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Preface

It is hardly a revelation to note that wireless and mobile communications have grown
tremendously during the last few years. This growth has placed stringent require-
ments on channel spacing and, by implication, on the phase noise of oscillators. Com-
pounding the challenge has been a recent drive toward implementations of
transceivers in CMOS, whose inferior 1/f noise performance has usually been thought
to disqualify it from use in all but the lowest-performance oscillators.

Low noise oscillators are also highly desired in the digital world, of course. The con-
tinued drive toward higher clock frequencies translates into a demand for ever-
decreasing jitter.

Clearly, there is a need for a deep understanding of the fundamental mechanisms gov-
erning the process by which device, substrate, and supply noise turn into jitter and
phase noise. Existing models generally offer only qualitative insights, however, and it
has not always been clear why they are not quantitatively correct.

This monograph offers a new time-variant phase noise model. By discarding the
implicit assumption of time-invariance underlying many other approaches, this model
is capable of making quantitative predictions of the phase noise and jitter of different
types of oscillators. It is able to attribute a definite amount of phase noise to every
noise source in the circuit. Because of its time-variant nature, the model also takes
into account the effect of cyclostationary noise sources in a natural way. It details the
precise mechanism by which low frequency noise, such as 1/f noise, upconverts into

xi
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close-in phase noise. An important new understanding is that rise and fall time sym-
metry controls such upconversion. More important, it suggests practical methods for
suppressing this upconversion, so that good oscillators can be built in technologies
with notoriously poor 1/f noise performance (such as CMOS or GaAs MESFET).

The time-variant phase noise model reduces to previously published phase noise mod-
els as special cases, provided that certain restrictive assumptions (which can now be
stated explicitly) are applied. The theory is verified experimentally for a large number
of oscillators with different topologies.

Both tuned and relaxation oscillators are subsumed in a single treatment. Of the latter
class, ring oscillators are of particular interest because they perform clock generation
in many applications. An expression for the phase noise of ring oscillators in terms of
power dissipation, frequency and other circuit parameters is obtained using an
approximate analytical model. Among the insights offered, it is shown that the opti-
mum number of stages resulting in minimum phase noise for a given power dissipa-
tion and frequency differs for single-ended and differential ring oscillators.

In addition, the theory also accommodates correlations among noise sources. It is
shown that it is possible to exploit the strong correlation among the supply and sub-
strate noise sources to minimize their effect on jitter. The approach is generalized to
multiple noise sources with arbitrary correlation and cyclostationarity.

This work is divided into seven chapters. The first offers a brief introduction, while
Chapter 2 reviews the definition, importance, and modeling of frequency instabilities
in electrical oscillators. Chapter 3 summarizes some of the existing models for jitter
and phase noise, and Chapter 4 presents the time-variant phase noise model which
will be used in the subsequent chapters. Prediction of jitter and phase noise of ring
oscillators is the subject of Chapter 5, while the phase noise of differential LC oscilla-
tors is investigated in Chapter 6. Finally, generalization of the approach to multiple
noise sources is performed in Chapter 7.

The authors are greatly indebted to numerous colleagues among the students and staff
at Stanford, as well as at other organizations and institutions, for their many contribu-
tions to this monograph.

Ali Hajimiri

Thomas H. Lee
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CHAPTER 1 Introduction

In wireless communications, the frequency spectrum is a valuable commodity as the
ever increasing number of wireless users demands more efficient usage of the already
scarce frequency resources. Communication transceivers rely heavily on frequency
conversion using local oscillators (LOs) and therefore the spectral purity of the oscil-
lators in both the receiver and the transmitter is one of the factors limiting the maxi-
mum number of available channels and users. For that reason, a deeper understanding
of the fundamental issues limiting the performance of oscillators, and development of
design guidelines to improve them, are necessary.

During the last fifteen years, there has been tremendous growth in wireless mobile
systems [l]-[3]. These systems have been made possible by technological advances in
the field of integrated circuits (ICs) allowing a high level of integration at low cost and
low power dissipation. There is also great interest in integrating complete communi-
cation transceivers on a single chip. This single chip implementation of the systems
results in a new environment for oscillators which has not been investigated before.

In digital applications, the timing accuracy of the clock signal determines the maxi-
mum clock rate and hence the maximum number of operations per unit time. In
microprocessors and other synchronous very large scale digital circuits, the clock sig-
nal is generated by on-chip oscillators locked to an external oscillator. Ring oscillators
are commonly used for on-chip clock generation due to their large tuning range and
ease of integration. In the IC environment, there are additional sources affecting the
frequency stability of the oscillators, namely, substrate and supply noise arising from
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Introduction

switching in the digital circuitry and output drivers. This new environment and the
delay-based nature of ring oscillators demand new approaches to the modeling and
analysis of the frequency stability of the oscillators.

It will be shown that all oscillators are periodically time-varying systems, and that
their time varying nature must, therefore, be taken into account to permit accurate
modeling of phase noise. Also due to the periodically changing operation points of
the active devices in the oscillator, many of the noise sources have a periodically time-
varying power spectrum; they are cyclostationary. In this work, a time-variant model
which is capable of properly assessing the effects of both stationary and cyclostation-
ary noise sources is presented.

The approach presented here explains the exact mechanism by which spurious
sources, random or deterministic, are converted into phase and amplitude variations.
This time variant model makes explicit predictions about the relationship between
waveform shape and 1/f noise upconversion. It also shows that the upconversion can
be reduced by exploiting the symmetry properties of the waveform. This result is par-
ticularly important in CMOS oscillators because it shows that the effect of inferior 1/f
device noise can be reduced by proper design.

1.1 Organization

Chapter 2 gives an introduction to the definition, importance, and modeling of fre-
quency instabilities in electrical oscillators. It describes some of the different methods
for quantifying frequency instability in an oscillator. Some negative consequences of
frequency instability in analog, digital, and communication circuits are described in
detail.

Chapter 3 reviews some of the existing models for jitter and phase noise in electrical
oscillators. It reviews the Leeson model and its extensions for prediction of phase
noise in tuned-tank oscillators. It also reviews existing models for jitter and phase
noise in ring oscillators.

Chapter 4 presents the core of the time variant phase noise model. It introduces the
impulse sensitivity function (ISF), from which the phase and amplitude response of an
oscillator to an arbitrary noise source may be determined. It elucidates the details of
low frequency noise upconversion process and accommodates time variant effects
such as cyclostationary noise sources and voltage dependent capacitors. It also inves-

2 The Design of Low Noise Oscillators



Organization

tigates modeling of amplitude noise, as opposed to phase noise. Finally, previously
existing models are shown as special cases of the general theory.

Prediction of jitter and phase noise of ring oscillators is the subject of Chapter 5. It
starts with an approximate method to calculate the dc and rms values of the ISF for
ring oscillators with equal and unequal rise and fall times. The rms and dc values are
then used to find approximate analytical expressions for the phase noise and jitter of
differential and single-ended ring oscillators in terms of the number of stages, power
dissipation, frequency, and circuit parameters. The effect of correlated noise sources
on the ring oscillator is demonstrated next. Design implications such as the question
of single-ended vs. differential implementation of ring oscillators and the optimum
number of stages are addressed. Finally, experimental results are compared with pre-
dictions made by the theory.

Chapter 6 investigates the phase noise analysis of differential LC oscillators. A simple
expression for the tank amplitude is obtained. The effect of different noise sources in
such oscillators is analyzed and methods for exploiting the cyclostationary properties
of noise are shown. The effect of tail current noise on the phase noise is explored.
Finally, new design implications arising from this approach and experimental results
are given.

In Chapter 7, the phase impulse response concept introduced in Chapter 4 is general-
ized to accommodate multiple noise sources. Using the generalized impulse response
of the system, the output spectrum of the system in the presence of multiple noise
sources with arbitrary correlation and cyclostationarity is calculated.

A summary of the results is given in Chapter 8.

Appendix A gives the relationship between jitter and phase noise. Appendix B shows
the calculations leading to the Lorentzian power spectrum of the output. In Appendix
C, the ISF for an ideal LC oscillator is directly calculated by solving circuit differen-
tial equations. Appendix D presents two methods for calculations of the ISF. Finally,
Appendix E investigates jitter and phase noise in phase-locked loops (PLL).

Introduction 3





CHAPTER 2 Frequency Instability
Fundamentals

Any practical oscillator has fluctuations in its amplitude and frequency. Short term
frequency instabilities1 of an electrical oscillator are mainly due to noise and interfer-
ence sources. Thermal, shot and flicker noise are examples of the former, while sub-
strate and supply noise are in the latter group. These sources result in frequency
instabilities that can be characterized in different ways. Section 2.1 gives an informal
introduction to frequency instabilities and their destructive effects on the performance
of analog and digital systems. Section 2.2 covers definitions of jitter and phase noise
which are the two most commonly used parameters for quantifying frequency insta-
bilities.

2.1 Introduction to Frequency Instability

This section presents a qualitative approach to the meaning and importance of fre-
quency instabilities in both frequency and time domains.

1.  Short term frequency instabilities usually refer to variations on time scales smaller than a
second. This definition of short term instabilities is arbitrary and does not arise from any funda-
mental considerations.

Frequency Instability Fundamentals 5



2.1.1 Frequency Domain

The output of an ideal oscillator may be expressed as where
the amplitude the frequency and phase reference are all constants. The one-
sided spectrum of an ideal oscillator with no random fluctuations consists of an
impulse at as shown in Figure 2.1. In a practical oscillator, however, the output is
more generally given by

where and A(t) are functions of time, is the maximum voltage swing and f is a
periodic function which represents the shape of the steady-state output waveform of
the oscillator. The output spectrum has power around harmonics of if the wave-
form, f, is not sinusoidal. More important, as a consequence of the fluctuations repre-
sented by and A(t), the spectrum of a practical oscillator has sidebands close to
the frequency of oscillation, and its harmonics, as shown in Figure 2.1. These
sidebands are generally referred to as phase noise sidebands.

The destructive effect of phase noise can be best seen in the front-end of a superhet-
erodyne radio receiver. Figure 2.2 shows a typical front-end block diagram, consisting
of a low noise amplifier (LNA), a mixer, and a local oscillator (LO). Suppose the

Frequency Instability Fundamentals
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Introduction to Frequency Instability

receiver tunes to a weak signal in the presence of a strong signal in an adjacent chan-
nel. If the LO has large phase noise, as shown in Figure 2.3, some downconversion of
the interfering signal into the same IF (intermediate frequency) as that of the desired
signal will occur as shown in Figure 2.3. The resulting interference significantly
degrades the dynamic range of the receiver. Therefore, improving the phase noise of
the oscillator clearly improves the signal-to-noise ratio of the desired signal.

Frequency Instability Fundamentals 7
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2.1.2 Time Domain

In the time domain viewpoint, the spacing between transitions is ideally constant. In
practice, however, the transition spacings will be variable due to fluctuations in
This uncertainty is known as timing jitter and can be seen in Figure 2.4.

In a synchronous digital circuit such as a microprocessor, there is a clock signal that
controls the operation of different logic blocks. To emphasize the importance of tim-
ing jitter, consider the example of a flip-flop shown in Figure 2.5. If the clock signal
has zero timing jitter as shown with the solid line in Figure 2.4, the data needs to be
stable only for However, if the clock line shows a peak-to-peak jitter of

8 The Design of Low Noise Oscillators



Frequency Instability Characterization

then the data line needs to be stable for a period of as shown
in Figure 2.4. This decrease in the timing margins will reduce the maximum achiev-
able frequency of operation for the digital circuit.

The harmful effect of clock jitter can also be seen in the sample-and-hold circuit of
Figure 2.6, where the accuracy of the sampling process is affected by jitter in the
clock. If there is uncertainty in sampling time (i.e., clock jitter), it translates directly
to uncertainty in the sampled value (i.e., noise) as shown in Figure 2.6.

2.2 Frequency Instability Characterization

As shown in the last section, there are several ways of quantifying short-term fre-
quency instabilities of an oscillator. While comprehensive reviews of various stan-
dards and measurement methods can be found in [23][24] and [57]-[63], the focus of
this section will be on the two most popular quantities for characterizing these fluctu-
ations, namely, phase noise and timing jitter. The qualitative treatment of these fluctu-
ation measures will be expanded upon in this section.

Frequency Instability Fundamentals 9
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2.2.1 Phase Noise

In the frequency domain viewpoint, an oscillator’s short term instabilities are usually
characterized in terms of the single sideband noise spectral density. It is convention-
ally given the units of decibels below the carrier per Hertz (dBc/Hz) and is defined as:

where represents the single sideband power at a frequency
offset, from the carrier in a measurement bandwidth of 1Hz as shown in
Figure 2.7, and is the total power under the power spectrum. Note that the def-
inition in (2.2) includes the effect of both amplitude and phase fluctuations, A(t) and

Spectral density is usually specified at one or a few offset frequencies. To be a mean-
ingful parameter, both the noise density and the offset need to be reported, e.g., -
121dBc/Hz at 600kHz offset from the carrier.

The advantage of in (2.2) is its ease of measurement. Its disadvantage is
that it shows the sum of both amplitude and phase variations; it does not show them
separately. It is often important to know the amplitude and phase noise separately
because they behave differently in a circuit. For instance, the effect of amplitude noise
can be reduced by amplitude limiting, while the phase noise cannot be reduced in an
analogous manner. Therefore, in most practical oscillators, is dominated

10 The Design of Low Noise Oscillators



Frequency Instability Characterization

by its phase portion, known as phase noise, which will be simply
denoted as unless specified otherwise.

regions with a slope of and where the corner between the and
regions is called Finally, the spectrum becomes flat again at very small offset
frequencies. The mechanisms responsible for these features will be discussed in great
detail in subsequent chapters.

1. An oscillator which is not locked to a reference is referred to as free running. The phase
noise behavior of an oscillator in a feedback loop is the subject of Appendix E.

2. A bump, such as the feature shown preceding the noise floor in Figure 2.8, may also result
from the effect of amplitude fluctuations. This phenomenon will be discussed in more detail in
Section 4.6.

Frequency Instability Fundamentals 11

If one plots for a free-running1 oscillator as a function of on logarith-
mic scales, regions with different slopes may be observed as shown in Figure 2.8. At
large offset frequencies, there is a flat noise floor2. At small offsets, one may identify
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There are different methods of measuring phase noise and, depending on the particu-
lar method used to measure it, parts of the spectrum in Figure 2.8 may or may not be
observed. For example, if a spectrum analyzer is used to measure the phase noise,

will be easily observed. However, if the phase noise is measured using a phase-
locked loop, the nonlinear transfer function of the phase detector1 will change the
measured A very complete review of these measurement techniques and their
properties can be found in [57]-[63].

It is instructive to calculate the required phase noise specifications for the local oscil-
lator in the example of Figure 2.2. In particular, the phase noise required to achieve a
desired signal-to-noise ratio can be estimated for a given interfering signal power
using the definition of (2.2). This estimation can be performed by calculating the total
inband noise with respect to the carrier. The inband noise relative to the carrier is
found by integrating the phase noise spectrum over the band of interest, i.e.,

where and are the offsets from the center of the channel to the edges of the
adjacent channel.

Assuming that the phase noise has a slope between and (2.3) reduces
to

The minimum SNR (signal-to-noise ratio) is given by

where and are the desired and interfering signal powers, respectively.

For example, assume a channel spacing of 200kHz, so that and
If an adjacent interferer is 40dB stronger than the desired signal, the

1. The properties of phase-locked loops and phase detectors are discussed in Appendix E.

12 The Design of Low Noise Oscillators

which means it is equivalent to the noise due to a constant phase noise of
between and



to be -113dBc/Hz at a 173kHz offset from the carrier. Assuming a slope, this
specification is equivalent to a phase noise of -108dBc/Hz at a 100kHz offset.

As can be seen from the foregoing calculation, only small values of phase noise are
permitted, even for modest values of SNR and required adjacent blocking channel
power. The requirements become even more severe as the carrier frequency increases
and channel spacing shrinks.

2.2.2 Timing Jitter

As mentioned earlier, uncertainties in the transition instants of a periodic waveform
are known as clock jitter. For a free-running oscillator, it increases with the measure-
ment interval (i.e., the time delay between the reference and the observed transi-
tions). This increase is illustrated in the plot of timing variance shown in Figure 2.9
[48].

Frequency Instability Fundamentals 13
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maximum allowable phase noise for a minimum SNR of 20dB is calculated from (2.5)
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This growth in variance (i.e., “jitter accumulation”) occurs because any uncertainty in
an earlier transition affects all the following transitions, and its effect persists indefi-
nitely. Therefore, the timing uncertainty when seconds have elapsed includes the
accumulative effect of the uncertainties associated with the transitions.

seconds is

where is a proportionality constant determined by circuit parameters. In a similar
fashion, the standard deviation of the jitter in the region with the slope of 1 may be
expressed as

where is another proportionality constant.

14 The Design of Low Noise Oscillators

running oscillator will typically exhibit regions with slopes of and 1 as shown in
Figure 2.10. In the region with the slope of the standard deviation of the jitter after

A log-log plot of the timing jitter, versus the measurement delay, for a free-



Frequency Instability Characterization

In most digital applications, it is desirable for to decrease at the same rate as the
frequency increases, to keep constant the ratio of the rms timing jitter to the period.
Therefore, phase jitter, defined as

is a more useful measure in many applications. In (2.8), T is the period of oscillation.

The definition in (2.6) and (2.7) can be used to estimate the tolerable timing jitter for
a required SNR in a sample-and-hold circuit. Specifically, consider applying a sinuso-
idal input voltage, to the sample and hold circuit of Figure 2.6. If the sam-
pling clock applied to an ideal switch has timing jitter with a standard deviation of

the equivalent error in the sampled voltage, will be related to the timing jitter
through the slope of the sinusoid, i.e.,

If there is no correlation between the sampling clock and the input waveform (usually
a reasonable assumption), the signal-to-noise ratio can be calculated by averaging the
power of the voltage error in (2.9). Thus, if the signal-to-noise ratio (SNR) is limited
by jitter, it will be given by [143],

where is the average standard deviation of the equivalent voltage noise. A
numerical example can be enlightening. If an SNR of 60dB is required at a sampling
frequency of 10MHz, (2.10) predicts that the rms jitter must not exceed 16psec.

The sensitivity to the sampling time becomes even more important in a subsampling
system. Here the sampling uncertainty should be compared with the period of the high
frequency input signal, not the subsampling period, because the jitter spectral density
increases as the square of the subsampling ratio [121].

Assume that this sampling is performed in a communications receiver, in which sig-
nals in an adjacent channel away should be rejected. In this case, will corre-
spond approximately to the rms jitter between two transitions apart
from each other. is the time it takes for two sinusoids with frequencies apart to

Frequency Instability Fundamentals 15
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mismatch by exactly one cycle as shown in Figure 2.11. Assuming a square-root
dependence on (2.6) will result in

where is the cycle-to-cycle jitter of the sampling clock and and are
sampling clock period and angular frequency, respectively. Using (2.10), the follow-
ing expression for the maximum tolerable cycle-to-cycle jitter is obtained

where SNR is the desired signal-to-noise ratio. Note that in a subsampling system,
is the angular frequency of the incoming high frequency signal and not the subsam-
pling frequency.

For an input frequency of 900MHz, a sampling frequency of 90MHz (corresponding
to a subsampling ratio of 10) and a desired SNR of 60dB at the center of an adjacent
channel 200kHz away, (2.12) permits a maximum rms cycle-to-cycle jitter of 8.3fsec.
It is exceedingly difficult to achieve such small values in practice.

16 The Design of Low Noise Oscillators



CHAPTER 3 Review of Existing
Models

The modeling of frequency instabilities has been the subject of numerous studies in
different disciplines [13]-[50]. This chapter presents a brief review of some of this
earlier work. Section 3.1 reviews the Leeson model [22] and its extensions [25][37]
for tuned-tank oscillators, while Section 3.2 reviews existing models [45]-[48] for
ring oscillators.

