%¥elopment boards.

NOTE
The WinDriver USB Device tool-kit is currently only suppedon Windows — see
sectionl2.2for details regarding the supported operating systems.

12.1 WinDriver USB Device Overview

The WinDriver USB Device tool-kit simplifies and facilitat¢he development of
firmware for USB devices based on tBgpress EZ-USB FX2LP CY7C68013A,
Silicon Laboratories C8051F320 and Microchip PIC18F455@evelopment
boards. These development boards will henceforth be exféorin this chapter as
"the target boards”.

This tool-kit complements the WinDriver USB driver devehognt tool-kit. Together
these tool-kits provide a complete USB device developmaitware solution — both
for the device firmware and the host driver development stage

USB device manufacturers need to support the UniversahSgus (USB)
specification (see Chapt&ifor an overview of USB). The USB interface is
implemented in two levels: The lower level of the USB protasamplemented via a
Serial Interface Engine (SIE). The higher layer of the peotds implemented via the
device firmware.

104

12.1 WinDriver USB Device Overview 105

Firmware consists of software programs and data that define the dgvice
configuration and are installed semi-permanently into ntgrasing various types of
programmable ROM chips, such as PROMS, EPROMs, EEPROM¢d|asfdchips.

WinDriver USB Device enables developers of devices basatietarget boards to
easily create firmware that defines the desired USB inteftadbeir target device,
using a Graphical User Interface (GUI).

WinDriver USB Device includefirmware libraries for the target boardslp.3.4.
These libraries contain functions for performing commorBUismware
functionality, thus releasing device manufacturers oftitme-consuming effort of
writing this firmware code themselves.

WinDriver USB Device features the graphi&iliverWizard utility from the
WinDriver USB driver development tool-kit, but with diffent functionality, which
enables you taefine your device’'s USB interfacd12.4.] —i.e. the device IDs
and device class, the number of interfaces, alternategsttind endpoints and their
attributes, etc. — using friendly GUI dialogs, and then pexttogenerate firmware
codefor the device, based on the information defined in the wigatidlogs [L2.4.3.
The generated DriverWizard firmware code includes conveils, which utilize
the WinDriver USB Device firmware library API to implementullf functional
device firmware.

AppendiceB, C andD provide a detailed description of the WinDriver USB Device
firmware libraries and generated DriverWizard API.

NOTE

The provided APIs and the wizard options for your target d@ae based on
Chapter 9 of the USB 2.0 Specification and on the target beap#cification, thus
freeing you of the need to study these specifications ydursel

After generating the firmware code, you can proceed to matlis needed, in
order to implement your desired firmware, using the WinDrly&B Device API
to simplify the development procesE.4.3. When the firmware implementation
is completed, you can simply build the firmwade[4.3.2 and download it to the
device [L2.4.3.3.

The hardware diagnostics feature of the WinDriver USB drievelopment
DriverWizard, as outlined in Chaptér is also available in the WinDriver USB
Device DriverWizard. Therefore, once you develop the firmaxand download it
to the device, you can use DriverWizarddebug the hardwareby viewing the
device’s configuration and testing the communication withdevice from the
wizard's graphical interfacelp.4.4.

If you are also a registered user of the WinDriver USB driverelopment tool-Kkit,
when the device firmware development and the hardware detmiggcompleted,
you can use the WinDriver USB tool-kit tikevelop a driverfor your device 12.4.5.

12.2 System and Hardware Requirements 106
12.2 System and Hardware Requirements

e Operating System: Windows 98/Me/2000/XP/Server 2003.
To compile and build the firmware code you need Windows 20B80&¢rver
2003.

e CPU architecture: Any x86 processotr.

» The following development tools must be installed on yoewelopment PC in
order to build the sample and generated firmware code:

— For theCypress EZ-USB FX2LP CY7C68013Adevelopment board:
The Cypress EZ-USB FX2LP development kit.

— For theMicrochip PIC18F4550development board:
The Microchip mcc18 compiler.

— For theCypress EZ-USB FX2LP CY7C68013AandSilicon
Laboratories C8051F320development boards:
The Keil Cx51 development tools for 8x51, version 6.0 or abov

* The sample and generated firmware code also support tloevfol optional
development environments:

— For theCypress EZ-USB FX2LP CY7C68013AandSilicon
Laboratories C8051F32Moards:
The Keil pVision IDE, version 2.0 or above.

— For theMicrochip PIC18F4550development board:
The Microchip MPLAB IDE, version 7.20.

— For theSilicon Laboratories C8051F32@evelopment board:
The Silicon Laboratories IDE, version 1.9.

12.3 WinDriver Device Firmware (WDF) Directory
Overview

This section describes the directory structure and fileb@ftinDriver \wdf
directory.

Thewdf\ directory contains the following sub-directories:

« cypress, directory: Contains files for devices based on the Cyprest/ER
FX2LP CY7C68013A development board.

» microchip\: This directory contains files for devices based on the Mibio
PIC18F4550 development board.

12.3 WinDriver Device Firmware (WDF) Directory Overview 107

« silabs\: This directory contains files for devices based on the &ilic
Laboratories C8051F320 development board.

12.3.1 The cypress Directory

TheWinDriver \wdf\cypress, directory contains the following directories:

» FX2LP\ directory: Contains files for devices based on the FX2LP
CY7C68013A development board (henceforth in this sectitthe-FX2LP
board”).

TheFX2LP\ directory contains the following sub-directories and files
* include\ directory:

— wdf_cypress_lib.h Header file that contains firmware library types,
general definitions and function prototypes for devicegdam the
FX2LP board. This file provides the interface of the boardisfiare
library (wdf_cypress_fx2lp_eval.lib- for evaluation users; For registered
users the library’s source code is created as part of theeDBWiizard
device firmware code generation — see explanation regatigkng
WinDriver USB device firmware libraries in sectid2.3.9.

— wdf_cypress.h Header file that contains the required firmware libraries
definitions and #include statements for utilizing the CygsrEX2LP API.

— periph.h: Header file that contains function prototypes for supporti
USB peripheral device functionality for devices based aRX2LP
board. The functions’ implementation is dependant on tleeifip
configuration defined for the device. Theriph.c source file
that contains the implementation for your device is createthe
DriverWizard when generating device firmware code, basettietySB
device configuration that you define in the wizard see thergegm of
the generated DriverWizard file$2.4.3.1.

* lib\ directory:
— wdf_cypress_fx2lp_eval.lib Evaluation firmware library for the FX2LP
board (see explanation belowZ.3.4).
» samples, directory: Device firmware samples for the FX2LP board.

— loopbackK\ directory: Loopback sample: The sample implements a
loopback, which fills the OUT endpoint’s FIFO buffer with ttata that is
read from the IN endpoint’s FIFO buffer.

= periph.c: Source file that contains sample implementation of the
functions declared in theeriph.h header file (discussed above.)

12.3 WinDriver Device Firmware (WDF) Directory Overview 108

= wdf_dscr.a51 Assembly file that contains sample descriptor data
tables definitions for the FX2LP board.

= build.bat: A utility for building the sample firmware code.
Note: The build utility uses the firmware evaluation library
(wdf_cypress_fx2lp_eval.lib.

» loopback_eval.hex Sample loopback firmware for the FX2LP
board, created by building the sample code withkibigd.bat
utility. Note: The firmware uses the evaluation firmware library
(wdf_cypress_fx2lp_eval.lib.

12.3.2 The microchip Directory

TheWinDriver \wdf\microchip\ directory contains the following directories:

» 18F4550, directory: Contains files for devices based on the PIC188455
development board.

The18F4550, directory contains the following sub-directories and files
* include\ directory:

— wdf_microchip_lib.h: Header file that contains firmware library types,
general definitions and function prototypes for devicegbam the
PIC18F4550 board. This file provides the interface of thadiea
firmware library (vdf_microchip_18f4550_eval.lib- for evaluation
users; For registered users the library’s source code édextes part
of the DriverWizard device firmware code generation — sedaggtion
regarding the WinDriver USB device firmware libraries ints@t 12.3.9.

— wdf_microchip.h: Header file that contains general firmware library
definitions for the PIC18F4550 board. This header includlesttaer
required header files for the PIC18F4550 board, therefoenwh
developing firmware for this board you need only include tid@ader
from your source files.

— types.h Header file that defines data types for the PIC18F4550 board.

— periph.h: Header file that contains function prototypes for suppgrti
USB peripheral device functionality for devices based aRIC18F4550
board. The functions’ implementation is dependant on tleei§ip
configuration defined for the device. Theriph.c source file
that contains the implementation for your device is createthe
DriverWizard when generating device firmware code, basethetSB
device configuration that you define in the wizard see thergssm of
the generated DriverWizard file$2.4.3.1.

12.3 WinDriver Device Firmware (WDF) Directory Overview 109

* lib\ directory:
— wdf_microchip_18f4550_eval.lib Evaluation firmware library for the
PIC18F4550 board (see explanation belde.3.4).
» samples, directory: Device firmware samples for the PIC18F4550 board

— loopbacK\ directory: Loopback sample: The sample implements a
loopback, which fills the OUT endpoint’s FIFO buffer with thata that is
read from the IN endpoint’s FIFO buffer.

= periph.c: C source file that contains sample implementation of the
functions declared in theeriph.h header file (discussed above.)

» wdf_dscr.h: Header file that contains sample device descriptor
information for the PIC18F4550 board.

» wdf_dscr.c. Source file that contains definition of device descriptor
data structures for the PIC18F4550 board.

* build.bat: A utility for building the sample firmware code.
Note: The build utility uses the firmware evaluation library
(wdf_microchip_18f4550_eval.lip.

* loopback_eval.hex Sample loopback firmware for the PIC18F4550
board, created by building the sample code withkibiédd.bat
utility. Note: The firmware uses the evaluation firmware library
(wdf_microchip_18f4550_eval.lip.

» loopback_eval.lkr: A linker file for the loopback sample.

* loopback_eval.mcp Project file for building the loopback sample
from the Microchip MPLAB IDE.

12.3.3 The silabs Directory

TheWinDriver \wdf\silabs\ directory contains the following directories:

» F320\ directory: Contains files for devices based on the C8051F320
development board.

TheF320\ directory contains the following sub-directories and files
* include\ directory:

— wdf_silabs_lib.h Header file that contains firmware library types
and function prototypes for devices based on the C8051F32fb
This file provides the interface of the board’s firmware lifyra
(wdf_silabs_f320_eval.lib- for evaluation users; For registered users

12.3 WinDriver Device Firmware (WDF) Directory Overview 110

the library’s source code is created as part of the Driveafdzlevice
firmware code generation — see explanation regarding th®kvier USB
device firmware libraries in sectid®.3.4.

— ¢8051f320.hHeader file that contains general firmware library
definitions for the C8051F320 board.

— ¢8051f320regs.hHeader file that contains register/bits definitions for the
C8051F320 board.

— periph.h: Header file that contains function prototypes for supporti
USB peripheral device functionality for devices based en@8051F320
board. The functions’ implementation is dependant on tleei§ip
configuration defined for the device. Theriph.c source file that
contains the implementation for your device is created bhyedwizard
when generating device firmware code, based on the USB device
configuration that you define in the wizard see the descripifdhe
generated DriverWizard file42.4.3.1.

* lib\ directory:

— wdf_silabs_f320_eval.libEvaluation firmware library for the
C8051F320 board (see explanation beld2.B.4).

» samples, directory: Device firmware samples for the C8051F320 board.

— loopbackK\ directory: Loopback sample: The sample implements a
loopback, which fills the OUT endpoint’s FIFO buffer with thata that is
read from the IN endpoint’s FIFO buffer.

= periph.c: C source file that contains sample implementation of the
functions declared in theeriph.h header file (discussed above.)

» wdf_dscr.h: Header file that contains sample device descriptor
information for the C8051F320 board.

» wdf_dscr.c. Source file that contains definition of device descriptor
data structures for the C8051F320 board.

* build.bat: A utility for building the sample firmware code.
Note: The build utility uses the firmware evaluation library
(wdf_silabs_f320_eval.lib.

* loopback_eval.hex Sample loopback firmware for the C8051F320
board, created by building the sample code withkibigd.bat
utility. Note: The firmware uses the evaluation firmware library
(wdf_silabs_f320_eval.lib.

12.3 WinDriver Device Firmware (WDF) Directory Overview 111

12.3.4 The WinDriver USB Device Firmware Libraries

When generating firmware code with DriverWizard using thistered version of the
WinDriver USB Device tool-kit, the generated code inclutidisDriver USB Device
firmware library source files, which contain API for perforgicommon USB
firmware functionality (see the description of the genatdiles in sectiorl2.4.3.1)
These source files are not part of the evaluation versioneotiatbl-kit. In order to
enable an evaluation of WinDriver USB Device, this toolikitludes pre-compiled
evaluation libraries, which are utilized by the device firamessamples and the
generated DriverWizard evaluation firmware code.

The evaluation libraries provide the same functionalityhesregistered library files,
subject to the following single limitation: they only enablou to perform a pre-set
number of transfers (25,000). When this amount is exceduelibrary will cease to
work.

12.3.5 Building the Sample Code

To build the samples from th&/inDriver \wdf\cypressFX2LP\samples,,
WinDriver \wdf\microchip18F4550 samples or

WinDriver \wdf\silabsF320 samples directory, use théuild.bat utility for the
selected sample (e.g.

WinDriver \wdf\cypressFX2LP\samples loopback\build.bat):

* For theCypress EZ-USB FX2LP CY7C68013AandSilicon Laboratories
C8051F32Mmoards: verify that th&El L variable in thebuild.bat file is set
to point to the location of your Keil development tools di@y. The default
Keil directory used in théuild.bat files isC:\Keil. If you installed Keil in
a different location, modify the following line in thauild.bat file in order to
point to the correct location:

set KEI L=C:\Keil

For example, if you installed Keil und&r:\MyTools\Keil, modify the line to:
set KEIL=D:\ MyTool s\ Kei |

 For theCypress EZ-USB FX2LP CY7C68013Asamples, verify that the
CYPRESS variable in thebuild.bat file is set to point to the location of your
Cypress EZ-USB development kit. The default directory usdte build.bat
file is C:\Cypress If you installed the Cypress EZ-USB development kit in
a different location, modify the following line in thauild.bat file in order to
point to the correct location:

12.4 WinDriver USB Device Development Process 112

set CYPRESS=C.\ Cypress

For example, if you installed the Cypress EZ-USB develogrkigninder
D:\Cypress modify the line to:

set CYPRESS=D:\ Cypress

 For theMicrochip PIC18F4550samples, verify that theCC variable in the
build.bat file is set to point to the location of your mcc18 directoryeTh
default directory used in thieuild.bat file is C:\mcc18 If you installed
the mcc18 compiler in a different location, modify the foliog line in the
build.bat file in order to point to the correct location:

set MCC=C:\ntcl8

For example, if you installed the mcc18 compiler unBetmicrochip\mcc18
modify the line to:

set CYPRESS=D:\mi crochi p\ntcl8

* Run thebuild.bat utility to build the sample firmware.

12.4 WinDriver USB Device Development Process

Use WinDriver USB Device to develop firmware for your USB amv{based on any
of the target boards) by following the steps below:

12.4.1 Define the Device USB Interface
Use the WinDriver USB Device DriverWizard utility to defineyr device's USB
interface:
1. Run DriverWizard, using either of the following methods:
* Click Start | Programs | WinDriver | DriverWizard
» Double-click the DriverWizard icon on your desktop

* RunWinDriver \wizard\wdwizard.exe either by double-clicking the
executable file or by running it from a command-line prompt.

12.4 WinDriver USB Device Development Process 113

2. Check theNew device firmware projectoption in the wizard'<Choose Your
Project dialog and clickNext ». Alternatively, you can also select to create a
new device firmware project from DriverWizardsle menu or by clicking the
firmware project icon in the wizard’s toolbar.

Choose Your Projeck

D ™ Mew device driver project
f* Mew device firmware project

~a
B ™ Open an existing project

Mest > Cancel

Figure 12.1: Create Device Firmware Project

3. Select your target development board from@®ose Your Development
Board dialog and clickOK.

Choose Your Development Board

¥ Cyprezz FXZLP [Cy7CES01 3]
" Cypress FX2 [CYTCEROT3)
" Microchip PIC18F4550

i~ Silicon Laboratoies [CROSTF320]

Ok, Cancel

Figure 12.2: Choose Your Development Board

12.4 WinDriver USB Device Development Process

114

4. In theEdit Device Descriptordialog, define the basic device descriptor

information for your target device —i.e. the vendor and deVDs,

manufacturer and device descriptions, device class andlasb, etc.

@Edit Device Descriptor

2=

— Device Properties

YWendoar [d; 0= I 4b4

Product 1d; 0= I BE13

bl anufacturer

- . I:
Drezcriphion: I YRIEss

Product |F2LP CY7CEB0134
Drescriptiorn;

Device

I Clazz infarmation at interface lesvel
Clazs:

=

Device

S ub-Class: I Clagz information at interface level

=l

Device

Pratocal: L I

Endpoint 0

b aw Packet I B4
Size:

[

Pawwer I
requirement [2ma):

[T Self Powered

[T Enable Remate
W akeup

Ok Cancel

Figure 12.3: Edit Device Descriptor

12.4 WinDriver USB Device Development Process

115

5. In theConfigure Your Devicedialog, proceed to define the desired USB
configuration for your device.

Configure Your Device

— Device Descriptor

Yendor Id:
0x04b4

Product 1d:
0x8613

Manufacturer:

Cypress

Edit Device
Descriptor

— Interface Setting

Select Interface: I Vl Add Interface

Edit [nterface I

Delete [nterface I

Pipe Mame

Fipe Type

I Pipe Information

— Alterate Setting
Add Altermate Setting |

Delete Alternate Setting |

— Endpoints Setting

Add Endpaint |
Edit Endpoint |
[elete Endpaint |

Mest »»

Cancel

Figure 12.4: Configure Your Device

The dialog enables you to add device interfaces, add ateesedtings for each
interface, and add the required endpoints for each alessiting.

When adding components, the wizard allows you define theaetattributes
for each component (such as the interface’s class and agb-ot the
endpoint’s address, transfer type, maximum packet sizg, dhe wizard
further assists you by only providing the relevant configjoraoptions for your
device and by warning you if there is a potential error in yooamfiguration
definitions.

More information on how to configure the endpoints on@ypress EZ-USB
FX2LP CY7C68013A development board can be found at the end of this
section [2.4.1.1.

12.4 WinDriver USB Device Development Process

fSiDefine Interface

2 x|

— Interface 0 Properties

Interface

Class I Yendor Specific

Interface

Sub-Class: I Yendor Specific

-

L«

Interface

Frotocol Dx I

Interface I
Dezcription

0K I Cancel

116

— Endpoint Properties
Address: I 1 j
Direction: I Dl
Tupe: [Buk |
Iédigz:F'acket I =F
Miro Frame | -
Interal: I o j
Eﬁlfjf::ring I Mo buffering j

Ok I Cancel |

Figure 12.5: Define Interfaces and Endpoints

NOTE

Definition of multiple interfaces is not currently suppatter the Silicon

Laboratories C8051F320 development board.

For the other target boards, if you select to define more tharirderface,
DriverWizard will generate firmware code forramposite device The
wizard will warn you about this when you select to add a sednteiface.