3.1 Tuned-Tank Oscillators

The phase noise model proposed in [22] and later expanded in [25][37] is widely
known as the Leeson model, and is by far the most well-known. It is based on a linear
time-invariant (LTI) approach for tuned tank oscillators. It predicts the following
behavior for

where F is an empirical parameter (often called the “device excess noise number”),
is Boltzmann’s constant, T is the absolute temperature, is the average power dissi-
pated in the resistive part of the tank, is the oscillation frequency, is the effec-
tive quality factor of the tank with all loadings accounted for (also known as loaded

Review of Existing Models 17
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Q), is the offset from the carrier, and is the frequency of the corner between
the and regions, as shown in Figure 3.1.

The existence of a region can be anticipated by applying an LTI approach as fol-
lows. The impedance of a parallel RLC tank, for is easily calculated to be

where is the parallel parasitic conductance of the tank.

To sustain oscillations, the average energy provided to the tank by the active device
should be equal to the energy losses in the resonant circuit1. Therefore, the active
device can be modeled as an effective parallel negative conductance, whose
value depends on the tank amplitude, For steady-state oscillation, the equation

should be satisfied. When this condition holds, the net impedance of
the oscillator model shown in Figure 3.2 is given by

1. This viewpoint is often referred to as the one-port approach.

18 The Design of Low Noise Oscillators
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The total equivalent parallel resistance of the tank has an equivalent mean square

Using the effective noise current power, the phase noise in the region of the spec-
trum can be calculated as

Review of Existing Models 19

as Unfortunately, it is generally difficult to calculate F a priori.
One important reason, to be shown later, is that much of the noise in a practical oscil-
lator arises from periodically time-varying processes which are not properly treated in
an LTI context. Hence, as mentioned in [22] , F is usually an a posteriori fitting
parameter derived from measured data.

noise current density of In addition, active device noise usually
contributes a significant portion of the total noise in the oscillator. It is traditional to
combine all the noise sources into one effective noise source, expressed in terms of
the resistor noise with a multiplicative factor, F, known as the device excess noise
number. The equivalent mean square noise current density can therefore be expressed
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This process by which the noise current becomes phase noise sidebands is shown in
the frequency domain picture of Figure 3.3. The factor of 1/2 in the numerator of (3.4)
arises from neglecting the contribution of amplitude noise, which is here assumed to
be suppressed by a suitable amplitude limiting mechanism [22].

Although the phase noise in the region of (3.1) is thus easily calculated in (3.4), a

in the empirical expression (3.1), as can be seen from Figure 3.3. Hence, is just
another fitting parameter.

The foregoing approach has been extended by accounting for the individual noise
sources in the tuned tank oscillator model of Figure 3.4 [37]. Unfortunately, the
approach taken in [37] continues to assume linear time-variance, and adds an unsup-
ported implicit assumption of no amplitude limiting. For the circuit of Figure 3.4, this
approach predicts the following:

20 The Design of Low Noise Oscillators
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where A is yet another empirical fitting parameter, and is the effective series resis-
tance, given by

where and C are shown in Figure 3.4. Note that it is still not clear how to
calculate A from circuit parameters. While this approach is valuable in identifying the
relative contribution of each noise source, it represents no fundamental improvement
over the methods outlined in [22] and [25].

An alternative view yields additional insight into the Leeson model [22][25]. In this
approach, the oscillator is modeled as a two port system, in contrast with the one-port
view presented earlier. Figure 3.5 shows a simplified two-port model (still LTI) for an

Review of Existing Models 21
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oscillator. It consists of a gain block G in the forward path and a frequency selective

where is the input voltage and is the output current. The only way that the
feedback system of Figure 3.5 can have non-zero output without any input is for the
denominator of (3.7) to be zero, i.e.,

Thus (3.8), sometimes referred to as the Barkhausen criterion, is a necessary condi-
tion for existence of stable oscillations.1

In a tuned-tank oscillator, the frequency selective block, usually consists of an
RLC network similar to the one in Figure 3.6. In such a second order system, Q is
related to the normalized slope of the phase transfer function,

1. In a purely linear approach the amplitude depends on initial conditions. In practice, excess
phase coupled with nonlinearity in the gain block G are used to produce stable-amplitude oscil-
lations.
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element with a linear transfer function in the feedback path.

The transfer function for this linear system is



Tuned-Tank Oscillators

As can be seen from Figure 3.6, a larger Q corresponds to a larger slope in the phase
vs. frequency transfer function.

According to (3.8), the total phase shift around the loop has to be an integer multiple
of to sustain oscillations. Due to various noise sources in the circuit, temporary
phase leads or lags may be introduced in the feedback loop. These extra phase shifts
must be compensated by a change in instantaneous frequency according to Figure 3.6
and (3.9). In an oscillator with a large Q, the required instantaneous change in fre-
quency for a given phase shift is smaller, thus resulting in better frequency stability.
This observation is in accord with the appearance of the tank’s loaded Q in the
denominator of (3.4).

In practice, the gain block G will also introduce some phase shift due to the fre-
quency-dependent dynamics of the active devices used to realize it. The oscillation
frequency must shift in order to keep the phase around the loop an integer multiple of

This new center frequency will not be where the phase vs. frequency function has
the highest slope and hence a larger phase noise will result.

Although this viewpoint leads to some design insight, it is not clear how to adjust this
phase shift to gain the best phase noise. Also it is not clear how this approach can be
used to improve the phase noise of other types of oscillator, such as ring oscillators. A
more general case of this criterion will be discussed in the context of cyclostationary
noise sources in Section 4.5.1.
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3.2 Ring Oscillators

A time domain approach to the analysis of differential CMOS ring oscillators is pre-
sented in [46]. There, the stage delay is defined as the time interval between zero-
crossings of the input and output differential voltages. In a differential ring oscillator
with the buffer stages shown in Figure 3.7, the stage delay is approximately

where is the single-ended swing on the drain, is the total capacitance on
the stage output node (including the input capacitance of the next stage), and is
the tail current. Using the first-crossing approximation proposed in [26], the standard
deviation of the timing jitter due to a single stage, is related to the voltage stan-
dard deviation, through the maximum transition slope, i.e.,
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Assuming that the voltage noise variance is kT/C [46], the single stage jitter, normal-
ized to the stage delay, is

where is the gate-source overdrive of the differential pair in the balanced
state, and is a factor to account for the different shares of the differential pair and
load transistors. Therefore, is a topology-dependent parameter.

The cycle-to-cycle jitter can be calculated from the stage jitter of (3.12). For a ring
oscillator with N identical stages, assuming independent noise sources, the cycle-to-
cycle jitter due to all the stages is given by the sum of variances [46], i.e.,

is the cycle-to-cycle jitter of the output. Equation (3.13) corresponds to a defined in
(2.6), of

The phase noise spectrum may also be calculated from (3.13) using the method out-
lined in [46]:

which shows the trade-offs among power dissipation, number of stages, frequency,
and gate overdrive for long channel, differential CMOS ring oscillators.

Since is topology dependent it is not clear how it can be evaluated for an arbitrary
oscillator. Also equation (3.15) loses its validity in the presence of short channel
effects. Furthermore (3.15) is not valid for inverter-chain or bipolar emitter coupled
logic (ECL) ring oscillators. Thus the predictive power of (3.15) is somewhat limited.
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Still another time domain approach to predict the jitter of a ring oscillator is presented
in [45] and [48]. As in [46], the jitter introduced by each stage of the ring oscillator is
assumed to be totally independent of the jitter introduced by the other stages. There-
fore, the total variance of the jitter is given by the sum of the variances introduced by
each stage. For ring oscillators with identical stages, the variance will be given by

where m is the number of transitions during and is the variance of the
uncertainty introduced by one stage during one transition. Noting that m is propor-
tional to (2.6) is obtained.

It is observed in [48] that the coefficient in (2.6) for a ring oscillator is independent
of the frequency of oscillation and depends on the topology of the inverter stages
used. Values of due to various noise sources in an emitter coupled bipolar inverter
are calculated in [48]. Although this approach thus provides a method for evaluation
of the jitter in oscillators, needs to be recalculated for each topology and technol-
ogy.

The foregoing approaches assume statistical independence of noise sources. In reality,
however, the statistics of the timing jitter depend on the correlations among the noise
sources involved. As an instructive special case, consider totally correlated noise
sources. If the timing uncertainties introduced by each stage are fully correlated, their
standard deviations, rather than their variances, add. Accordingly, the standard devia-
tion of the jitter after seconds is proportional to which can be described by (2.7).
A partially correlated source can be broken down into fully correlated and uncorre-

delay of for a free-running oscillator demonstrates regions with slopes of and 1
corresponding to the uncorrelated and fully-correlated parts of the noise as snown in
Figure 2.10.

A frequency domain LTI approach can be used to model the phase noise in differen-
tial ring oscillators with a small number of stages, as well as the phase noise of relax-
ation oscillators [47]. In this approach, a short differential oscillator, such as the 3-
stage ring oscillator of Figure 3.8, is modeled using its equivalent small-signal single-
ended counterpart shown in Figure 3.9. It is assumed that stages neither turn off nor
their transconductances change dramatically during one cycle of operation. Again
applying the Barkhausen criterion, the total phase shift around the loop should be
in steady state. Also the loop gain, and hence the gain of each stage of Figure 3.9.
should be 1. These two conditions translate to and
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lated parts. Therefore a log-log plot of the timing jitter, versus the measurement
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The transfer function from one of the current sources of Figure 3.9 to the output volt-

the output power density will be given by
[47]
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age at the frequency is then easily calculated to be [47]

Using the standard long channel expression for drain current noise, i.e.,
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There are three such noise sources in the circuit. Therefore, following the assumption
in [47] that these is no correlation between the sources, the total output power density
will be three times (3.17). Dividing the noise power by the carrier power,
an expression for the phase noise due to the channel noise is obtained:

where is the power dissipated in the load device.

Although this approach results in a simple expression, it is limited to differential ring
oscillators with a small number of stages because (3.16) assumes linearity of the input
current-to-output voltage transfer function. This assumption only holds in differential
ring oscillators with a small number of stages and small voltage swing1. It also
assumes that the system is time invariant. As mentioned in [47], injection of a small
sinusoidal current at into a real oscillator results in a pair of equal sidebands
at as shown in Figure 3.10. An LTI system cannot predict these sidebands
since it is incapable of having an output at frequencies other than the input frequency
or the frequency of its poles. The mechanism that results in these sidebands as well as
their equality will be discussed in CHAPTER 4.

1. As will be seen in the next chapter, it is possible to introduce a different set of input and out-
put variables that do not face these limitations.
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CHAPTER 4 Time-Variant Phase
Noise Model

This chapter introduces the time-variant phase noise model. Section 4.1 defines the
phase impulse response and uses it to evaluate the phase perturbation of an oscillator
due to a small source. In Section 4.2, this approach is applied to find the output of an
oscillator for the specific case of a single tone perturbation. Extension to the case of
phase noise and jitter due to a random noise source is performed in Section 4.3.

Precisely how low frequency noise becomes close-in phase noise is unclear in older
models, so Section 4.4 details the mechanism for upconversion of low frequency
noise. Methods for properly modeling the effect of cyclostationary noise sources and
time-varying elements are presented in Section 4.5. Modeling of amplitude noise, as
opposed to phase noise, is investigated in Section 4.6. Finally, it is shown in
Section 4.7 that the time-variant phase noise model subsumes older phase noise mod-
els.

4.1 Impulse Response Model for Excess Phase

In the general case, multiple noise sources affect the phase and amplitude of an oscil-
lator. This chapter begins by investigating the effect of a single noise source on the
amplitude and phase of the oscillator. Generalization to the case of multiple input
sources with arbitrary correlations will be discussed in CHAPTER 7.

Time-Variant Phase Noise Model 31



Since each input source generally affects both amplitude and phase, a pair of equiva-
lent systems, one each for amplitude and phase, can be defined. Each system can be
viewed as a single-input, single-output system as shown in Figure 4.1. The input of
each system in Figure 4.1 is a perturbation current (or voltage) and the outputs are the
excess phase, and amplitude, A(t), as defined by (2.1). Both systems shown in
Figure 4.1 are time-variant as shown by the following examples.

The first example is an ideal parallel LC tank oscillating with a voltage amplitude,
as shown in Figure 4.2. If one injects an impulse of current at the voltage maxi-

mum, only the voltage across the capacitor changes; there is no effect on the current
through the inductor. Therefore, the tank voltage changes instantaneously, as shown
in Figure 4.2. Assuming a voltage- and time-invariant capacitor1, the instantaneous
voltage change is given by

where is the total charge injected by the current impulse and is the total
capacitance in parallel with the current source. It can be seen from Figure 4.2 that the
resultant change in A(t) and is time dependent. In particular, if the impulse is
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1. The general case of time variant elements is considered in Section 4.5.2.
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applied at the peak of the voltage across the capacitor, there will be no phase shift and
only an amplitude change will result, as shown in Figure 4.2a. On the other hand, if
this impulse is applied at the zero crossing, it has the maximum effect on the excess
phase, and the minimum effect on the amplitude, as depicted in Figure 4.2b.

In any practical stable oscillator, some form of amplitude restoring mechanism exists.
This amplitude limiting may be due to an explicit automatic gain control (AGC) or the
intrinsic nonlinearity of the devices, and results in an important difference between
the phase and amplitude responses of practical oscillators. In response to a current
impulse, the excess amplitude undergoes some transient behavior but finally con-
verges to zero. However, fluctuations in the excess phase are not quenched by any
restoring mechanism and therefore persist indefinitely.

Based on the foregoing argument, a current impulse results in a step change in phase,
as shown in Figure 4.1. The height of this step will depend on the instant of charge
injection as underlined in Figure 4.2. It is important to note that regardless of the size
of the injected charge, the systems in Figure 4.1 remain time-variant.

The concept of amplitude restoration can also be visualized in the state-space portrait
of the oscillator shown in Figure 4.3. The effect of this restoring mechanism is pic-
tured as a closed trajectory in state-space. The state of the system finally approaches
this trajectory, called a limit cycle, irrespective of its starting point [6]-[12].
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Time dependence can also be observed in the state-space trajectory shown in
Figure 4.3. Applying an impulse at the peak of the capacitor voltage is equivalent to a
sudden jump in voltage at point which results in the minimum phase change and
the maximum amplitude change, while applying an impulse at point has the oppo-
site effect. An impulse applied sometime between these two extremes will result in
both amplitude and phase changes.1

To emphasize the generality of this time-variance, consider two more examples. The
relaxation oscillator known as the Bose oscillator is shown in Figure 4.4. It consists of
a Schmitt-trigger inverter and an RC circuit. The hysteresis in the transfer function of
the inverter and the RC time constant determine the frequency of oscillation. The
resulting capacitor voltage waveform is shown with a solid line in Figure 4.5.

As before, imagine an impulsive current source in parallel with the capacitor, inject-
ing charge at as shown in Figure 4.4. All of the injected charge goes into the
capacitor and changes the voltage across it instantaneously. This voltage change,
results in a phase shift, as shown in Figure 4.5.

As can be seen from Figure 4.5, for a small area of the current impulse (injected
charge), the resultant phase shift is proportional to the voltage change, and hence
to the injected charge, Therefore, can be written as

1. Note that the angle in Figure 4.3 is not necessarily equal to the phase, because the state
of the system does not necessarily traverse the limit cycle with constant “angular velocity”.
More discussion on this distinction will appear in CHAPTER 7.
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1. The calculation of the ISF is the subject of Appendix D.

where is the voltage swing across the capacitor and is the
maximum charge swing. The function, is the time-varying “proportionality fac-
tor”. It is called the impulse sensitivity function (ISF), since it determines the sensitiv-
ity of the oscillator to an impulsive input1. It is a dimensionless, frequency- and
amplitude-independent function periodic in that describes how much phase shift
results from applying a unit impulse at any point in time.
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The concept of the ISF can be developed further with a third example, a ring oscilla-
tor. Consider the single-ended inverter-chain ring oscillator shown Figure 4.6 with a
single current source on one of its nodes. Suppose that the current is an impulse with
area (in coulombs), occurring at time Charge injection causes an instanta-
neous change in the voltage of that node, by an amount given by (4.1). This in turn
produces a shift in the transition time, by an amount proportional to the injected
charge (for small Again, this phase shift is time variant as can be seen from the
simulated waveforms of the oscillator shown in Figure 4.7. The induced phase shift
can be expressed using (4.2), with a different ISF.

To illustrate the significance of the ISF, the waveform and the ISF for the three exam-
ples are shown in Figure 4.8. As can be seen, the ISF for an ideal LC oscillator with a
cosine waveform is a sine function. This result may be shown by directly solving the
differential equation in Appendix C. In the case of the Bose oscillator, the ISF is
inversely proportional to the slope of the capacitor voltage. For the ring oscillator, the
ISF is maximum during transitions and minimum during the times that the stage is
saturated to the supply or ground.

It is critical to note that the current-to-phase transfer function is linear for small
injected charge, even though the active elements may have strongly nonlinear voltage-
current behavior. It should also be noted that the linearity and time-variance of a sys-
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tem depends on both the characteristics of the system and its input and output vari-
ables. The linearization of the current-to-phase system of Figure 4.1 does not imply
linearization of the nonlinearity of the voltage-current characteristics of the active
devices. In fact, this nonlinearity affects the shape of the ISF and therefore has an
important influence on phase noise, as will be seen shortly.
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The validity of the linearity assumption for small perturbations will be demonstrated
more formally in CHAPTER 7. However, the extent to which this linearity assump-
tion is valid can be investigated informally through simulation by injecting impulses
with different areas (charges) and measuring the resultant phase change. SPICE simu-
lations for the CMOS inverter-chain ring oscillator of Figure 4.6 and the Colpitts
oscillator of Figure 4.9 are shown in Figure 4.10a and b, respectively. The impulse is
applied close to a zero crossing, where it has the maximum effect on phase. The max-
imum injected charges, in Figure 4.10a and b are 25 and 16 percent of the maxi-
mum charge swings, respectively. Noting that the effective injected charges due
to actual noise and interference sources in practical circuits are several orders of mag-
nitude smaller than the maximum amounts of charge injected in Figure 4.10, these
simulations verify the validity of linearity assumption in these oscillators. Thus, as
long as the injected charge is small, the equivalent systems for amplitude and phase
shown in Figure 4.1 can be fully characterized using their linear time-variant unit
impulse responses, and

Noting that the introduced phase shift persists indefinitely, the unity phase impulse
response can be easily calculated from (4.2) to be

where u(t) is the unit step.
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1. In the most general case, the argument of the ISF is shifted by the same that shifts the
waveform, therefore, it should be However, for the most practical cases, the vari-
ations of are much slower and smaller than and can be ignored.
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The output voltage, V(t), is related to the phase, through a phase modulation pro-
cess. Thus the complete process by which a noise input becomes an output perturba-
tion in V(t) can be summarized in the block diagram of Figure 4.11. The essential
features of the block diagram of Figure 4.11 are a modulation by a periodic function,
an ideal integration and a nonlinear phase modulation. The complete process thus can

where i(t) represents the input noise current injected into the node of interest. Equa-
tion (4.4) is one of the most important results of this section and will be referred to
frequently.

Thanks to linearity, the output excess phase, can be calculated for small charge
injections using the superposition integral1

Impulse Response Model for Excess Phase



1. Lowpass for the first branch.
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Each branch of the equivalent system in Figure 4.12 acts as a bandpass filter1 and a
downconverter in the vicinity of an integer multiple of the oscillation frequency. For
example, the second branch weights the input by multiplies it with a tone at and
integrates the product. Hence, it passes the frequency components around and

Equation (4.6) identifies individual contributions to the total for an arbitrary input
current i(t) injected into any circuit node, in terms of the various Fourier coefficients
of the ISF. The decomposition implicit in (4.6) can be better understood with the
equivalent block diagram shown in Figure 4.12.

where the coefficients are real-valued, and is the phase of the nth harmonic. As
will be seen later, is not important for random input noise and is thus neglected
here. Using the expansion in (4.5) for in the superposition integral and
exchanging the order of summation and integration, the following is obtained:

Since the ISF is periodic, it can be expanded in a Fourier series

be viewed as a cascade of an LTV system that converts current (or voltage) to phase,
with a nonlinear system that converts phase to voltage.
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downconverts the output to the baseband. As can be seen, components of perturba-
tions in the vicinity of integer multiples of the oscillation frequency play the most
important role in determining

4.2 Response to Sinusoidal Input

The response of an oscillator to small sinusoidal perturbations provides valuable
information about the effect of noise at various frequencies, and is therefore investi-
gated in this section. As mentioned previously, this process can be broken down into
the two cascaded processes shown in Figure 4.11. The following subsections examine
these two processes in detail.

4.2.1 Perturbation Current-to-Phase Transformation

To investigate the effect of low frequency perturbations on the oscillator phase, a low
frequency sinusoidal perturbation current, i(t), is injected into the oscillator at a fre-
quency of

where is the amplitude of i(t). The arguments of all the integrals in (4.6) are at fre-
quencies higher than and are significantly attenuated by the averaging nature of
the integration, except the term arising from the first integral (the first branch in the
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1. All of the impulses in Figure 4.13 and Figure 4.14 are scaled by a factor of since the x-
axis is the angular frequency, instead of the ordinary frequency, f.

A process similar to that of the previous case occurs except that the spectrum of i(t)
consists of two impulses at as shown in Figure 4.14. This time the domi-

As another important special case, consider a current at a frequency close to the oscil-
lation frequency given by

As a result, there will be two impulses at in the power spectral density of
denoted as as shown in Figure 4.131.

equivalent block diagram of Figure 4.12), which involves Therefore, the only sig-
nificant term in will be

Time-Variant Phase Noise Model
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for For n = 0, phase is given by (4.8).

More generally, (4.6) suggests that applying a current, close
to any integer multiple of the oscillation frequency will result in two equal sidebands
at in Hence, in the general case     is given by

which again results in two equal sidebands at in

nant term in (4.6) will be the second integral corresponding to n=l. Therefore, is
given by

Response to Sinusoidal Input
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1. For n=0, the factor of 4 in the denominator will be 8.

The foregoing analysis predicts that a sinusoidal current injected into an oscillator at a
frequency results in two equal sidebands at in the output voltage spec-
trum, as also observed in [47]2. An LTI model is not capable of predicting these side-
bands, as an LTI system cannot produce any frequencies except those of the input

This process is shown in Figure 4.15. Appearance of the frequency deviation, in
the denominator of the (13) underscores that the impulse response, is a step
function and therefore behaves as a time varying integrator. Equation (13) will be
referred to frequently in subsequent sections.

where it is assumed that and for small values of
Using this narrowband tone modulation approximation [139], an injected current at

is seen to result in a pair of equal sidebands at Substituting from
(4.11) into (12) results in a single-tone phase modulation for output voltage, whose
sideband power relative to the carrier is calculated from (4.11) and (12) to be1

The phase-to-voltage conversion process for a single tone is now considered. For
small values of can be approximated as

To obtain the sideband power around the fundamental frequency, the fundamental
Fourier component of the oscillator output, can be used as the transfer
function for the last system in Figure 4.11. Note that this is a nonlinear transfer func-
tion with as the input.

In the last subsection, the amount of phase error due to a given sinusoidal current was
calculated to be given by (4.11). Computing the power spectral density (PSD) of the
oscillator output voltage, requires knowledge of how the output voltage relates
to the excess phase variations.

4.2.2 Phase-to-Voltage Transformation
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and those associated with the system’s poles. Furthermore, the amplitude of the
resulting sidebands, as well as their equality, cannot be attributed to conventional
intermodulation effects. This failure is to be expected since ordinary intermodulation
terms arise from nonlinearity in the voltage (or current) input/output characteristic of
active devices of the form This kind of effect is
expected for a memoryless nonlinearity with two inputs of equal importance, but not
for a system with a self-sustained mode and a small input perturbation. Furthermore,
as mentioned earlier, this type of nonlinearity does not directly appear in the phase
transfer characteristic and shows itself only indirectly in the shape of the ISF.

4.2.3 Simulation and Experimental Verification

It is instructive to compare the predictions of (4.13) with simulation results. A sinuso-
idal current of amplitude at different frequencies is injected into node 1 of the
1.01GHz ring oscillator of Figure 4.6 in HSPICE. Figure 4.16a shows the resulting
simulated power spectrum of the signal on node 4 for a low frequency input at

This power spectrum is obtained using the FFT analysis capability of
HSPICE 96.1 [141]. Note that the injected noise is upconverted into two equal side-
bands at and as predicted by (4.13). Figure 4.16b shows the effect of

2. Note that the effect of amplitude response is totally ignored here. For oscillators with large
amplitude response the sidebands may show a slight difference in amplitude. Modeling of the
amplitude response is described in Section 4.6.
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To verify further that the conversion of perturbations from around integer multiples of
the frequency of oscillation occurs as predicted by (4.13), a series of experiments on a

Simulated sideband power for the general case of current injection at can be
compared to the predictions of (4.13). The ISF for this oscillator is obtained by direct
simulation, in which very short pulses of current are injected and the induced phase
shift is measured, as described in Appendix D. Here, is equal to
where is approximated by the average capacitance on each node of the circuit
and is the maximum swing across it. For this oscillator, and

which results in Figure 4.17 depicts the simulated and pre-
dicted sideband powers for a sinusoidal injected current of amplitude and
an of 50MHz. As can be seen from the figure, these agree to within 1dB for the
higher power sidebands. The discrepancy in the case of the low power sidebands (n =
4, 6-9) arises from numerical noise in the simulations, which represents a greater frac-
tional error at lower sideband power. Overall, there is satisfactory agreement between
simulation and the predictions made by (4.13).

injection of a current at Again, two equal sidebands are observed at
and also as predicted by (4.13).
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5-stage, 5.4MHz ring oscillator constructed with ordinary CMOS inverters is per-
formed.

The first experiment varies the frequency offset from an integer multiple of the oscil-
lation frequency. An input sinusoidal current source of         (rms) at     is applied to
one node and the output is measured at another node. This process is repeated for

and as shown graphically in Figure 4.18. The sideband power is
measured using a spectrum analyzer and plotted versus in Figure 4.19. Note that
the slope in all four cases is -20dB/decade, again in complete accordance with (4.13).

The second experiment examines the linearity of the current-to-phase conversion. A
sinusoidal current is injected at frequencies

and                   and the sideband powers at       are mea-
sured as the magnitude of the injected current is varied. At any amplitude of injected
current, the two sidebands are equal in amplitude to within the accuracy of the spec-
trum analyzer (0.3dB), in complete accordance with the theory. These sideband pow-
ers are plotted versus the injected input current in Figure 4.20. As can be seen the
power transfer function for the input current to the output sideband is linear as sug-
gested by (4.13). The slope of the best fit line is 19.8dB/decade. The predicted slope
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In this section, the extension of the theory to the case of a random noise source is con-
sidered from an intuitive standpoint (a more rigorous treatment is presented in Appen-
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4.3 Phase Noise and Jitter due to Random Noise

The third experiment verifies the effect of maximum charge swing, on the side-
band powers. An input sinusoidal current source of (rms) at is applied to
one node and the output is measured at another node. The maximum charge swing,

is doubled by adding another set of identical inverters in parallel with the first
set. The experiment is repeated and, as can be seen in Figure 4.21, there is a 6dB
reduction in the sideband power, in complete accordance with (4.13).

is 20dB/decade because the excess phase, is proportional to i(t) and hence the
sideband power is proportional to leading to a 20dB/decade slope. The behavior
shown in Figure 4.20 verifies that the underlying linearity assumption leading to
(4.13) holds for injected input currents orders of magnitude larger than typical noise
currents.
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It can be seen that the total is given by the sum of phase noise contributions
from device noise in the vicinity of the integer multiples of weighted by the coef-
ficients This is shown in Figure 4.23 which shows the spectrum of on log-log
scales.

Consider a random noise current source, whose power spectral density has both
a flat region and a l/f region, as shown in Figure 4.22. Equation (4.6) shows that noise
components located near integer multiples of the oscillation frequency are weighted
by Fourier coefficients of the ISF and integrated to form the low frequency noise side-
bands for These sidebands in turn become close-in phase noise in the spectrum
of through phase modulation (PM), as illustrated in Figure 4.22.

4.3.1 Phase Noise

dix B). The model is expanded to the more general case of multiple correlated
cyclostationary sources in CHAPTER 7.

Phase Noise and Jitter due to Random Noise



1. It is apparent that if the original noise current, i(t), contains low frequency noise terms,
they will appear in the phase noise spectrum as regions.
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Retaining the narrowband PM assumption used earlier, we expect the single-sideband
spectral noise density, to be similar to the spectrum i.e., To verify
this expectation, we now carry out a quantitative analysis of the phase noise sideband
power. Consider a white input noise current with power spectral density Note
that in (4.13) represents the peak and not the rms amplitude, hence,

The theory predicts the existence of and regions in the phase noise power
spectrum shown in Figure 4.23. Low-frequency noise, such as flicker noise, is
weighted by the coefficient and ultimately produces a phase noise region.
White noise terms are weighted by other coefficients and give rise to the
region of phase noise spectrum1. The total sideband noise power is the sum of the
individual terms, as shown by the bold line in the same figure.
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for Noise power around the frequency causes two equal side-
bands at as shown in Figure 4.14. However, it is important to recognize that
noise power at also has a similar effect. Therefore, twice the power of noise
at should be taken into account. Based on the foregoing development and
(4.13), the total single-sideband phase noise spectral density due to one noise source
at an offset frequency is given by the sum of the powers of the highlighted compo-
nents in Figure 4.22, namely

2. A more accurate analysis that takes into account the effect of wideband PM is given in
Appendix B. That analysis shows that, although the phase power spectrum, grows with-
out bound as the frequency goes to zero, the power spectrum of the output voltage, usu-
ally reaches a plateau. This result is intuitively satisfying, since becomes V(t) through the
cosine function, which limits its span and, hence, the low frequency power.
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Now, according to Parseval’s relation,

where is the rms value of As a result

52 The Design of Low Noise Oscillators



Time-Variant Phase Noise Model 53

So far the case of a perturbation current source in parallel with a capacitor has been
analyzed. The dual case of a voltage source in series with an inductor can also occur
in an oscillator. The series tank shown in Figure 4.24 can be used to calculate the
effect of a voltage noise source. An impulse of voltage can only change the current of
the inductor. Therefore, for a noise voltage source in series with an inductor,
should be replaced with where represents the maximum magnetic
flux swing in the inductor, L, and is the maximum current swing in the inductor.
Therefore, the phase noise due to such source is given by

This equation gives the phase noise spectrum of an arbitrary oscillator in the
region of the phase noise spectrum and will be referred to frequently. Note the
absence of any fitting parameters.

Phase Noise and Jitter due to Random Noise
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Therefore combining (4.18) and (4.19), phase jitter can be written as

where E[ ] represents expected value. According to (4.4),

As mentioned in CHAPTER 2, timing jitter is the preferred parameter for quantifying
frequency instabilities in digital circuits. The superposition integral (4.4) can also be
used to calculate the phase jitter defined by (2.8). The phase jitter can be expressed as

4.3.2 Phase Jitter

where is the voltage mean-square density per unit bandwidth and is the
rms value of the ISF for the voltage source.
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For a white noise current source, the autocorrelation function is

which is

where is an integer. Using (4.22) and the definition of in (2.6), it is calculated to be

This result will be used in CHAPTER 5 to calculate the timing jitter in ring oscilla-
tors.

4.4 Upconversion of Low Frequency Noise

This section is dedicated to the study of the upconversion of low frequency noise.
Section 4.4.1 provides an explicit expression for the noise corner in terms of the
device 1/f noise corner and the dc and rms values of the ISF. Section 4.4.2 shows sim-
ulations and experimental verification of the results.

4.4.1 Calculation of the Noise Corner

Many active and passive devices exhibit low frequency noise with a power spectrum
that is approximately inversely proportional to the frequency. It is for this reason that
noise sources with this behavior are referred to as 1/f noise1 [124]-[133]. In this sub-

1. It is also referred to as flicker noise
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1. It should be noted that using MOS transistors in a switching mode can reduce their 1/f noise
and corner frequency [131]. If the devices in the oscillator of interest undergo switching, the
new 1/f noise corner should be used in (4.24) [132][133].

As can be seen, the phase noise corner is not equal to the 1/f device noise corner,
but is smaller by a factor equal to where is the dc value of ISF,

The phase noise corner, is the frequency where the sideband power due to
the white noise given by (4.16) is equal to the sideband power arising from the 1/f
noise given by (4.25), as shown in Figure 4.23. Solving for results in the fol-
lowing expression for the corner in the phase noise spectrum:

where is the corner frequency of device 1/f noise1, (4.13) and (4.24) result in the
following expression for phase noise in the portion of the phase noise spectrum:

Noting that device noise in the 1/f region can be described by

section, the relationship between the device l/f corner and the phase noise corner
will be investigated quantitatively. It is important to note that nothing in the foregoing
development implies that the corner of the phase noise and the 1/f corner of the
device noise are generally coincident, as is commonly assumed. In fact, from
Figure 4.23, it should be apparent that the relationship between these two corner fre-
quencies depends on the specific values of the various coefficients
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1. The effect of time-variant capacitors will be investigated in Section 4.5.

The dc value of the ISF for the asymmetric rising and falling edge is much larger than
that in the symmetric case, and hence a low frequency noise source injecting into it
shows a stronger upconversion of low frequency noise. A limited case of the effect of
odd-symmetric waveforms on phase noise has been observed in [28]. However mini-
mizing (4.27) is more a general criterion because although odd-symmetric waveforms
may have small coefficients, the class of waveforms with small is not limited to
those with odd symmetry.

To understand what affects consider two ring oscillators, with waveforms shown in
Figure 4.25. The first waveform has symmetric rising and falling edges, i.e., its rise-
time is the same as its fall-time. Assuming a time-invariant node capacitor1, the sensi-
tivity of this oscillator to a perturbation during the rising edge is the same as its sensi-
tivity during the falling edge, except for a sign. Therefore, the ISF has a small dc
value. The second case corresponds to an asymmetric waveform with slow rising edge
and a fast falling edge. In this case, the phase is more sensitive during the rising edge,
and is also is sensitive for a longer time; therefore, the positive lobe of the ISF will be
taller and wider as opposed to its negative lobe which is short and thinner, as shown in
Figure 4.25.

Upconversion of Low Frequency Noise



58 The Design of Low Noise Oscillators

For an oscillator with asymmetric rising and falling edges, however, the phase shift
introduced during the rising edge is different from the opposite phase shift introduced
during the falling edge, as can be seen in Figure 4.26b. This will cause the next transi-
tion to occur earlier (or later for a negative low frequency current). This is equivalent

Assuming a time-invariant capacitor, C, the rising transition will be shifted to the left
by an amount determined by C, i(t) and the slope of the transition. Since the falling
edge is caused by the same transition propagating through the ring, it will occur ear-
lier by the same amount, as shown by dashed lines in Figure 4.26. In the case of sym-
metric rising and falling edges, an equal but opposite amount of phase shift will be
induced during the falling transition. Therefore, the next transition will start at the
same time as before and the period is not changed. As a result, the phase variations
due to low frequency noise remain local and are not integrated.

A more intuitive view of low frequency noise upconversion is shown in Figure 4.26.
Consider a low frequency current source on one node of a ring oscillator, and for sim-
plicity assume trapezoidal waveforms, as shown in Figure 4.26. The low frequency
source has very small variations during one period and therefore can be approximated
as a dc current, as shown in Figure 4.26.

Time-Variant Phase Noise Model
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In the differential buffer stage of Figure 4.28, the asymmetry is due to the voltage
dependent conductance of the load. Therefore, reduction of the upconversion might
be achieved through the use of a more linear load, such as resistors or linearized MOS
devices. These more linear loads improve the single-ended symmetry because the ris-
ing and falling behavior is governed by an RC time constant and makes the individual

The importance of symmetry might lead to the conclusion that differential signaling
would minimize Unfortunately, while differential circuits are certainly symmetri-
cal with respect to the desired signals, the differential symmetry disappears for the
individual noise sources because they are independent of each other. Hence, it is the
symmetry of each half-circuit that is important, as is demonstrated in the differential
ring oscillator of Figure 4.27 with buffer stages shown in Figure 4.28. A sinusoidal
current of at 50MHz is injected at the drain node of one of the buffer stages to
model the effect of low frequency noise in the differential NMOS and PMOS devices.
This sinusoidal current results in two equal sidebands, -46dB below carrier, in the
power spectrum of the differential output as shown in Figure 4.29. Because of the
voltage dependent conductance of the load devices, the individual waveform on each
output node is not fully symmetrical and, consequently, there will be a large upcon-
version of noise to close-in phase noise, even though differential signaling is used.
Another source whose low frequency noise is not automatically suppressed is the tail
current source. This source can be the dominant source of 1/f noise and its effect will
be discussed in detail in Section 6.3.

Symmetry is therefore important. Recognizing this fact allows the designer to identify
the design parameters that minimize the upconversion of low frequency noise,
through proper device sizing, for example. The design goal should thus be the mini-
mization of the    coefficient.

to a net frequency change and will result in frequency (and hence phase) modulation
of the high frequency signal as the low frequency source slowly changes.

Upconversion of Low Frequency Noise
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waveforms more symmetrical. It was first observed in the context of supply noise
rejection [44] that using more linear loads can reduce the effect of supply noise on
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The ISF has a large dc value for the asymmetric node compared to one of the symmet-
ric nodes elsewhere in the ring, as depicted in Figure 4.31. From this difference in the
dc values of the ISFs, it can be inferred that the close-in phase noise due to low-fre-
quency noise sources should be smaller for the symmetrical output than for the asym-
metrical one. To investigate this assertion, the results of two SPICE simulations are
shown in Figure 4.32. In the first simulation, a sinusoidal current source of amplitude

at is applied to one of the symmetric nodes of the oscillator. In the
second experiment the same source is applied to the asymmetric node. As can be seen

To illustrate the effect of a rise and fall time asymmetry, consider a purposeful imbal-
ance of pull-up and pull-down rates in one of the inverters in the ring oscillator of
Figure 4.30. This is obtained by halving the channel width, of the NMOS device
and doubling the width, of the PMOS device of one inverter in the ring, as shown
in Figure 4.30. The output waveform and corresponding ISFs for node 4 (a symmetric
node) and node 1 (the asymmetric node), are shown in Figure 4.31.

4.4.2 Simulation and Experimental Verification

timing jitter. This treatment shows that it also improves low-frequency noise upcon-
version into phase noise.

Upconversion of Low Frequency Noise
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from the power spectra, noise injected into the asymmetric node results in sidebands
that are 12dB larger than at the symmetric node.

Note that (4.27) suggests that upconversion of low frequency noise can be signifi-
cantly reduced by minimizing Since depends on the waveform, this observation
implies that a proper choice of waveform may yield significant improvements in
close-in phase noise. The following simulation explores this concept by changing the
ratio of over some range, while injecting of sinusoidal current at
100MHz into one node. The sideband power below carrier as a function of the to

ratio is shown in Figure 4.33. The SPICE-simulated sideband power is shown
with plus symbols and the sideband power as predicted by (4.13) is shown by the
solid line. As can be seen, close-in phase noise due to upconversion of low-frequency
noise can be suppressed by an arbitrary factor, at least in principle.