You can also delete any component that you have added ohedit t
configuration information, at any time, from the device cgufation dialog.

6. You can select to save your DriverWizard device firmwangqat at any stage,
either from theFile menu or using the relevant icon in the wizard’s toolbar.
This will enable you to open the savegx.wdp device firmware project from
DriverWizard at a later time and resume where you left off.

When you have finished defining the device’s USB interfacec@ed to generate
device firmware code, based on your DriverWizard definiti@ssoutlined in the

following section [12.4.3.

12.4 WinDriver USB Device Development Process 117

12.4.1.1 EZ-USB Endpoint Buffers Configuration

This section contains a quote from section 1.18 of the EZ-T&Bnical Reference
Manual EZ-USB_TRM.pdf) regarding EZ-USB endpoint buffers configuration.
This information can be useful when using DriverWizard thiraethe endpoint
configuration for devices based on t@gpress EZ-USB FX2LP CY7C68013A
development board.

For more information, refer to the EZ-USB Technical Manuwtjch is

available under the€ypress\USB\Doc\FX2LP\ directory or on-line at:
http://ww. kei | . conf dd/ docs/ dat asht s/ cypress/ fx2_trm pdf.

The USB Specification defines an endpoint as a source or sit&taf Since USB is
a serial bus, a device endpoint is actually a FIFO which setiplly empties or fills
with USB data bytes. The host selects a device endpoint lirsga 4-bit address
and a direction bit. Therefore, USB can uniquely addressi@peints, INO through
IN15 and OUTO through OUT15.

From the EZ-USB's point of view, an endpoint is a buffer fullbytes received
or held for transmission over the bus. The EZ-USB reads tatstfdom an OUT
endpoint buffer, and writes data for transmission to the tean IN endpoint buffer.

EZ-USB contains three 64-byte endpoint buffers, plus 4 KBudfer space that can
be configured 12 ways, as indicated in Figure 1-16. The thideley6e buffers are
common to all configurations.

o

1024

o [
=
ra ffra

1024

wm
=
]

1024

1024

=
m
IIEiII 3
. -7

© I----IL---JIE!

-

Figure 12.6: EZ-USB Endpoint Buffers

http://www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf

12.4 WinDriver USB Device Development Process

118

12.4.2 Generate Device Firmware Code

Generate device firmware code from thenfigure Your Devicedialog, using either

of the following methods:

« Click theNext » button or use the Alt+N short-cut key.

» Select theGenerate Codetoolbar icon.

e From theBuild menu select th&enerate Codeoption.

The wizard'sSelect Code Generation Optionslialog will be displayed:

ﬁﬁelect Code Generation Options

Generate project files far:

£

[T Keil uVision IDE

[Gererate host side driver code

Your Feil base directany:

| Conleil

Your Cypress USE directany:
Ic:\Eypress\USB

IDE to lreeoke:

Browsze

I Mare

_ owse|
Browse |
[

Canicel |

Cypress

@5elect Code Generation Options

Generate project files for:

ﬁﬁelect Code Generation Options

Generate project files for:

™ Silicon Labratories IDE
[~ Keil Wision IDE

[Generate host side diiver code

Your Keil baze directany:

IC:'\KeiI Browse |
IDE ta lreeoke:
I MNone j

Cancel |

Silicon Laboratories

x|

™ Microchip MPLAE IDE

" Generate host side driver code

our moc 3 base directony:

I C:hmcc18

Browsze |

Cahicel |

Microchip

Figure 12.7: Firmware Code Generation

12.4 WinDriver USB Device Development Process 119

Verify that all directory paths in the device firmware codagetion dialog point to
the correct locations on your PC:

» For theCypress EZ-USB FX2LP CY7C68013AandSilicon Laboratories
C8051F32Moards,Your Keil base directory should point to the installation
directory of the Keil Cx51 development tools for 8x51.

e For theCypress EZ-USB FX2LP CY7C68013Ao0ard,Your Cypress
USB directory should point to the location of the Cypress EZ-USB FX2LP
development kiCypress\USB directory.

* For theMicrochip PIC18F4550board,mcc18 base directoryshould point to
the installation directory of the Microchip MPLAB IDE.

You can select to generate a spegifioject file for any of the supported
development environments for your boal@ [by checking the relevant check-box
in the Select Code Generation Optionslialog.

When selecting to generate a project file for Kedl Vision IDE or Silicon
Laboratories IDE, the wizard will automatically change thBE to Invoke to your
selected IDE. If you do not change the IDE to invoke, the wdzaill attempt to
invoke this IDE after generating the code.

The Generate host side driver codeption, shown in the dialog screen shots above,
is available during the evaluation of the tool-kit and fagistered users of the
WinDriver USB driver development tool-kit. When this optits selected, in addition
to the device firmware code the wizard will also generate &tké/NinDriver USB
device driver application for your USB device (as definechimwizard). — see
Chapter5 and sectiori2.4.5for details regarding the DriverWizard device driver
code generation.

12.4.3 Develop the Device Firmware

After you have generated the firmware code with the wizard,a@ free to modify
it, as needed, in order to implement your desired firmwaretfanality, using

the library and generated WinDriver USB Device firmware Adfdcilitate your
development efforts.

The API of the USB firmware libraries and generated code isrite=d in detail in
AppendicesB, C andD.

12.4 WinDriver USB Device Development Process 120

NOTE
When modifying the WinDriver library and generated devicafvare code, make
sure that your code complies with your development boarafd\ware specification:

» For theCypress EZ-USB FX2LP CY7C68013Adevelopment board:
EZ-USB_TRM.pdf — see specifically section 15Ehdpoint Configuration
This document
is available under th€ypress\USB\Doc\FX2LP\ directory or on-line at:
http://ww. kei | . com dd/ docs/ dat asht s/ cypress/ fx2_trm pdf .

» For theMicrochip PIC18F4550development board89632b.pdf- see
specifically section 17.8SB RAMand 17.4Buffer Descriptors and
the Buffer Descriptors Tablélhis document is available on-line at:
http://wal. m crochi p. com downl oads/ en/ Devi ceDoc/ 39632b. pdf .

* For theSilicon Laboratories C8051F32@levelopment board:
C8051F32xRevl_1.pdf see specifically sections 1550
Managemenénd 15.11Configuring Endpoints 1-3This document
is available under th8ilabs\MCU \ Documentation\Datasheet§
directory (if you installed the Silicon Laboratories IDE)an-line at:
http: //wwv. kei | . com dd/ docs/ dat asht s/ si | abs/ c8051f 32x. pdf .

12.4.3.1 The Generated DriverWizard USB Device Firmware Aés

When generating device firmware code, DriverWizard createsx_FW directory,
which contains the following files:

« periph.c: C source file, which includes implementation of functioos f
supporting USB peripheral device functionality for yourae. The functions’
implementation is derived from the specific device confitjarethat you
defined with DriverWizard.

Theperiph.h header file,

which declares the prototypes of the functions implemeirteie periph.c
source file, is found in th&/inDriver \<device_dir>\include\ directory, e.g.
WinDriver \wdf\cypressFX2LP\include\ — see sectiod2.3

 Device descriptor information, which utilizes the deviascriptor information
that you defined with DriverWizard:

— For theCypress EZ-USB FX2LP CY7C68013Adevelopment board:
wdf_dscr.a51 Assembly file.

http://www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39632b.pdf
http://www.keil.com/dd/docs/datashts/silabs/c8051f32x.pdf

12.4 WinDriver USB Device Development Process 121

— For theMicrochip PIC18F4550andSilicon Laboratories C8051F320
development boards:
wdf_desc.handwdf_desc.c C files.

o xxx.lkr: A linker file for the Microchip PIC18F4550 board.
* build.bat: A command-line utility for building the firmware code.

« xxx.Uv2/mcp/wsp Project file for building the code from your selected IDE
(Keil pVision / Microchip MPLAB / Silicon Laboratories), providgabu
selected the relevant IDE from tiszlect Code Generation Optionslialog.

The following files contain the source code of the WinDrive&SBJDevice firmware
library. These files are generated only when usingéggstered versionof the
WinDriver USB Device tool-kit:

e main.c: C source file, which contains the implementation of the fiarsts
main entry point. For devices based on the Silicon Laboiegd8051F320
development board, the file also implements the required lo&Brupt service
routine USB_| SR()).

« wdf_cypress_lib.c— for Cypress EZ-USB FX2LP CY7C68013A/
wdf_silabs_lib.c — for Silicon Laboratories C8051F320:
C source file, which contains the implementation of the Win@rUSB Device
firmware library functions for the target development bard

12.4.3.2 Build the Generated DriverWizard Firmware

To build the generated firmware code for your device, use attyedfollowing
alternative methods:

« Run the generatdalild.bat utility from a command-line prompt.

« If you selected to generate a project file for on of the suggabiDESs (Keil
pVision IDE — for the Cypress and Silicon Laboratories boaMisrochip
MPLAB IDE — for Microchip; Silicon Laboratories IDE - for Sdon
Laboratories), you can open the generated project file froun gelected IDE
and simply build it.

The build output is amxx.hexfirmware file (wherexxx is the name you selected for
your firmware project.)

12.4 WinDriver USB Device Development Process 122

NOTE

The generateduild.bat and specific-IDE project files are different for the
registered and for the evaluation version of WinDriver US&/[Be and produce a
different output.

Theevaluation versionof these files uses the evaluation firmware libraries

and the output firmware will be limited to a maximum of 25,0@0sfers (see

above 12.3.4.)

Theregistered versionuses the generated library source files and is not subject to
the evaluation limitations.

After registering your WinDriver USB Device tool-kit, opé#me DriverWizard

device firmware project file that you created during the eatadun period xxx.wdp)

and re-generate the firmware code with the wizard in ordereate new registered
versions of theévuild.bat and project files. Then use these files to build a registered,
full-featured, firmwarexxx.hex), and download the firmware to the device.

12.4.3.3 Download the Firmware to the Device

After building the firmware, download it to the hardware wsihe board vendor’s
firmware download tools.

NOTE: For theCypress EZ-USB FX2LP CY7C68013AandMicrochip
PIC18F4550boards, if you also have a valid license for the WinDriver US®er
development tool-kit, or if you are using the evaluatiorsien of the WinDriver
USB Device tool-kit (which also includes an evaluation & iNinDriver USB
driver development kit), you can download firmware to yowide using the kit's
sample firmware download application (Cypress: daenload_sample.exn
theWinDriver \cypress, firmware_sample\WIN32\ directory; Microchip: see
bootloader _demo.exén the

WinDriver \microchip\pic18f4550,bootloader_sample WIN32\ directory).

12.4 WinDriver USB Device Development Process 123

12.4.4 Diagnose and Debug Your Hardware

Once you have downloaded the firmware to the device, you aathesDriverWizard
utility to debug the firmware, as outlined in sectidr2 (refer to the USB explanations
in this Chapter. NOTE: The device driver code generation option described in
section5.2is not part of the WinDriver USB Device license.

12.4.5 Develop a USB Device Driver

When the device developmentis completed, if you have alschaised a license for
the WinDriver USB driver development tool-kit, or if you ansing the evaluation
version of WinDriver, you can proceed to use WinDriver toelep a driver for your
device, as explained in Chaptr

As indicated in sectiod2.4.2above, if you have a compatible license you will also
be given the option to generate a skeletal WinDriver USB dedriver application
from DriverWizard’s firmware generation dialog.

Appendix A

WinDriver USB PC Host API
Reference

A.1 WinDriver USB (WDU) Library Overview

This section provides a general overview of WinDriver's USBrary (WDU),
including:

* An outline of theWbU_xxx API calling sequence — see sectignl.]

« Instructions for upgrading code developed with the presi@/inDriver USB
API, used in version 5.22 and earlier, to use the improAlkd xxx API — see
sectionA.1.2
If you do not need to upgrade USB driver code developed witblder version
of WinDriver, simply skip this section.

The WDU library’s interface is found in th&VinDriver/include/wdu_lib.h and
/WinDriver/include/windrvr.h header files, which should be included from any
source file that calls the WDU APIwdu_lib.h already includesvindrvr.h).

124

A.1 WinDriver USB (WDU) Library Overview 125

A.1.1 Calling Sequence for WinDriver USB

The WinDriverWDU_xxx USB API is designed to support event-driven transfers
between your user-mode USB application and USB devices.ilm contrast to
earlier versions, in which USB devices were initialized aodtrolled using a specific
sequence of function calls.

You can implement the three user callback functions spédifi¢he next
section:WDU_ATTACH_CALLBACK [A.2.1], WbU_DETACH CALLBACK [A.2.2] and
WDU_POWER _CHANGE_CALLBACK [A.2.3] (at the very leastDU_ATTACH CALLBACK).
These functions are used to notify your application wherlevamt system event
occurs, such as the attaching or detaching of a USB devicehdsd performance,
minimal processing should be done in these functions.

Your application call$\DU | ni t () [A.3.1] and provides the criteria according to
which the system identifies a device as relevant or irrelevime WU | ni t ()
function must also pass pointers to the user callback fonsti

Your application then simply waits to receive a notificatafran event. Upon receipt
of such a notification, processing continues. Your apgbcatay make use of any
functions defined in the high- or low-level APIs below. Thglnilevel functions,
provided for your convenience, make use of the low-levetfioms, which in turn use
IOCTLs to enable communication between the WinDriver kenmedule and your
user-mode application.

When exiting, your application calldDU_Uni nit () [A.3.6] to stop listening to
devices matching the given criteria and to un-register thication callbacks for
these devices.

The following figure depicts the calling sequence descrédealre. Each vertical line
represents a function or process. Each horizontal arrovesepts a signal or request,
drawn from the initiator to the recipient. Time progressesttop to bottom.

A.1 WinDriver USB (WDU) Library Overview

126

time main{) detach(} attach()
WDU_Init)
Notify the user of currgntly attached devices
Signal Aftach
_______________ attacho? |
Notify the user of the attach of the new device
Signal Attach
,,,,,,,,,,,,,,, attacho'
WDU_Setinterface()?
WDU_Transer()?
[main() may |nitiate other requests to WijnDriver] 2
Notify the user of the
detached device
Signal Detach
device_detach()
WDU_Ininit(y
L J

1 If the WD_ACKNOWLEDGE flag was set in the call to WDU_Init(), the attach()

callback should return TRUE to accept control of the device or FALSE otherwise.

2 Only possible if the attach() callback returned TRUE.

Figure A.1: WinDriver USB Calling Sequence

WinDriver

USB Device
Aftach

USB Device
Detach

A.1 WinDriver USB (WDU) Library Overview 127

The following piece of meta-code can serve as a frameworkdar user-mode
application’s code:

attach()
{

if this is ny device
/*
Set the desired alternate setting ;
Signal main() about the attachnment of this device
*|

return TRUE;
el se
return FALSE;

}
detach()
{
éiénal mai n() about the detachnent of this device
}
mai n()
{
WU Init(...);
while (...)
{

/* wait for new devices */

[* issue transfers */

VIDU_Uni ni t ()

A.1 WinDriver USB (WDU) Library Overview 128

A.1.2 Upgrading from the WD_xxx USB API to the WDU_xxx
API

The WinDriverWDU_xxx USB API, provided beginning with version 6.00, is designed
to support event-driven transfers between your user-m@&i &pplication and USB
devices. This is in contrast to earlier versions, in whictBugvices were initialized
and controlled using a specific sequence of function calls.

As a result of this change, you will need to modify your USB lgggtions that were
designed to interface with earlier versions of WinDriveetwsure that they will work
with WinDriver v6.X on all supported platforms and not only Microsoft Windows.
You will have to reorganize your application’s code so thabinforms with the
framework illustrated by the piece of meta-code provideSéctionA.1.1.

In addition, the functions that collectively define the USBIAave been changed.
The new functions, described in the next few sections, piean improved interface
between user-mode USB applications and the WinDriver kenoelule. Note that
the new functions receive their parameters directly, @ntiie old functions, which
received their parameters using a structure.

The table below lists the legacy functions in the left coluand indicates in the right
column which function or functions replace(s) each of thgatgy functions. Use this
table to quickly determine which new functions to use in yoew code.

Problem | Solution
High Level API
This function. .. has been replaced by. ..
WD _pen() WU I nit() [A.3.9]
VD Version()
VWD UsbScanDevi ce()
WD _UshDevi ceRegi ster () WDU_Set I nterface() [A.3.2

VWD UshGet Confi guration() WDU_Get Devi cel nfo() [A.3.4
WD _UshDevi ceUnregi ster () WU _Uninit () [A.3.6
Low Level API
This function. .. has been replaced by. ..
VWD UshTransfer() WDU Transfer() [A.3.7]
WDU_Transf er Def aul t Pi pe() [A.3.9
WoU_TransferBul k() [A.3.10
WDU_Transferlsoch() [A.3.1]
WU _Transferlinterrupt() [A.3.19
USB_TRANSFER HALT option WDU Hal t Transfer () [A.3.13
VWD _UsbReset Pi pe() WDU_Reset Pi pe() [A.3.14
VWD UshReset Devi ce() WU Reset Devi ce() [A.3.15
VWD UsbReset Devi ceEx()

A.2 USB - User Callback Functions 129

A.2 USB - User Callback Functions

NOTE

Some of the functions described below take as parameterdistes that are
comprised of several elements. These structures, inditgtét), are described in
SectionA.4.

A.2.1 WDU_ATTACH_CALLBACK()

PURPOSE

» WinDriver calls this function when a new device, matchihg given criteria, is
attached, provided it is not yet controlled by another drive
This callback is called once for each matching interface.

PROTOTYPE

typedef BOOL (DLLCALLCONV *WDU_ATTACH_CALLBACK) (WDU_DEVICE_HANDLE hDevice ,
WDU_DEVICE = pDevicelnfo, PVOID pUserData);

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O pDevicelnfo WDU_DEVICE *[A.4.3] Input (1)

0 pUserData PVOID Input

DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface

O pDevicelnfo Pointer to device configuration details; Valid until the arfd
the function.

O pUserData Pointer that was passedWU | nit () [A.3.1] (in the event
table); Points to the user-mode data for the attach functiq

A.2 USB - User Callback Functions 130

RETURN VALUE

If the WD_ACKNOWLEDGE flag was set in the call wbU_| nit () [A.3.1] (within
the dwOptions parameter), the callback function shoulaklifdt wants to control
the device, and if so - retuffRUE (otherwise - returirALSE).

If the WD_ACKNOALEDCE flag was not set in the call 4DU | nit (), then the return
value of the callback function is insignificant.

A.2 USB - User Callback Functions 131

A.2.2 WDU_DETACH_CALLBACK()

PURPOSE

»\WinDriver calls this function when a controlled device l&en detached from the
system.

PROTOTYPE

typedef void (DLLCALLCONV «WDU_DETACH_CALLBACK) (WDU_DEVICE_HANDLE hDevice ,
PVOID pUserData);

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
0 pUserData PVOID Input

DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface

O pUserData Pointer that was passedWU | nit () [A.3.1] (in the event
table); Points to the user-mode data for the attach functiq

RETURN VALUE

None

>

A.2 USB - User Callback Functions 132

A.2.3 WDU_POWER_CHANGE_CALLBACK()

PURPOSE

» WinDriver calls this function when a controlled device lthsinged its power
settings.