Although the aforementioned symmetry criterion results in valuable design insights, it
should be kept in mind that the most accurate criterion for minimizing upconversion
of low frequency noise is minimizing the dc value of the effective ISF to be defined by
(4.34) in Section 4.5. In certain cases, such as the one shown in Figure 4.33, the most
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The foregoing simulation results can also be verified experimentally. Figure 4.34
shows the results of an experiment performed on a 5-stage single-ended ring oscilla-
tor in which one of the stages is modified to allow the addition of an extra pulldown
NMOS transistor, as shown in Figure 4.35. A sinusoidal current of (rms) is
injected into node n1 with and without the extra pulldown transistor. For comparison,
this experiment is repeated for node n4 of the oscillator before and after adding the
extra pulldown transistor. Note that in Figure 4.34 the sideband power is 7dB larger
when noise is injected into the node with the asymmetrical waveform, while the side-
bands due to signal injection at the symmetric nodes are essentially unchanged with
the modification.

symmetric rise and fall time does not necessarily correspond to minimum upconver-
sion, due to time varying capacitors and cyclostationarity of noise sources. In fact, the
optimum to ratio in the particular example of Figure 4.33 is seen to differ con-
siderably from that used in conventional ring oscillator designs.
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These concepts can be understood best in the context of an example. Consider the
Colpitts oscillator of Figure 4.9. The simulated collector voltage and current of the

In practical oscillators, the statistical properties of some of the random noise sources
may change with time in a periodic manner. These sources are referred to as cyclosta-
tionary. For instance, the channel noise of a MOS transistor in an oscillator is cyclos-
tationary because the noise power is modulated by the gate-source overdrive which
varies with time periodically. There may be other noise sources in the circuit whose
statistical properties do not depend on time and the operation point of the circuit, and
are therefore called stationary. Thermal noise of a resistor is an example of a station-
ary noise source.

4.5.1 Cyclostationary Noise Sources

In addition to the periodically time-varying nature of the system itself, there can be
other complications due to the presence of periodically time-varying noise sources,
voltage-dependent capacitors or current-dependent inductors. Section 4.5.1 deals with
the modeling of cyclostationary noise sources, while the effect of voltage/current-
dependent elements is modeled in Section 4.5.2.

4.5 Other Time-Variant Effects

Other Time-Variant Effects
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transistor are shown in Figure 4.36. Note that the collector current consists of a short
period of large current followed by a quiet interval1. This behavior is investigated in
more details in Appendix F. The power of collector shot noise is proportional to the
instantaneous collector current of the transistor2; therefore, it has the maximum
power during the peak of collector current. Figure 4.37 shows one sample of collector
shot noise of the bipolar transistor.

A white cyclostationary noise current can always be decomposed as

1. The reason for this behavior is investigated further in Appendix F.

2. The reason that the collector shot noise in bipolar transistors and the drain thermal noise in
MOS transistors can be modeled this way has its roots in the physics of the device. In general,
the expressions for the noise in the transistor are valid only after electrons and holes reach ther-
mal equilibrium; however, in most practical applications, thermal equilibrium is reached much
faster than the maximum frequency of operation of the transistor [140].
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1. As mentioned earlier the ISF in the argument of (4.4) should appear as how-
ever, the NMF is shifted by the same amount and therefore appears in (4.29) as
Therefore, (4.30) holds at all times.

where can be derived easily from device noise characteristics and the noiseless
steady-state waveform. Note that there is a strong correlation between the cyclosta-
tionary noise source and the waveform of the oscillator. The maximum of the noise

As can be seen, cyclostationary noise can be treated as a stationary noise applied to a
system with a new ISF given by1

where is a white stationary process and is a deterministic periodic func-
tion describing the noise amplitude modulation and therefore is referred to as the
noise modulating function (NMF). The NMF, is normalized to a maximum
value of 1. This way is equal to the maximum of the periodically varying
noise power density, Applying (4.28) to (4.4), may be rewritten as:

Other Time-Variant Effects



68 The Design of Low Noise Oscillators

Note that in the case of the ring oscillator and are almost identical. This
unfortunate situation is one of the reasons why ring oscillators in general have inferior
phase noise performance compared to a Colpitts LC oscillator1.

The second example is the inverter-chain ring oscillator of Figure 4.6. The situation is
quite different for the ring oscillator because the devices have an unfortunate coinci-
dence of maximum current, maximum and maximum noise power. Functions

and for the ring oscillator of Figure 4.6 are shown in Figure 4.39.

This observation suggests that it is highly desirable for the cyclostationary noise
sources to have their maximum power at the minimum sensitivity point. All other
parameters being similar, the designer should seek topologies that result in a mini-
mum value for the effective ISF.

Functions and for this oscillator are shown in Figure 4.38. Note
that, in this case, has a much smaller rms value than    and hence the
effect of cyclostationarity is very significant for the LC oscillator and cannot be
neglected.

Two examples are considered to provide some design insight into the effect of cyclos-
tationary noise sources. As a first example consider the Colpitts oscillator of
Figure 4.9. As can be seen in Figure 4.36, the surge of collector current occurs at the
minimum of the voltage across the tank, where the ISF is small. The collector shot
noise has its maximum power when the collector current is maximum, as shown in
Figure 4.37. This fortunate coincidence lowers the phase noise degradation due to the
collector shot noise, because the maximum noise power always coincides with the
minimum phase noise sensitivity. This concept can be more accurately described
using the effective ISF defined by (4.30).

Also note that as the waveform deviates in time from the noiseless waveform due to
phase noise, shifts by exactly the same amount because the noise sources are
modulated by the oscillator voltages and currents. Therefore, they will always have a
constant phase relationship and (4.30) will be valid at all times. The relative timing of
the cyclostationary noise sources with respect to the impulse sensitivity function can
drastically change the effect of those noise sources.

power always recurs at a certain point of the oscillatory waveform, thus the average of
the noise may not be a good representation of the noise power.
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1. There is another important reason for the inferior phase noise performance of ring oscilla-
tors. A ring oscillator stores a certain amount of energy on the capacitors during every cycle
and then dissipates all the stored energy during the same cycle, while an LC resonator dissi-
pates only of the total stored energy during one cycle. Thus, for a given power dissipation
in steady state, a ring oscillator suffers from a smaller maximum charge swing,

Many capacitors in practical oscillators are voltage dependent, such as junction and
gate capacitors. Since, in an oscillator, the node voltages vary in a periodic manner,
such a capacitor will be periodically time varying and therefore

4.5.2 Voltage Dependent Capacitors

The foregoing observation indicates that the cyclostationary properties of noise are
less important in the treatment of phase noise of ring oscillators. This lack of strong
dependence was also shown through direct simulation for differential ring oscillators
in [47].

Other Time-Variant Effects
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Therefore, such a capacitor can be modeled as a time-invariant capacitor with a value
along with a new ISF given by

where is the maximum value of the capacitor and is a periodic unitless
function with a maximum of 1 and a period of Function will be referred to as
the capacitor modulating function (CMF). Applying (4.31) to (4.4), will be given
by
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1. An inductor with a ferromagnetic core whose relative magnetic permeability,          is a func-
tion of magnetic intensity, H, is an example of a current-dependent inductor.

A current impulse with an area, will induce an instantaneous change in the capac-
itor voltage given by (4.1). This, in turn, will result in a change in the oscillator ampli-
tude that depends on the instant of injection, as shown in Figure 4.2. The amplitude
change is proportional to the instantaneous normalized voltage change2,
for small injected charge, i.e.,

As mentioned in Section 4.1, unlike the induced excess phase that persists indefi-
nitely, the excess amplitude, A(t), due to a current impulse decays with time. This
decay is the direct result of the amplitude restoring mechanisms always present in
practical oscillators. Depending on the oscillator and the nature of the amplitude lim-
iting mechanism, the excess amplitude may decay very slowly (e.g., in a harmonic
oscillator with a high quality resonant circuit) or very quickly (e.g., the ring oscillator
of Figure 4.6). Also in some oscillators, there may be ringing in the output amplitude,
as shown in Figure 4.40.

Up to this point, the effect of amplitude fluctuations has been ignored. As will be seen
shortly, while the close-in sidebands are almost always dominated by phase noise, the
far-out sidebands are significantly affected by amplitude noise. In this section, a sim-
ple model for analyzing the consequences of amplitude fluctuations is presented.

4.6 Amplitude Response

Hence, in order to take these time-variant effects into account, the effective ISF
defined by (4.34) should be used in all subsequent calculations. These concepts will
be generalized further in CHAPTER 7 to accommodate multiple noise sources.

The effect of cyclostationary noise sources and periodically time-varying capacitors
can be lumped into an effective ISF defined as

Note that can be obtained easily from steady-state simulation of the oscillator. A
similar approach can be taken to model current dependent inductors .

Amplitude Response
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2. Note that the amplitude change is only equal to the normalized voltage change if the
impulse is injected at the peak of the sinusoidal tank voltage.

In general, the exact amplitude response depends on the details of the particular oscil-
lator of interest. For most oscillators, the amplitude limiting system can be approxi-

where is a function that defines how the excess amplitude decays. Figure 4.41
shows two hypothetical examples of d(t) for a low Q oscillator with overdamped
response and a high Q oscillator with underdamped amplitude response.

where is a periodic function that determines the sensitivity of each point on the
waveform to an impulse and is called the amplitude impulse sensitivity function. It is
the amplitude counterpart of the phase impulse sensitivity function, From a
development similar to that of Section 4.1, the amplitude impulse response can be
written as
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whose solution is a decaying exponential:

The total energy can be expressed as where is the steady-
state tank energy and is the change in the energy. By rewriting E this way and
assuming that does not change, (4.38) will result in

where E(t) is the total tank energy at time t. In steady state, E stays constant and,
therefore,

where is the total energy stored in the resonator and    is the energy dissi-
pated every cycle due to losses in the tank. During each cycle, the active device injects

energy into the tank. Therefore, the rate of change in the total energy is

A first order analysis to determine the amplitude response of a harmonic oscillator can
be insightful. In a resonator, Q is defined as

mated as first or second order [10]. The function typically will thus be either a
dying exponential or a damped sinusoidal as shown in Figure 4.41.

Amplitude Response
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where is the rms value of       As can be seen, the output amplitude noise
spectrum is a Lorentzian, as depicted in Figure 4.42. If is measured, the sum of
both and will be observed and hence there will be a pedestal in the
phase noise spectrum at as shown in Figure 4.42. Also note that the significance

If i(t) is a white noise source with power spectral density the output power
spectrum of the amplitude noise, A(t), can be shown to be

Using (4.36) and (4.44), the excess amplitude response to an arbitrary input current,
i(t), can be calculated using the superposition integral,

and accordingly

The excess amplitude will be given by

where C is the tank capacitor and is the induced voltage change. If the induced
voltage change is small compared to the steady-state voltage swing, the last term in
(4.41) can be neglected. Therefore,

where is the initial excess energy of the tank. In the case of an LC tank, the total
energy is
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The time-varying model proposed here reduces to earlier models if approximate sim-
plifying assumptions are made. In particular, consider models which assume that lin-
ear time-invariance holds, that all noise sources are stationary, that only the noise in
the vicinity of is important, and that the noise-free waveform is a perfect sinusoid
[22][25][37]. These assumptions are equivalent to discarding all but the term in the
ISF and setting As a specific example, consider the oscillator of Figure 3.2. The

4.7 Relationship to Previous Models

where is the natural frequency of the amplitude response. In this case, there will be
peaking in the amplitude frequency response as shown in Figure 4.43.

In the case of an underdamped response, will have a sinusoidal term, i.e.,

of the amplitude response depends greatly on which, in turn, depends on the
topology.

Relationship to Previous Models
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Equations (4.49) and (4.26) result in

Since [37] assumes equal contributions from amplitude and phase portions to
the result obtained in [37] is two times larger than the result of (4.49).

where C is the tank capacitor, and is the maximum voltage swing across the
tank. Equation (4.14) thus reduces to

phase noise due solely to the tank equivalent parallel conductance, can be found
by applying the following to (4.14):
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The phase impulse response of an oscillator was defined using the impulse sensitivity
function (ISF). The response of an oscillator to deterministic and random noise
sources was calculated in terms of Fourier coefficients of the ISF. Expressions for the
phase noise in and regions, as well as for timing jitter, were obtained. The
effect of symmetry on the upconversion of low frequency noise was shown, and time-
variant effects and their modeling were investigated. The output spectrum due to
amplitude noise was calculated.

4.8 Summary

It is important to note that the                 floor corner predicted by (4.50) does not
necessarily coincide with the actual corner, as can be seen in Figure 4.42. More gen-
eral expressions for the case of multiple noise sources will be developed in CHAP-
TER 7.

Note that (4.50) can be used to calculate the fitting parameters used in (3.1), (F, and
in terms of the dc and rms values of the ISF and device 1/f noise corner,

Assuming that the total noise contribution in an oscillator with a parallel tank can be
modeled using an excess noise number [22], F, the fitting parameters in (3.1) are

Summary





CHAPTER 5 Jitter and Phase Noise in
Ring Oscillators

Due to their amenability to integration, ring oscillators have become an essential
building block in many digital and communication systems. They are used as voltage
controlled oscillators (VCOs) in applications such as clock recovery circuits for serial
data communications [110]-[113], disk drive read channels [114][115], on-chip clock
distribution [116]-[119], and integrated frequency synthesizers [119][120]. In
Section 5.1, a closed form expression for the rms and dc values of the ISF for ring
oscillators is derived. These approximate rms and dc values are used to obtain closed-
form expressions for phase noise and jitter in ring oscillators in Section 5.2. The
effect of correlated noise sources is investigated in Section 5.3. Design implications
such as the question of single-ended vs. differential implementation of ring oscillators
and the optimum number of stages are addressed in Section 5.4. Finally, these expres-
sions are verified experimentally for various single-ended and differential ring oscilla-
tors in Section 5.5.

5.1 The Impulse Sensitivity Function for Ring
Oscillators

To calculate phase noise and jitter using (4.16) and (4.23), one needs to know the dc
and rms values of the ISF. In this section, approximate closed-form equations for the
dc and rms values of the ISF of ring oscillators are obtained. The special case of equal
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rise and fall time is analyzed in Section 5.1.1, while Section 5.1.2 investigates the
more general case of unequal rise and fall times.

5.1.1 Equal Rise and Fall Times

It is instructive to look at the actual ISF of ring oscillators to gain insight into what
constitutes a good approximation. Figure 5.1 shows the shape of the ISF for a group
of single-ended CMOS ring oscillators. The frequency of oscillation is kept constant
(through adjustment of channel length), while the number of stages is varied from 3 to
15 (in odd numbers). The ISF is calculated using the first method presented in Appen-
dix D.

As can be seen, increasing the number of stages reduces the peak value of the ISF.
The reason is that the transitions of the normalized waveform become faster for larger
N in this constant-frequency scenario. Since the sensitivity is inversely proportional to
the slope, the peak of the ISF drops. Also the widths of the lobes of the ISF decrease
as N becomes larger since each transition occupies a smaller fraction of the period.
Based on these observations, the ISF of ring oscillators with equal rise and fall times
can be approximated as two identical triangles, as shown in Figure 5.2.

The ISF has a maximum of where is the maximum slope of the nor-
malized waveform f in (2.1). Also the width of the triangles is approximately
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and hence the slopes of the sides of the triangles are ±1 . Therefore, assuming equal-
ity of the rise- and fall-times, can be estimated as

On the other hand, stage delay is proportional to the rise time:

where is the stage delay normalized to the period and is a proportionality con-
stant, which is typically close to 1, as can be seen in Figure 5.3.

The period is 2N times longer than a single stage delay, i.e.,

Using (5.1) and (5.3), the following approximate expression for is obtained:

Jitter and Phase Noise in Ring Oscillators 81



Jitter and Phase Noise in Ring Oscillators

Note that the dependence of is independent of the value of
Figure 5.4 illustrates vs. the number of stages for the ISFs shown in Figure 5.1
with plus signs on log-log axes. The solid line shows the line of
which is obtained from (5.4) for To verify the generality of (5.4), a second
set of simulations was performed in which a fixed channel length is maintained for all
the devices in the inverters while varying the number of stages to allow different fre-
quencies of oscillation. Again, is directly simulated and its rms value is plotted in
Figure 5.4 with circles. This simulation is repeated with a different supply voltage
(3V as opposed to 5V) and the result is shown with crosses. As can be seen, the values
of are almost identical for these three cases.

It should not be surprising that is primarily a function of N because the effect of
variations in other parameters, such as and device noise, have already been
decoupled from the ISF is a unitless, frequency- and amplitude-independent
function.

Equation (5.4) is valid for differential ring oscillators as well, since in its derivation no
assumption specific to single-ended oscillators was made. Figure 5.5 shows for
three sets of differential ring oscillators, with a varying number of stages (4 to 16).
The data shown with plus signs correspond to oscillators in which the total power dis-
sipation and drain voltage swing are kept constant by scaling the tail current sources
and load resistors as N changes. Members of the second set of oscillators have a fixed
total power dissipation and fixed load resistors, which result in variable swings, and
for whom data are shown with circles. The third case is that of a fixed tail current for
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each stage and constant load resistors, whose data are illustrated using crosses. Again,
in spite of the diverse variations of frequency and other circuit parameters, the

dependency of and its independence from other circuit parameters still
holds. In the case of a differential ring oscillator, which corresponds
to is the best fit approximation for This is shown with the solid line in
Figure 5.5.

Although decreases as the number of stages increases, one should not prema-
turely conclude that the phase noise can be reduced using a larger number of stages,
because the number of noise sources, as well as their magnitudes, also increases, for a
given total power dissipation and frequency of oscillation. The question of optimal
number of stages is therefore a bit involved, and will be addressed in Section 5.2.
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5.1.2 Unequal Rising and Falling Times

For a ring oscillator with asymmetric rising and falling edges, the ISF is approxi-
mated by the function depicted in Figure 5.6.

The rms value of the approximate ISF in Figure 5.6 can be calculated as follows:

where and are the maximum slope during the rising and falling edge,
respectively, and A represents the asymmetry of the waveform and is defined as
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The period consists of N rising-edge and N falling-edge delays, i.e.,

Combing (5.5) and (5.7) results in the following:
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which reduces to (5.4) in the special case of A = 1 , i.e., symmetric rising and falling
edges. The dc value of the ISF, can be calculated from Figure 5.6, in a similar
manner and is given by

Using (4.24), the corner is given by

As a special case, if the rise and fall time are symmetric, A = 1 , and the corner
approaches zero.

In the case of asymmetric rising and falling edges, both and will change.
The corner of the phase noise spectrum is inversely proportional to the number of
stages. Therefore, the corner can be reduced either by making the transitions
more symmetric in terms of rise and fall times or by increasing the number of stages.
Although the former always helps, the latter has important implications on the phase
noise in the region, as will be shown in the next section.

5.2 Expressions for Jitter and Phase Noise in Ring
Oscillators

Although the expressions obtained in the last section for the rms and dc values of the
ISF can be used to calculate the phase noise, it is desirable to express phase noise and
jitter in terms of design parameters such as power dissipation and frequency. In this
section, several expressions for the phase noise and jitter of different types of ring
oscillators are derived in terms of such parameters.

Throughout this section, it is assumed that the symmetry criteria for minimizing
(and hence the upconversion of l/f noise) are already met and that the jitter and phase
noise of the oscillator are dominated by white noise. For CMOS transistors, the drain
current noise spectral density is given by [136]
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where is the zero bias drain-source conductance, is the mobility, is the gate
oxide capacitance per unit area, W and L are the channel width and length, and is
the gate voltage overdrive. The coefficient is 2/3 for long channel devices in the sat-
uration region and typically 2-3 times greater for short-channel devices [134][136].
Equation (5.11) is valid in both short and long channel regimes, as long as an appro-
priate value for is used.