PROTOTYPE

typedef BOOL (DLLCALLCONV WDU _POWER _CHANGE CALLBACK) (WDU_DEVICE_HANDLE hDevice
DWORD dwPowerState, PVOID pUserData);

PARAMETERS
Name Type Input/Output
O dwPowerState DWORD Input
0 pUserData PVOID Input

DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface

O dwPowerState Number of the power state selected

O pUserData Pointer that was passedWU | nit () [A.3.1] (in the event
table); Points to the user-mode data for the attach functign

RETURN VALUE

TRUE/FALSE. Currently there is no significance to the retatue.

REMARKS

This callback is supported only in Windows operating systestarting from
Windows 2000.

A.3 USB - Functions 133

A.3 USB - Functions

NOTE

Some of the functions described below take as parameterdistes that are
comprised of many elements. These structures, indicatét)bgre described in
SectionA.4.

A.3.1 WDU_Init()

PURPOSE

« Starts listening to devices matching input criteria argigters naotification callbacks
for these devices.

PROTOTYPE

DWORD WDU_Init (WDU_DRIVER_HANDLE = phDriver ,
WDU_MATCH TABLE *pMatchTables , DWMORD dwNumMatchTables,
WDU_EVENT TABLE *pEventTable, const charsLicense, DWORD dwOptions);

PARAMETERS

Name Type Input/Output
O phDriver WDU_DRIVER_HANDLE * Output

O pMatchTables WDU_MATCH_TABLE *[A.4.]] Input (1)

O dwNumMatchTables DWORD Input

O pEventTable WDU_EVENT_TABLE *[A.4.2] Input (1)

O sLicense const char * Input

O dwOptions DWORD Input

DESCRIPTION

Name Description

O phDriver Handle to the registration of events & criteria

O pMatchTables Array of match tables defining the devices’ criteria

0 dwNumMatchTables Number of elements in pMatchTables

O pEventTable Addresses of notification callback functions for changes i
the device’s status + relevant data for the callbacks

O sLicense WinDriver’s license string

=]

A.3 USB - Functions 134

Name Description

O dwOptions Can be zero (0) or:

VWD ACKNOWLEDGE — the user can seize control over the
device when returning value WDU_ATTACH CALLBACK
[A.2.9

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.3 USB - Functions 135

A.3.2 WDU_Setinterface()

PURPOSE

« Sets the alternate setting for the specified interface.

PROTOTYPE

DWORD WDU_Setlinterface (WDU_DEVICE HANDLE hDevice , DAWDRdwInterfaceNum ,
DWORD dwAlternateSetting);

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O dwlinterfaceNum DWORD Input

O dwAlternateSetting DWORD Input

DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface
O dwinterfaceNum The interface’s number

O dwAlternateSetting The desired alternate setting value

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise].6].

A.3 USB - Functions 136

A.3.3 WDU_GetDeviceAddr()

PURPOSE

» Gets USB address that the device uses. The address numizétas to the caller
supplied pAddress.

PROTOTYPE

DWORD WDU_GetDeviceAddr (WDU_DEVICE_HANDLE hDevice ,
ULONG = pAddress);

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O pAddress ULONG Output

DESCRIPTION

Name Description

O hDevice A unique identifier for a device/interface

O pAddress A pointer to ULONG, in which the result is returned
REMARKS

This function is supported on Windows only.
RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.3 USB - Functions 137

A.3.4 WDU_GetDevicelnfo()

PURPOSE

* Gets configuration information from a device, includingthé descriptors in a
WDU_DEVICE [A.4.3] structure.

The caller should free *ppDevicelnfo after use by callify Put Devi cel nfo()
[A.3.5].

PROTOTYPE

DWORD WDU_GetDevicelnfo(WDU_DEVICE_HANDLE hDevice ,
WDU_DEVICE *x ppDevicelnfo);

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O ppDevicelnfo WDU_DEVICE **[A.4.3 Output (1)

DESCRIPTION

Name Description
O hDevice A unique identifier for a device/interface
O ppDevicelnfo Pointer to pointer to a buffer containing device informatio

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.3 USB - Functions

A.3.5 WDU_PutDevicelnfo()

PURPOSE

138

*Receives a device information pointer, allocated withevjmus

WDU_Get Devi cel nfo() [A.3.4 call, in

PROTOTYPE

order to perform the necessary cleanup.

DWORD WDU_PutDevicelnfo (WDU_DEVICEx pDevicelnfo) ;

PARAMETERS
Name Type Input/Output
O pDevicelnfo WDU_DEVICE *[A.4.3] Input
DESCRIPTION
Name Description

O pDevicelnfo

Pointer to a buffer containing the device information, as
returned by a previous call #DU_Cet Devi cel nf o()

RETURN VALUE

None

A.3 USB - Functions

A.3.6 WDU_Uninit()

PURPOSE

139

« Stops listening to devices matching a given criteria anegisters the notification

callbacks for these devices.

PROTOTYPE

void WDU_Uninit(WDU_DRIVER_HANDLE hDriver);

PARAMETERS
Name Type Input/Output
O hDriver WDU_DRIVER_HANDLE Input
DESCRIPTION
Name Description
O hDriver Handle to the registration received frofBU_| nit ()
[A.3.]

A.3 USB - Functions

A.3.7 WDU_Transfer()

PURPOSE

 Transfers data to or from a device.

PROTOTYPE

140

DWORD WDU_Transfer (WDU_DEVICE_HANDLE hDevice , DWORD dwieNum,
DWORD fRead, DWORD dwOptions, PVOID pBuffer, DWMORD dwBuffgize ,
PDWORD pdwBytesTransferred, PBYTE pSetupPacket , DNORDT dmeout) ;

PARAMETERS

Name Type Input/Output

O hDevice WDU_DEVICE_HANDLE Input

O dwPipeNum DWORD Input

O fRead DWORD Input

O dwOptions DWORD Input

O pBuffer PVOID Input

O dwBufferSize DWORD Input

O pdwBytesTransferred PDWORD Output

O pSetupPacket PBYTE Input

O dwTimeout DWORD Input

DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface received from
WU I nit() [A.3.]

O dwPipeNum The number of the pipe through which the data is
transferred

O fRead TRUE for read,FALSE for write

A.3 USB - Functions

141

Name

Description

O dwOptions

A bit mask flag:

*USB_| SOCH NOASAP — For isochronous data transfers.
Setting this option instructs the lower driverspd.sy3 to
use a preset frame number (instead of the next available
frame) while performing the data transfer. Use this flag if
you notice unused frames during the transfer, on low-spg
or full-speed devices (USB 1.1 only) and on Windows on
(excluding CE).

*USB_| SOCH_RESET - resets the isochronous pipe before
the data transfer. It also resets the pipe after minor errorg
(consequently allowing to continue with the transfer).
*USB | SOCH FULL_PACKETS_ONLY — when set, do not
transfer less than packet size on isochronous pipes.

O pBuffer

Address of the data buffer.

O dwBufferSize

Number of bytes to transfer. The buffer size is not limited
to the device’s maximum packet size; therefore, you can
use larger buffers by setting the buffer size to a multiple
of the maximum packet size. Use large buffers to reduce
the number of context switches and thereby improve
performance.

O pdwBytesTransferred

Number of bytes actually transferred.

O pSetupPacket

An 8-byte packet to transfer to control pipes.

O dwTimeout

Timeout interval of the transfer, in millisecondss. If
dwTimeoutis zero, the function’s timeout interval never

elapses (infinite wait).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise p.6].

REMARKS

The resolution of the timeout (the dwTimeout parametergading to the
operating system scheduler’s timeslot. For example, indéivs the timeout’s

resolution is 10 millisecondsn(s.

A.3 USB - Functions 142

A.3.8 WDU_Wakeup()

PURPOSE

e Enables/Disables the wakeup feature.

PROTOTYPE

DWORD WDU_Wakeup(WDU_DEVICE_HANDLE hDevice , DWORD dwOipins) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwOptions DWORD Input

DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface.

O dwOptions Can be eitheDU WAKEUP_ENABLE — enables wakeup, or
VDU WAKEUP_DI SABLE — disables wakeup.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.3 USB - Functions 143

A.3.9 WDU_TransferDefaultPipe()

PURPOSE

e Transfers data to or from a device through the default pipe.

PROTOTYPE

DWORD WDU_TransferDefaultPipe (WDU_DEVICE_HANDLE hDesg ,
DWORD fRead, DWORD dwOptions, PVOID pBuffer, DWMORD dwBuffgize ,
PDWORD pdwBytesTransferred, PBYTE pSetupPacket , DNORDT dmeout) ;

PARAMETERS

See description ofDU_Tr ansfer () [A.3.7].
Note thatdwPi peNumis not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

REMARKS
See description DU Transfer () [A.3.7].

A.3 USB - Functions 144

A.3.10 WDU_TransferBulk()

PURPOSE

» Performs bulk data transfer to or from a device.

PROTOTYPE

DWORD WDU_TransferBulk (WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum, DWORD fRead , DWORD dwOptions, PVOID pBaff,
DWORD dwBufferSize, PDWORD pdwBytesTransferred , DWORD Tweout) ;

PARAMETERS

See description ofDU_Tr ansfer () [A.3.7].
Note thatpSet upPacket is not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

REMARKS
See description ofDU Transfer () [A.3.7].

A.3 USB - Functions 145

A.3.11 WDU_Transferlsoch()

PURPOSE

* Performs isochronous data transfer to or from a device.

PROTOTYPE

DWORD WDU_Transferlsoch (WDU_DEVICE_HANDLE hDevice , DRD dwPipeNum,
DWORD fRead, DWORD dwOptions, PVOID pBuffer, DWMORD dwBuffgize ,
PDWORD pdwBytesTransferred, DWORD dwTimeout) ;

PARAMETERS

PARAMETERS

See description ofDU_Tr ansfer () [A.3.7].
Note thatpSet upPacket is not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

REMARKS
See description ofDU Transfer () [A.3.7].

A.3 USB - Functions 146

A.3.12 WDU_TransferInterrupt()

PURPOSE

 Performs interrupt data transfer to or from a device.

PROTOTYPE

DWORD WDU_TransferIinterrupt(WDU_DEVICE_HANDLE hDevice
DWORD dwPipeNum, DWORD fRead , DWORD dwOptions, PVOID pBaff,
DWORD dwBufferSize, PDWORD pdwBytesTransferred , DWORD Tweout) ;

PARAMETERS

See description ofDU_Tr ansfer () [A.3.7].
Note thatpSet upPacket is not a parameter of this function.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

REMARKS
See description ofDU Transfer () [A.3.7].

A.3 USB - Functions 147

A.3.13 WDU_HaltTransfer()

PURPOSE

* Halts the transfer on the specified pipe (only one simuttasaransfer per pipe is
allowed by WinDriver).

PROTOTYPE

DWORD WDU_HaltTransfer (WDU_DEVICE HANDLE hDevice , DMDRdwPipeNum) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwPipeNum DWORD Input

DESCRIPTION

Name Description
O hDevice A unique identifier for the device/interface
O dwPipeNum The number of the pipe

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.3 USB - Functions 148

A.3.14 WDU_ResetPipe()

PURPOSE

*Resets a pipe by clearing both the halt condition on the $idstof the pipe and
the stall condition on the endpoint. This function is apgtite for all pipes except
pipe00.

PROTOTYPE

DWORD WDU_ResetPipe (WDU_DEVICE_HANDLE hDevice , DWORD BipeNum);

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwPipeNum DWORD Input

DESCRIPTION

Name Description
O hDevice A unique identifier for the device/interface
O dwPipeNum The pipe’s number

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise].6].

REMARKS

This function should be used if a pipe is halted, in order éacthe halt.

A.3 USB - Functions 149

A.3.15 WDU_ResetDevice()

PURPOSE

*Resets a device to help recover from an error, when a deviteiked as connected
but is not enabled.

PROTOTYPE

DWORD WDU_ResetDevice (WDU_DEVICE_ HANDLE hDevice , DWORBwOptions) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwOptions DWORD Input

DESCRIPTION

Name Description
O hDevice A unique identifier for the device/interface.
O dwOptions Can be either 0 oAD_USB_HARD RESET — will reset the

device even if it is not disabled. After using this option
it is advised to set the interface of the device, using
WDU_Set I nterface() [A.3.2.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

REMARKS

e WDU Reset Devi ce() is supported only on Windows.

« This function issues a request from the Windows USB drigeeset a hub
port, provided the Windows USB driver supports this feature

A.3 USB - Functions

A.3.16 WDU_GetLangIDs()

PURPOSE

150

*Reads a list of supported language IDs and/or the numberpgpiasted language IDs

from a device.

PROTOTYPE

DWORD DLLCALLCONV WDU_GetLanglDs(WDU_DEVICE_HANDLE hDeice ,
PBYTE pbNumSupportedLanglDs , WDU _LANGIR pLangIDs, BYTE bNumLangIDs) ;

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O pbNumSupportedLanglDs PBYTE Output

O pLanglDs WDU_LANGID * Output

0 bNumLangIDs BYTE Input
DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface.

O pbNumSupportedLanglDs

Parameter to receive number of supported language IDs

00 pLanglDs

Array of language IDs. IbNunLangl Ds is not O the
function will fill this array with the supported language 1D
for the device.

D

0 bNumLangIDs

Number of IDs in the pLangIDs array.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise A.6].

A.3 USB - Functions 151

REMARKS

 If dwNuniangl Ds is O the function will return only the number of
supported language IDs (pbNunSuppor t edLangl Ds) but will
not update the language IDs arrgt-@ngl Ds) with the actual IDs.
For this usag@Langl Ds can beNULL (since it is not referenced) but
pbNunBupport edLangl Ds must not beNULL.

e pbNunSupport edLangl Ds can beNULL if the user only wants to receive
the list of supported language IDs and not the number of su@pdDs.
In this casdbNunLangl Ds cannot be 0 andLangl Ds cannot beNULL.

« If the device does not support any language IDs the funetitin
return success. The caller should therefore check the wdlue
*pbNunSuppor t edLangl Ds after the function returns.

* If the size of thepLangl Ds array pNumLangl Ds) is smaller than the
number of IDs supported by the deviegogbNunSuppor t edLangl Ds), the
function will read and return only the firetNumLangl Ds supported language
IDs.

A.3 USB - Functions 152

A.3.17 WDU_GetStringDesc()

PURPOSE

*Reads a string descriptor from a device by string index.

PROTOTYPE

DWORD DLLCALLCONV WDU_GetStringDesc (WDU_DEVICE_HANDLEhDevice ,
BYTE bStrindex , PCHAR pcDescStr, DWORD dwSize, WDU _LANGIR2ngID) ;

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O bStrindex BYTE Input

O pbBuf PBYTE Output

O dwBufSize DWORD Input

O langlD WDU_LANGID Input

O pdwDescSize PDWORD Output

DESCRIPTION

Name Description

O hDevice A unique identifier for the device/interface

O bStrindex A string index

O pbBuf The read string descriptor (the descriptor is returned as ¢
bytes array)

O dwBufSize The size ofpbBuf

O langlD The language ID to be used in the get string descriptor

request that is sent to the device. If thengl D param is

0, the function will use the first supported language 1D
returned from the device (if exists).

O pdwDescSize If not NULL, will be updated with the size of the returned
descriptor

A.3 USB - Functions 153

RETURN VALUE
Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

REMARKS

« If pbBuf is not large enough to hold the string descripthmMBuf Si ze <

* pdwDescSi ze), the returned descriptor will be truncatedtheBuf Si ze
bytes.

A.4 USB - Structures

A.4 USB - Structures

154

The following figure depicts the structure hierarchy use\bgDriver's USB API.
The arrays situated in each level of the hierarchy may comtaire elements than
are depicted in the diagram. Arrows are used to representguei In the interest of
clarity, only one structure at each level of the hierarchydpicted in full detail (with
all of its elements listed and pointers from it pictured).

WDU DEVICE

* Descriptor

* Pipe0

=" pConfigs

=" phctiveConfig
=" pActivelnterface

' WDU CONFIGURATION

WDU CONFIGURATION
* Descriptor

T dwhuminterfaces

“* plnterfaces

WOU CONFIGURATION

WD INTERFACE

WDU INTERFACE
" pAlternateSettings
* dwMNumASettings
=" pActiveAltSetting

WD INTERFACE

»WDU ALTERNATE SETTING

WDU ALTERNATE SETTING
* Descriptor

= * pEndpointCescriptors

~* pPipes

WO ALTERNATE SETTING

.-b WD ENDPOINT DESCRIPTOR ‘. +» WDU PIPE
* blength * dwMumber
* hDescriptorType
* bEndpointtddress " type
* bmAttributes * direction
* whiaxPacketSize * binterval
* blnterval

T dwMaximumPacketSize

INFO

Figure A.2: WinDriver USB Structures

A.4 USB - Structures

155

A.4.1 WDU_MATCH_TABLE

NOTE

(*) For all field members, if value is set to 0 — match all.

Name Type Description

wVendorld WORD | Required USB Vendor ID to detect, as assigned
by USB-IF (*)

wProductld WORD | Required USB Product ID to detect, as assigngd
by the product manufacturer (*)

bDeviceClass BYTE | The device’s class code, as assigned by USB-IF
*)

bDeviceSubClass | BYTE | The device’s sub-class code, as assigned by
USB-IF (*)

binterfaceClass BYTE | The interface’s class code, as assigned by
USB-IF (*)

bInterfaceSubClas

5 BYTE

The interface’s sub-class code, as assigned by
USB-IF (*)

bInterfaceProtocol

BYTE

The interface’s protocol code, as assigned by
USB-IF (*)

A.4 USB - Structures 156

A.4.2 WDU_EVENT_TABLE

Name Type Description

pfDeviceAttach | WDU_ATTACH_CALLBACK Will be called by WinDriver when a device is
attached

pfDeviceDetachl WDU_DETACH_CALLBACK Will be called by WinDriver when a device is
detached

pfPowerChangg WDU_POWER_ CHANGE_CALLBACK| Will be called by WinDriver when there is a
change in a device’s power state

pUserData PVOID Pointer to user-mode data to be passed to the
callbacks

A.4 USB - Structures

A.4.3 WDU_DEVICE

157

pe

Name Type Description

Descriptor WDU_DEVICE_DESCRIPTOR Contains basic information about a device

Pipe0 WDU_PIPE_INFO Stores information about the device’s default pi

pConfigs WDU_CONFIGURATION * Pointer to buffer containing information about 4
device’s configurations

pActiveConfig | WDU_CONFIGURATION * Pointer to buffer containing information about

the active configuration

pActivelnterface

WDU_INTERFACE *

Pointer to buffer containing information about

the active interface

A.4 USB - Structures 158

A.4.4 WDU_CONFIGURATION

Name Type Description

Descriptor WDU_CONFIGURATION_DESCRIPTOR Contains basic information about a configuratidg

dwNuminterface§ DWORD Number of interfaces supported by this
configuration

plnterfaces WDU_INTERFACE * Pointer to buffer containing information about
this configuration’s interfaces

A.4 USB - Structures

A.4.5 WDU_INTERFACE

159

Name Type Description

pAlternateSettings| WDU_ALTERNATE_SETTING * | Pointer to buffer containing information about
the interface’s alternate settings

dwNumAltSettings| DWORD Number of alternate settings

pActiveAltSetting | WDU_ALTERNATE_SETTING * | Pointer to buffer containing information about
the active alternate setting

A.4 USB - Structures 160

A.4.6 WDU_ALTERNATE_SETTING

Name Type Description

Descriptor WDU_INTERFACE_DESCRIPTOR| Contains basic information about an interface
pEndpointDescriptors WDU_ENDPOINT_DESCRIPTOR * Pointer to buffers containing information about
device’s endpoints

pPipes WDU_PIPE_INFO * Pointer to buffers containing information about
device’s pipes

A.4 USB - Structures 161

A.4.7 WDU_DEVICE_DESCRIPTOR

Name Type Description

bLength UCHAR | Size, in bytes, of the descriptor (18 bytes)

bDescriptorType UCHAR | Device descriptor (0x01)

bcdUSB USHORT | Number of the USB specification with which the
device complies

bDeviceClass UCHAR | The device’s class

bDeviceSubClass UCHAR | The device’s sub-class

bDeviceProtocol UCHAR | The device’s protocol

bMaxPacketSize0 | UCHAR | Maximum size of transferred packets

idVendor USHORT | Vendor ID, as assigned by USB-IF

idProduct USHORT | Product ID, as assigned by the product
manufacturer

bcdDevice USHORT | Device release number

iManufacturer UCHAR | Index of manufacturer string descriptor

iProduct UCHAR | Index of product string descriptor

iSerialNumber UCHAR | Index of serial number string descriptor

bNumConfigurationg UCHAR | Number of possible configurations

174

A.4 USB - Structures

162

A.4.8 WDU_CONFIGURATION_DESCRIPTOR

Name Type Description
bLength UCHAR | Size, in bytes, of the descriptor
bDescriptorType UCHAR | Configuration descriptor (0x02)
wTotalLength USHORT | Total length, in bytes, of data returned
bNuminterfaces UCHAR | Number of interfaces
bConfigurationValug UCHAR | Configuration number
iConfiguration UCHAR | Index of string descriptor that describes this
configuration
bmAttributes UCHAR | Power settings for this configuration:
*D6 — self-powered
* D5 — remote wakeup (allows device to wake u
the host)
MaxPower UCHAR | Maximum power consumption for this

configuration, in ZnAunits

A.4 USB - Structures

163

A.4.9 WDU_INTERFACE_DESCRIPTOR

Name Type Description

bLength UCHAR | Size, in bytes, of the descriptor (9 bytes)
bDescriptorType | UCHAR | Interface descriptor (0x04)
binterfaceNumber | UCHAR | Interface number

bAlternateSetting | UCHAR | Alternate setting number

bNumEndpoints UCHAR | Number of endpoints used by this interface
binterfaceClass UCHAR | The interface’s class code, as assigned by

USB-IF

binterfaceSubClas

5 UCHAR

The interface’s sub-class code, as assigned by
USB-IF

binterfaceProtocol| UCHAR | The interface’s protocol code, as assigned by
USB-IF
iinterface UCHAR | Index of string descriptor that describes this

interface

A.4 USB - Structures

164

A.4.10 WDU_ENDPOINT_DESCRIPTOR

Name Type Description

bLength UCHAR | Size, in bytes, of the descriptor (7 bytes)

bDescriptorType | UCHAR | Endpoint descriptor (0x05)

bEndpointAddress UCHAR | Endpoint address: Use bits 0-3 for endpoint
number, set bits 4-6 to zero (0), and set bit 7
to zero (0) for outbound data and one (1) for
inbound data (ignored for control endpoints)

bmAttributes UCHAR | Specifies the transfer type for this endpoint
(control, interrupt, isochronous or bulk). See th
USB specification for further information.

wMaxPacketSize | USHORT | Maximum size of packets this endpoint can sen
or receive

binterval UCHAR | Interval, in frame counts, for polling endpoint

data transfers.
Ignored for bulk and control endpoints.
Must equal 1 for isochronous endpoints.

May range from 1 to 255 for interrupt endpoints.

d

A.4 USB - Structures

165

ed

A.4.11 WDU_PIPE_INFO

Name Type Description

dwNumber DWORD | Pipe number; O for default pipe

dwMaximumPacketSiz¢ DWORD | Maximum size of packets that can be transferrg
using this pipe

type DWORD | Transfer type for this pipe

direction DWORD | Direction of transfer:
*USB DIR | NorUSB_DI R_QUT for isochronous,
bulk or interrupt pipes. ¥SB_DI R | N_QUT for
control pipes.

dwinterval DWORD | Interval in millisecondsrfg.

Relevant only to interrupt pipes.

A.5 General WD_xxx Functions

A.5 General WD_xxx Functions

A.5.1 Calling Sequence WinDriver — General Use

The following is a typical calling sequence for the WinDmivePI.

WD_Open()

3

WD_Version()

WinDriver's Hardware
Access API

¥

General WinDriver API:

PrintDbgMessage() ;
WD_DebugAdd() ;
WD_Sleep() ;
WD_Logxxx() ;

WD_Close()

Figure A.3: WinDriver API Calling Sequence

A.5 General WD_xxx Functions 167

NOTES

(1) We recommend calling the WinDriver functi®® Ver si on() [A.5.3] after
calling\WD_QOpen() [A.5.2] and before calling any other WinDriver function.
Its purpose is to return the WinDriver kernel module (windiersion number,
thus providing the means to verify that your applicationéssion compatible
with the WinDriver kernel module.

(2) WD_DebugAdd() [A.5.6] andWD Sl eep() [A.5.8] can be called anywhere after
WD _Open() .

(3) Visual Basic and Delphi programmers should note thatFhinction Reference
is C-oriented.
WinDriver Visual Basic and Delphi codes have been writtenlasely as
possible to the C code, to enable maximal compatibility fousers.
Most of the APIs have a single implementation that can be freeda C, VB
or Delphi application. However, some of the WinDriver funais require
a specific implementation for VB and Delphi. Please refehtorelevant
Delphi/Visual Basic samples and include files:

1. \WinDriver \delphi
2. \WinDriver \vb

A.5 General WD_xxx Functions 168

A.5.2 WD_Open()

PURPOSE

»Opens a handle to access the WinDriver kernel module. Thélaé used by all
WinDriver APls, and therefore must be called before any oiiieDriver APl is
called.

PROTOTYPE

HANDLE WD_Open() ;

RETURN VALUE

The handle to the WinDriver kernel module.
If device could not be opened, returns INVALID_HANDLE_VAIRJ

REMARKS

If you are a registered user, please refefioLi cense() [A.5.9 function reference
to see an example of how to register your license.

EXAMPLE

HANDLE hWD;

hw = WD_Open();

i f (hWD==I N\VALI D_HANDLE_VALUE)
{

}

printf("Cannot open WnDriver device\n");

A.5 General WD_xxx Functions 169

A.5.3 WD_Version()

PURPOSE

 Returns the version number of the WinDriver kernel moduleently running.

PROTOTYPE

DWORD WD_Version (HANDLE hwD, WD_VERSION« pVer) ;

PARAMETERS
Name Type Input/Output
0 hwD HANDLE Input
O pVer WD_VERSION *
O dwVer DWORD Output
O cVer[100] CHAR Output

DESCRIPTION

Name Description

hwD The handle to WinDriver’s kernel-mode driver received
fromWD_Qpen() [A.5.2].

pVer VWD VERSI ON elements:

dw\Ver The version number.

cVer[100] Version info string.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise].6].

EXAMPLE
WD _VERSI ON ver;
BZERQ(ver);

VD Versi on(hWD, &ver);
printf("%\n", ver.cVer)

A.5 General WD_xxx Functions 170

if (ver.dwer<WD VER)
{

}

printf("Error - incorrect WnDriver version\n");

A.5 General WD_xxx Functions 171

A.5.4 WD_Close()

PURPOSE

* Closes the access to the WinDriver kernel module.

PROTOTYPE

void WD_Close (HANDLE hWD) ;

PARAMETERS
Name Type Input/Output
0 hwD HANDLE Input

DESCRIPTION

Name Description

hwD The handle to WinDriver’s kernel-mode driver received
from\WD_Qpen() [A.5.2].

REMARKS

This function must be called when you finish using WinDriverrkel module.

EXAMPLE
VWD C ose(hWD);

A.5 General WD_xxx Functions 172
A.5.5 WD_Debug()
PURPOSE
« Sets debugging level for collecting debug messages.
PROTOTYPE
DWORD WD_Debug (HANDLE hwD, WD DEBUG+ pDebug) ;
PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pDebug WD_DEBUG * Input
O dwCmd DWORD Input
OdwLevel DWORD Input
O dwSection DWORD Input
O dwLevelMessageBox DWORD Input
O dwBufferSize DWORD Input

DESCRIPTION

Name

Description

hwD

The handle to WinDriver’s kernel-mode driver received
from\WD_Qpen() [A.5.2].

pDebug

WD DEBUG elements:

dwCmd

Debug command: Set filter, Clear buffer, etc.
For more details please refer to DEBUG_COMMAND in
windrvr.h .

dwLevel

Used for dwCmd=DEBUG_SET_FILTER. Sets the
debugging level to collect: Error, Warning, Info, Trace.
For more details please refer to DEBUG_LEVEL in
windrvr.h .

dwSection

Used for dwCmd=DEBUG_SET_FILTER. Sets the sectig
to collect: 10, Mem, Int, etc. Use S_ALL for all.
For more details please refer to DEBUG_SECTION in

windrvr.h .

A.5 General WD_xxx Functions

173

Name

Description

dwLevelMessageBox

Used for dwCmd=DEBUG_SET_FILTER. Sets the
debugging level to print in a message box.

For more details please refer to DEBUG_LEVEL in
windrvr.h .

dwBufferSize

Used for dwCmd=DEBUG_SET_BUFFER. The size of
buffer in the kernel.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise p.6].

EXAMPLE
W DEBUG dbg;

BZERQ(dbg) ;

dbg. dwCmd = DEBUG_SET_FI LTER
dbg. dwLevel = D ERROR;

dbg. dwSection = S ALL;

dbg. dwLevel MessageBox = D ERROR;

VID_Debug(hWD, &dbg)

ita

11

A.5 General WD_xxx Functions 174
A.5.6 WD_DebugAdd()
PURPOSE
» Sends debug messages to the debug log. Used by the driver cod
PROTOTYPE
DWORD WD_DebugAdd (HANDLE hwD, WD DEBUG _ADD: pData) ;
PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pData WD_DEBUG_ADD *
OdwLevel DWORD Input
O dwSection DWORD Input
O pcBuffer CHAR [256] Input
DESCRIPTION
Name Description
hwD The handle to WinDriver’s kernel-mode driver received
from\WD_Qpen() [A.5.2].
pData WD DEBUG ADD elements:
dwLevel Assigns the level in the Debug Monitor, in which the
data will be declared. If dwLevel is 0, D_ ERROR will be
declared.
For more details please refer to DEBUG_LEVEL in
windrvr.h .
dwsSection Assigns the section in the Debug Monitor, in which the da
will be declared. If dwSection is 0, S_MISC section will b
declared.
For more details please refer to DEBUG_SECTION in
windrvr.h .
pcBuffer The string to copy into the message log.

A.5 General WD_xxx Functions 175

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

EXAMPLE
VWD DEBUG ADD add;

BZERQ(add) ;

add. dwLevel = D WARN,

add. dwSection = S M SC,

sprintf(add. pcBuffer, "This message will be displayed in "
"the debug nonitor\n");

WD DebugAdd(hWD, &add);

A.5 General WD_xxx Functions 176

A.5.7 WD_DebugDump()

PURPOSE

* Retrieves debug messages buffer.

PROTOTYPE

DWORD WD_DebugDump (HANDLE hwD, WD _DEBUG_DUMR pDebugDump) ;

PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pDebug WD_DEBUG_DUMP * Input
O pcBuffer PCHAR Input/Output
OdwsSize DWORD Input

DESCRIPTION

Name Description

hwD The handle to WinDriver’s kernel-mode driver received
fromWD_Qpen() [A.5.2].

pDebugDump WD DEBUG DUWP elements:

pcBuffer Buffer to receive debug messages

dwSize Size of buffer in bytes

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise].6].

EXAMPLE

char buffer[1024];

WD DEBUG DUMP dunp;

dunp. pcBuf f er =buf fer;

dunp. dwSi ze = si zeof (buffer);
VD _DebugDunp(hV\D, &dunp) ;

A.5 General WD_xxx Functions 177

A.5.8 WD_Sleep()

PURPOSE

 Delays execution for a specific duration of time.

PROTOTYPE

DWORD WD_Sleep (HANDLE hWD, WD_SLEEP: pSleep);

PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pSleep WD_SLEEP *
O dwMicroSeconds DWORD Input
O dwOptions DWORD Input

DESCRIPTION

Name Description

hwD The handle to WinDriver’s kernel-mode driver received
fromWD_Qpen() [A.5.2].

pSleep WD_SLEEP elements:

dwMicroSeconds Sleep time in microseconds - 1/1,000,000 of a second.

dwOptions A bit mask flag:

*SLEEP_NON_BUSY - If set, delays execution without
consuming CPU resources. (Not relevant for under 17,0(
micro seconds. Less accurate than busy sleep).

Default - Busy sleep.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.5 General WD_xxx Functions

REMARKS

Example usage: to access slow response hardware.

EXAMPLE
VWD Sl eep sl p;

BZERQ(sl p) ;
sl p. dwM croSeconds = 200;

VWD Sl eep(hWD, &sl p);

178

A.5 General WD_xxx Functions

A.5.9 WD_License()

PURPOSE

179

* Transfers the license string to the WinDriver kernel medard returns information
regarding the license type of the specified license string.

PROTOTYPE

DWORD WD_License (HANDLE hwD,

WD_LICENSE« pLicense);

S,

PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pLicense WD_LICENSE *
OcLicense(] CHAR Input
OdwLicense DWORD Output
OdwLicense2 DWORD Output
DESCRIPTION
Name Description
hwD The handle to WinDriver’s kernel-mode driver received
fromWD_Qpen() [A.5.2].
pLicense VD LI CENSE elements:
cLicense(] A buffer to contain the license string that is to be transfdr
to the WinDriver kernel module. If an empty string is
transferred, then WinDriver kernel module returns the
current license type to the parameter dwLicense.
dwLicense Returns the license type of the specified license string
(cLicnese). The return value is a mask of license type fla
defined as an enum imindrvr.h . 0 = Invalid license string.
Additional flags for determining the license type will be
returned in dwLicense2, if needed.
dwLicense2 Returns additional flags for determining the license type,
if dwLicense could not hold all the relevant information
(otherwise - 0).

A.5 General WD_xxx Functions 180

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

REMARKS

When using a registered version, this function must be @¢&léfore any other
WinDriver API call, apart fromAD_Qpen(), in order to register the license from the
code.

Example usage: Add registration routine to your applicatio

EXAMPLE
DWORD Regi sterWnbDriver ()
{

HANDLE hWD;

WD LI CENSE i c;

DWORD dwSt at us = WD_| NVALI D_HANDLE;

hW = WD _Open();
i f (hWD! =1 NVALI D_HANDLE_VALUE)

{
BZER((lic);
Il replace the following string with your license string
strcpy(lic.cLicense, "12345abcdel2345. ConpanyNang");
dwStatus = WD License(hWD, &lic);
VWD d ose(hWD);

}

return dwstatus;

A.5 General WD_xxx Functions 181

A.5.10 WD_LogStart()

PURPOSE

*Opens a log file.

PROTOTYPE

DWORD WD_LogStart(const charsFileName, const charsMode)

PARAMETERS
Name Type Input/Output
O sFileName const char * Input
O sMode const char * Input

DESCRIPTION

Name Description
sFileName Name of log file to be opened.
sMode Type of access permitted.

For example, when NULL aw, opens an empty file for
writing. If the given file exists, its contents are destroyed
Whena, opens for writing at the end of the file (appending).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise].6].

REMARKS

Once a log file is opened, all API calls are logged in this fileu Ynay add your own
printouts to the log file by callingD_LogAdd() [A.5.13.

A.5 General WD_xxx Functions

A5.11 WD_LogStop()

PURPOSE

*Closes a log file.

PROTOTYPE

182

VOID WD_LogStop ()

RETURN VALUE

None

A.5 General WD_xxx Functions

A5.12 WD_LogAdd()

PURPOSE

» Adds user printouts into log file.

PROTOTYPE

183

VOID DLLCALLCONV WD_LogAdd(const char*sFormat|,

argument]...)

PARAMETERS
Name Type Input/Output
0 sFormat const char * Input
0 argument Input

DESCRIPTION

Name Description
sFormat Format-control string
argument Optional arguments

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise A.6].

A.6 WinDriver Status/Error Codes 184

A.6 WinDriver Status/Error Codes

A.6.1 Introduction

Most of the WinDriver API functions return a status code, veh@
(WD_STATUS_SUCCESS) means success and a non-zero valussifadare. The
Stat2Str() andWbL_Stat 2Str () can be used to retrieve the status description
string for a given status code. The status codes and theirigtge strings are listed

below.

A.6.2 Status Codes Returned by WinDriver

Status Code Description
WD_STATUS_SUCCESS Success
WD_STATUS_INVALID_WD_HANDLE | Invalid WinDriver handle
WD_WINDRIVER_STATUS_ERROR Error
WD_INVALID_HANDLE Invalid handle

WD_INVALID_PIPE_NUMBER

Invalid pipe number

WD_READ_WRITE_CONFLICT

Conflict between read and write
operations

WD_ZERO_PACKET_SIZE

Packet size is zero

WD_INSUFFICIENT_RESOURCES

Insufficient resources

WD_UNKNOWN_PIPE_TYPE

Unknown pipe type

WD_SYSTEM_INTERNAL_ERROR

Internal system error

WD_DATA_MISMATCH

Data mismatch

WD_NO_LICENSE

No valid license

WD_NOT_IMPLEMENTED

Function not implemented

WD_FAILED_ENABLING_INTERRUPT

Failed enabling interrupt

WD_INTERRUPT_NOT_ENABLED

Interrupt not enabled

WD_RESOURCE_OVERLAP

Resource overlap

WD_DEVICE_NOT_FOUND

Device not found

WD_WRONG_UNIQUE_ID

Wrong unique ID

WD_OPERATION_ALREADY_DONE

Operation already done

WD_USB_DESCRIPTOR_ERROR

Usb descriptor error

WD_SET_CONFIGURATION_FAILED

Set configuration operation failed

WD_CANT_OBTAIN_PDO

Cannot obtain PDO

WD_TIME_OUT_EXPIRED

Timeout expired

WD_IRP_CANCELED

IRP operation cancelled

WD_FAILED_USER_MAPPING

Failed to map in user space

WD_FAILED_KERNEL_MAPPING

Failed to map in kernel space

A.6 WinDriver Status/Error Codes 185

Status Code Description
WD_NO_RESOURCES_ON_DEVICE | No resources on the device
WD_NO_EVENTS No events
WD_INVALID_PARAMETER Invalid parameter
WD_INCORRECT_VERSION Incorrect WinDriver version installed
WD_TRY_AGAIN Try again

WD_INVALID IOCTL Received an invalid IOCTL

A.6.3 Status Codes Returned by USBD

The following WinDriver status codes comply with USBD_XXX¥atus codes
returned by the USB stack drivers.