5.2.1 Single-Ended CMOS Ring Oscillators

The first case considered is a single-ended CMOS ring oscillator with equal-length
NMOS and PMOS transistors. Assuming the maximum total channel
noise from the NMOS and PMOS devices, when both the input and output are at
2, is given by

where

and

and is the gate overdrive in the middle of the transition, i.e.,

During one period, each node is charged to and then discharged to zero. In an N-
stage single-ended ring oscillator, the power dissipation associated with this process
is . However, during the transitions, some extra current, known as
crowbar current, is drawn from the supply. This current does not contribute to charg-
ing and discharging the capacitors since it goes directly from supply to ground
through both transistors. These two components of the total current drawn from sup-
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ply are shown in Figure 5.7. In a symmetric ring oscillator, these two components are
comparable1 and their difference will depend on the ratio of the rise time to stage
delay; therefore, the total power dissipation is approximately given by

Assuming to make the waveforms symmetric to first order, the fre-
quency of oscillation for long channel devices can be approximated by

where is the delay of each stage and and are the rise and fall time associated
with the maximum slope during a transition.

Assuming that the thermal noise sources of the different devices are uncorrelated, and
assuming that the waveform (and hence the ISF) of all the nodes are the same except
for a phase shift, the total phase noise due to all N noise sources is N times the value
given by (4.16). Taking only these inevitable noise sources into account, (4.16), (5.4),
(5.12), (5.15) and (5.16) result in the following expressions for phase noise and jitter:

1. The ratio of these two current components can change significantly with the threshold volt-
ages, various capacitors and supply voltages. Nevertheless, the general behavior of the final
result does not depend on this particular ratio.
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where is the proportionality constant defined by (2.6) and is the characteristic
voltage of the device. For long channel devices Any extra distur-
bance, such as substrate and supply noise, or noise contributed by extra circuitry or
asymmetry in the waveform, will result in a larger number than (5.17) and (5.18).
Note that lowering threshold voltages reduces the phase noise and could be exploited
to improve the phase noise. Therefore, the minimum achievable phase noise and jitter
for a single-ended CMOS ring oscillator, assuming all symmetry criteria are met,
occurs for zero threshold voltage:

As can be seen, the minimum phase noise is inversely proportional to the power dissi-
pation and grows quadratically with the oscillation frequency. Further, note the lack
of dependence on the number of stages (for a given power dissipation and oscillation
frequency). Evidently, the increase in the number of noise sources (and in the maxi-
mum power due to the higher transition currents required to run at the same fre-
quency) essentially cancels the effect of decreasing as N increases, leading to no
net dependence of phase noise on N. This somewhat surprising result may explain the
confusion that exists regarding the optimum N since there is not a strong dependence
on the number of stages for single-ended CMOS ring oscillators. Note that (5.19) and
(5.20) establish lower bounds and therefore should not be used to calculate the phase
noise and jitter of an arbitrary oscillator. Also in using (5.17) and (5.18) one should
verify the validity of the assumptions leading to these expressions. To calculate the
phase noise and jitter of an arbitrary oscillator, (4.16) and (4.23) should be used,
respectively.

A similar calculation for the short channel case can be carried out. For such devices,
the drain current may be expressed as
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where is the critical electrical field1. Combining (5.11) with (5.21), the following
expression for the drain current noise of a MOS device in short channel is obtained:

The frequency of oscillation can be approximated by

Using (5.22), the same expressions for phase noise and jitter as given by (5.17) and
(5.18) are obtained, except for a new

which results in a larger phase noise and jitter than the long channel case by a factor
of As before, note the lack of dependence on the number of stages in the
case of short-channel devices.

5.2.2 Differential CMOS Ring Oscillators

Now consider a differential MOS ring oscillator with resistive load. The total power
dissipation is

where N is the number of stages, is the tail bias current of the differential pair,
and is the supply voltage. The frequency of oscillation can be approximated by
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Surprisingly, the noise of the tail current source in the vicinity of does not affect the
phase noise. Rather, as will be discussed in CHAPTER 6, its low frequency noise as
well as its noise in the vicinity of even multiples of the oscillation frequency affect the
phase noise. Tail noise in the vicinity of even harmonics can be significantly reduced
by a variety of means, such as with a series inductor or a parallel capacitor. As before,
the effect of low frequency noise can be minimized by exploiting symmetry. There-
fore, only the noise of the differential transistors and the load is taken into account, as
shown in Figure 5.8. The total current noise on each single-ended node is given by

where is the load resistor, for a balanced stage in the long
channel limit and in the short channel regime. Assuming zero corre-
lation among the various noise sources, the phase noise and jitter due to all 2N noise
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sources is 2N times the value given by (4.16) and (4.23). Using (5.4), the expression
for the phase noise of the differential MOS ring oscillator is1

and is given by

Note that as a special case, for long channel devices, (5.28) reduces to (3.8) as pre-
dicted in [46]. The foregoing equations are valid in both long and short-channel
regimes of operation with the right choice of

Note that in contrast with the single-ended ring oscillator, a differential oscillator does
exhibit a phase noise and jitter dependency on the number of stages, with the phase
noise degrading as the number of stages increases for a given frequency and power
dissipation. This result may be understood as a consequence of the necessary reduc-
tion in charge swing that is required to accommodate a constant frequency of oscilla-
tion at a fixed power level as N increases. At the same time, increasing the number of
stages at a fixed total power dissipation demands a proportional reduction of tail cur-
rent sources, which will reduce the swing, and hence by a factor of

5.2.3 Bipolar Differential Ring Oscillator

A similar approach allows us to derive the corresponding results for a bipolar differ-
ential ring oscillator. In this case, the power dissipation is given by (5.25) and the
oscillation frequency by (5.26). The total noise current is given by the sum of collec-
tor shot noise and the load resistor noise:

1. It is also assumed that the ISF for the differential pair transistor noise sources and the ISF for
the load resistors noise are the same. This equality is not generally true but is a good approxi-
mation here that leads to simple expressions.
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where is the electron charge, is the collector current during the tran-
sition, and Using these relations, the phase noise and jitter of a
bipolar ring oscillator are again given by (5.28) and (5.29) with the appropriate choice
of

5.3 Correlated Noise Sources

Noise sources on different nodes of an oscillator may be strongly correlated. This cor-
relation can be due to various reasons. Two examples of sources with strong correla-
tion are substrate and supply noise. These noise sources usually arise from current
switching in other parts of the chip. The current fluctuations induce voltage fluctua-
tions across the series resistance and inductance of the bondwires and pins. These
fluctuations on the supply and substrate will induce a similar perturbation on different
stages of the ring oscillator.

To understand the effect of this correlation, consider the special case of having identi-
cal noise sources on all the nodes of the ring oscillator as shown in Figure 5.9. If all
the inverters in the oscillator are the same, the ISF for different nodes will differ only
in phase by multiples of as shown in Figure 5.10 for N=5. Therefore, the total
phase due to all the sources is given by (4.4) through superposition:
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Expanding the term in brackets in a Fourier series, it can be observed that it is zero
except at dc and multiples of i.e.,

which means that for fully correlated sources, only noise in the vicinity of integer
multiples of affects the phase.

To verify this effect, a set of simulations similar to those in Section 4.2.2 are run.
Sinusoidal currents with an amplitude of were injected into all five nodes of the
ring oscillator of Figure 4.6 at different offsets from integer multiples of the fre-
quency of oscillation and the induced sidebands were measured. The measured side-
band power with respect to the carrier is plotted in Figure 5.11.

As can be seen in Figure 5.11, only injection at low frequency and in the vicinity of
the 5th harmonic are integrated and show a -20dB/dec slope. The effect of injection in
the vicinity of harmonics which are not integer multiples of N is much smaller than at
the integer ones. Ideally there should be no sideband induced by the injection in the
vicinity of harmonics that are not integer multiples of N; however, as can be seen in
Figure 5.11, there is some sideband power due to the amplitude response discussed in
Section 4.6.
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To demonstrate the generality of this property for other ring oscillator topologies, the
more practical case of current-starved inverted-chain ring oscillators is considered. A
similar simulation is performed on a 5 stage ring oscillator made of the stages shown
in Figure 5.12. The effect of a sinusoidal current source on nodes N, P and MID at
and is plotted vs. in Figure 5.13 Again, the injection at low frequency is inte-
grated and shows behavior, while injection in the vicinity of the oscillation fre-
quency does not.

Low frequency noise can also result in correlation between uncertainties introduced
during different cycles, as its value does not change significantly over a small number
of periods. Therefore the uncertainties add up in amplitude rather than power result-
ing in a region with a slope of 1 in the log-log plot of jitter even in the absence of
external noise sources such as substrate and supply noise.
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5.4 Design Implications in Ring Oscillators

In this section, design implications for ring oscillators not mentioned in the previous
sections will be discussed.

5.4.1 Differential vs. Single-Ended

A commonly asked question is the preferred topology for MOS ring oscillators, i.e.,
which one of the single-ended or the differential topologies results in better jitter and
phase noise performance for a given center frequency, and total power dissipation,
P.

Equations (5.17) and (5.28) can be used to compare the phase noise performance of
single-ended and differential MOS ring oscillators in the thermal noise limited case.
As can be seen for N stages, the phase noise of a properly designed differential ring
oscillator is approximately times larger than the phase noise
of a single-ended oscillator of equal N, P and f0. Since the minimum N for a regular
ring oscillator is three, even a properly designed differential CMOS ring oscillator
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underperforms its single-ended counterpart, with disparity increasing with the large
number of stages. This difference is even more pronounced if proper precautions to
reduce the noise of the tail current are not taken.

The difference in the behavior of these two types of oscillators with respect to the
number of stages can be traced to the way they dissipate power. The dc current drawn
from the supply is independent of the number and slope of the transitions in differen-
tial ring oscillators. On the contrary, inverter-chain ring oscillators dissipate power
mainly on a per transition basis and therefore have a better phase noise for a given
power dissipation. This difference becomes even larger as the number of stages
increases. However, a differential topology may still be preferred in ICs with a large
amount of digital circuitry because of the lower sensitivity to substrate and supply
noise, as well as lower noise injection into other circuits on the same chip. The deci-
sion of which architecture to use should be based on both of these considerations.
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The common-mode sensitivity problem in a single-ended ring oscillator can be miti-
gated to some extent using two identical ring oscillators laid out close to each other
that oscillate out of phase because of small coupling inverters [109] as shown in
Figure 5.14. Single-ended configurations may be used in a less noisy environment to
achieve better phase noise performance for a given power dissipation.

5.4.2 Optimum Number of Stages

Another commonly debated question concerns the optimum number of inverter stages
in a ring oscillator to achieve the best jitter and phase noise for a given and P. As
seen in (5.17), for single-ended oscillators, the phase noise and jitter in region are
not strong functions of the number of stages for single-ended CMOS ring oscillators.
However, if the symmetry criteria are not well satisfied, and/or the process has large
1/f noise, (5.10) predicts that a larger N will reduce the jitter. In general, the choice of
the number of stages must be made on the basis of several design criteria, such as 1/f
noise effect, the desired maximum frequency of oscillation, and the influence of exter-
nal noise sources, such as supply and substrate noise, that may not scale with N.

The jitter and phase noise behavior is different for differential ring oscillators. As
(5.28) suggests, jitter and phase noise increase with an increasing number of stages.
Hence, if the 1/f noise corner is not large, and/or proper symmetry measures have
been taken, the minimum number of stages (3 or 4) should be used to give the best
performance. This recommendation holds even if the power dissipation is not a pri-
mary issue. It is not fair to argue that burning more power in a larger number of stages
allows the achievement of better phase noise, since dissipating the same total power in
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a smaller number of stages with larger devices results in better jitter and phase noise,
as long as it is possible to maximize the total charge swing.

5.4.3 Lowering the Effect of Correlated Noise Sources

Substrate and supply noise are among other important sources of noise and can be
dominant in large digital environments. There are two major differences between
these noise sources and internal device noise. First, the power spectral density of
these sources is usually non-white and often demonstrates strong peaks at various fre-
quencies[135]. Even more important is that the substrate and supply noise on different
nodes of the ring oscillator have a very strong correlation. This property changes the
response of the oscillator to these sources as discussed in Section 5.3.

A very important insight can be obtained from (5.32). It shows that for the correlated
part of the noise, only the values associated with integer multiples of number of
stages, N, contribute to total phase fluctuations. Therefore, every effort should be
made to maximize the correlated part of substrate and supply noise. This can be done
by making the inverter stages and the noise sources on each node as similar to each
other as possible by proper layout and circuit design.

The layout should be kept symmetrical. The inverter stages should be laid out close to
each other so that substrate noise appears as a common-mode source. This consider-
ation is particularly important in the case of a lightly doped substrate, since such a
substrate may not act as a single node [135]. It is also important that the orientation of
all the stages be kept identical. The interconnecting wires between the stages must be
identical in length and shape.

The circuit should be designed so that the same supply line goes to all the inverter
stages. Also the loading from the stages being driven should be kept identical for all
the nodes, for example by using dummy buffer stages on all the nodes. A larger num-
ber of stages will also be helpful because a smaller number of coefficients will
affect the phase noise. Finally, the low frequency portion of the substrate and supply
noise plays an important role in the jitter and phase noise. Fortunately the effect of
low frequency noise can be reduced by exploiting symmetry to minimize

5.4.4 The Effect of Tail Current Noise Source

The tail current source noise in a differential structure may play an important role in
the jitter and phase noise of ring oscillators. The low frequency noise of the tail cur-
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rent source affects phase noise if the symmetry criteria mentioned in CHAPTER 4 are
not met by each half circuit. In such cases, the ISF for the tail current source has a
large dc value, which increases the upconversion of low frequency noise to phase
noise. This upconversion is particularly prominent if the tail device has a large 1/f
noise corner.

As will be discussed in Section 6.3, the noise of the tail current source in the vicinity
of does not affect the jitter and phase noise of the oscillator, unlike the noise of the
differential pair. However, noise in the vicinity of even multiples of does affect the
phase noise, implying that low pass filtering the tail current source with a series
inductor can improve the phase noise of a differential ring oscillator. The price paid
for this improvement is the area consumed by the inductor.

5.5 Experimental Results

The phase noise measurements in this section were performed using three different
systems, an HP 8563E spectrum analyzer with phase noise measurement capability,
an RDL NTS-1000A phase noise measurement system, and an HP 5500 phase noise
measurement system. The jitter measurements were performed using a Tektronix
CSA 803A communication signal analyzer. Table 5.1, Table 5.2, and Table 5.3 sum-
marize the phase noise measurements. All the reported phase noise values are at a
1MHz offset from the carrier, chosen to achieve the largest dynamic range in the mea-
surement.
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quency tuning mechanism. The output is taken from one node of the ring through a
few stages of tapered inverters. Oscillators number 1 and 2 are fabricated in a
5V CMOS process, and oscillator number 3 is fabricated in a 2.5Vprocess.
The second column shows the number of stages in each of the oscillators. The W/L
ratios of the NMOS and PMOS devices, as well as the supply voltages, the total mea-
sured supply currents, and the frequencies of oscillation are shown next. The phase
noise prediction using (5.17) and (4.16), together with the measured phase noise, are
shown in the last three columns.

As an illustrative example, the details of phase noise calculations for oscillator num-
ber 3 will be shown. Using (5.4) to calculate the phase noise can be obtained
from (4.16). The noise power is calculated when the stage is halfway through a transi-
tion. At this point, the drain current is simulated to be 3.47mA. An of
and a of 2.5 is used in (5.22) to obtain a noise power of

The total capacitance on each node is
and hence There is one such noise source on each node; therefore, the
phase noise is N times the value given by (4.16), which results in

The accuracy of this prediction can be further
improved by direct simulation of the effective ISF and calculation of its rms value.

Table 5.2 summarizes the data obtained for current-starved ring oscillators with the
cell structure shown in Figure 5.15b, all implemented in the same 2.5V pro-
cess. Ring oscillators with a different number of stages were designed with roughly
constant oscillation frequency and total power dissipation. Frequency adjustment is
achieved by changing the channel length, while total power dissipation control is per-
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formed by changing device width. The W/L ratios of the inverter and the tail NMOS
and PMOS devices are shown in Table 5.2. The node Nbias is kept at while node
PBias is at 0V. The measured total current dissipation and the frequency of oscillation
can be found in columns 7 and 8. Phase noise calculations based on (5.17) and (4.17)
are in good agreement with the measured results. The die photo of the chip containing
these oscillators is shown in Figure 5.16. The slightly superior phase noise of the 3
stage ring oscillator (number 4) can be attributed to lower oscillation frequency and
longer channel length (and hence smaller

Table 5.3 summarizes the results obtained for differential ring oscillators of various
sizes and lengths, using the inverter topology shown in Figure 5.17, and covering a
large span of frequencies up to 5.5GHz. All these ring oscillators are implemented in
the same 2.5V process and all, except the one marked with N/A, have the
tuning circuit shown in Figure 5.17. The resistors are implemented using an unsili-
cided polysilicon layer. The main reason for using poly resistors is to reduce 1/f noise
upconversion by making the waveform on each node closer to the step response of an
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L ratios of the differential pair are shown in Table 5.3. A fixed 2.5V power supply is
used, resulting in different total power dissipations. As before, the measured phase
noise is in good agreement with the predicted phase noise using (5.28) and (4.16).

103Jitter and Phase Noise in Ring Oscillators



Jitter and Phase Noise in Ring Oscillators

To illustrate further how the phase noise predictions shown in Table 5.3 are obtained,
the phase noise calculations for oscillator number 12 will be shown. The noise current
due to one of the NMOS transistors in the differential pair is given by (5.22). The total
capacitance on each node in the balanced case is and the voltage swing
is 1.21V from simulation and hence, In the balanced case, this current is
half of the tail current, i.e., The noise current of the NMOS device has a

oscillator with N stages, there is one such noise source on each node, therefore the

104 The Design of Low Noise Oscillators

single sideband spectral density of and the thermal
noise due to the load resistor is Hence, the total cur-
rent noise density is given by For a differential ring

Figure 5.18 compares the measured and predicted phase noise for four ring oscillators
with a load resistance of         . These correspond to rows, 13, 17, 20 and 22 in 
Table 5.3. The die photo of oscillator number 26 can be seen in Figure 5.19.
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power dissipation is and Therefore, with an of 0.9,
(5.28) predicts a phase noise of in good agreement
with both measurement and (4.16).

Timing jitter for oscillator number 12 is measured using the setup shown in
Figure 5.20. The oscillator output is divided into two equal power outputs with a
power splitter. The CSA 803A is not capable of showing the edge it uses to trigger, as
there is a 21ns minimum delay between the triggering transition and the first acquired
sample. To be able to look at the triggering edge (and perhaps the edges before that), a
delay line of approximately 25ns is inserted in the signal path in front of the sampling
head. This way the very edge used to trigger the signal can be viewed. If the sampling
head and power splitter were noiseless, this edge would show no jitter. However, the
power splitter and the sampling head introduce noise onto the signal which cannot be
easily distinguished from the DUT’s jitter. This extra jitter can be directly measured
by looking at the jitter on the triggering edge. This edge can be readily identified since
it has lower rms jitter than the transitions before and after it. The effect of this excess
jitter should be subtracted from the jitter due to the DUT. Assuming no correlation
between the jitter of the DUT and the sampling head, the equivalent jitter due to the
DUT can be estimated by
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where is the effective rms timing jitter, is the measured rms jitter at a
delay after the triggering edge, and is the jitter on the triggering edge.

Figure 5.21 shows the rms jitter vs. the measurement delay for oscillator number 12
on a log-log plot. The best fit for the data shown in Figure 5.21 is

Equations (4.23) and (5.29) result in and
respectively. These results are in good agreement with the mea-

surements.The region of the jitter plot with the slope of 1 can be attributed to the 1/f
noise of the devices, as discussed at the end of Section 5.3.