Status Code | Description

USBD Status Types

WD_USBD_STATUS_SUCCESS USBD: Success
WD_USBD_STATUS PENDING USBD: Operation pending
WD_USBD_STATUS_ERROR USBD: Error
WD_USBD_STATUS_HALTED USBD: Halted

USBD Status Codes (NOTE: These are comprised of one of tius sta
types above and an error code, i.e., OXXYYYYYYYL, wheratdsst
type and YYYYYYY=error code. The same error codes may also
appear with one of the other status types as well.)

HC (Host Controller) Status Codes (NOTE: These use the
WD_USBD_STATUS_HALTED status type.)

WD_USBD_STATUS CRC HC status: CRC
WD_USBD_STATUS_BTSTUFF HC status: Bit stuffing
WD_USBD_STATUS _DATA_TOGGLE_MISMATCH HC status: Data toggle mismatch
WD_USBD_STATUS_STALL_PID HC status: PID stall
WD_USBD_STATUS _DEV_NOT_RESPONDING HC status: Device not responding
WD_USBD_STATUS_PID_CHECK_FAILURE HC status: PID check failed
WD_USBD_STATUS _UNEXPECTED_PID HC status: Unexpected PID
WD_USBD_STATUS_DATA_OVERRUN HC status: Data overrun
WD_USBD_STATUS DATA UNDERRUN HC status: Data underrun
WD_USBD_STATUS_RESERVED1 HC status: Reservedl
WD_USBD_STATUS RESERVED?2 HC status: Reserved?2
WD_USBD_STATUS BUFFER_OVERRUN HC status: Buffer overrun
WD_USBD_STATUS_BUFFER_UNDERRUN HC status: Buffer Underrun
WD_USBD_STATUS _NOT_ACCESSED HC status: Not accessed
WD_USBD_STATUS_FIFO HC status: Fifo

For Windows only:

A.6 WinDriver Status/Error Codes

186

Status Code

Description

WD_USBD_STATUS_XACT_ERROR

HC status: The host controller has set
the Transaction Error (XactErr) bit in
the transfer descriptor’s status field

WD_USBD_STATUS_BABBLE_DETECTED

HC status: Babble detected

WD_USBD_STATUS_DATA_BUFFER_ERROR

HC status: Data buffer error

For Windows CE only:

WD_USBD_STATUS_NOT_COMPLETE

USBD: Transfer not completed

WD_USBD_STATUS_CLIENT_BUFFER

USBD: Cannot write to buffer

For all platforms:

WD_USBD_STATUS_CANCELED |

USBD: Transfer cancelled

Returned by HCD (Host Controller Driver) if a transfer is sulited to
an endpoint that is stalled:

WD_USBD_STATUS_ENDPOINT_HALTED

HCD: Transfer submitted to stalled
endpoint

Software Status Codes (NOTE: Only the error bit is set):

WD_USBD_STATUS_NO_MEMORY

USBD: Out of memory

WD_USBD_STATUS_INVALID_URB_FUNCTION

USBD: Invalid URB Jfunction

WD_USBD_STATUS_INVALID_PARAMETER

USBD: Invalid parameter

Returned if client driver attempts to close an endpoirgfifeice or
configuration with outstanding transfers:

WD_USBD_STATUS_ERROR_BUSY

USBD: Attempted to close
endpoint/interface/configuration with
outstanding transfer

Returned by USBD if it cannot complete a URB request. Tylpitiab
will be returned in the URB status field (when the Irp is corteal®
with a more specific NT error code. The Irp status codes areatdd
in WinDriver's Debug Monitor tool (wddebug_gui):

WD_USBD_STATUS_REQUEST_FAILED

USBD: URB request failed

WD_USBD_STATUS_INVALID_PIPE_HANDLE

USBD: Invalid pipe handle

Returned when there is not enough bandwidth available toape
requested endpoint:

WD_USBD_STATUS_NO_BANDWIDTH

USBD: Not enough bandwidth for
endpoint

Generic HC (Host Controller) error:

WD_USBD_STATUS_INTERNAL_HC_ERROR

USBD: Host controller error

Returned when a short packet terminates the transfer, i.e.,
USBD_SHORT_TRANSFER_OK bit not set:

WD_USBD_STATUS_ERROR_SHORT_TRANSFER

USBD: Transfer terminated with short
packet

A.6 WinDriver Status/Error Codes

187

Status Code

Description

Returned if the requested start frame is not within
USBD ISO_START_FRAME_RANGE of the current USB frame
(NOTE: The stall bit is set):

WD_USBD_STATUS_BAD_START_FRAME

USBD: Start frame outside range

Returned by HCD (Host Controller Driver) if all packets in an
isochronous transfer complete with an error:

WD _USBD_STATUS_ISOCH_REQUEST_FAILED

HCD: Isochronous transfer completed
with error

Returned by USBD if the frame length control for a given HC{Ho
Controller) is already taken by another driver:

WD_USBD_STATUS_FRAME_CONTROL_OWNED

USBD: Frame length control already
taken

Returned by USBD if the caller does not own frame length obatrd
attempts to release or modify the HC frame length:

WD_USBD_STATUS_FRAME_CONTROL_NOT_OWNED

USBD: Attempted operation on frame
length control not owned by caller

Additional software error codes added for USB 2.0 (for Wiwdo
only):

WD_USBD_STATUS_NOT_SUPPORTED

USBD: API not
supported/implemented

WD_USBD_STATUS_INAVLID_CONFIGURATION_DESCRIPTOH

R USBD: Invalid configuration descripto

WD_USBD_STATUS_INSUFFICIENT_RESOURCES USBD: Insufficient resources
WD_USBD_STATUS_SET_CONFIG_FAILED USBD: Set configuration failed
WD_USBD_STATUS_BUFFER_TOO_SMALL USBD: Buffer too small
WD_USBD_STATUS INTERFACE_NOT_FOUND USBD: Interface not found
WD_USBD_STATUS_INAVLID_PIPE_FLAGS USBD: Invalid pipe flags
WD_USBD_STATUS _TIMEOUT USBD: Timeout
WD_USBD_STATUS_DEVICE_GONE USBD: Device gone
WD_USBD_STATUS_STATUS_NOT_MAPPED USBD: Status not mapped

Extended isochronous error codes returned by USBD.
These errors appear in the packet status field of an isoclusno
transfer:

WD_USBD_STATUS_ISO_NOT_ACCESSED_BY_HW

USBD: The controller did not access
the TD associated with this packet

WD_USBD_STATUS_ISO_TD_ERROR

USBD: Controller reported an error in
the TD

WD_USBD_STATUS_ISO_NA_LATE_USBPORT

USBD: The packet was submitted in
time by the client but failed to reach th
miniport in time

A.6 WinDriver Status/Error Codes

188

Status Code

Description

WD_USBD_STATUS_ISO_NOT_ACCESSED_LATE

USBD: The packet was not sent
because the client submitted it too
late to transmit

A.7 User-Mode Utility Functions 189
A.7 User-Mode Utility Functions

This section describes a number of user-mode utility fonstiyou will find useful for
implementing various tasks. These utility functions ardtirplatform, implemented
on all operating systems supported by WinDriver.

A7.1 Stat2Str()

PURPOSE

* Retrieves the status string that corresponds to a statles co

PROTOTYPE
const char * Stat2Str(DWORD dwStatus);

PARAMETERS
Name Type Input/Output
O dwsStatus DWORD Input

DESCRIPTION

Name Description

dwStatus A numeric status code

RETURN VALUE

Returns the verbal status description (string) that cpoeds to the specified numeric
status code.

REMARKS

See Sectio\.6 for a complete list of status codes and strings.

A.7 User-Mode Utility Functions 190

A.7.2 get _os type()
PURPOSE

* Retrieves the type of the operating system.

PROTOTYPE
OS_TYPE get _os_type();

RETURN VALUE

NoneReturns the type of the operating system.
If the operating system type is not detected, returns OS_ (MO _DETECT.

A.7 User-Mode Utility Functions

A.7.3 ThreadStart()

PURPOSE

» Creates a thread.

PROTOTYPE

191

DWORD ThreadStart (HANDLE *phThread, HANDLER FUNC pFunc, void *pData);

PARAMETERS
Name Type Input/Output
O phThread HANDLE * Output
0 pFunc HANDLER_FUNC Input
0 pData VOID * Input

DESCRIPTION

Name Description

phThread Returns the handle to the created thread

pFunc Starting address of the code that the new thread is to exe
pData Pointer to the data to be passed to the new thread

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise A.6].

cute

A.7 User-Mode Utility Functions 192

A.7.4 ThreadWait()

PURPOSE

»Waits for a thread to exit.

PROTOTYPE
voi d ThreadWait (HANDLE hThread);

PARAMETERS
Name Type Input/Output
O hThread HANDLE Input

DESCRIPTION

Name Description

hThread The handle to the thread whose completion is awaited

RETURN VALUE

None

A.7 User-Mode Utility Functions

A.7.5 OsEventCreate()

PURPOSE

« Creates an event object.

PROTOTYPE

DWORD CsEvent Cr eat e(HANDLE *phGsEvent) ;

PARAMETERS

193

Name

Type

Input/Output

O phOsEvent

HANDLE *

Output

DESCRIPTION

Name

Description

phOsEvent

The pointer to a variable that receives a handle to the ne

created event object

IV

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise A.6].

y

A.7 User-Mode Utility Functions

A.7.6 OsEventClose()

PURPOSE

« Closes a handle to an event object.

PROTOTYPE

voi d GsEvent O ose(HANDLE hCsEvent)

PARAMETERS

194

Name

Type

Input/Output

0 hOsEvent

HANDLE

Input

DESCRIPTION

Name

Description

hOsEvent

The handle to the event object to be closed

RETURN VALUE

None

A.7 User-Mode Utility Functions 195

A.7.7 OsEventWait()

PURPOSE

» Waits until a specified event object is in the signaled stathe time-out interval
elapses.

PROTOTYPE
DWORD OsEvent Wai t (HANDLE hGsEvent, DWORD dwSecTi neout)

PARAMETERS
Name Type Input/Output
O hOsEvent HANDLE Input
O dwSecTimeout DWORD Input

DESCRIPTION

Name Description
hOsEvent The handle to the event object
dwSecTimeout Time-out interval of the event, in seconds.

If dwSecTimeout is INFINITE, the function’s time-out
interval never elapses.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise].6].

A.7 User-Mode Utility Functions

A.7.8 OsEventSignal()

PURPOSE

« Sets the specified event object to the signaled state.

PROTOTYPE
DWORD CsEvent Si gnal (HANDLE hGsEvent);

PARAMETERS

196

Name Type

Input/Output

O hOsEvent HANDLE

Input

DESCRIPTION

Name Description

hOsEvent The handle to the event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.7 User-Mode Utility Functions

A.7.9 OsEventReset()

PURPOSE

* Resets the specified event object to the non-signaled state

PROTOTYPE
DWORD OsEvent Reset (HANDLE hGsEvent);

PARAMETERS

197

Name Type

Input/Output

O hOsEvent HANDLE

Input

DESCRIPTION

Name Description

hOsEvent The handle to the event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.7 User-Mode Utility Functions

A.7.10 OsMutexCreate()

PURPOSE

« Creates a mutex object.

PROTOTYPE

DWORD CsMut exCr eat e(HANDLE *phGsMut ex) ;

PARAMETERS

198

Name

Type

Input/Output

O phOsMutex

HANDLE *

Output

DESCRIPTION

Name

Description

phOsMutex

The pointer to a variable that receives a handle to the ne

created mutex object

IV

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise A.6].

y

A.7 User-Mode Utility Functions

A.7.11 OsMutexClose()

PURPOSE

« Closes a handle to a mutex object.

PROTOTYPE

voi d GsMut exCl ose(HANDLE hGsMut ex) ;

PARAMETERS

199

Name

Type

Input/Output

0 hOsMutex

HANDLE

Input

DESCRIPTION

Name

Description

hOsMutex

The handle to the mutex object to be closed

RETURN VALUE

None

A.7 User-Mode Utility Functions 200

A.7.12 OsMutexLock()

PURPOSE

« Locks the specified mutex object.

PROTOTYPE
DWORD CsMut exLock(HANDLE hCsMut ex)

PARAMETERS
Name Type Input/Output
O hOsMutex HANDLE Input

DESCRIPTION

Name Description

hOsMutex The handle to the mutex object to be locked

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.7 User-Mode Utility Functions 201

A.7.13 OsMutexUnlock()

PURPOSE

*Releases (unlocks) a locked mutex object.

PROTOTYPE
DWORD CsMut exUnl ock(HANDLE hGsMut ex) ;

PARAMETERS
Name Type Input/Output
O hOsMutex HANDLE Input

DESCRIPTION

Name Description

hOsMutex The handle to the mutex object to be unlocked

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise A.6].

A.7 User-Mode Utility Functions 202

A.7.14 PrintDbgMessage()

PURPOSE

» Sends debug messages to the debug monitor.

PROTOTYPE

voi d Print DbgMessage(DWORD dwievel , DWORD dwSecti on,

const char *format[, argunent]...);

PARAMETERS
Name Type Input/Output
O dwLevel DWORD Input
O dwSection DWORD Input
O format const char * Input
00 argument Input

DESCRIPTION

Name Description

dwLevel Assigns the level in the Debug Monitor, in which the data
will be declared. If dwLevel is 0, then D_ERROR will be
declared.
For more details please refer to DEBUG_LEVEL in
windrvr.h .

dwSection Assigns the section in the Debug Monitor, in which the dd
will be declared. If dwSection is 0, then S_MISC section
will be declared.
For more details please refer to DEBUG_SECTION in
windrvr.h .

format Format-control string

argument Optional arguments, limited to 256 bytes

ta

A.7 User-Mode Utility Functions 203

RETURN VALUE

None

Appendix B

WinDriver USB Device Cypress
EZ-USB FX2LP CY7C68013A
APl Reference

B.1 Firmware Library API

This section describes the WinDriver USB Device firmwaredily API for the
Cypress EZ-USB FX2LP CY7C68013A development board. Thetfans and
general types and definitions described in this section eckaced and defined
(respectively) in thé&X2LP\include\wdf_cypress_lib.hheader file. The functions
are implemented in the generated DriverWizewdf_cypress_lib.cfile — for
registered users, or in tHeX2LP \wdf_cypress_fx2lp_eval.libevaluation firmware
library — for evaluation users (see sectibh 3.4for details).

NOTE

Registered users can modify the library source code. Whetifgiiog the code,
make sure that you comply with your development board’s\ward specification —
see note in sectioh2.4.3

204

B.1 Firmware Library API 205
B.1.1 Firmware Library Types

The APIs described in this section are define&X2LP \wdf_cypress_lib.h

B.1.1.1 EP_DIR Enumeration

Enumeration of endpoint directions:

Enum Value | Description
DIR_OUT Direction OUT (write from the host to the device)
DIR_IN Direction IN (read from the device to the host)

B.1.1.2 EP_TYPE Enumeration

Enumeration of endpoint types.
The endpoint’s type determines the type of transfers to biepeed on the endpoint
— bulk, interrupt or isochronous.

Enum Value Description
ISOCHRONOUS| Isochronous endpoint
BULK Bulk endpoint
INTERRUPT Interrupt endpoint

B.1.1.3 EP_BUFFERING Enumeration

Enumeration of endpoint buffering types:

Enum Value Description
DOUBLE_BUFFERING | Double buffering
TRIPLE_BUFFERING | Triple buffering
QUAD_BUFFERING Quadruple buffering

B.1 Firmware Library API 206

B.1.2 WDF_EP1INConfig()/ WDF_EP10UTConfig()

PURPOSE

* Configures endpoint 1 for IN transferdDfF EP1l NConfi g()) or OUT transfers
(WDF_EPQUTConfi g()).

PROTOTYPE

void WDF_EP1INConfig(EP_TYPE type);
void WDF_EP1OUTConfig(EP_TYPE type);

PARAMETERS
Name Type Input/Output
O type EP_TYPE Input

DESCRIPTION

Name Description

type The endpoint’s transfer typ&[1.1.9

RETURN VALUE

None

B.1 Firmware Library API 207

B.1.3 WDF_EP2Config / WDF_EP6Config()

NOTE

The prototype and description @DF _EP2Conf i g() andWDF_EP6Confi g()
is identical, except for the endpoint number. The desaiplielow will refer

to endpoint 2, but you can simply replace all "2" referencih #6" to get the

description ofADF_EP6Confi g() .

PURPOSE

» Configures endpoint 2.

PROTOTYPE

void WDF_EP2Config (EP_DIR dir, EP_TYPE type,

EP_BUFFERING buffering , int size, int nPacketPerMF);

PARAMETERS

Name Type Input/Output

O dir EP_DIR Input

O type EP_TYPE Input

O buffering EP_BUFFERING Input

O size int Input

O nPacketPerMF int Input
DESCRIPTION

Name Description

dir The endpoint’s direction§.1.1.1

type The endpoint’s transfer typ&[1.1.2

buffering The endpoint’s buffering typed.1.1.3

size The size of the endpoint’s FIFO buffer (in bytes)

nPacketPerMF Number of packets per microframe

RETURN VALUE

None

B.1 Firmware Library API 208

B.1.4 WDF_EP4Config / WDF_EP8Config()

NOTE

The prototype and description @DF_EP4Conf i g() and\WDF_EP8Conf i g()
is identical, except for the endpoint number. The desaniplielow will refer

to endpoint 4, but you can simply replace all "4" referencih 8" to get the
description ofADF_EP8Confi g() .

PURPOSE

 Configures endpoint 4.

PROTOTYPE

void WDF_EP4Config (EP_DIR dir, EP_TYPE type);

PARAMETERS
Name Type Input/Output
O dir EP_DIR Input
0 type EP_TYPE Input

DESCRIPTION

Name Description
dir The endpoint’s direction§.1.1.1
type The endpoint’s transfer typ&[1.1.3

RETURN VALUE

None

B.1 Firmware Library API 209

B.1.5 WDF_FIFOReset()

PURPOSE
» Restores an endpoint’s FIFO (First In First Out) bufferttsodefault state.

PROTOTYPE

void WDF_FIFOReset(int ep);

PARAMETERS
Name Type Input/Output
Oep int Input

DESCRIPTION

Name Description

ep Endpoint number (address)

RETURN VALUE

None

B.1 Firmware Library API 210

B.1.6 WDF_SkipOutPacket()

PURPOSE

* Signals an endpoint’s FIFO (First In First Out) buffer toage received OUT
packets.

PROTOTYPE

void WDF_SkipOutPacket(int ep);

PARAMETERS
Name Type Input/Output
Oep int Input

DESCRIPTION

Name Description

ep Endpoint number (address)

RETURN VALUE

None

B.1 Firmware Library API 211
B.1.7 WDF_FIFOWrite()
PURPOSE
»Writes data to an endpoint’s FIFO (First In First Out) buffe
The call to this function should be followed by a calMbF_Set EPByt eCount ()
[B.1.11.
PROTOTYPE
void WDF_FIFOWrite(int ep, BYTE buf[], int size);
PARAMETERS
Name Type Input/Output
Oep int Input
O buf BYTE[] Input
O size int Input
DESCRIPTION
Name Description
ep Endpoint number (address)
buf Data buffer to write
size Number of bytes to write

RETURN VALUE

None

B.1 Firmware Library API 212

B.1.8 WDF_FIFORead()

PURPOSE

e Reads data from an endpoint’s FIFO (First In First Out) buff
The call to this function should be preceded by a caldB_Get EPByt eCount ()
[B.1.13 in order to determine the amount of bytes to read.