A few experiments were performed on the current-starved ring oscillators to investi-
gate the effect of waveform symmetry on low frequency noise upconversion. The first
experiment in this group investigated the effect of symmetry on region behavior.
It involves a 7-stage current-starved, single-ended ring oscillator in which each
inverter stage consists of an additional NMOS and PMOS device in series, as shown
in Figure 5.15b. It is implemented in a 5V CMOS process technology. The gate
drives of the added transistors allow independent control of the rise and fall times.
Figure 5.22 shows the phase noise, measured using a delay line based phase noise
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measurement system [142], when the control voltages are adjusted to achieve symme-
try vs. when they are not. In both cases the control voltages are adjusted to keep the
oscillation frequency constant at 60MHz. As can be seen, making the waveform more
symmetric reduces the phase noise in the region without significantly affecting
the region.

Another experiment on the same circuit is shown in Figure 5.23, which shows the
phase noise power spectrum at a 10kHz offset vs. the symmetry-controlling voltage.
For all the data points, the control voltages are adjusted to keep the oscillation fre-
quency at 50MHz. As can be seen, the phase noise reaches a minimum by adjusting
the symmetry properties of the waveform. This reduction is limited by the mismatch
in the transistors in different stages. Also at a given offset from the carrier, the phase
noise cannot be improved beyond the noise in the region. This measurement was
performed with an HP8590B spectrum analyzer.

In another experiment, a 9-stage current-starved ring oscillator with stages similar to
Figure 5.15b was implemented in a CMOS process technology. The phase
noise of the oscillator is measured for different values of Nbias and PBias. Again
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these bias voltages are chosen in such a way to keep a constant oscillation frequency
of 600MHz while changing only the rise-time to fall-time ratio. This time the
corner of the phase noise is measured for different ratios of the pull-up and pull-down
currents while keeping the frequency constant. A sharp reduction in the corner fre-
quency at the point of symmetry can be observed in Figure 5.24.

At any given offset frequency, the achievable improvement in phase noise by adjust-
ing the symmetry is limited by the phase noise in region. This limiting behavior
can be seen in the measurement results of Figure 5.23, where a 5dB improvement is
noted as the ratio of rise- to fall-time is changed. However, the corner frequency,

can be significantly reduced (without any fundamental limits) as can be seen
from the order of magnitude reduction in corner frequency shown in Figure 5.24. In
practice, this reduction is limited by process variation and device mismatch.
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5.6 Summary

Closed-form expressions for the rms and dc values of the ISF were obtained for sin-
gle-ended and differential oscillators with equal and unequal rise and fall times. These
approximate expressions were used to obtain approximate analytical expressions for
phase noise and timing jitter in ring oscillators in terms of design parameters such as
power dissipation, frequency of oscillation and number of stages. The effect of corre-
lated noise sources on jitter and phase noise was analyzed. Design questions such as
the optimum number of stages, and choice of differential vs. single-ended topology
were answered. Experimental results were compared to the theoretical predictions
and good agreement was observed.
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CHAPTER 6 Phase Noise in
Differential LC
Oscillators

Due to their relatively good phase noise, ease of implementation and differential oper-
ation, cross-coupled LC oscillators play an important role in high frequency circuit
design [51]-[56]. This chapter presents analysis and design implications in comple-
mentary cross-coupled differential oscillator [52][55]. A simple expression for the
tank amplitude is obtained in Section 6.1. The effect of different noise sources in such
oscillators is investigated and methods for exploiting the cyclostationary properties of
noise are shown in Section 6.2. The effect of tail current noise is the subject of
Section 6.3. New design implications arising from this approach and experimental
results are given in Section 6.4.

6.1 Tank Amplitude

Tank voltage amplitude has an important effect on the phase noise, as emphasized by
the presence of in the denominator of (4.16). A simple expression for the tank
amplitude can be obtained by assuming that the differential stage switches quickly
from one side to another1. Figure 6.1 shows the current flowing in the complementary
cross-coupled differential LC oscillator [52][55] when it is completely switched to

1. A more general describing function analysis of the oscillation amplitude can be found in
Appendix F.
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one side. As the tank voltage changes, the direction of the current flow through the
tank reverses. The differential pair thus can be modeled as a current source switching
between and in parallel with an RLC tank, as shown in Figure 6.2. is the
equivalent parallel resistance of the tank.

At the frequency of resonance, the admittances of the L and C cancel, leaving
Harmonics of the input current are strongly attenuated by the LC tank, leaving the
fundamental of the input current to induce a differential voltage swing of amplitude

across the tank if one assumes a rectangular current waveform. At high
frequencies, the current waveform may be approximated more closely by a sinusoid
due to finite switching time and limited gain. In such cases, the tank amplitude can be
better approximated as
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This mode of operation is referred to as the “current limited” regime of operation
since in this regime, the tank amplitude is solely determined by the tail current source
and the tank equivalent resistance. Figure 6.3 shows the simulated node voltages as
well as the drain currents of the NMOS transistors, and in this regime of oper-
ation. The values of L and C are such that the circuit oscillates at 1GHz.

Note that (6.1) loses its validity as the amplitude approaches the supply voltage
because both NMOS and PMOS pairs will enter the triode region at the peaks of the
voltage. Also the tail NMOS transistor may spend most (or even all) of its time in the
linear region. This behavior can be seen in the simulated voltages and currents shown
in Figure 6.4. The tank voltage will be clipped at by the PMOS transistors and at
ground by the NMOS transistors. Therefore, for the oscillator of Figure 6.1, the tank
voltage amplitude does not significantly exceed Note that since the tail transistor
is in the triode region the current through the differential NMOS transistors can drop
significantly when their drain-source voltage becomes very small, as shown in
Figure 6.4. This region of operation is therefore known as the “voltage limited”
regime.
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Figure 6.5 shows the simulated tank voltage amplitude as a function of tail current for
three different values of As can be seen, the tank amplitude is proportional to the
tail current in the current limited region, while it is limited by in the voltage lim-
ited regime.

6.2 Noise Sources

Figure 6.6 depicts the noise sources in the oscillator. The noise power densities for
these sources are required to calculate the phase noise using (4.16). In general, these
noise sources are cyclostationary because of the periodic changes in currents and volt-
ages of the active devices. In this section, a simplified stationary model for the noise
sources is introduced first and then subtleties arising from their true cyclostationary
behavior are examined.
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6.2.1 Stationary Noise Sources

In a simplified stationary approach, the power densities of the noise sources can be
evaluated at the most sensitive time (i.e., the zero crossing of the differential tank volt-
age) to estimate the effect of these sources. Figure 6.7a shows a simplified model of
the sources in this balanced case. Converting the current sources to their Thévenin
equivalent and writing KVL one obtains the equivalent differential circuit shown in
Figure 6.7b. Note that the parallel resistance is canceled by the negative resistance
provided by the positive feedback. Therefore the total differential noise power due to
the four cross-coupled transistors is

where Noise densities and are
given by

where is the mobility of the carriers in the channel, is the oxide capacitance per
unit area, W and L are the width and length of the MOS transistor, respectively, is
the dc gate-source voltage and is the threshold voltage. Equation (6.3) is valid for
both short and long channel regimes of operation. However is around 2/3 for long
channel transistors while it may be between 2 and 3 in the short channel region [134].
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In addition to these sources, the contribution of the effective series resistance of the
inductor, caused by ohmic losses in the metal and substrate is given by

where is the equivalent parallel resistance at the frequency
of oscillation.

6.2.2 Cyclostationary Behavior in the Presence of a Tail Capacitor

The foregoing analysis is based on the assumption that the sum of the currents
through the differential transistors is equal to the tail current at all times. However,
this assumption can break down if there is a capacitor in parallel with the tail current
source, as shown in Figure 6.8. This capacitor provides an alternative path for the tail
current. If the tail capacitor is large, the differential pair transistors might carry very
little current for a fraction of the cycle.

To investigate further the effect of this capacitor, the simulation of the 1GHz comple-
mentary LC oscillator of Figure 6.3 was repeated with a l0pF tail capacitor.
Figure 6.9 shows the voltage of the differential and tail nodes, as well as the drain cur-
rents of and in the presence of the tail capacitor. A reduction in the duty-cycle
of the drain current waveform can be seen in Figure 6.9 relative to that in Figure 6.3.
This small change in the duty-cycle of the waveform is particularly important as it
reduces the drain current (and the drain current noise) of the differential NMOS and
PMOS transistors during the zero-crossing of the differential tank voltage. As shown
in CHAPTER 4, this moment is when the oscillator is most sensitive to a perturbation.
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Therefore, using an extra tail capacitor can improve the phase noise behavior of the
differential LC oscillator1. The tail capacitor also shapes the effect of noise in in
other important ways, as will be discussed in the next section.

In the voltage limited regime, the drain current of the differential pair transistors
drops whenever the differential pair is switched to one side. This reduction in drain
current reduces the noise current in the NMOS transistor. However, a reduction in
noise power during the zero crossing is much more important, since it reduces the
noise power during the least sensitive time, i.e., the peak of the differential tank volt-
age. It can be verified through simulation that, in the voltage limited regime, adding a
tail capacitor indeed does not reduce the duty-cycle or noise significantly.

1. The tail capacitor also attenuates the voltage variations on the tail node and therefore
reduces the channel length modulation of the tail NMOS. It results in more symmetric wave-
forms and smaller harmonic distortion in the output waveform of the oscillator.
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6.3 Tail Current Noise Source

To gain further insight into the effect of the tail noise source, its ISF as well as those
for the noise sources of the NMOS and PMOS drain noise sources are shown in
Figure 6.10. The ISFs are calculated using direct impulse injection and measuring the
resultant phase shift.

As can be seen from Figure 6.10, the ISF associated with the tail current source has a
fundamental frequency which is double the oscillation frequency. This doubling is
expected since the tail node is pulled up every time each one of the differential NMOS
transistors turns on and thus the tail node moves at twice the frequency of the differ-
ential voltage.

Due to this frequency doubling, the coefficient for the tail ISF is zero and therefore
the noise of the tail current source in the vicinity of has no effect on the differential
noise current. However, even-order coefficients such as are significant, and there-
fore noise components around even harmonics of have a significant effect on the
phase noise, as shown in Figure 6.11. Also the low frequency noise component of the
tail noise source can affect phase noise through asymmetry as suggested by (4.26). To
verify this behavior, a sinusoidal current with an amplitude of was injected in
parallel with the tail current source and the induced sideband power below the carrier
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was measured using FFT analysis in HSPICE. As can be seen in Figure 6.12, sinusoi-
dal injection at low frequency and in the vicinity of twice the oscillation fre-
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quency results in noticeable sidebands. However, sinusoidal injection of the
same amplitude at does not produce any observable sidebands.

The tail capacitor mentioned in the previous section attenuates the high frequency
noise components of the tail current source, and so one expects corresponding attenu-
ation of phase noise due to this noise. In fact, the induced sidebands due to injection at

in the presence of the l0pF tail capacitor are below the numerical noise floor
of the FFT operation.

Since upconversion of 1/f noise is thus the most significant remaining noise compo-
nent of noisy tail current, one must properly size the tail current transistor and satisfy
the single-ended symmetry criterion by sizing the cross-coupled NMOS and PMOS
transistors properly.

6.4 Experimental Results and Design Implications

The complementary oscillator of Figure 6.1 was implemented in a five-metal,
epi CMOS technology. The complementary structure is used to maintain symmetry of
each half circuit to mitigate the upconversion of 1/f noise. Figure 6.13 shows the die
photograph of the implemented oscillator. Two square inductors in series are laid out
symmetrically in metal 3, 4 and 5. The series combination of the two constitutes the
tank inductor. Each inductor is on a side and has four turns. Vias are used to
keep the three metal layers at the same potential, and are interleaved to minimize the
parasitic capacitance, as shown in Figure 6.14. Field solver simulation of this inductor
predicts an inductance of 2.0nH and an effective Q of 7.5 at 1.8GHz, which translates
to an effective series resistance of for each inductor. Simulated tank voltage
amplitude vs. tail current at 1.8GHz is shown in Figure 6.5.

Figure 6.15 shows a plot of phase noise at 600kHz vs. the tail current with a 3.0V sup-
ply. The dashed line shows the phase noise predictions obtained using a simplified
model for noise and amplitude, and assuming a sinusoidal waveform so that
equals 0.5. As can be seen, these simplifying assumption lead to reasonable predic-
tions. More accurate predictions can be obtained by calculating the true ISF and tak-
ing into account the effect of cyclostationarity of noise sources in (4.16). The solid
line shows the predictions obtained using the full-blown analysis. As can be seen,
very good agreement between the theoretical predictions and measurements is
observed for different bias points.
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To gain more insight about the trade-offs involved, the phase noise at 600kHz offset is
measured for different values of the supply voltage and tail current, as shown in
Figure 6.16. Each measured value is shown as a node on the three-dimensional sur-
face. Note that bias points not achievable are shown as a flat surface. As can be seen
from this graph, increasing the tail current will improve the phase noise due to the
increase in oscillation amplitude. Also as can be seen, the improvement slows down
as the tank voltage amplitude approaches the supply voltage. It can also be seen that
the phase noise has a weak dependence on the supply voltage, improving somewhat
for lower voltages. This behavior may be attributed to smaller voltage drops across
the channel on the MOS transistors which reduces the effect of velocity saturation in
the short channel regime and hence lowers
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The power dissipation increases as the operation point moves toward higher tail cur-
rents and supply voltage, which corresponds to moving from right to left in
Figure 6.16. If the design goal is to achieve the minimum phase noise without any
concern for power dissipation, the oscillator should be operated at high supply voltage
and high current to allow the maximum possible tank voltage amplitude. Point A in
Figure 6.16 is an example of such an operation point. It corresponds to a tail current
of 16mA and a supply voltage of 3V, and results in a phase noise of -125.7dBc/Hz at
600kHz offset. However, power usually is a concern, so a more practical goal maybe
to achieve the best phase noise for a given power. Equation (4.16) suggests that it is
desirable to operate at the largest tank amplitude for a given power dissipation. How-
ever, the tank amplitude cannot be increased beyond due to voltage limiting.
Therefore, according to this simple model, it is desirable to operate at the edge of the
voltage limited mode of operation. As can be seen in Figure 6.5, point B in
Figure 6.16 is at the verge of voltage limiting, which explains its good phase noise for
a given power. Under this operation point, 4mA of dc current is drawn from a 1.5V
power supply, resulting in a phase noise of -121dBc/Hz at 600kHz offset from the car-
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rier, while dissipating 6mW of power. Figure 6.17 shows the phase noise sidebands
vs. offset frequency for the complementary differential LC oscillator operating at
point B.

To investigate the effect of the PMOS transistors, an NMOS-only oscillator is com-
pared to the complementary case. The supply voltage is provided through the middle
node of the inductor and the phase noise of this NMOS-only oscillator is measured for
different supply voltages and tail currents. The result is plotted together with the data
from Figure 6.16 in Figure 6.18. Note that the NMOS-only oscillator exhibits inferior
phase noise for all the measured bias points.

There are several reasons for the superiority of the complementary structure over the
all-NMOS structure. The tank voltage amplitude for the complementary oscillator can
be twice as large as the NMOS-only topology for the same tail current [144], if both
oscillators operate in the current-limited regime. This can be demonstrated by track-
ing the direction of the current flow in a fashion similar to what was done earlier. The
NMOS-only oscillator shown in Figure 1a can be approximated with the equivalent
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circuit shown in Figure 6.19. During each half cycle one of the current sources is off
and therefore one of the LC circuits will be floating. As a result each half of the cir-
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cuit can be treated independently as shown in Figure 6.19c. The equivalent parallel
resistor for each half circuit is given by

where L/2 is the inductance of each inductor, is the series resistance of each
inductor and is the equivalent parallel resistance of the series combination of the
two inductors. The voltage amplitude on each half circuit is given by product of the
fundamental component of the parallel current source and the equivalent parallel
resistance of each half circuit i.e.,

where is the differential voltage amplitude of the oscillator which is half the
amplitude in the complementary topology so long as the oscillator operates in the cur-
rent limited regime. This result can also be easily seen in simulation and measure-
ment.

However, this 6dB increase in the signal power cannot improve phase noise by this
full amount because the PMOS transistors are not noiseless. Assuming that the
NMOS and PMOS transistors contribute roughly equal noise, and that the noise in

region is dominated by the noise of the differential pair, the improvement in the
phase noise will be around 3dB. Generally speaking, the amount of improvement
depends on the relative noise contributions of the NMOS, PMOS, and tail current
source as well as the passive elements.

The complementary structure also offers better rise and fall time symmetry, which
results in less upconversion of 1/f noise and other low frequency noise sources. Also
the dc voltage drop across the channel is larger for the all-NMOS structure since the
dc value of the drain voltage is There is therefore stronger velocity saturation
and a larger As long as the oscillator operates in the current limited regime, the tank
voltage swing is the same for both oscillators1.

1. If the rare case of achieving the lowest possible phase noise without any concern for power
dissipation is the design objective, all-NMOS structures can offer a larger voltage swing and
therefore may be the preferred topology.
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6.5 Summary

An analysis of phase noise in differential cross-coupled LC oscillators was presented.
The effect of tail current and equivalent tank loading on voltage amplitude was shown
in both current and voltage limited modes of operation. The effect of various noise
sources in the circuit was analyzed and it was shown that the effective noise intro-
duced by the transistors in the differential pair can be reduced by exploiting cyclosta-
tionary properties of the sources. The predictions made are in good agreement with
the measurements for different tail currents and supply voltages. Finally a 1.8GHz LC
oscillator using on-chip spiral inductors exhibiting a phase noise of -121dBc/Hz at
600kHz while dissipating 6mW of power was shown.
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CHAPTER 7 Extension of the Model to
Multiple Noise Sources

The phase impulse response was introduced in CHAPTER 4. In this chapter the phase
impulse response of an oscillator is extended to multiple inputs and is used to calcu-
late the phase noise of an oscillator in the presence of multiple noise sources with
arbitrary correlation and cyclostationarity.

7.1 Phase Response

An oscillator can be fully described by a time-dependent state-vector in an n-dimen-
sional state-space, i.e.,

where represents the ith state variable and t is the time. For small external excita-
tions, the dynamics of the system is governed by an equation of the following form:
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where f is a nonlinear vector function of the state-vector and b is a vector represent-
ing the external inputs to the system. For a stable single-mode oscillator in the
absence of external excitations, the state vector, X( t )  , periodically traverses a closed
trajectory in the state-space known as the limit cycle. This steady-state situation is
shown in Figure 7.1 with a solid line. The family of solutions for (7.2) are periodic,
i.e.,

where T is the period of oscillation. The index identifies the phase (epoch) of a par-
ticular solution. Note that any phase-shifted version of one solution is yet another
steady-state solution, i.e.,

where is the steady-state angular frequency of the oscillator.
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In an electrical oscillator, it is natural to choose as state-variables the voltages across
the capacitors and currents through the inductors. For such a circuit, the external exci-
tation sources can be presented as current sources in parallel with capacitors and volt-
age sources in series with inductors. As an illustration, imagine a state-vector in the
following form:

For the general case of voltage-dependent capacitors and inductors, the excitation
vector will be given by

where represents the perturbation current source in parallel with the time-vari-
ant capacitor and represents the external perturbation voltage source in
series with the time-variant inductor as shown in Figure 7.2.

As mentioned in CHAPTER 4, the angle θ in the two-dimensional state-space plot of
Figure 4.3 does not necessarily represent the phase, A general definition for the
phase of the oscillator can be obtained by performing a thought experiment as shown
in Figure 7.3. Consider two identical oscillators in which all the noise sources can be
turned off using a switch (i.e., b(t) can be set to zero). Both oscillators are started at
the time reference with identical initial conditions. The noise switch on OSC1
(which will be called the reference oscillator), will be left open at all times. The noise
switch on oscillator OSC2 will be on initially. Although they start from the same ini-
tial conditions, the waveform of OSC2 will deviate from the ideal waveform of OSC1
due to the perturbations. Now if the noise switch for OSC2 is turned off at time
there is a unique number, in (2.1) that will make the Nth transition of the output
of OSC2 occur at exactly the same time as the Nth transition of the ideal OSC1 for

This value is defined as the instantaneous phase of the oscillator at i.e.,
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As can be seen from the foregoing discussion, all the state variables undergo the same
final phase shift, therefore is the same for all of the state variables and is unique
for a given perturbation. As can be seen from (2.1), once is defined, A(t) is
defined unambiguously. Based on this observation an oscillator can be modeled as a
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system with n perturbation sources (elements of b(t) ) as inputs and as the out-
put, depicted in Figure 7.2.

To characterize the system, a sudden change in its state is considered. In an electrical
circuit, this perturbation corresponds to an instantaneous change in capacitor voltages
and inductor currents, which can be caused by current impulses in parallel with the
capacitors and voltage impulses in series with the inductors as shown in CHAPTER 4.
This change can be represented by the vector in the state-space, which corre-
sponds to where is the Dirac delta function. This input puts
the system in a new state instantaneously. After application of this perturba-
tion, a stable oscillator undergoes some transient behavior, but finally returns to its
limit-cycle. The amplitude variations decay to zero but there will be a net offset in the
phase of all of the state variables. Thus, the system undergoes a change from the
steady-state solution, to another steady-state solution, as shown in
Figure 7.1. As mentioned in CHAPTER 4, the phase offset, will per-
sist indefinitely since the system has no memory of its previous state. Based on the
definition for phase given in this chapter, due to an impulse input will be an ideal
step with an amplitude of as shown in Figure 7.4.

An impulsive perturbation current source in parallel with a capacitor results in an
instantaneous change in its voltage. Similarly, an impulsive voltage source in series
with an inductor causes a sudden change in its current. The combination of all these
impulses at time results in an instantaneous phase shift, as shown in
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Figure 7.4. This instantaneous phase shift is a nonlinear function of the areas of the
input impulses for sufficiently large areas of input impulses. Calling the areas of the
ith current and jth voltage impulses and respectively, the resultant output
phase shift can be written as

where w is a function of M+N variables, or equivalently vector This function can
be expanded in a Taylor series as:

where represents the gradient with respect to all and and
is of order 2 or higher in and Therefore, for small perturbations, the higher
order terms can be ignored, and the system can be treated as a linear system. This con-
cept is depicted in Figure 7.5 which shows the excess phase vs. areas of the impulsive
inputs in and as a surface in a three dimensional graph for a hypothetical oscil-
lator. The foregoing linearization is equivalent to approximating this curved surface
with a plane for small and This assumption will be valid throughout this
treatment since the noise sources of interest are many orders of magnitude smaller
than the signal voltages and currents.

Note that this small-perturbation assumption does not mean linearization of the non-
linear V-I characteristics of the active elements in the circuit. Linearity of the current-
to-excess phase transfer function does not necessarily require the current-to-current
(or current-to-voltage) transfer function of the active devices to be linear. Thus, the
nonlinearities essential to defining the limit cycle are preserved in this model.

Considering the periodically time-varying nature of the system of Figure 7.4, it can be
completely characterized using the time-variant phase impulse response vector,

whose elements are the phase impulse responses for a unit impulse input on
erturbation source. The first cross term in (7.8) is
is second order and hence very small for small and
allows us to evaluate the effect of simultaneous changes

in multiple state-variables by superposing their individual impacts. The ith element of
represents the phase impulse response of the system to the perturbation

source The phase impulse response vector, can thus be written as
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where g(x) is periodic in x with a period of and can be written as

where is the peak voltage across the capacitor and represents the peak cur-
rent through the inductor Function is the ISF associated with the ith
source, as defined in CHAPTER 4.
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The time-variant capacitors and inductors in (7.10) make it possible to take into
account the effect of nonlinear voltage dependent capacitors and current dependent
inductors. If the capacitors and inductors are time-invariant, (7.10) reduces to

where and represent the maximum electric charge in capacitor and
maximum magnetic flux in inductor respectively.

Based on the phase definition in this chapter, the phase shifts introduced at different
times add directly1. Hence, knowing the impulse response vector, the superposition
integral can be applied to calculate the phase at time t. Assuming a zero phase refer-
ence at time phase can be written as

where is the transpose of the vector  b . As argued in CHAPTER 4, for most prac-
tical oscillators, the variations in due to noise sources are very small compared to

and therefore (7.12) can be approximated as

Note that the phase due to an arbitrary input noise source can be calculated using the
superposition integral because of the linearity of the system for small perturbation. If
the small perturbation assumption is violated, (7.13) loses its validity. However, as
argued in this chapter and shown in CHAPTER 4 for two examples, this assumption
holds to an excellent degree for all practical noise sources. The overall process of
computing output phase can be modeled as shown in Figure 7.6, where the multiplica-
tion of two vectors corresponds to their inner (dot) product.

1. Again this approximation is strictly valid for small perturbations that do not cause a strong
deviation from steady-state in the waveform. This assumption is valid to an excellent degree in
practical oscillators.
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In a fashion similar to CHAPTER 4, can be written in its Fourier series expan-
sion

where are constant vectors of Fourier coefficients. Using (7.12) and (7.14)

It can be seen from (7.15) that the frequency components of the input perturbations in
the vicinity of integer multiples of the oscillation frequency play the most important
role in determining the total

7.2 Phase Noise due to Multiple Stochastic Noise
Processes

In this section, the general approach presented in the last section is applied to the case
of stochastic noise in actual devices. It starts with a white cyclostationary excitation
vector, b(t) , and then extends the results to low frequency 1/f  noise sources.

Extension of the Model to Multiple Noise Sources 137



Extension of the Model to Multiple Noise Sources

The output phase noise spectrum obtained in Chapter 3 (and modified in Appendix B)
can be generalized to model multiple cyclostationary noise sources with arbitrary cor-
relations, which can be represented as the vector b(t).

Because these cyclostationary processes have the same periodicity as the oscillator
waveforms, they are totally correlated with the state variables. A time shift in node
voltages and branch currents will therefore result in the same shift in the cyclostation-
ary sources, since they are governed by the same voltage and currents. To evaluate
their effect quantitatively, an arbitrary cyclostationary noise vector b(t) can be
expressed as

where is a stationary noise vector and is a periodic, deterministic
diagonal n × n matrix whose elements modulate the stationary noise vector
to give the cyclostationary vector, b(t) . Note that is the natural extension of
the NMF defined in CHAPTER 4 and is therefore called noise modulating matrix.

The correlation matrix for input source vector b(t) is defined as [138][139]

Applying (7.16) to (7.17) the correlation matrix can be written as

where is the correlation matrix of the stationary noise vector,

For multiple noise sources, (7.12) gives as a function of time. Function is
defined as

which is a cyclostationary random process because it is the sum of products of sta-
tionary random processes and periodic deterministic signals. Equation (7.13) implies
that undergoes an ideal integration to give
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Finally goes through a phase modulation, as described by Figure 7.6.

The autocorrelation function of is

which can be written as

where is defined as

This result can also be written as

where tr[ ] designates the trace (sum of diagonal elements) of a matrix, and the matrix
is defined as

In the case of white noise sources, the correlation matrix can be expressed as

where is the noise spectral density matrix determining the noise power and corre-
lations between sources. Therefore,
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Defining as

The variance of is given by

Therefore, as shown in Appendix B, for or the variance is

where is the time average value of the deterministic matrix In a man-
ner similar to that in Appendix B, the autocorrelation function for the output voltage
is given by

Taking the Fourier transform of this autocorrelation function, the following power
spectrum for the single sideband phase noise is obtained:

which is a Lorentzian with a -3dB corner of
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as shown hypothetically in Figure 7.7. This Lorentzian spectrum is in accordance
with the predicted Lorentzian behavior in [15][16][21][27] and [30]-[32].

A very important point is that although the spectrum of the output voltage of the oscil-
lator follows (7.32), the aforementioned -3dB corner in the phase noise spectrum may
or may not be observed, depending on the method used to measure the phase noise. If
a spectrum analyzer is directly used to measure the phase noise spectrum through the
procedure outline in Section 2.2.1 and Figure 2.7, the -3dB corner given by (7.33)
will be seen. If it were possible to use an ideal phase detector and a phase locked loop
to downconvert the spectrum of and measure it directly, no flattening in the noise
spectrum would be seen since the output in that case would be the spectrum of
However, since any phase detector will truncate the input phase at some integer multi-
ple of the implicit nonlinearity will limit the output power and lead to a -3dB cor-
ner frequency different from the corner given by (7.33). The same is true if a delay
line is used to downconvert This lack of consistency in measurement techniques
has been the source of much confusion in the past.

For the phase noise spectrum of (7.32) simplifies to
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For uncorrelated sources, the correlation matrix, will be diagonal; therefore,
only the diagonal terms of appear in the trace operation. Note that the diagonal
terms of the correlation matrix are equal to the noise spectral densities of the individ-
ual noise sources, and the diagonal terms of are the rms values of the ISF for each
state variable.

In the case of uncorrelated noise sources, the effect of 1/f noise can be taken into
account by defining the diagonal matrix of corner frequencies of the noise sources,
i.e., In this case, the phase noise in the region is given by

where

Therefore, the corner of the phase noise is given by

7.3 Summary

The phase impulse response introduced in CHAPTER 4 was generalized in this chap-
ter to accommodate multiple noise sources. Using the generalized impulse response
of an oscillator, its output spectrum in the presence of multiple noise sources with
arbitrary correlation and cyclostationarity was calculated and a general expression for
the phase noise was derived.
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CHAPTER 8 Conclusion

A new approach for modeling of jitter and phase noise in electrical oscillators was
presented in this work. It is based on modeling an oscillator as two cascaded systems.
The first system converts input current and voltage perturbations to phase and is
shown to be linear for small perturbations, as well as time-variant. This system is
fully characterized by its time-variant impulse response, which can be expressed in
terms of charge swing (or flux swing), and a dimensionless impulse sensitivity func-
tion (ISF). Superposition allows one to calculate the output phase due to an arbitrary
input perturbation using the impulse response. The second system in the cascade is a
nonlinear system that converts phase to voltage and whose effect was analyzed in
detail. Using these equivalent systems, the mechanism by which device and circuit
noise becomes phase noise was demonstrated.

Upconversion of low frequency noise, such as 1/f noise, can be understood in this
framework. It was shown that the upconversion is governed by the dc value of the ISF,
which in turn has a strong dependence on the rise and fall time symmetry of the wave-
form. It was experimentally demonstrated that the rise and fall time symmetry directly
influences the upconversion of the low frequency noise.

The time variant nature of the approach allows it to model properly periodically time-
varying effects, such as cyclostationary noise and voltage dependence of capacitors
correctly. The cyclostationary noise sources which exist in almost all oscillators arise
from the dependence of the noise power spectrum on time varying device currents and
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1. N is the number of stages.

The model was generalized to multiple noise sources with arbitrary cross-correlation
and cyclostationarity, by defining a generalized impulse response vector. Using this
impulse response vector, a new general expression for the phase noise in the presence
of multiple noise sources was presented.

The phase noise of cross-coupled CMOS LC oscillators was analyzed and the contri-
bution of various noise sources to the phase noise was calculated. A simple expres-
sion for the tank amplitude of such oscillators was obtained and used to estimate
phase noise. Also a straightforward method for exploiting the cyclostationary proper-
ties of the noise sources was demonstrated.

Application of the model to ring oscillators is simplified by the development of a
closed-form approximate expression for the rms and dc values of the ISF. These
expressions allow calculation of the lower limits for phase noise and jitter in terms of
the number stages, power dissipation, operation frequency, and process parameters.
These lower bounds indicate different dependencies on the number of stages for sin-
gle-ended and differential ring oscillators. Substrate and supply noise sources can
result in strongly cross-correlated noise sources on different nodes of the ring oscilla-
tor. It was shown that ring oscillators can be designed so that only the noise compo-
nents in the vicinity of integer multiples of N times1 the frequency of oscillation have
a dominant effect on the phase noise. The effect of substrate and supply noise on jitter
and phase noise can therefore be reduced if such perturbations can be made common-
mode.

voltages. It was shown that the impact of cyclostationary noise sources on the phase
noise of the oscillator depends greatly on their relative timing with respect to the ISF.

Conclusion



APPENDIX A Relationship between
Jitter and Phase Noise

Analog and digital designers prefer using phase noise and timing jitter, respectively.
The relationship between these two parameters can be obtained by noting that timing
jitter is the standard deviation of the timing uncertainty:

where E[.] represents the expected value. Since the autocorrelation function of
is defined as

The relation between the autocorrelation and the power spectrum is given by the
Khinchin theorem, i.e., [138]
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where represents the power spectrum of Therefore, (A.3) results in the
following relationship between clock jitter and phase noise:

It may be useful to know that can be approximated by defined in
CHAPTER 2 for large offsets [66].

As can be seen from the foregoing, the rms timing jitter has less information than the
phase noise spectrum and can be calculated from phase noise using equation (A.5).
However, unless extra information about the shape of the phase noise spectrum is
known, the inverse is not possible in general.

In the special case where the phase noise is dominated by white noise, and
are given by (4.16) and (4.23). Therefore, can be expressed in terms of phase noise
in the region as:

where is the phase noise measured in the     region at an offset frequency of
and is the oscillation frequency. Therefore, based on (2.6), the cycle-to-cycle

jitter will be given by

Note that for (A.6) and (A.7) to be valid, the phase noise at should be in the
region.
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APPENDIX B Power Spectral Density
of the Output

The output spectrum of an oscillator due to noise was originally analyzed in [14].
Shortly thereafter, the problem was analyzed in more detail to show that the output
spectrum in the presence of amplitude and phase fluctuations is Lorentzian [15][16].
These approaches were extended to relate the time and frequency domain representa-
tions of frequency instabilities [17]-[23]. The approaches of [14]-[20] were general-
ized and applied to optical systems using a stochastic noise approach [21], showing
that phase undergoes a random walk process.

It is shown in this appendix that for the time variant phase noise model of CHAPTER
4, the output power spectrum of an oscillator with a single white input noise source is
Lorentzian in agreement with previous observations. According to (4.22), for a single
cyclostationary noise source i(t), the phase jitter after   seconds is given by:

Excess phase, eventually undergoes a phase modulation (PM) as illustrated in
Figure 4.11. This process is characterized by (2.1). Assuming negligible amplitude
fluctuations1 and looking at the fundamental component of (2.1), the autocorrelation
of V(t) is given by
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1. The case in which both amplitude and phase fluctuation terms exist can also be analyzed in a
similar fashion.

which can be written as

Now it will be shown that the second term in (B.3) converges to zero as The
expression of interest, as is

Hence,

The central limit theorem indicates that has a Gaussian probability density func-
tion [39], i.e.,

which can be written as

Power Spectral Density of the Output



Power Spectral Density of the Output 149

Defining   the expected value of can be written as

and from (B.5) following is obtained

Since is a Wiener processes, and are disjoint, and therefore indepen-
dent. Therefore,

The first term of (B.7) can be expanded as

hence,

Knowing that
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The double-sideband power spectrum can be calculated by taking the Fourier trans-
form of (B.17). The single-sideband phase noise power below the carrier at an offset
frequency is directly calculated from the double sideband spectrum as

where Using (B.5), the autocorrelation function for the output voltage
(or current) is given by

Based on (B.3) and (B.15), the autocorrelation function of the output is given by

which was to be shown.

Thus,

and in a similar manner,

Power Spectral Density of the Output
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Note that the integral of the output power spectrum given by (B.18) does not diverge
to infinity, even though the power spectral density of grows without bound as

A similar spectrum is obtained by a time domain Monte Carlo simulation and is
shown in Figure B.1a and b for three different values of and the same As can be
seen, this simulation confirms the result of (B.18). Note that the value of has been
artificially made extremely large so that its effect can be seen without having to per-
form very long simulation. In practical LC oscillators, this corner is in the range of a
few Hz. As can be seen from (B.19) and Figure B.1, the better the phase noise at a
given offset, the lower this corner will be.

which is a Lorentzian with a -3dB corner of



which is the same as (4.4).

It turns out that the corner frequency seen in Figure B.1b is small for most practical
applications. Therefore, for (B.18) simplifies to

approaches zero. The apparently non-physical power spectrum of creates no
problem since is not an actual voltage or current which can be measured directly;
it can only be indirectly observed in the shift of zero-crossings.

Power Spectral Density of the Output
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APPENDIX C The ISF of an Ideal LC
Oscillator

Consider the ideal LC oscillator of Figure C.1. Assuming that the tank has a maxi-

mum voltage amplitude of the voltage across the capacitor and the current through
the inductor can be written as

where L and C are the values of the inductor and capacitor, respectively, and
is the angular frequency of oscillation1.
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If a current impulse with an area of is injected into the tank at it will induce a
voltage change of in the capacitor voltage, as shown in Figure C.2. Therefore,
the capacitor voltage at is and the inductor current does not
change and is The capacitor voltage and the inductor current after

will be sinusoids with a phase shift, and an amplitude change, with respect
to the initial sinusoid, i.e.,

The voltage and current given by (C.2) should be equal to the initial condition at
i.e.,

1. Note that a zero initial phase (epoch) is chosen for the voltage and current. The choice of ini-
tial phase will be governed by the choice of the time origin and is therefore arbitrary. Since only
the induced phase change is evaluated, the initial value of the phase does not matter.
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Expanding the cosine and sine functions (C.3) can be written as



Since and are small, and are
valid approximations. Using these approximations, (C.4) can be written as

Multiplying the first and second equations in (C.5) by and respec-
tively, and subtracting the first from the second, the following is obtained

and, therefore, the phase impulse response is

Comparing (C.7) with (4.3), the phase ISF for an ideal oscillator is
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The ISF can be calculated using two different methods. The first method is based on
direct injection of an impulse at different times and measurement of induced phase
shift. The second method is based on estimation of the impulse response from the
steady-state solution. The first method is more accurate, but more computationally
intensive.

D.1 Direct Impulse Response Calculation

This method is based on the observation that the most accurate and straightforward
way of calculating the ISF is to replace the noise sources in the circuit with impulsive
sources of small area and measure the resultant phase shift. Repeating this process by
injecting the impulse at various times during a period and measuring the resultant
phase shift allows the ISF to be calculated. This method is the most accurate way to
obtain the ISF because it makes no limiting assumptions. It is noteworthy that,
although the unit impulse response is used, applying an actual impulse with area of 1
coulomb would drive the oscillator deep into nonlinear behavior. Therefore, the unit
impulse response is obtained by applying impulses with areas much smaller than the
steady-state charge swing into the energy storage element of interest and scaling
accordingly.
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If there are P different noise sources in the circuit, and it is desired to find Q points in
one period of the ISF for each source, the transient analysis of the oscillator needs to
be repeated PQ times. Each time the oscillator should be simulated to reach the
steady-state after injection of the perturbation. The unperturbed oscillator also needs
to be simulated once more to obtain the unperturbed response for comparison. There-
fore, this method requires one to simulate the oscillator PQ+1 times.

D.2 Calculation of the Impulse Response from the
Steady-State Solution

This method is based on a different approach which allows quick estimation of the
ISF from the steady-state solution. The process starts by normalizing the state vari-
ables to their maximum values to obtain dimensionless state-variables. This new
state-vector is designated as X, and an instantaneous normalized change in the state
of the system as as shown in Figure D.1. After application of the state of
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the system eventually returns to its steady-state limit cycle, but generally at a different
phase, as discussed earlier.

The voltage change can be decomposed into orthogonal and tangential components
[31]. This phase shift can be estimated by noting that if the magnitude of this pertur-
bation vector, is small, the perturbation in the direction of the motion has the
largest effect on the phase shift, while the perturbation orthogonal to the direction of
the motion has a much smaller effect on the final phase. The perturbation of the
amplitude eventually decays to zero, as implied by the existence of the limit cycle.