PROTOTYPE

void WDF_FIFORead(int ep, BYTE buf[], int size);

PARAMETERS
Name Type Input/Output
Oep int Input
O buf BYTE[] Output
O size int Input

DESCRIPTION

Name Description

ep Endpoint number (address)

buf Buffer to hold the read data

size Number of bytes to read from the FIFO buffer

RETURN VALUE

None

B.1 Firmware Library API 213

B.1.9 WDF_FIFOFull()

PURPOSE

 Checks if an endpoint’s FIFO (First In First Out) buffer @nepletely full.

PROTOTYPE

BOOL WDF_FIFOFull(int ep);

PARAMETERS
Name Type Input/Output
Oep int Input

DESCRIPTION

Name Description

ep Endpoint number (address)

RETURN VALUE
Returns TRUE if the endpoint’s FIFO buffer is full; othereiseturns FALSE.

B.1 Firmware Library API 214

B.1.10 WDF_FIFOEmpty()

PURPOSE
 Checks if an endpoint’s FIFO (First In First Out) buffer impgty.

PROTOTYPE

BOOL WDF_FIFOEmpty (int ep);

PARAMETERS
Name Type Input/Output
Oep int Input

DESCRIPTION

Name Description

ep Endpoint number (address)

RETURN VALUE
Returns TRUE if the endpoint’s FIFO buffer is empty; othessvieturns FALSE.

B.1 Firmware Library API 215

B.1.11 WDF_SetEPByteCount()

PURPOSE

« Sets the bytes count of an endpoint’s FIFO (First In First)@uffer.
The call to this function should be preceded by a call®® FI FONite() [B.1.7]in
order to update the endpoint’s FIFO buffer with the data teréesferred to the host.

PROTOTYPE

void WDF_SetEPByteCount(int ep, WORD bytes_count);

PARAMETERS
Name Type Input/Output
Oep int Input
O bytes_count WORD Input

DESCRIPTION

Name Description
ep Endpoint number (address)
bytes_count Bytes count to set

RETURN VALUE

None

B.1 Firmware Library API 216

B.1.12 WDF_GetEPByteCount()

PURPOSE

* Gets the current bytes count of an endpoint’'s FIFO (Firgtitat Out) buffer.
This function should be called before callidBF_FI FORead() [B.1.§ to read from
the endpoint’s FIFO buffer, in order to determine the amadiiytes to read.

PROTOTYPE

WORD WDF_GetEPByteCount(int ep);

PARAMETERS
Name Type Input/Output
Oep int Input

DESCRIPTION

Name Description

ep Endpoint number (address)

RETURN VALUE

Returns the endpoint’s FIFO bytes count.

B.1 Firmware Library API 217

B.1.13 WDF_I2CInit()

PURPOSE

e Initializes the 12C bus.

PROTOTYPE

void WDF_I2CInit(void);

RETURN VALUE

None

B.1.14 WDF_SetDigitLed()

PURPOSE

* Displays the specified digit in the development board'stdigD.

PROTOTYPE

void WDF_SetDigitLed (int digit);

PARAMETERS
Name Type Input/Output
O digit int Input

DESCRIPTION

Name Description

O digit The digit to diplay

RETURN VALUE

None

B.1 Firmware Library API 218

B.1.15 WDF_I2CWrite()

PURPOSE

»Writes data to a specified address on the 12C bus.

PROTOTYPE

BOOL WDF_I2CWrite (BYTE addr, BYTE len, BYTE xdatadat);

PARAMETERS

Name Type Input/Output
O addr BYTE Input

O len BYTE Input

O dat xdata* Input

DESCRIPTION

Name Description

O addr The address to which to write

O len The number of bytes to write

O dat Pointer to a buffer containing the data to write

RETURN VALUE

Returns TRUE for a successful write operation; otherwiserns FALSE.

B.1 Firmware Library API 219

B.1.16 WDF_I2CRead()

PURPOSE

*Reads data from a specified address on the 12C bus.

PROTOTYPE

BOOL WDF_I2CRead (BYTE addr, BYTE len, BYTE xdatadat);

PARAMETERS

Name Type Input/Output
O addr BYTE Input

O len BYTE Input

O dat xdata* Output

DESCRIPTION

Name Description

O addr The address from which to read

O len The number of bytes to read

O dat Pointer to a buffer containing the data that is read

RETURN VALUE

Returns TRUE for a successful read operation; otherwisenetALSE.

B.1 Firmware Library API 220

B.1.17 WDF_I2CWaitForEEPROMWrite()

PURPOSE

 Waits for the completion of the current write operation ba specified 12C bus
address.

PROTOTYPE

void WDF_I2CWaitForEEPROMWrite (BYTE addr) ;

PARAMETERS
Name Type Input/Output
O addr BYTE Input

DESCRIPTION

Name Description

O addr The 12C bus address on which to wait

RETURN VALUE

None

B.1 Firmware Library API

B.1.18 WDF_I2CGetStatus()

PURPOSE

 Gets the current status of the 12C bus.

PROTOTYPE

221

int WDF_I2CGetStatus(void);

RETURN VALUE

Returns the 12C bus status.

B.1.19 WDF_I2CClearStatus()

PURPOSE

« Clears the 12C bus status from errors/NAKs.

PROTOTYPE

void WDF_I2CClearStatus(void);

RETURN VALUE

None

B.2 Generated DriverWizard Firmware API 222
B.2 Generated DriverWizard Firmware API

This section describes the WinDriver USB Device generatégeDNizard firmware
API for the Cypress EZ-USB FX2LP CY7C68013A developmenttdodhe
functions described in this section are declared inrRK2LP \include\ periph.h
header file and implemented in the generated DriverWipargph.c file, according
to the device configuration information defined in the wizard

The firmware’s entry point #ai n() in main.c (source code provided for registered
users only) — implementsEask Dispatcher, which calls theA\DF_xxx() functions
declared imperiph.h (and implemented iperiph.c) in order to communicate with
the peripheral device.

NOTE
When modifying the generated code, make sure that you cowitiyyour
development board’s hardware specification — see note tioedt2.4.3.

B.2.1 WDF_Init()

PURPOSE

e Initializes the device.
This function is automatically called from the firmwaret n() function in order to
perform the required initialization to enable communigativith the device.

PROTOTYPE

void WDF_Init(void);

RETURN VALUE

None

B.2 Generated DriverWizard Firmware API 223

B.2.2 WDF_Poll()

PURPOSE

*Polls the device for FIFO data.
The Task Dispatcher calls this function repeatedly whitedbvice is idle.

PROTOTYPE

void WDF_Poll(void)

RETURN VALUE

None

B.2.3 WDF_Suspend()

PURPOSE

* This function is called by the Task Dispatcher before thaaegoes into suspend
mode.

PROTOTYPE

BOOL WDF_Suspend(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 224

B.2.4 WDF_Resume()

PURPOSE

* This function is called by the Task Dispatcher after theicevesumes activity.

PROTOTYPE

BOOL WDF_Resume (void) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2.5 WDF_GetDescriptor()

PURPOSE

* This function is called by the Task Dispatcher when a GET DREBPTOR
command is received.

PROTOTYPE

BOOL WDF_GetDescriptor(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 225

B.2.6 WDF_SetConfiguration()

PURPOSE

* This function is called by the Task Dispatcher when a SET E@URATION
command is received.

PROTOTYPE

BOOL WDF_SetConfiguration(BYTE config);

PARAMETERS
Name Type Input/Output
O config BYTE Input

DESCRIPTION

Name Description

config Configuration number to set

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 226

B.2.7 WDF_GetConfiguration()

PURPOSE

* This function is called by the Task Dispatcher when a GET EGANURATION
command is received.

PROTOTYPE

BOOL WDF_GetConfiguration(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 227

B.2.8 WDF_Setinterface()

PURPOSE

* This function is called by the Task Dispatcher when a SETERFACE command
is received.

PROTOTYPE

BOOL WDF_Setinterface (BYTE ifc , BYTE alt_set);

PARAMETERS
Name Type Input/Output
O ifc BYTE Input
O alt_set BYTE Input

DESCRIPTION

Name Description
ifc Interface number to set
alt_set Alternate setting number to set

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API

B.2.9 WDF_Getinterface()

PURPOSE

228

* This function is called by the Task Dispatcher when a GETEHRFACE command

is received.

PROTOTYPE

BOOL WDF_Getinterface (BYTE ifc);

PARAMETERS
Name Type Input/Output
O ifc BYTE Input
DESCRIPTION
Name Description
ifc Interface number

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 229

B.2.10 WDF_GetStatus()

PURPOSE

« This function is called by the Task Dispatcher when a GETBI& command is
received.

PROTOTYPE

BOOL WDF_GetStatus (void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2.11 WDF_ClearFeature()

PURPOSE

* This function is called by the Task Dispatcher when a CLEARAFURE command
is received.

PROTOTYPE

BOOL WDF_ClearFeature(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2 Generated DriverWizard Firmware API 230

B.2.12 WDF_SetFeature()

PURPOSE

* This function is called by the Task Dispatcher when a SET FERE command is
received.

PROTOTYPE

BOOL WDF_SetFeature(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

B.2.13 WDF_VendorCmnd()

PURPOSE

* This function is called by the Task Dispatcher when a vergiacific command is
received.

PROTOTYPE

BOOL WDF_VendorCmnd (void) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

Appendix C

WinDriver USB Device
Microchip PIC18F4550 API
Reference

C.1 Firmware Library API

This section describes the WinDriver USB Device firmwaredily API for the
Microchip PIC18F4550 development board. The functionsgarteral types and
definitions described in this section are declared and di{iespectively) in the
18F4550,include\wdf_microchip_lib.h header file. The functions are implemented
in the generated DriverWizasddf_microchip_lib.c file — for registered users, or in
the 18F4550wdf_microchip_18f4550_eval.litkevaluation firmware library — for
evaluation users (see sectib®.3.4for details).

NOTE

Registered users can modify the library source code. Whatifyiiog the code,
make sure that you comply with your development board’s\ward specification —
see note in sectioh2.4.3

231

C.1 Firmware Library API 232

C.1.1 Firmware Library Types

The data types described in this section are defined ih8r&550 include \types.h
header file.

C.1.1.1 EP_DIR Enumeration

Enumeration of endpoint directions:

Enum Value | Description
ouT Direction OUT (write from the host to the device)
IN Direction IN (read from the device to the host)

C.1.1.2 EP_TYPE Enumeration

Enumeration of endpoint types.
The endpoint’s type determines the type of transfers to biepeed on the endpoint
— bulk, interrupt or isochronous.

Enum Value Description
ISOCHRONOUS| Isochronous endpoint
BULK Bulk endpoint
INTERRUPT Interrupt endpoint

C.1 Firmware Library API

C.1.1.3 BD_STAT Union

233

Endpoint buffer descriptor status union type:

Name Type Description
O byte byte
0 struct
0BC8 bit field (1) | Bit 8 of the endpoint’s last transfer byte count
0BC9 bit field (1) | Bit 9 (MSB) of the endpoint’s last transfer byte
count
OBSTALL | bitfield (1) | Buffer stall enable
ODTSEN | bitfield (1) | Data toggle synchronization enable
OINCDIS | bitfield (1) | Address increment disable
OKEN bit field (1) | Buffer descriptor keep enable
ODTS bit field (1) | Data toggle synchronization value
0 UOWN bit field (1) | USB ownership
0 struct
0BC8 bit field (1) | Bit 8 of the endpoint’s last transfer byte count
0BC9 bit field (1) | Bit 9 (MSB) of the endpoint’s last transfer byte
count
O PIDO bit field (1) | Bit O of the packet identifier
OPID1 bit field (1) | Bit 1 of the packet identifier
O PID2 bit field (1) | Bit 2 of the packet identifier
OPID3 bit field (1) | Bit 3 of the packet identifier
O bit field (1) | Reserved
0 UOWN bit field (1) | USB ownership
0 struct
O bit field (2) | Reserved
O PID bit field (4) | Packet identifier
O bit field (2) | Reserved

C.1 Firmware Library API 234

C.1.1.4 BDT Union

Endpoint buffer descriptor table union type:

Name Type Description
0 struct
0 Stat BD_STAT | Buffer descriptor status].1.1.3
0 Cnt byte The endpoint’s last transfer byte count. The byte

count’s most significant bits are stored in 88
andBC9 fields of theBD_STAT union (St at)

OADRL | byte Low buffer address
OADRH | byte High buffer address
0 struct
O bit field (8) | Reserved
O bit field (8) | Reserved
OADR byte* Pointer to the buffer address

C.1.1.5 EP_DATA Structure

Endpoint data structure type.

The structure consists of the following members:

Name Type Description

number byte Endpoint number

reg near byte*| UEPnN register address

max_packet word The endpoint’s maximum packet size (in bytes

e_bdt BDT* Pointer to the endpoint’s even buffer descriptor
table [C.1.1.4

0_hdt BDT* Pointer to the endpoint’s odd buffer descriptor
table [C.1.1.4

e_buffer byte* Pointer to the endpoint’s even data buffer

o_buffer byte* Pointer to the endpoint’s odd data buffer

C.1 Firmware Library API 235
C.1.2 WDF_EPConfig()
PURPOSE
* Configures and enables a given endpoint for USB transfers.
PROTOTYPE
void WDF_EPConfig(
EP_DATA xep_data,
byte ep_num,
EP_DIR dir,
EP_TYPE type ,
word max_packet ,
near byte=xreg,
BDT *e_bdt,
byte »e_buffer,
BDT «o_bdt,
byte »o_buffer);
PARAMETERS
Name Type Input/Output
O ep_data EP_DATA* Input/Output
O ep_num byte Input
O dir EP_DIR Input
0 type EP_TYPE Input
0 max_packet word Input
O reg near byte* Input
O e_bdt BDT* Input
O e_buffer byte* Input
O o_bdt BDT* Input
O o_buffer byte* Input

DESCRIPTION

Name Description

O ep_data Pointer to an endpoint data structuéz1.1.9
0 ep_num The endpoint’s number

O dir The endpoint’s directiond.1.1.]

C.1 Firmware Library API 236

Name Description

O type The endpoint’s transfer typ€[1.1.2

0 max_packet The endpoint’s maximum packet size (in bytes)

O reg Pointer to the endpoint’s UEPnN register

O e bdt Pointer to the endpoint’s even buffer descriptor table
[C.114

O e_buffer Pointer to the endpoint’s even data buffer

O o_bdt Pointer to the endpoint’s odd buffer descriptor table
[C.114

O o_buffer Pointer to the endpoint’s odd data buffer

RETURN VALUE

None

C.1 Firmware Library API 237

C.1.3 WDF_EPWrite()

PURPOSE

» Writes data to a given endpoint.

The call to this function should be followed by a call to

VWDF TriggerWiteTransfer() [C.1.4.

PROTOTYPE

void WDF_EPWrite(EP_DATAxep_data , bytexbuffer, word len);

PARAMETERS
Name Type Input/Output
O ep_data EP_DATA* Input
O buffer byte* Input
O len word len

DESCRIPTION

Name Description

O ep_data Pointer to an endpoint data structu@1.1.5

O buffer Pointer to a buffer containing the data to write
O len The number of bytes to write

RETURN VALUE

None

C.1 Firmware Library API 238

C.1.4 WDF_EPRead()

PURPOSE

*Reads data from a given endpoint.

The call to this function should be followed by a call to

VWDF_Trigger ReadTransfer () [C.1.7.

PROTOTYPE

word WDF_EPRead (EP_DATA- ep_data, bytexbuffer, word len);

PARAMETERS
Name Type Input/Output
O ep_data EP_DATA* Input
O buffer byte* Output
O len word len

DESCRIPTION

Name Description

O ep_data Pointer to an endpoint data structu@1.1.5

O buffer Pointer to a buffer to be updated with the read data
O len The number of bytes to read

RETURN VALUE

Returns the number of bytes that were read.

C.1 Firmware Library API 239

C.1.5 WDF_IsEPBusy()

PURPOSE

 Checks if the given endpoint is currently busy.

PROTOTYPE

BOOL WDF_IsEPBusy (EP_DATA«ep_data);

PARAMETERS
Name Type Input/Output
O ep_data EP_DATA* Input

DESCRIPTION

Name Description

O ep_data Pointer to an endpoint data structuéz1.1.9

RETURN VALUE

Returns TRUE if the endpoint is currently busy; otherwidemes FALSE.

C.1 Firmware Library API 240

C.1.6 WDF_TriggerWriteTransfer()

PURPOSE

 Triggers a write data transfer on a given endpoint, tranisigthe USB ownership
of the relevant buffer descriptor to the SIE.

PROTOTYPE

void WDF_TriggerWriteTransfer (EP_DATA ep_data);

PARAMETERS
Name Type Input/Output
O ep_data EP_DATA* Input

DESCRIPTION

Name Description

O ep_data Pointer to an endpoint data structuéz1.1.9

RETURN VALUE

None

C.1 Firmware Library API 241

C.1.7 WDF_TriggerReadTransfer()

PURPOSE

 Triggers a read data transfer on a given endpoint, tramsfgthe USB ownership of
the relevant buffer descriptor to the SIE.

PROTOTYPE

void WDF_TriggerReadTransfer (EP_DATAep_data);

PARAMETERS
Name Type Input/Output
O ep_data EP_DATA* Input

DESCRIPTION

Name Description

O ep_data Pointer to an endpoint data structuéz1.1.9

RETURN VALUE

None

C.1 Firmware Library API 242

C.1.8 WDF_GetReadBytesCount()

PURPOSE

* Gets the current bytes count in a given endpoint’s reacebuff
This function should be called before callidbF_EPRead() [C.1.4 to read from the
endpoint, in order to determine the amount of bytes to read.

PROTOTYPE

WORD WDF_GetReadBytesCount(EP_DATAep_data);

PARAMETERS
Name Type Input/Output
O ep_data EP_DATA* Input

DESCRIPTION

Name Description

O ep_data Pointer to an endpoint data structu@1.1.5

RETURN VALUE

Returns the endpoint’s read buffer bytes count.

C.1 Firmware Library API

C.1.9 WDF_DisableEP1to15()

PURPOSE

Disables endpoints 1 to 15.

PROTOTYPE

243

void WDF_DisableEP1tol5 (void);

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 244

C.2 Generated DriverWizard Firmware API

This section describes the WinDriver USB Device generatégeDNizard firmware
API for the Microchip PIC18F4550 development board. Thecfions described

in this section are declared in ti8F4550,include\ periph.h header file and
implemented in the generated DriverWizgretiph.c file, according to the device
configuration information defined in the wizard.

The firmware’s entry point #ai n() in main.c (source code provided for registered
users only) — implementsEask Dispatcher, which calls theA\DF_xxx() functions
declared imperiph.h (and implemented iperiph.c) in order to communicate with
the peripheral device.

NOTE
When modifying the generated code, make sure that you cowitiyyour
development board’s hardware specification — see note tioedt2.4.3.

C.2.1 WDF_lInit()

PURPOSE

e Initializes the device.
This function is automatically called from the firmwaret n() function in order to
perform the required initialization to enable communigativith the device.

PROTOTYPE

void WDF_Init(void);

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API

C.2.2 WDF_Poll()

PURPOSE
* Polls the device for FIFO data.

The Task Dispatcher calls this function repeatedly whitedbvice is idle.

PROTOTYPE

245

void WDF_Poll(void)

RETURN VALUE

None

C.2.3 WDF_SOFHandler()

PURPOSE

« Start of frame interrupt handler function.

PROTOTYPE

void WDF_SOFHandler(void) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2 Generated DriverWizard Firmware API 246

C.2.4 WDF_Suspend()

PURPOSE

* This function is called by the Task Dispatcher before thaaegoes into suspend
mode.

PROTOTYPE

BOOL WDF_Suspend(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2.5 WDF_Resume()

PURPOSE

* This function is called by the Task Dispatcher after theicevesumes activity.

PROTOTYPE

BOOL WDF_Resume (void) ;

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2 Generated DriverWizard Firmware API

C.2.6 WDF_ErrorHandler()

PURPOSE

«USB error interrupt handler function.

PROTOTYPE

247

void WDF_ErrorHandler(void);

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 248

C.2.7 WDF_SetConfiguration()

PURPOSE

* This function is called by the Task Dispatcher when a SET E@URATION
command is received.

PROTOTYPE

void WDF_SetConfiguration(byte config);

PARAMETERS
Name Type Input/Output
O config byte Input

DESCRIPTION

Name Description

O config Configuration number to set

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 249

C.2.8 WDF_SetInterface()

PURPOSE

* This function is called by the Task Dispatcher when a SETERFACE command
is received.

PROTOTYPE

void WDF_Setinterface(byte ifc, byte alt_set);

PARAMETERS
Name Type Input/Output
O ifc byte Input
O alt_set byte Input

DESCRIPTION

Name Description
0 ifc Interface number to set
O alt_set Alternate setting number to set

RETURN VALUE

None

C.2 Generated DriverWizard Firmware API 250

C.2.9 WDF_Getinterface()

PURPOSE

* This function is called by the Task Dispatcher when a GETEHRFACE command
is received.

PROTOTYPE

byte WDF_GetInterface (byte ifc);

PARAMETERS
Name Type Input/Output
O ifc byte Input

DESCRIPTION

Name Description

O ifc Interface number

RETURN VALUE

Returns the number of the active alternate setting for therginterface.

C.2 Generated DriverWizard Firmware API 251

C.2.10 WDF_VendorCmnd()

PURPOSE

* This function is called by the Task Dispatcher when a vergiacific command is

received.

PROTOTYPE

BOOL WDF_VendorCmnd (
byte bRequest,
word wValue,
word windex,
word wLength);

PARAMETERS

Name Type Input/Output

O bRequest byte Input

O wValue word Input

O windex word Input

O wLength word Input
DESCRIPTION

Name Description

O bRequest The actual request

O wValue The request’'siwal ue field

O windex The request’'si ndex field

O wLength The number of bytes to transfer (if the request has a datg

stage)

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2 Generated DriverWizard Firmware API 252

C.2.11 WDF_ClearFeature()

PURPOSE

* This function is called by the Task Dispatcher when a CLEARAFURE command
is received.

PROTOTYPE

BOOL WDF_ClearFeature(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

C.2.12 WDF_SetFeature()

PURPOSE

* This function is called by the Task Dispatcher when a SET HERE command is
received.

PROTOTYPE

BOOL WDF_SetFeature(void);

RETURN VALUE

Returns TRUE if successful; otherwise returns FALSE.

Appendix D

WinDriver USB Device Silicon
Laboratories C8051F320 API
Reference

D.1 Firmware Library API

This section describes the WinDriver USB Device firmwaredily API for the

Silicon Laboratories C8051F320 development board. Thetfons and general types
and definitions described in this section are declared afidetk(respectively) in
theF320\include\wdf_silabs_lib.nheader file. The functions are implemented in
the generated DriverWizasddf_silabs_lib.cfile — for registered users, or in the
F320\wdf_silabs_f320_eval.litevaluation firmware library — for evaluation users
(see sectiori2.3.4for details).

NOTE

Registered users can modify the library source code. Whatifyiiog the code,
make sure that you comply with your development board’s\ward specification —
see note in sectioh2.4.3

253

D.1 Firmware Library API 254

D.1.1 wdf silabs_lib.h Types

The APIs described in this section are define&®20\wdf_silabs_lib.h

D.1.1.1 EP_DIR Enumeration

Enumeration of endpoint directions:

Enum Value | Description
DIR_OUT Direction OUT (write from the host to the device)
DIR_IN Direction IN (read from the device to the host)

D.1.1.2 EP_TYPE Enumeration

Enumeration of endpoint types.
The endpoint’s type determines the type of transfers to biepeed on the endpoint
— bulk, interrupt or isochronous.

Enum Value Description
ISOCHRONOUS| Isochronous endpoint
BULK Bulk endpoint
INTERRUPT Interrupt endpoint

D.1.1.3 EP_BUFFERING Enumeration

Enumeration of endpoint buffering types:

Enum Value Description
NO_BUFFERING No buffering
DOUBLE_BUFFERING | Double buffering

D.1 Firmware Library API 255

D.1.1.4 EP_SPLIT Enumeration

Enumeration of endpoint’s FIFO (First In First Out) buffetismodes

Enum Value | Description
NO_SPLIT | Do not split the endpoint’s FIFO buffer
SPLIT Split the endpoint’s FIFO buffer

D.1.2 ¢8051f320.h Types and General Definitions

The APIs described in this section are define&320\c8051f320.h

D.1.2.1 Endpoint Address Definitions

The following preprocessor definitions depict an endpsiatidress (i.e. its number):

Name Description

EP1_IN Endpoint 1, direction IN — address 0x81
EP1_OUT| Endpoint 1, direction OUT — address 0x01
EP2_IN Endpoint 2, direction IN — address 0x82
EP2_OUT| Endpoint 2, direction OUT — address 0x02
EP3_IN Endpoint 3, direction IN — address 0x83
EP3_OUT| Endpoint 3, direction OUT — address 0x03

D.1.2.2 Endpoint State Definitions

The following preprocessor definitions depict an endpsistiate:

Name Description

EP_IDLE The endpointis idle

EP_TX The endpoint is transferring data
EP_ERROR An error occurred in the endpoint
EP_HALTED The endpoint is halted

EP_RX The endpoint is receiving data
EP_NO_CONFIGURED The endpointis not configured

D.1 Firmware Library API

256

D.1.2.3 EP_INT_HANDLER Function Pointer

Endpoint interrupt handler function pointer type.
typedef void (*EP_I NT_HANDLER) (PEP_STATUS);

D.1.2.4 EPO_COMMAND Structure

Control endpoint (Pipe 0) host command information strestype.

The structure consists of the following members:

t;

1%

1%

AN

[1]

Name Type Description

bmRequestType BYTE Request Type:
Bit 7: Request direction (0=Host to device - Ou
1=Device to host - In).
Bits 5-6 Request type (O=standard, 1=class,
2=vendor, 3=reserved).
Bits 0-4 Recipient (O=device, 1=interface,
2=endpoint,3=other).

bRequest BYTE | The specific request

wValue WORD | A WORD-size value that varies according to th
request

windex WORD | A WORD-size value that varies according to th
request. This value is typically used to specify
endpoint or an interface.

wlLength WORD | The length (in bytes) of the data segment for th
request —i.e. the number of bytes to transfer if
there is a data stage

D.1 Firmware Library API 257

D.1.2.5 EP_STATUS Structure

Endpoint status information structure type, used for IN,TCdnd endpoint O
(control) requests.

The structure consists of the following members:

Name Type Description

bEp BYTE Endpoint addres€J.1.2.]

uNumBytes| UINT Number of bytes available for transfer

uMaxP UINT Maximum packet size

bEpState BYTE Endpoint state

pData void* Pointer to a data buffer used for transferring data
to/from the endpoint

wData WORD Storage for small data packets

pflsr EP_INT_HANDLER | Interrupt Service Routine (ISRP[1.2.3

D.1.2.6 PEP_STATUS Structure Pointer

Pointer to arEP_STATUS structure P.1.2.3.

D.1.2.7 IF_STATUS Structure

Interface status structure type.

The structure consists of the following members:

Name Type | Description
bNumAlts | BYTE | Number of alternate settings choices for the
interface

bCurrentAlt| BYTE | Current active alternate setting for the interface
blfNumber | BYTE | Interface number

D.1 Firmware Library API 258
D.1.2.8 PIF_STATUS Structure Pointer
Pointer to ari F_STATUS structure.
D.1.3 WDF_EPINConfig()
PURPOSE
« Configure endpoints 1-3 for IN transfers
PROTOTYPE
void WDF_EPINConfig (
PEP_STATUS pEpStatus,
BYTE address,
EP_TYPE type,
int maxPacketSize ,
EP_INT_HANDLER pflsr ,
EP_BUFFERING buffering ,
EP_SPLIT splitMode);
PARAMETERS
Name Type Input/Output
O pEpStatus PEP_STATUS Output
O address BYTE Input
0 type EP_TYPE Input
O maxPacketSize int Input
O pflsr EP_INT_HANDLER Input
O buffering EP_BUFFERING Input
O splitMode EP_SPLIT Input

DESCRIPTION

Name Description

pEpStatus Pointer to an endpoint’s status information structure
[D.1.2.9. The function updates the structure with the
relevant status information.

address Endpoint addres€]J.1.2.]

type The endpoint’s transfer typ®[1.1.3

D.1 Firmware Library API 259

Name Description

maxPacketSize The endpoint’s maximum packet size
pflsr The endpoint’s interrupt handleD[1.2.3
buffering The endpoint’s buffering typey.1.1.3
splitMode The endpoint’s split mode].1.1.4

RETURN VALUE

None

D.1.4 WDF_EPOUTConfig()

PURPOSE

» Configure endpoints 1-3 for OUT transfers

PROTOTYPE

void WDF_EPOUTConfig (
PEP_STATUS pEpStatus,
BYTE address ,
EP_TYPE type ,
int maxPacketSize ,
EP_INT_HANDLER pflsr ,
EP_BUFFERING buffering);

PARAMETERS

Name Type Input/Output
O pEpStatus PEP_STATUS Output

O address BYTE Input

0 type EP_TYPE Input

O maxPacketSize int Input

O pflsr EP_INT_HANDLER Input

O buffering EP_BUFFERING Input

D.1 Firmware Library API

DESCRIPTION

260

Name Description

pEpStatus Pointer to an endpoint’s status information structure
[D.1.2.9. The function updates the structure with the
relevant status information.

address Endpoint addresdy.1.2.]

type The endpoint’s transfer typ®[1.1.3

maxPacketSize The endpoint’'s maximum packet size

pflsr The endpoint’s interrupt handleD[1.2.3

buffering The endpoint’s buffering typey.1.1.3

RETURN VALUE

None

D.1 Firmware Library API 261

D.1.5 WDF_HaltEndpoint()

PURPOSE

e Halt an endpoint

PROTOTYPE

BYTE WDF_HaltEndpoint(PEP_STATUS pEpStatus);

PARAMETERS
Name Type Input/Output
0 pEpStatus PEP_STATUS Input/Output

DESCRIPTION

Name Description
pEpStatus Pointer to an endpoint’s status information structure
[D.1.2.9

RETURN VALUE
Returns the endpoint’s statB.[1.2.3.

D.1 Firmware Library API 262

D.1.6 WDF_EnableEndpoint()

PURPOSE

e Enable an endpoint

PROTOTYPE

BYTE WDF_EnableEndpoint (PEP_STATUS pEpStatus);

PARAMETERS
Name Type Input/Output
0 pEpStatus PEP_STATUS Input/Output

DESCRIPTION

Name Description
pEpStatus Pointer to an endpoint’s status information structure
[D.1.2.9

RETURN VALUE
Returns the endpoint’s statB.[1.2.3.

D.1 Firmware Library API 263

D.1.7 WDF_SetEPByteCount()

PURPOSE

« Sets the bytes count of an endpoint’s FIFO (First In First)@uffer.

The call to this function should be preceded by a call®® FI FONite() [D.1.19
in order to update the endpoint’s FIFO buffer with the dathddransferred to the
host.

PROTOTYPE

void WDF_SetEPByteCount(BYTE bEp, UINT bytes_count);

PARAMETERS
Name Type Input/Output
O bEp BYTE Input
O bytes_count UINT Input

DESCRIPTION

Name Description
bEp Endpoint addres€d]J.1.2.]
bytes_count Bytes count to set

RETURN VALUE

None

D.1 Firmware Library API 264

D.1.8 WDF_GetEPByteCount()

PURPOSE

* Gets the current bytes count of an endpoint’'s FIFO (Firgtitat Out) buffer.
This function should be called before callidBF_FI FORead() [D.1.13to read from
the endpoint’s FIFO buffer, in order to determine the amadiiytes to read.

PROTOTYPE

UINT WDF_GetEPByteCount (BYTE bEp);

PARAMETERS
Name Type Input/Output
O bEp BYTE Input

DESCRIPTION

Name Description

bEp Endpoint addresdy.1.2.

RETURN VALUE

Returns the endpoint’s FIFO bytes count.

D.1 Firmware Library API

D.1.9 WDF_FIFOClear()

PURPOSE
* Empties and endpoint’s FIFO (First In First Out) buffer

PROTOTYPE

265

void WDF_FIFOCIlear(BYTE bEp);

PARAMETERS

Name Type

Input/Output

0 bEp BYTE

Input

DESCRIPTION

Name Description

bEp Endpoint addres€J.1.2.]

RETURN VALUE

None

D.1 Firmware Library API 266

D.1.10 WDF_FIFOFull()

PURPOSE

 Checks if an endpoint’s FIFO (First In First Out) buffer mnepletely full

PROTOTYPE

BOOL WDF_FIFOFull (BYTE bEp);

PARAMETERS
Name Type Input/Output
O bEp BYTE Input

DESCRIPTION

Name Description

bEp Endpoint addres€J.1.2.]

RETURN VALUE
Returns TRUE if the endpoint’s FIFO buffer is full; othereiseturns FALSE.

D.1 Firmware Library API 267

D.1.11 WDF_FIFOEmpty()

PURPOSE
 Checks if an endpoint’'s FIFO (First In First Out) buffer sty

PROTOTYPE

BOOL WDF_FIFOEmpty (BYTE bEp);

PARAMETERS
Name Type Input/Output
O bEp BYTE Input

DESCRIPTION

Name Description

bEp Endpoint addres€J.1.2.]

RETURN VALUE
Returns TRUE if the endpoint’s FIFO buffer is empty; othessvieturns FALSE.

D.1 Firmware Library API 268
D.1.12 WDF_FIFOWrite()
PURPOSE
»Write data to an endpoint’s FIFO (First In First Out) buffer
The call to this function should be followed by a calMbF_Set EPByt eCount ()
[D.1.7.
PROTOTYPE
void WDF_FIFOWrite (BYTE bEp, UINT uNumBytes, BYTE pData);
PARAMETERS
Name Type Input/Output
O bEp BYTE Input
0 pData BYTE* Input
0 uNumBytes UINT Input
DESCRIPTION
Name Description
bEp Endpoint addresdy.1.2.]
pData Data buffer to write
uNumBytes Number of bytes to write

RETURN VALUE

None

D.1 Firmware Library API 269

D.1.13 WDF_FIFORead()

PURPOSE

*Read data from an endpoint’'s FIFO (First In First Out) buffe
The call to this function should be preceded by a caldB_Get EPByt eCount ()
[D.1.§ in order to determine the amount of bytes to read.

PROTOTYPE

void WDF_FIFORead (BYTE bEp, UINT uNumBytes, BYTEpData);

PARAMETERS
Name Type Input/Output
O bEp BYTE Input
0 pData BYTE* Output
0 uNumBytes UINT Input

DESCRIPTION

Name Description

bEp Endpoint addresdy.1.2.]

pData Buffer to hold the read data

uNumBytes Number of bytes to read from the FIFO buffer

RETURN VALUE

None

D.1 Firmware Library API

D.1.14 WDF_GetEPStatus()

PURPOSE

270

 Gets an endpoint’s status information

PROTOTYPE

PEP_STATUS WDF_GetEPStatus(BYTE bEp);

PARAMETERS

Name

Type Input/Output

O bEp

BYTE Input

DESCRIPTION

Name

Description

bEp

Endpoint addres€J.1.2.]

RETURN VALUE

Returns a pointer to a structure that holds the endpoirstsisinformation[D.1.2.4.

D.2 Generated DriverWizard Firmware API 271
D.2 Generated DriverWizard Firmware API

This section describes the WinDriver USB Device generatégeDNizard firmware
API for the Silicon Laboratories C8051F320 developmenttdoa@he functions
described in this section are declared in #820\include\periph.h header file and
implemented in the generated DriverWizgretiph.c file, according to the device
configuration information defined in the wizard.

NOTE
When modifying the generated code, make sure that you cowitiyyour
development board’s hardware specification — see note tioedt2.4.3.

D.2.1 WDF_USBReset()

PURPOSE

e Initializes the device status information to zero (0) aeskts all endpoints

PROTOTYPE

void WDF_USBReset(void) ;

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API

D.2.2 WDF_SetAddressRequest()

PURPOSE
eHandles a SET ADDRESS request

PROTOTYPE

272

void WDF_SetAddressRequest(void) ;

RETURN VALUE

None

D.2.3 WDF_SetFeatureRequest()

PURPOSE
eHandles a SET ADDRESS request

PROTOTYPE

void WDF_SetFeatureRequest(void);

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API

D.2.4 WDF_ClearFeatureRequest()

PURPOSE
eHandles a CLEAR FEATURE request

PROTOTYPE

273

void WDF_ClearFeatureRequest (void);

RETURN VALUE

None

D.2.5 WDF_SetConfigurationRequest()

PURPOSE
eHandles a SET CONFIGURATION request

PROTOTYPE

void WDF_SetConfigurationRequest(void);

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API

D.2.6 WDF_SetDescriptorRequest()

PURPOSE
eHandles a SET DESCRIPTOR request

PROTOTYPE

274

void WDF_SetDescriptorRequest(void);

RETURN VALUE

None

D.2.7 WDF_SetInterfaceRequest()

PURPOSE
eHandles a SET INTERFACE request

PROTOTYPE

void WDF_SetIinterfaceRequest (void);

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API 275

D.2.8 WDF_GetStatusRequest()

PURPOSE
eHandles a GET STATUS request

PROTOTYPE

void WDF_GetStatusRequest(void);

RETURN VALUE

None

D.2.9 WDF_GetDescriptorRequest()

PURPOSE
eHandles a GET DESCRIPTOR request

PROTOTYPE

void WDF_GetDescriptorRequest (void);

RETURN VALUE

None

D.2 Generated DriverWizard Firmware API

D.2.10 WDF_GetConfigurationRequest()

PURPOSE
eHandles a GET CONFIGURATION request

PROTOTYPE

276

void WDF_GetConfigurationRequest(void);

RETURN VALUE

None

D.2.11 WDF_GetInterfaceRequest()

PURPOSE
eHandles a GET INTERFACE request

PROTOTYPE

void WDF_GetinterfaceRequest(void);

RETURN VALUE

None

Appendix E

Troubleshooting and Support

Please refer tatt p: / / ww. j ungo. conl support for addition resources for
developers, including:

¢ Technical documents
* FAQs
e Samples

* Quick start guides

277

http://www.jungo.com/support

Appendix F

Evaluation Version Limitations

F.1 Windows 98/Me/2000/XP/Server 2003

« Each time WinDriver is activated, dgnregisteredmessage appears.