Based on the foregoing argument, the final phase shift due to a perturbation vector
with an arbitrary direction, can be calculated by first calculating the resultant
displacement along the trajectory of the state. This is given by the inner product of the
perturbation vector and a unit vector in the direction of the motion, i.e.,

where l is the equivalent displacement along the trajectory and is the derivative of
the state vector with respect to time, t. Note the scalar nature of l, which arises from
the projection operation. Also note that the oscillator does not necessarily traverse the
limit cycle with a constant “speed.” The resultant phase shift is equal to the normal-
ized time it would have taken the system to reach a state l units ahead on the limit
cycle. Hence, the phase shift is given by the displacement divided by the “speed”

Therefore g of Chapter 5 can be approximated by

Note that (D.3) neglects AM-to-PM conversion in the oscillator. Although it is possi-
ble to take the effect of this AM-to-PM conversion into account [31], neglecting AM-
to-PM conversion is not a dominant source of error in prediction of phase noise in
integrated electrical oscillators. Nevertheless, if there is interest in modeling of AM-
to-PM conversion, as well as other mechanisms, the impulse response may always be
calculated directly with the first method.
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In the case of an electrical oscillator, the steady-state solution of the circuit can be
obtained using circuit simulators, such as SPICE. Note that, to calculate the ISF using
the second method, only the steady-state solution in the absence of any perturbation
for one cycle is needed. Figure D.2 compares the ISF obtained from the direct calcu-
lation method with the ISF calculated from the steady-state solution for the 5 stage
ring oscillator of Figure 4.6. As mentioned before the first method results in more
accurate predictions since the second order effects such as AM-to-PM conversion is
not ignored.
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APPENDIX E Phase Noise and Jitter in
Phase-Locked Loops

Phase-locked loop (PLL) are an essential block in many applications. PLLs are used
in data communication circuits for clock recovery generation, in microprocessors to
generate a low skew/jitter clock across the chip, and in RF applications as frequency
synthesizers to produce a digitally controllable stable high frequency source from a
low frequency reference, such as a crystal oscillator. In this appendix, a brief review
of PLL concepts is given and phase noise and jitter behavior of the circuit are dis-
cussed.

E.1 A Brief Review of PLLs

Phase-locked loops have been studied extensively in the past. For comprehensive
reviews of PLLs, the reader can consult with [64]-[69]. This section starts with an
analysis of the first-order loop and then extends this approach to higher order loops
and the case of frequency synthesizers.

E.1.1 First Order Loop

Figure E.1 shows the block diagram of a first order phase-locked loop. It consists of a
phase detector and voltage controlled oscillator (VCO). In a first-order loop the phase
detector is usually implemented using an analog multiplier or an XOR gate which
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compares the phases of the input signal and the output of the VCO. The control volt-
age of the VCO is provided by the output of the phase detector. Under the locked con-
dition, the negative feedback adjusts the dc value of the VCO control voltage in such
a way that it oscillates at the same frequency as the input. When in lock, the input and
output will have a constant, known phase relation. Depending on the type of the phase
detector used, the constant phase error can be 0 or

PLLs are best analyzed in the phase domain. It is instructive to calculate the phase
transfer characteristic from the input to the output. In an ideal phase detector, the dc
value of the phase detector output is proportional to the phase difference of the input
and the output signals. Therefore, it can be modeled as the cascade of a summing
node and a constant gain block with a gain of, The VCO output frequency is pro-
portional to the control voltage. The output frequency of the VCO is proportional to
its control voltage. Since phase is the integral of the frequency, the VCO acts as an
ideal integrator for the input voltage when the output variable is phase. Therefore, its
frequency response can be simply expressed as

In the phase domain, the PLL can be modeled using the equivalent system of
Figure E.2. The input-output phase transfer function of the equivalent system of
Figure E.2 is

with a loop bandwidth of
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The steady-state phase difference between input and output is defined as static error
and is easily calculated to be [69]

where is the angular frequency of the input. As can be seen, the only way to lower
the steady-state phase error is to increase the loop bandwidth.

First order loops are seldom used because of this strong coupling between the band-
width and the steady-state phase error.

E.1.2 Higher Order Loops

Adding extra degrees of freedom to the loop allows the designer to decouple different
loop parameters. The extra degrees of freedom can be added by placing a filter in the
forward path between the phase detector and the VCO as shown in Figure E.3. The
phase domain equivalent system for the PLL in Figure E.3 is shown in Figure E.4.
The transfer function for the system of Figure E.4 is

where If the PLL is implemented using multipliers or XOR phase detec-
tor and an RC low pass filter, the filter transfer function can be written as
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The overall loop transfer function is given by

where The phase transfer (E.7) can be written in the following more
familiar form

with                            and
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The phase error has the following transfer function,

where represents the phase error at the input as shown in Figure E.4. If the
input is at an angular frequency of the phase grows linearly and hence

The steady-state phase error is

which is the same as the static error of the first order loop. Subsequently, the RC loop
filter does not eliminate the static phase error.

The static phase error can be eliminated by introduction of a pole at the origin. This
corresponds to an ideal integration in the forward path and can be implemented using
the charge pump phase-frequency detector (PFD) and a charge pump shown in
Figure E.5.

In the charge pump architecture, the PFD has two edge sensitive inputs and two out-
puts called UP and DOWN. If the VCO runs at a lower frequency than the input, the
UP signal will be non-zero intermittently, while the DOWN pulse will be zero contin-
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uously as shown in Figure E.6. This will inject charge into the charge pump capacitor,
which in turn results in an increase in the output voltage, to adjust the VCO

frequency.

The voltage on the capacitor grows without bound if the input and output do not have
the right phase relationship and therefore no static phase error can persist under the
locked condition. The PFD/charge-pump architecture has two advantages over the RC
lowpass architecture: 1. capture range is limited only by the VCO tuning range; 2.
steady-state error is zero.

As long as the dynamics of the loop are much slower than the signal, the charge pump
can be treated as a continuous time integrator. Usually a zero is introduced by addi-
tion of a resistor in series with the charge pump capacitor to improves loop stability.
The phase domain block diagram of Figure E.4 is valid for charge pump PLLs with
the following filter transfer function

where I and are the current source and the capacitor in Figure E.5, respectively.
Equation (E.11) leads to the following closed-loop transfer function
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Figure E.7 shows this transfer function, which results in a zero steady-state phase
error for the charge pump PLL.

E.1.3 Frequency Multiplication

In many applications it is desirable to generate a low noise, high frequency signal. As
discussed earlier, crystal oscillators provide very stable signal sources; however, crys-
tal oscillators with high resonant frequencies are hard to make. Also it is not possible
to change the output frequency of a crystal oscillator by a great amount. For these rea-
sons, frequency synthesizers use a programmable frequency divider in the feedback
path of a PLL to generate a stable high frequency and programmable output fre-
quency from a single low frequency signal source [70]-[76]. By introducing a fre-
quency divider in the feedback path of a PLL, frequency multiplication can be
achieved as shown in Figure E.8. The division may be performed using an analog fre-
quency divider [77]-[92] or by a digital synchronous or asynchronous counter [93]-
[106].

Phase Noise and Jitter in Phase-Locked Loops 167



Phase Noise and Jitter in Phase-Locked Loops

The feedback loop adjusts the VCO control voltage in such a way that the frequency
of the two inputs to the phase/frequency detector have a constant phase difference and
are, therefore, at the same frequency1. For this to happen the VCO output frequency
has to be M times larger than the input frequency.

An ideal frequency divider divides the phase of the input signal by its division ratio,
M, and, hence, in phase domain it is modeled as an attenuation by a factor of 1/M. The
closed-loop transfer function for a charge pump PLL with a divide by M in the feed-
back path is easily calculated to be

It is instructive to compare this transfer function with that of (E.12), at very low and
very high offset frequencies. When (E.13) reduces to M, while (E.12)
reduces to 1. Consequently, in the case of frequency multiplication, the low frequency
input phase variations get multiplied by M. For the transfer functions in both
(E.12) and (E.13) similarly reduce to and show similar behavior.

1.  It is possible for the frequency of the two inputs to the phase detector to have a fractional
relationship as discussed in [64], however the loop can be designed in such a way that only
locking to the fundamental occurs.
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E.2 Phase Noise and Jitter in PLLs

Having established the essential features of PLLs, the effect of noise in PLLs can be
analyzed. A simplified model for the VCO phase noise is applied to first and higher
order loops.

E.2.1 VCO Noise

Assuming that phase noise of the VCO is dominated by its phase noise in region,
the VCO can be modeled as an noiseless VCO which has an additive white noise at
the input as shown in Figure E.9, were n(s) is a white noise source, with the double-
sideband power spectral density of In the absence of variations in the control
voltage, the phase output of the VCO to this white noise source will have a power

Note that is chosen in such as way that corresponds to the phase noise
of the VCO in the region1. This simplified model will be used to predict the
behavior of the PLL in presence of noise.
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spectrum with the slope of This result can be easily understood noting that the
VCO acts as an ideal integrator, which is an LTI system, and therefore the output
power spectrum can be calculated in terms of the input power spectrum [138][139],
namely,
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E.2.2 Other Sources of Noise

Usually phase detectors are not a major source of noise in a PLL. Their noise has been
studied to some extent in [67][76][107] [108]. The frequency divider in the feedback
path may have a significant contribution to the total phase noise of the PLL depending
on its implementation and other properties of the loop. Due to their resonant nature,
analog regenerative [77]-[90] and injection locked [91][92] dividers are generally less
noisy than their digital synchronous and asynchronous counterparts [93]-[106].

E.2.3 Phase Noise and Jitter in First Order Loops

Using the simplified VCO model of Figure E.9, the PLL can be modeled using the
equivalent block diagram of Figure E.10. Assuming an ideal phase detector1, there
are two sources of noise which affect the phase noise of the output, These two
are the VCO phase noise and the phase noise of the input. Assuming that the phase
noise of the input is not correlated with the phase noise of the VCO2, the phase noise
power spectrum at the output can be calculated using superposition. In other words,
the output spectrum due to each source can be evaluated independently and the total
phase noise will be given by their sum.

1. The spectrum of the output is related to the spectrum of the phase through a nonlinear phase
modulation, and for that reason the spectrum of the output voltage will not grow without bound
as does the spectrum of the          does. This is discussed in much more detail in Appendix B and
Chapter 5.

1. Effect of phase detector nonideality has been discussed in [64].

2. This is a good assumption unless there is an explicit noise source which dominates the phase
noise of both the input and the VCO. Examples of such sources are substrate and supply noise.
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Assuming an noiseless input, the effect of VCO phase noise can be calculated using

cies larger than This should be intuitively clear as the loop adjusts VCO’s con-
trol voltage to compensate for its slow random variations which are slower than the
loop’s dynamics. However, it is unable to react fast enough to fast random changes in
the VCO output and hence, they appear directly on the output, as can be seen in
Figure E. 11.

The time domain view of this concept is shown in the timing jitter vs. delay graph of
Figure E.12. As mentioned in CHAPTER 2, in an open loop oscillator the timing jit-
ter grows without bound as the delay from the reference edge, increases. However,
in a phase locked loop, timing jitter does not increase for time scales larger than loop
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the transfer function from n(s) to               which is

and therefore,

which is shown in Figure E.11. Comparing (E.14) and (E. 16), it is evident that the
phase noise of the output is the same as the phase noise of the VCO for offset frequen-
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time constant, [48] because the feedback adjusts the VCO control voltage so
that the VCO phase follows the input jitter, as shown in Figure E.12. The amount of
jitter at the plateau is usually referred to as the PLL jitter and is shown with
hereafter.

An actual expression for jitter vs. in a PLL can be obtained using (A.5). It can be
shown that in a first order PLL with a bandwidth of the timing jitter is related to

through

where is the center frequency of the output. For (E. 17) reduces to

as shown in Figure E.12.

Now assume an noiseless VCO and evaluate the response of the loop to the phase
variations in the input, The input is usually generated by another oscillator, which
will have its own phase noise characteristics. Taking into account only the phase noise
in the region, its power spectrum can be written as where is
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a constant characterizing the phase noise of the input. Using (E.2), the power spec-
trum of the output can be easily calculated to be

which has the power spectrum shown in Figure E. 13. The corresponding time domain
picture is shown in Figure E.14.
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The phase noise of the input can be larger or smaller than the phase noise of the VCO
depending on the application in which the PLL is being used. In applications such as
microprocessor clock distribution and frequency synthesis, the input usually has a
much smaller phase noise than the VCO, and therefore the total effective output phase
noise of the PLL will have a shape similar to Figure E. 15.

As can be seen from Figure E.15, phase noise is dominated by the input phase noise
for small offset frequencies and by the VCO phase noise for large frequency offsets.
Phase noise pedestals, such as the one in Figure E. 15 are common in synthesizers out-
puts. Figure E.16 shows timing jitter vs. delay, for this case1.

In other applications, such as clock recovery, the phase noise of the input signal can
be comparable to, or even larger than, the phase noise of the VCO. If that is the case,
the phase noise spectrum and timing jitter of the output can have a different shape, as
shown in Figure E.17 and Figure E.18

1. Note that if the input signal has better frequency stability compared to the internal time base
used in the phase noise/jitter measurement system, phase noise at low offsets (jitter at large
delay times) will be dominated by the phase noise (jitter) of the measurement system.

174 The Design of Low Noise Oscillators



E.2.4 Jitter and Phase Noise in Higher Order Loops

Once phase noise behavior in first order loops is understood, it is easy to extend the
concept to higher order loops. Consider the example of a charge-pump PLL with a
compensation zero described by the phase transfer function (E.12). The transfer func-
tion from VCO input noise to output phase is easily calculated to be
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The output phase noise spectrum with a noiseless input signal can be calculated in a
fashion similar to (E.16). It will have a spectrum similar to the one shown in
Figure E.19. The transfer function for the noise of the input is given by (E. 12) and
shown in Figure E.7. Therefore, the overall phase noise at the output will have the
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form Figure E.20. As can be seen, the phase noise is still dominated by the VCO at
large offset frequencies and by the input at small offsets. The bump in the phase noise
spectrum of the output is usually referred to as jitter peaking.

E.2.5 The Effect of the Frequency Divider

Assuming that the phase detector is not a major source of noise in the PLL, the effect
of the frequency divider is to amplify the phase noise of the input by a factor of
20log(M)1. Any excess phase noise due to divider nonideality will be added to this.
Therefore, for a charge pump PLL with a frequency divider in the feedback path, the
phase noise spectrum will have a shape similar to Figure E.21.

1. The low frequency input phase variations are multiplied by M at the output. Therefore the
phase noise power spectrum of the output at low offset frequencies will be M2 times the input
phase fluctuations and hence 20log(M).
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APPENDIX F Describing Function
Analysis of Oscillators

The effect of the nonlinearity on the oscillator amplitude can be evaluated using
describing function analysis [4]-[12]. This appendix presents a simplified, but gen-
eral, approach to amplitude prediction using describing functions.

Consider the forward path transconductance block, G, in the two-port model of
Figure F.1 It will be assumed that it consists of a memoryless nonlinearity as shown in
Figure F.2. In an oscillator with high tank Q, the output voltage of the frequency
selective network of Figure F. 1 will be very close to a sinusoidal voltage even for a
periodic non-sinusoidal input current, as shown in Figure F.3.
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Since the output voltage of the frequency selective network is the input to the nonlin-
ear transconductance block, the response of the nonlinear block, G, to a sinusoidal
input should be characterized. Although the output current of the nonlinear transcon-
ductance will not be sinusoidal, the frequency selective network will mainly pass the
fundamental term of the input since it will attenuate all the other harmonics signifi-
cantly. Therefore, it is the gain from the input sinusoidal voltage to the fundamental
component of the output current that determines the loop gain.

Based on the foregoing observations, the nonlinear transconductance is assumed to be
driven with a sinusoidal input of amplitude In the most general case, the output
will have all the terms of the Fourier series. Thus, for an input voltage of the follow-
ing form,

the output current can be written as1
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The amplitude ratio of the fundamental output component to the input is the magni-
tude of the describing function, which will be denoted as or for short.
Thus,

This naming convention underscores that is the effective large signal transconduc-
tance of the nonlinear block at

As an example, consider the case of an ideal bipolar transistor biased with a current
source in parallel with a large capacitor, as shown in Figure F.4. Assuming ideal bipo-
lar transistor behavior, the collector current is related to the input voltage through an
exponential relation,

1. There is no constant phase in the cosines of (F.2) because the nonlinearity considered here is
memoryless. However, the active gain block will contribute some phase. This phase has an
effect on the phase noise as discussed in CHAPTER 3.
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where is the reverse saturation current of the base emitter junction, is the base
emitter voltage and is the thermal voltage, given by

in which k is Boltzmann’s constant, q is the electron charge and T is the temperature
in kelvins. The output will be sinusoidal for small values of but becomes more
impulsive as the input amplitude grows, as shown in Figure F.5. This impulsive
behavior affects the properties of the noise sources in the circuit and has an important
effect on the phase noise of the oscillators, as discussed in CHAPTER 4.

Although it is possible to derive the large signal  transconductance     , for the bipolar
transistor in terms of modified Bessel functions [10], investigating the two extreme
cases of very large and very small values of      provides important information.

For very small values of the small signal assumption holds and the output grows
linearly with input. Therefore,

where     is the small signal transconductance of the transistor.
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For large input amplitude, the output current will consist of sharp spikes of current,
whose average value necessarily equals Therefore, the fundamental component
of the output current can be approximated by [69]

where T is the period of the oscillation. For large values of the spikes will be very
thin and tall and will occur at the peak of the cosine function. The approximation in
(F.7) holds as long as the spikes are sharp enough so that the cosine can be approxi-
mated as 1 for the duration of the spike. Using (F.3) and (F.7), the describing function
for large values of can be written as

As can be seen, the large signal transconductance is inversely proportional to the
input voltage amplitude for large values of input voltage. This inverse proportionality
provides a negative feedback mechanism that stabilizes the amplitude of oscillations
by reducing the effective gain as the amplitude grows.

To gain more insight, the value of from (F.6) and (F.8), together with the actual
value obtained from the complete analysis [10], is plotted versus the input amplitude,

in Figure F.6. As can be seen, (F.8) gives a good approximation for the large signal
transconductance of a bipolar transistor as long as

It is noteworthy that (F.8) is valid for other types of devices with monotonic nonlin-
earity, such as MOS transistors, vacuum tubes, etc. as long as is larger than a char-
acteristic voltage that depends on the particular device of interest. This universality
holds because the only assumption used to obtain (F.8) is that the spikes are so thin
that the cosine function can be approximated as 1 for the duration of the spike.

Describing function analysis can be applied to calculate the amplitude and frequency
of oscillation. As an example, consider the common drain MOS Colpitts oscillator of
Figure F.7.

The large signal equivalent circuit for the oscillator of Figure F.7 is shown in
Figure F.8. The tank voltage amplitude is related to through
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where

is the capacitive voltage division ratio. The capacitive divider scales the current by a
ratio of 1-n. Therefore, the equivalent circuit reduces to that of Figure F.9, in which

is the series combination of and

In steady-state, tank current is related to the tank voltage through

where and are the admittance and effective parallel conductance of the tank,
respectively. For (F.11) to hold, we should have

Using (F.8) and (F.9), the tank voltage amplitude is calculated to be
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As can be seen from (F. 14), for small ratios, the tank voltage amplitude is about
twice the product of tail current and effective tank resistance. This mode of operation
is usually referred to as current limited.

Note that (F.14) breaks down for small values of in accordance with (F.6). It also
fails for large values of as approaches This failure happens as the
MOS transistor enters the ohmic region (or saturation for a bipolar transistor) for part
of the period, therefore violating the assumptions leading to (F. 14). The value of
for which this happens depends on the supply voltage, and therefore this regime of
operation is known as voltage limited.

Figure F.10 shows the simulated tank amplitude for the common drain Colpitts oscil-
lator of Figure F.7 versus with C1/C2=0.2. As can be seen (F.14) is accurate
in the current limited mode, but loses its validity in the voltage limited regime.
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instantaneous 131
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analog multiplier 161
constant phase error 162
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ideal 170
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