« When using the DriverWizard, a dialog box with a messagnsighat an
evaluation version is being run appears on every intenagtith the hardware.

« WinDriver will function for only 30 days after the originaistallation.

F.2 Windows CE

e Each time WinDriver is activated, ddnregisteredmessage appears.

e The WinDriver CE KernelWindrvr6.dll) will operate for no more than 60
minutes at a time.

e WinDriver CE emulation on Windows 2000/XP/Server 2003 stibp working
after 30 days.

F.3 Linux

« Each time WinDriver is activated, dgnregisteredmessage appears.

« When using the DriverWizard, a dialog box with a messagnsighat an
evaluation version is being run appears on every intenagtith the hardware.

278

F.4 DriverWizard GUI 279

« WinDriver’s kernel module will work for no more then 60 mites at a time.
In order to continue working, the WinDriver kernel moduleshhbe reloaded
(remove and insert the module) using the following commands
To remove:

/ sbin/rmod wi ndrvr6
To insert:
/ sbi n/ nodpr obe wi ndrvr6

F.4 DriverWizard GUI

e Each time WinDriver is activated, ddnregisteredmessage appears.

* When using the DriverWizard, a dialog box with a messagensighat an
evaluation version is being run appears on every intenagtith the hardware.

Appendix G

Purchasing WinDriver

Fill in the order form found irStart | WinDriver | Order Form on your Windows
start menu, and send it to Jungo via email, fax or mail (seaildételow).

Your WinDriver package will be sent to you via Fedex or staddaostal mail. The
WinDriver license string will be emailed to you immediately

EMAIL

Support: support@jungo.com
Sales: sales@jungo.com
PHONE/FAX

Phone:

USA (Toll-Free): 1-877-514-0537
Worldwide: +972-9-8859365
Fax:

USA (Toll-Free): 1-877-514-0538
Worldwide: +972-9-8859366

W E B:

http://ww. j ungo. com
POSTAL ADDRESS

Jungo Ltd.
P.0.Box 8493
Netanya 42504
ISRAEL

280

mailto:support@jungo.com
mailto:sales@jungo.com
http://www.jungo.com

Appendix H

Distributing Your Driver —
Legal Issues

WinDriver is licensed per-seat. The WinDriver license a#oone developer on a
single computer to develop an unlimited number of deviceedsi and to freely

distribute the created drivers without royalties, as auwglil in the license agreement
in theWinDriver/docs/license.txt file.

281

Appendix |

Additional Documentation

Updated Manual

The most updated WinDriver User’s manual can be found ondasije at:
http://ww. j ungo. com support/ manual s. ht ml #manual s

Version History

If you wish to view WinDriver version history, please refer t

http:// ww:.j ungo. coml wdver. ht m . Here you will be able to view a list of all
new features, enhancements and fixes which have been adelechitwinDriver
version.

Technical Documents

For additional information, you may refer to the TechnicaldDments database on
our site at:

http://ww. j ungo. com support/tech_docs_i ndexes/ nai n_i ndex. htm .

The Technical Documents database includes detailed gésas of WinDriver’s
features, utilities and APIs and their correct usage, tieshmooting of common
problems, useful tips and answers to frequently asked iguesst

282

http://www.jungo.com/support/manuals.html#manuals
http://www.jungo.com/wdver.html
http://www.jungo.com/support/tech_docs_indexes/main_index.html

	Table of Contents
	List of Figures
	1 WinDriver Overview
	1.1 Introduction to WinDriver
	1.2 Background
	1.2.1 The Challenge
	1.2.2 The WinDriver Solution

	1.3 Conclusion
	1.4 WinDriver Benefits
	1.5 WinDriver Architecture
	1.6 What Platforms Does WinDriver Support?
	1.7 Limitations of the Different Evaluation Versions
	1.8 How Do I Develop My Driver with WinDriver?
	1.8.1 On Windows 98/Me/2000/XP/Server 2003 and Linux
	1.8.2 On Windows CE

	1.9 What Does the WinDriver Toolkit Include?
	1.9.1 WinDriver Modules
	1.9.2 Utilities
	1.9.3 WinDriver's Specific Chipset Support
	1.9.4 Samples

	1.10 Can I Distribute the Driver Created with WinDriver?
	1.11 Identifying the Right Tool for Your Development

	2 Understanding Device Drivers
	2.1 Device Driver Overview
	2.2 Classification of Drivers According to Functionality
	2.2.1 Monolithic Drivers
	2.2.2 Layered Drivers
	2.2.3 Miniport Drivers

	2.3 Classification of Drivers According to Operating Systems
	2.3.1 WDM Drivers
	2.3.2 VxD Drivers
	2.3.3 Unix Device Drivers
	2.3.4 Linux Device Drivers

	2.4 The Entry Point of the Driver
	2.5 Associating the Hardware to the Driver
	2.6 Communicating with Drivers

	3 WinDriver USB Overview
	3.1 Introduction to USB
	3.2 WinDriver USB Benefits
	3.3 USB Components
	3.4 Data Flow in USB Devices
	3.5 USB Data Exchange
	3.6 USB Data Transfer Types
	3.6.1 Control Transfer
	3.6.2 Isochronous Transfer
	3.6.3 Interrupt Transfer
	3.6.4 Bulk Transfer

	3.7 USB Configuration
	3.8 WinDriver USB
	3.9 WinDriver USB Architecture
	3.10 Which Drivers Can I Write with WinDriver USB?

	4 Installing WinDriver
	4.1 System Requirements
	4.1.1 For Windows 98/Me
	4.1.2 For Windows NT/2000/XP/Server 2003
	4.1.3 For Windows CE
	4.1.4 For Linux

	4.2 WinDriver Installation Process
	4.2.1 Windows 98/Me/2000/XP/Server 2003 WinDriver Installation Instructions
	4.2.2 Windows CE WinDriver Installation Instructions
	4.2.2.1 Installing WinDriver CE when Building New CE-based Platforms
	4.2.2.2 Installing WinDriver CE when Developing Applications for CE Computers
	4.2.2.3 Windows CE Installation Note

	4.2.3 Linux WinDriver Installation Instructions
	4.2.3.1 Preparing the System for Installation
	4.2.3.2 Installation

	4.3 Upgrading Your Installation
	4.4 Checking Your Installation
	4.4.1 On Your Windows, Linux and Solaris Machines
	4.4.2 On Your Windows CE Machine

	4.5 Uninstalling WinDriver
	4.5.1 On Windows 98/Me/2000/XP/Server 2003
	4.5.2 On Linux

	5 Using DriverWizard
	5.1 An Overview
	5.2 DriverWizard Walkthrough
	5.3 DriverWizard Notes
	5.3.1 Logging WinDriver API Calls
	5.3.2 DriverWizard Logger
	5.3.3 Automatic Code Generation
	5.3.3.1 Generating the Code
	5.3.3.2 Generated USB Code
	5.3.3.3 Compiling the Generated Code
	5.3.3.4 Visual Basic or Delphi Code Generation
	5.3.3.5 For Linux:
	5.3.3.6 For Other OSs or IDEs:

	6 Developing a Driver
	6.1 Using the DriverWizard to Build a Device Driver
	6.2 Writing the Device Driver Without the DriverWizard
	6.2.1 Include the Required WinDriver Files
	6.2.2 Write Your Code

	6.3 Developing Your Driver on Windows CE Platforms
	6.4 Developing in Visual Basic and Delphi
	6.4.1 Using DriverWizard
	6.4.2 Samples
	6.4.3 Creating your Driver

	7 Debugging Drivers
	7.1 User-Mode Debugging
	7.2 Debug Monitor
	7.2.1 Using Debug Monitor in Graphical Mode
	7.2.2 Using Debug Monitor in Console Mode
	7.2.2.1 Using Debug Monitor on Windows CE

	8 Enhanced Support for Specific Chipsets
	8.1 Overview
	8.2 Developing a Driver Using the Enhanced Chipset Support

	9 USB Control Transfers
	9.1 USB Control Transfers Overview
	9.1.1 USB Data Exchange
	9.1.2 More About the Control Transfer
	9.1.3 The Setup Packet
	9.1.4 USB Setup Packet Format
	9.1.5 Standard Device Request Codes
	9.1.6 Setup Packet Example

	9.2 Performing Control Transfers with WinDriver
	9.2.1 Control Transfers with DriverWizard
	9.2.2 Control Transfers with WinDriver API

	10 Dynamically Loading Your Driver
	10.1 Why Do You Need a Dynamically Loadable Driver?
	10.2 Windows 2000/XP/Server 2003 and 98/Me
	10.2.1 Windows Driver Types
	10.2.2 The WDREG Utility
	10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Files

	10.3 Linux

	11 Distributing Your Driver
	11.1 Getting a Valid License for WinDriver
	11.2 Windows 98/Me and Windows 2000/XP/Server 2003
	11.2.1 Preparing the Distribution Package
	11.2.2 Installing Your Driver on the Target Computer

	11.3 Creating an INF File
	11.3.1 Why Should I Create an INF File?
	11.3.2 How Do I Install an INF File When No Driver Exists?
	11.3.3 How Do I Replace an Existing Driver Using the INF File?

	11.4 Windows CE
	11.5 Linux
	11.5.1 WinDriver Kernel Module
	11.5.2 User-Mode Hardware Control Application/Shared Objects
	11.5.3 Installation Script

	12 WinDriver USB Device
	12.1 WinDriver USB Device Overview
	12.2 System and Hardware Requirements
	12.3 WinDriver Device Firmware (WDF) Directory Overview
	12.3.1 The cypress Directory
	12.3.2 The microchip Directory
	12.3.3 The silabs Directory
	12.3.4 The WinDriver USB Device Firmware Libraries
	12.3.5 Building the Sample Code

	12.4 WinDriver USB Device Development Process
	12.4.1 Define the Device USB Interface
	12.4.1.1 EZ-USB Endpoint Buffers Configuration

	12.4.2 Generate Device Firmware Code
	12.4.3 Develop the Device Firmware
	12.4.3.1 The Generated DriverWizard USB Device Firmware Files
	12.4.3.2 Build the Generated DriverWizard Firmware
	12.4.3.3 Download the Firmware to the Device

	12.4.4 Diagnose and Debug Your Hardware
	12.4.5 Develop a USB Device Driver

	A WinDriver USB PC Host API Reference
	A.1 WinDriver USB (WDU) Library Overview
	A.1.1 Calling Sequence for WinDriver USB
	A.1.2 Upgrading from the WD_xxx USB API to the WDU_xxx API

	A.2 USB - User Callback Functions
	A.2.1 WDU_ATTACH_CALLBACK()
	A.2.2 WDU_DETACH_CALLBACK()
	A.2.3 WDU_POWER_CHANGE_CALLBACK()

	A.3 USB - Functions
	A.3.1 WDU_Init()
	A.3.2 WDU_SetInterface()
	A.3.3 WDU_GetDeviceAddr()
	A.3.4 WDU_GetDeviceInfo()
	A.3.5 WDU_PutDeviceInfo()
	A.3.6 WDU_Uninit()
	A.3.7 WDU_Transfer()
	A.3.8 WDU_Wakeup()
	A.3.9 WDU_TransferDefaultPipe()
	A.3.10 WDU_TransferBulk()
	A.3.11 WDU_TransferIsoch()
	A.3.12 WDU_TransferInterrupt()
	A.3.13 WDU_HaltTransfer()
	A.3.14 WDU_ResetPipe()
	A.3.15 WDU_ResetDevice()
	A.3.16 WDU_GetLangIDs()
	A.3.17 WDU_GetStringDesc()

	A.4 USB - Structures
	A.4.1 WDU_MATCH_TABLE
	A.4.2 WDU_EVENT_TABLE
	A.4.3 WDU_DEVICE
	A.4.4 WDU_CONFIGURATION
	A.4.5 WDU_INTERFACE
	A.4.6 WDU_ALTERNATE_SETTING
	A.4.7 WDU_DEVICE_DESCRIPTOR
	A.4.8 WDU_CONFIGURATION_DESCRIPTOR
	A.4.9 WDU_INTERFACE_DESCRIPTOR
	A.4.10 WDU_ENDPOINT_DESCRIPTOR
	A.4.11 WDU_PIPE_INFO

	A.5 General WD_xxx Functions
	A.5.1 Calling Sequence WinDriver -- General Use
	A.5.2 WD_Open()
	A.5.3 WD_Version()
	A.5.4 WD_Close()
	A.5.5 WD_Debug()
	A.5.6 WD_DebugAdd()
	A.5.7 WD_DebugDump()
	A.5.8 WD_Sleep()
	A.5.9 WD_License()
	A.5.10 WD_LogStart()
	A.5.11 WD_LogStop()
	A.5.12 WD_LogAdd()

	A.6 WinDriver Status/Error Codes
	A.6.1 Introduction
	A.6.2 Status Codes Returned by WinDriver
	A.6.3 Status Codes Returned by USBD

	A.7 User-Mode Utility Functions
	A.7.1 Stat2Str()
	A.7.2 get_os_type()
	A.7.3 ThreadStart()
	A.7.4 ThreadWait()
	A.7.5 OsEventCreate()
	A.7.6 OsEventClose()
	A.7.7 OsEventWait()
	A.7.8 OsEventSignal()
	A.7.9 OsEventReset()
	A.7.10 OsMutexCreate()
	A.7.11 OsMutexClose()
	A.7.12 OsMutexLock()
	A.7.13 OsMutexUnlock()
	A.7.14 PrintDbgMessage()

	B WinDriver USB Device Cypress EZ-USB FX2LP CY7C68013A API Reference
	B.1 Firmware Library API
	B.1.1 Firmware Library Types
	B.1.1.1 EP_DIR Enumeration
	B.1.1.2 EP_TYPE Enumeration
	B.1.1.3 EP_BUFFERING Enumeration

	B.1.2 WDF_EP1INConfig() / WDF_EP1OUTConfig()
	B.1.3 WDF_EP2Config / WDF_EP6Config()
	B.1.4 WDF_EP4Config / WDF_EP8Config()
	B.1.5 WDF_FIFOReset()
	B.1.6 WDF_SkipOutPacket()
	B.1.7 WDF_FIFOWrite()
	B.1.8 WDF_FIFORead()
	B.1.9 WDF_FIFOFull()
	B.1.10 WDF_FIFOEmpty()
	B.1.11 WDF_SetEPByteCount()
	B.1.12 WDF_GetEPByteCount()
	B.1.13 WDF_I2CInit()
	B.1.14 WDF_SetDigitLed()
	B.1.15 WDF_I2CWrite()
	B.1.16 WDF_I2CRead()
	B.1.17 WDF_I2CWaitForEEPROMWrite()
	B.1.18 WDF_I2CGetStatus()
	B.1.19 WDF_I2CClearStatus()

	B.2 Generated DriverWizard Firmware API
	B.2.1 WDF_Init()
	B.2.2 WDF_Poll()
	B.2.3 WDF_Suspend()
	B.2.4 WDF_Resume()
	B.2.5 WDF_GetDescriptor()
	B.2.6 WDF_SetConfiguration()
	B.2.7 WDF_GetConfiguration()
	B.2.8 WDF_SetInterface()
	B.2.9 WDF_GetInterface()
	B.2.10 WDF_GetStatus()
	B.2.11 WDF_ClearFeature()
	B.2.12 WDF_SetFeature()
	B.2.13 WDF_VendorCmnd()

	C WinDriver USB Device Microchip PIC18F4550 API Reference
	C.1 Firmware Library API
	C.1.1 Firmware Library Types
	C.1.1.1 EP_DIR Enumeration
	C.1.1.2 EP_TYPE Enumeration
	C.1.1.3 BD_STAT Union
	C.1.1.4 BDT Union
	C.1.1.5 EP_DATA Structure

	C.1.2 WDF_EPConfig()
	C.1.3 WDF_EPWrite()
	C.1.4 WDF_EPRead()
	C.1.5 WDF_IsEPBusy()
	C.1.6 WDF_TriggerWriteTransfer()
	C.1.7 WDF_TriggerReadTransfer()
	C.1.8 WDF_GetReadBytesCount()
	C.1.9 WDF_DisableEP1to15()

	C.2 Generated DriverWizard Firmware API
	C.2.1 WDF_Init()
	C.2.2 WDF_Poll()
	C.2.3 WDF_SOFHandler()
	C.2.4 WDF_Suspend()
	C.2.5 WDF_Resume()
	C.2.6 WDF_ErrorHandler()
	C.2.7 WDF_SetConfiguration()
	C.2.8 WDF_SetInterface()
	C.2.9 WDF_GetInterface()
	C.2.10 WDF_VendorCmnd()
	C.2.11 WDF_ClearFeature()
	C.2.12 WDF_SetFeature()

	D WinDriver USB Device Silicon Laboratories C8051F320 API Reference
	D.1 Firmware Library API
	D.1.1 wdf_silabs_lib.h Types
	D.1.1.1 EP_DIR Enumeration
	D.1.1.2 EP_TYPE Enumeration
	D.1.1.3 EP_BUFFERING Enumeration
	D.1.1.4 EP_SPLIT Enumeration

	D.1.2 c8051f320.h Types and General Definitions
	D.1.2.1 Endpoint Address Definitions
	D.1.2.2 Endpoint State Definitions
	D.1.2.3 EP_INT_HANDLER Function Pointer
	D.1.2.4 EP0_COMMAND Structure
	D.1.2.5 EP_STATUS Structure
	D.1.2.6 PEP_STATUS Structure Pointer
	D.1.2.7 IF_STATUS Structure
	D.1.2.8 PIF_STATUS Structure Pointer

	D.1.3 WDF_EPINConfig()
	D.1.4 WDF_EPOUTConfig()
	D.1.5 WDF_HaltEndpoint()
	D.1.6 WDF_EnableEndpoint()
	D.1.7 WDF_SetEPByteCount()
	D.1.8 WDF_GetEPByteCount()
	D.1.9 WDF_FIFOClear()
	D.1.10 WDF_FIFOFull()
	D.1.11 WDF_FIFOEmpty()
	D.1.12 WDF_FIFOWrite()
	D.1.13 WDF_FIFORead()
	D.1.14 WDF_GetEPStatus()

	D.2 Generated DriverWizard Firmware API
	D.2.1 WDF_USBReset()
	D.2.2 WDF_SetAddressRequest()
	D.2.3 WDF_SetFeatureRequest()
	D.2.4 WDF_ClearFeatureRequest()
	D.2.5 WDF_SetConfigurationRequest()
	D.2.6 WDF_SetDescriptorRequest()
	D.2.7 WDF_SetInterfaceRequest()
	D.2.8 WDF_GetStatusRequest()
	D.2.9 WDF_GetDescriptorRequest()
	D.2.10 WDF_GetConfigurationRequest()
	D.2.11 WDF_GetInterfaceRequest()

	E Troubleshooting and Support
	F Evaluation Version Limitations
	F.1 Windows 98/Me/2000/XP/Server 2003
	F.2 Windows CE
	F.3 Linux
	F.4 DriverWizard GUI

	G Purchasing WinDriver
	H Distributing Your Driver -- Legal Issues
	I Additional Documentation

